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Abstract: Discharging fireworks during the Chinese Lunar New Year celebrations is a deep-rooted
custom in China. In this paper, we analyze the effect of this cultural activity on PM2.5 concentration
using both ground observations and satellite data. By combining remote sensing data, the problem of
uneven spatial distribution of ground monitoring has been compensated, and the research time span
has been expanded. The results show that the extensive firework displays on New Year’s Eve lead to
a remarkable increase in nationwide PM2.5 concentration, which were 159~223% of the average level,
indicating the instantaneous effect far exceeds that of any other factor over the whole year. However,
the averaged PM2.5 concentrations of the celebration period were 0.99~16.32 µg/m3 lower compared to
the average values of the corresponding pre-celebration period and post-celebration period, indicating
the sustained effect is not very significant. The implementation of firework prohibition policies can
greatly reduce the instantaneous PM2.5 increase, but no obvious air quality improvement is observed
over the entire celebration period. Combining these findings and the cultural significance of this
activity, we recommend that this custom is actively maintained, using new technologies and scientific
governance programs to minimize the negative effects.

Keywords: fireworks; PM2.5 concentration; Chinese Lunar New Year; remote sensing; firework
prohibition policy

1. Introduction

Discharging fireworks during the Chinese Lunar New Year is a custom that has continued for
thousands of years. As early as the Northern and Southern Dynasties (420–589 AD), a book called
“The Chronicle of Jingchu” had already recorded this custom [1]. According to the legend that a
cannibal named Nian always attacked villages in winter. In the fight against Nian, people unexpectedly
discovered that Nian did not like the color red and was afraid of flames and explosions, so they
threw bamboo into the fire, and the fire plus the crackling sound successfully scared the monster
away. Subsequently, this act of repelling the monster became a symbolic part of the New Year
celebration. The word “Nian”, which has the same pronunciation as the word “year” in Chinese,
has also become a synonym for “Chinese New Year”. Over time, with the development of gunpowder,
fireworks and firecrackers gradually replaced bamboo and became the core element to the Chinese
New Year celebrations.

However, despite the profound cultural significance of this traditional custom, the atmospheric
pollution it causes has become a topic of national interest [2–4]. In recent years, China has faced
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unprecedented air pollution [5–11]. Among the many pollutants, PM2.5 (particles with an aerodynamic
diameter of less than 2.5 µm) has received widespread attention due to its remarkable impact on haze
events [12,13], local climate change [14], and especially human health [15–18]. It is now known that
PM2.5 can be deposited deeply in the lungs through simple respiration, causing damage to the blood
circulation system and the immune system [19], and it can induce respiratory and cardiovascular
diseases [20,21]. In fact, outdoor PM2.5 pollution has become the number four risk factor responsible
for the premature death of Chinese citizens [22]. Therefore, the task of controlling China’s PM2.5 level
is very urgent.

Many activities can produce PM2.5, such as industrial production [23–25], transportation [26],
heating [27,28], and agricultural waste treatment [29]. In recent years, high-intensity firework displays
have attracted widespread attention because large amounts of harmful gases and particulate matter are
generated when the fireworks are set off [30–34]. The pollutants produced by firework discharges not
only seriously affect the surrounding air quality, but may also cause local haze [35,36]. The Independence
Day firework displays in the U.S. have also been reported as causing a 42% increase of national 24-hr
PM2.5, with an alarming 370% increase reported at an adjacent station [37]. During the night of the
2007–2008 Diwali Festival in India, it has been recorded that the 12-hr PM2.5 reached 591 µg/m3,
which was almost 3.9 times the normal level [38]. During the Montreal International Fireworks
Competition in 2007, it has been proven that PM2.5 remained above 1000 µg/m3 for almost 45 min
within a 2-km-diameter area around the display site [39].

Due to the cultural meaning of fireworks in the Chinese New Year celebration, high-intensity
displays are common, and the firework contribution to air pollution is considerable [40–46]. It has
been reported that during the seven days of celebration following the Chinese Lunar New Year’s Eve
in 2013, up to 5505 tons of firework residues were removed from the streets in Beijing [47]. Early in
2006, it has been reported that the firework displays contributed to sharp increase of both PM2.5 and
PM10 [48]. Moreover, the study of Wuhan in 2014 showed the PM2.5 concentrations rise dramatically
when massive firework display took place, and the pollution lasted for a few days [49]. Previous studies
focusing on individual cities or specific city groups in China have indicated that fireworks discharge
has a strong impact on PM2.5 concentration. However, most of the studies are highly targeted and
therefore lack universality. In order to scientifically cognize and cope with the environmental effects of
fireworks discharge in China, it is also necessary to conduct an in-depth and comprehensive assessment
of the firework oriented PM2.5 pollution at a national scale.

In this paper, the monitoring data of about 1600 stations (2013–2016) and 14 years of satellite
remote sensing data (2002–2016) are used to systematically analyze the PM2.5 pollution caused by the
fireworks discharge at New Year. Firstly, we evaluate the instantaneous effect of fireworks discharge
based on the national daily maximum PM2.5 concentration, and we analyze the response degree of
PM2.5 to fireworks in 31 provincial capital cities. As the Chinese New Year firework displays take place
from New Year’s Day to the day after the Lantern Festival (Figure S1), we then investigate the sustained
effect of these activities. Finally, we select some characteristic cities to evaluate the effect of firework
prohibition regulations. By using all available ground observations, we tried to study the impact of
fireworks on PM2.5 concentrations at a national scale, rather than a single city scale. With the help of
historical ground PM2.5 data retrieved by satellite images, we have extended the research time range
from four years to nearly fifteen years. Finally, by evaluating the effect power of fireworks on PM2.5

concentrations from multiple perspectives such as instantaneous effects, sustained effects and policy
effects, we tried to draw a more comprehensive conclusion between fireworks and unconventional
national PM2.5 pollution.
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2. Materials and Methods

2.1. Study Region and Data

The study region is China (Figure S2), and the research period is mainly from 18 January 2013,
to 6 November 2016. Three kinds of data were used in this study:

(1) Ground PM2.5 observations. In recent years, the Chinese government has accelerated the
construction of the PM2.5 ground monitoring network. By the end of 2016, the number of
online sites had reached 1600. The collection and processing of pollutant data is undertaken
in accordance with the Technical Regulation on Ambient Air Quality Index (AQI) and national
quality control guidelines [50,51].

(2) Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) products.
Compared with station observations, satellite data enjoy a wider coverage and longer observation
times, which means that satellite data show significant advantages in air quality related
research [52–59]. In this study, MODIS Level 2 Collection 6 10-km AOD products were adopted
for the national PM2.5 retrieval. The quality of MODIS AOD products has been proven to meet the
requirements of atmospheric-related research [60–62]. The newly released 10-km AOD products in
collection 6 have further enhanced the retrieval capacity in the highlighted regions by combining
the dark target algorithm and deep blue algorithm in AOD retrieval. The overall correlation
between Collection 6 AOD and AERONET-observed AOD over land is R = 0.86, and 69.4% of
Collection 6 AOD fall within expected uncertainty of ±(0.05 + 12%) [63]. The Terra and Aqua
are polar-orbiting satellites and cross the equator at around 10:30 a.m. (descending orbit) and
1:30 p.m. (ascending orbit) local sun times, respectively. Since the crossing time of these two
sensors is different, the data of Terra and Aqua should be combined to better represent daily
AOD. For each pixel, if there is no data for both Terra and Aqua products, it was identified as
“null”; if both values are identified, the average value was used; if there is only one valid value,
this value was taken.

(3) Meteorological data. Meteorological conditions can greatly influence the distribution of
atmospheric pollutants. The NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses
and Forecast Grids product is used in this research. These data have a 6-hr temporal resolution
and fully cover the research area since 1991. We extracted relative humidity (RH, %), temperature
(TEMP, K), wind speed, (WS, m/s), surface pressure (SP, Pa), and height of planetary boundary
layer (HPBL, m) (Table S1) and resampled them into 0.1 degree (10 km) for historical PM2.5

retrieval. Because the spatial resolution of the reanalysis data was relatively coarse, the ground
monitoring data was a better choice for the detailed analysis. The daily meteorological ground
observations were also used to supplement the analysis of the firework policy effects.

2.2. Historical PM2.5 Retrieval

Ground observations are extensively used in surface air pollution. However, long-term research
of China’s PM2.5 pollution has been severely restricted because of the late construction of the ground
PM monitoring network. Besides, the distribution of ground stations is uneven. Thus, the remote
sensing products have become popular in ground PM2.5 monitoring, because they can not only extend
the research time, but also obtain the spatially continuous PM2.5 data [56,59,64].

Several attempts have been made to describe the AOD-PM relationship, and most of them can be
classified into simulation-based models or observation-based models [65]. Because the requirement of
datasets is more comprehensive for simulation-based models (especially emission inventories can be
hard to acquire sometimes) [64,66], the observation-based models can be a good compromise [67].

According to previous researches [68–71], the AOD-PM relationship has gradually been regarded
as a nonlinear problem of multiple variables. Therefore, artificial neural networks, which can better
present complex nonlinear relationships, have been used to estimate PM2.5 concentrations [67,72,73].
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A three-layer back-propagation neural network (BPNN) model was constructed to estimate historical
daily PM2.5 [67].

It takes a total of nine factors as input, including spatiotemporal information, AOD,
and meteorological elements, and gives PM2.5 as the only output, the model structure is shown
in Figure 1. The optimal performance node number of the hidden layer is usually between 2 + µ

and 2n + 1 (where n and µ represent the number of nodes in the input layer and the output layer,
respectively) [74]. In previous work, 18 nodes were proved to have the best performance [75].Int. J. Environ. Res. Public Health 2020, 17, x 4 of 19 
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The model performance was evaluated using the correlation coefficient (R) and root-mean-square
error (RMSE) between the measured PM2.5 and the retrieved PM2.5, and 10-fold cross-validation was
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where n describes the sample size; yi and y′i are the observation and prediction values of the PM2.5

concentrations, respectively; y∗ is the average value of PM2.5 observations.
The R describes the fitting degree of the constructed model, and usually the higher value indicates

the better model reliability. The RMSE describes the prediction error of the model, and usually the lower
value indicated the better model accuracy. As for the 10-fold cross-validation method, the sample-based
cross-validation is adopted to evaluate the overall predictive performance of satellite-based PM2.5

retrieval models [77]. In sample-based cross-validation, all the samples are almost equally divided into
10 folds randomly, and the complete validation needs 10 rounds. Each round, nine folds will be used
for model fitting and the remaining one will be used for model validation.

In this work, the main purpose of remote sensing data retrieval is to obtain historical ground
PM2.5 data, so as to explore the influence of the Chinese New Year fireworks on PM2.5 concentrations
in a longer time span. Thus, we used the data from 1 March 2014 to 29 February 2016 to construct
the model, to estimate the data from 1 March 2013 to 28 February 2014. The model fitting R is
0.7581 and RMSE is 27.1316 µg/m3, the model cross-validation R is 0.7523 and RMSE is 27.4554 µg/m3

(see Figure 2a). These values indicated that the model is not seriously overfitting. The model
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prediction R is 0.7243 and RMSE is 39.9400 µg/m3 (see Figure 2b), and the model 17-day prediction
R is 0.7930 and RMSE is 26.9968 µg/m3 (see Figure 2c). These values indicated that the model can
be considered robust for historical PM2.5 retrieval, especially for the latter historical 17-day fusion
research. Furthermore, we retrieved PM2.5 data from 2002 to 2012 for the evaluation of fireworks’
long-term effect on PM2.5 concentrations.Int. J. Environ. Res. Public Health 2020, 17, x 5 of 19 
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2.3. The 17-Day Time Division Schema

In this research, we consider the entire Chinese New Year celebration period as a whole and
denote its time span (17 days) as ∆t. Using ∆t as division unit, and taking each celebration period
as an anchor point, we were able to divide the time before and after each celebration period. As the
result, the time from 2002 to 2016 can be circularly divided into twenty-one periods in sequence (the
schematic diagram is shown in Figure 3a). The order of periods is: the 10th pre-celebration period~
the 1st pre-celebration period, the celebration period, and the 1st post-celebration period~ the 10th
post-celebration period.

Since the date of the Chinese New Year was different every year (see Table S2), after divided the
9th periods, the number of days left in each year would be slightly different. These days were mainly
in the summer and had little effect on the study of the Chinese New Year celebration periods in winter.
Therefore, we still divided the 10th post-celebration period by ∆t and put the rest of the days into the
10th pre-celebration period. Thus, each twenty-one period is composed of twenty 17-day periods and
one residual period (the 10th pre-celebration period).
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2.4. The Historical PM2.5 Data Fusion Schema

As mentioned above, ground observations may have some deficiencies in related researches due
to the construction time and location constraints of the stations. At present, the satellite retrieved
PM2.5 data are generally considered to be good supplementary data. However, constrained by imaging
conditions, such as bright ground, clouds, and fog, most satellite products are troubled by data missing.
Thus, the retrieved PM2.5 data usually cannot achieve full daily coverage. Therefore, it is necessary to
adopt appropriate fusion strategies to improve data coverage before further analysis.

Through the 17-day time division schema, the division results can be illustrated as Figure 3b.
To compare the PM2.5 levels between different time periods across these years, the retrieved data
of the same period from fifteen years were fused. For example, the data of every Chinese New
Year celebration period in 2002–2016 were fused into one distribution map of PM2.5 concentrations
(illustrated in Figure 3b with red letters). The data of other periods were fused with the same strategy.

3. Results

3.1. Instantaneous Effect of Fireworks Discharge on PM2.5

Based on all the available ground monitoring data from January 18, 2013, to November 6, 2016
(including the four celebration periods, see Table S3), we obtained continuous hourly average PM2.5

concentrations for mainland China.
Firstly, we recorded the daily maximum PM2.5 (Figure 4a). It can be seen that the daily maximum

PM2.5 reaches its lowest point in summer and its highest point in winter, with a clear pattern of seasonal
variation [55,78]. The severe PM2.5 pollution in winter is likely the result of winter heating [27,28] and
stable meteorological conditions [79,80].
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Remarkably, the most significant increase appears on the Lunar New Year in all four years
(i.e., 10 February 2013; 31 January 2014; 19 February 2015; and 8 February 2016 in the solar calendar).
The corresponding PM2.5 levels on these days reached 280 µg/m3, 262 µg/m3, 184 µg/m3, and 235 µg/m3,
which were, respectively, 209%, 159%, 223%, and 206% of the average concentrations of the days before
and after the Lunar New Year.

It should be noted that these are the highest values of the corresponding years, and these peaks all
appeared at 2 a.m. on Lunar New Year’s Day. So, we recorded the time when the national average PM2.5

reached the maximum each day to observe its distribution. According to Figure 4b, daily PM2.5 usually
reached a maximum around 7:00–11:00 or 21:00–24:00 (00:00). Of the 1389 days considered in this
study, only 12 maximum daily PM2.5 concentrations appeared at 2 a.m., and the PM2.5 concentrations
of the other eight days were far below the PM2.5 level of each Lunar New Year (i.e., 94 µg/m3, 61 µg/m3,
62 µg/m3, 40 µg/m3, 99 µg/m3, 72 µg/m3, 69 µg/m3, and 38 µg/m3, respectively).

Lunar New Year’s Eve and Lunar New Year’s Day are the time when most intensive fireworks
discharge takes place. In terms of time, these New Year peaks are most likely caused by fireworks.
Meanwhile, the closure of many factories and enterprises has greatly suppressed the PM2.5 pollutants
emitted by economic activities [45,81]. Under such favorable conditions, the daily maximum PM2.5

still reaches extremely high levels on the Lunar New Year, indicating that the Chinese Lunar New
Year fireworks discharge has the strongest transient influence in the whole year. These conclusions
confirmed some city-level conclusions on a national scale.

Although we had confirmed that the effect of fireworks discharge is serious nationwide, we still
wanted to check if this effect was equally significant in individual cities. We therefore decided to
conduct an analysis in 31 provincial capital cities, including the capital Beijing, because ground data are
usually more widely available in these cities. Because fireworks seem to have the greatest impact on
PM2.5 in the morning of New Year’s Day (Figure S3), and PM2.5 tends to reach its highest level at 2 a.m.,
we decided to explore the response of PM2.5 to fireworks based on the time window of 00:00–04:00.
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During each celebration period, each city was categorized into one category (significant response,
obvious response, or weak response), according to the response of PM2.5 to fireworks discharge.

The classification was conducted as follows:

(1) If the maximum value of PM2.5 in a city appeared during 0:00–04:00 on New Year’s Day, it was
considered that the city’s PM2.5 responded significantly to the New Year fireworks.

(2) If the maximum value of PM2.5 in a city did not appear during 0:00–04:00 on New Year’s Day,
but both the increase and the increase rate were the highest compared with those during the
0:00–04:00 period of the remaining days, it was considered that the city’s PM2.5 responded
obviously to the New Year fireworks.

(3) If the variation of PM2.5 in a city did not match the above two conditions, it was considered that
the city’s PM2.5 responded weakly to the New Year fireworks.

To avoid any possible interference, the data from the Lantern Festival period were excluded
from this classification. In addition, according to the Tibetan calendar (Table S4) and related customs,
the data from the Tibetan New Year firework period would not affect the classification results.

According to the classification map shown in Figure 5 and the corresponding statistical results
(Table S5), it is unsurprising to see that the cites where the PM2.5 showed a significant response to
fireworks were in the majority during the 2013–2016 celebration periods in the Chinese Lunar New
Year, amounting to 74.2%, 61.3%, 51.6%, and 58.1% of the total, respectively. In contrast, the proportion
of cities with a weak response was almost the lowest, amounting to 6.5%, 9.7%, 19.4%, and 25.8%,
respectively. Notably, only two cities fell into the weak response category in 2013. Even taking different
diffusion conditions into account, it is still reasonable to say that the discharge of Chinese Lunar
New Year fireworks is causing significant instantaneous PM2.5 increases. More importantly, such a
phenomenon does not only occur in individual cities, but in 31 cities that are across the whole country.
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3.2. Sustained Effect of Fireworks Discharge on PM2.5

Since the transient effect is so strong, we could not help but wonder how strong the sustained
effect is. As can be seen in Figure 4a and Figure S3, although the PM2.5 on New Year’s Day showed
a fairly sharp increase, the PM2.5 concentrations dropped back to the usual level over the next few
days. In fact, there is usually a great variety of spontaneous celebrations and commemorations over
the entire 17-day celebration period, which often involve the discharge of fireworks. Therefore, it was
necessary to explore the continuous influence of New Year’s fireworks on PM2.5 throughout the entire
celebration period. To undertake this analysis, each Chinese lunar year was divided into 21 periods by
the same time span as the celebration period through the 17-day interval division scheme. The average
national PM2.5 monitoring values during each period in 2013–2016 were calculated and are shown in
Figure 6.
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As can be seen, the phased concentrations of PM2.5 is in accordance with the seasonal variation
appeared in Figure 4, and interestingly, even under the dramatic transient effect of the fireworks,
the celebration period PM2.5 concentration does not break the seasonal variation pattern. The PM2.5 of
four celebration periods were 87.43 µg/m3, 83.37 µg/m3, 51.13 µg/m3, and 56.68 µg/m3, respectively.
The corresponding PM2.5 averages of pre- and post-celebration periods were 94.71 µg/m3, 96.46 µg/m3,
67.45 µg/m3, and 57.68 µg/m3, respectively. The PM2.5 in four celebrations were all below the average
level of pre- and post-celebration periods, and the PM2.5 level was even lower than that of both the pre-
and post-celebration periods in 2014, 2015, and 2016. In addition, although the PM2.5 level during the
2013 celebration period was slightly higher than that of the post-celebration period, it was still much
lower than that of the pre-celebration period. It therefore seems that the sustained effect of the New
Year fireworks is not as strong as the instantaneous effect.

To further establish the sustained effect of New Year’s fireworks over a longer period of time,
Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were employed.
We used the 10-km AOD products to retrieve the near-ground PM2.5 data from 2002 to 2016, and further
combined this with the 17-day interval division scheme to obtain fusion maps of PM2.5 distribution in
mainland China for 2002–2016 (Figure 7).
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From Figure 7, we can see the retrieved PM2.5 showed similar spatial distributions to the ground
observations. According to previous studies [82], the PM2.5 level in northern China was generally
higher, and the PM2.5 level in the southern area was relatively lower, which is mainly affected by
population distribution and urbanization progress.

As is known to us all, the celebration period is usually in the middle of winter when PM2.5 pollution
is at its worst. As in Figure 7 we can see that the PM2.5 does show a significant pattern of seasonal
variation, it decreases during the spring (from the 1st post-celebration period to the 5th post-celebration
period), and reaches the lowest point in the summer (from the 6th post- celebration period to the 10th
pre-celebration period), then gradually increases through the autumn (from the 9th pre-celebration
period to the 5th pre-celebration period), and finally reaches the highest point in the winter (from the
4th pre-celebration period to the celebration period). The regional aggregations indicated that there are
many other factors that play important roles in PM2.5 accumulation. For example, the PM pollution
in Xinjiang is possibly due to the existence of deserts, while the PM2.5 hot spots in Sichuan and
Beijing-Tianjin-Hebei region are not only affected by population density, but also because of the
surrounding mountains make it difficult for the pollutants to spread [83].

As for smaller time window, compared with the pre-celebration period, PM2.5 in the celebration
period shows a remarkable decrease, especially in areas with higher PM2.5 concentrations, such as the
Beijing-Tianjin-Hebei region and the Sichuan Basin. In the post-celebration period, the pollution is
further alleviated, which is more prominent in central and eastern China. Although the station-based
overall PM2.5 level of the celebration period shows a gradual decreasing trend which is consistent with
its seasonal variation, it is still unexpected to see that the PM2.5 of the entire celebration period shows
no obvious increase across the country.

3.3. Effect of Firework Prohibition Policies

Since the debate is still fierce over whether to ban fireworks discharge to improve air quality,
some local governments have attempted to implement such policies in China as attempts [84]. As the
statistical results showed in Table S5, the number of cities with a weak response showed a certain
increase throughout 2013–2016, which is very likely to be a policy-oriented phenomenon. It is therefore
necessary to analyze and evaluate the effects of these policies.

Considering many factors, we decided to take the cities of Wuhan, Chengdu, and Zhengzhou as
examples. These cities implemented firework prohibition policies in 2014, 2015, and 2016, respectively,
which makes the data of these cities very suitable for comparing the changes in PM2.5 levels before and
after the policies’ implementation.

The 34-day mean PM2.5 concentration during the pre-celebration period (17 days) and the
post-celebration period (17 days) were used to represent the normal PM2.5 level, and the difference
between the hourly PM2.5 concentrations and the corresponding averages was then calculated to
indicate the policy efficiency.

From Figure 8, we can see when focusing on the variation of PM2.5 pollution in the Chinese Lunar
New Year’s Eve and the early morning of New Year’s Day, it is clear that the implementation of the
firework prohibition policies significantly reduced the instantaneous PM2.5 increase. For example,
PM2.5 concentration sharply increased in Wuhan on New Year’s Day in 2013, but after the
implementation of the prohibition policy in 2014, the PM2.5 concentration decreased significantly in the
next three celebration periods. For Chengdu, the PM2.5 concentrations in the last two years, under the
prohibition policy, were also lower than those of the previous two years, despite the remaining
visible peaks. As for Zhengzhou, the PM2.5 concentrations were all very high in 2013–2015, but the
contamination level was greatly reduced in 2016 when the prohibition policy took effect.
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However, when analyzing the whole of the Chinese Lunar New Year celebration period, it is
difficult to say if the prohibition policy is still that effective. This is likely because other factors such
as meteorological conditions and daily emissions can also profoundly influence the pollution level
of PM2.5. For example, the purification effect of heavy precipitation made the air much cleaner in
2015 than in 2014 and 2016 in Wuhan, although prohibition policies were in effect in all these three
years (see Table S6). In Chengdu in 2013, although the fireworks discharge significantly increased the
instantaneous PM2.5 concentrations, the favorable weather conditions still made the PM2.5 level in
the few days around the New Year’s Day lower than those in the years when the prohibition policies
were implemented (see Table S7). In contrast, in 2014, the stable meteorological conditions in Chengdu
greatly exacerbated the accumulation of pollutants, resulting in this city suffering from much more
severe PM2.5 pollution [85]. Another example about industrial and municipal discharges is in 2016,
the New Year peak of PM2.5 in Zhengzhou was noticeably eased under the implementation of the
prohibition policy, but under the same weather conditions (see Table S8), the PM2.5 pollution situation
began to deteriorate from the second day of the new year, and then the serious pollution lasted for four
days. This phenomenon was probably because daily emissions were still causing a continual PM2.5

increase, and the reduction of pollutants by firework discharge regulations were not effective enough.
Similarly, the effect of daily pollution can also be observed in Wuhan and Chengdu from 2013 to 2016.
For most of the time after the seventh day of the Lunar New Year, the PM2.5 was lower than the normal
level. It is especially apparent for Chengdu in 2013, where the PM2.5 level was almost always lower
than usual, except for the early hours of New Year’s Day.
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4. Discussion

The results of this study indicate that the intense discharge of fireworks at the Chinese New Year
can dramatically increase PM2.5 over a short period of time, and this effect exceeds that of any other
factor nationwide. However, the sustained effect of the fireworks is not strong. On the one hand,
the discharge of fireworks at New Year is intense, but the duration is short, and when combined with
certain meteorological conditions [86], it allows the PM2.5 to diffuse and settle quite quickly in the
relatively less-polluted surroundings. On the other hand, during the celebration period, some major
sources of daily PM2.5 pollution, such as factory and traffic emissions, are greatly reduced due to
factory shutdown, festive population migration, and other related factors. Thus, the “holiday effect”
may also play an important role in curbing PM2.5 pollution [45,81]. Therefore, it is rational to believe
that the aggravation of PM2.5 pollution caused by the Chinese Lunar New Year fireworks discharge is
no stronger than the mitigation brought by the natural cleaning processes and the “holiday effect”.

As for the effectiveness of firework prohibition policies, it is clear that these policies can significantly
alleviate the PM2.5 bursts caused by fireworks discharge in the early hours of Lunar New Year’s
Day. However, we have to admit that its influence has limitation over the whole celebration period,
which is probably because there are still many other strong influence factors, such as meteorological
conditions and daily emissions, that can offset or even overshadow the effect of policies. Additionally,
it is important to take the cultural and symbolic meaning of Chinese Lunar New Year fireworks into
account, in that people may still want to celebrate the Chinese Lunar New Year in the traditional
way, no matter what [87]. During 2014 and 2015 in the Chinese Lunar New Year celebration periods
in Chengdu, the PM2.5 level still showed an obvious increase in the early morning of New Year’s
Day, despite the prohibition policy being in effect. Additionally, during the 2014 celebration period in
Wuhan, even if they may get punished, people still celebrated the New Year in the traditional way [88].

Firework prohibition policies can indeed alleviate the transient pollution, but their effect on
the sustained PM2.5 concentration during the entire celebration period of the Chinese Lunar New
Year is not obvious. As a Chinese culture passed down for thousands of years, the custom of
discharging fireworks during the Chinese Lunar New Year is deeply rooted. It therefore seems overly
simplistic and unreasonable to completely prohibit this celebration activity only for the air pollution
consideration. More appropriate approaches should be adopted in a more humanized and scientific
way. For example, the government could consider guiding the public to rationally discharge fireworks
at appropriate times and places, according to diffusion conditions and safety factors. Alternatively,
we could encourage the development of low-pollution substitutes, including replacing the traditional
high-polluting gunpowder with environmentally friendly desulfurized explosives, and adopting
electronic fireworks products.

5. Conclusions

To date, there have been some studies of PM2.5 variation with firework displays, but most of
the works have focused on individual cities [40,42,45,48,49,89]. However, considering that China has
a large span of latitude and longitude, the climatic characteristics and geographical conditions are
quite different, which makes the researches based on a single city have certain limitations. Therefore,
a comprehensive analysis of the effect of Chinese Lunar New Year fireworks discharge on PM2.5

concentration in China was necessary.
In this study, we jointly used station monitoring data and remote sensing products to

comprehensively analyze the effects of the Chinese Lunar New Year fireworks discharge on PM2.5

concentration within the entire mainland China. By using remote sensing data, the problem of uneven
spatial distribution of ground monitoring has been compensated, and the research time span has been
expanded from four years (ground observation time) to fifteen years (satellite observation time).

The results indicate that the intensive Chinese Lunar New Year fireworks discharge can contribute
to a sharp increase of PM2.5 within a short period of time. Compared with the concentrations before
and after each Lunar New Year, the PM2.5 of the four Lunar New Years increased by 109%, 59%, 123%,
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and 106%, respectively. In most cities (ranging from 51.6~74.2%), PM2.5 variations during the Lunar
New Year showed strong correlations with the discharge of fireworks. However, due to the suitable
diffusion conditions and the reduction of factory and traffic emissions, the overall PM2.5 concentration
during the 17-day celebration period of the Chinese Lunar New Year is no higher, and even lower
than the normal level (which were 7.28 µg/m3, 13.09 µg/m3, 16.32 µg/m3, and 0.99 µg/m3 lower
compared to normal level, respectively). Therefore, the sustained effect of fireworks discharge on
PM2.5 concentration is not as serious as many people may once have thought. As for the firework
prohibition policies, its implementation has been proved to have a significant effect on the reduction of
the instantaneous PM2.5 peaks. The PM2.5 increase during the concentrated fireworks discharge hours
(00:00–04:00 on Lunar New Year’s Day) has been significantly reduced. However, its impact on the
entire celebration period is limited. The PM2.5 levels did not show any significant changes during the
rest of the celebration period before and after the implementation of the policies. At the same time,
other factors may also have a certain impact on the effect of policy implementation.

The custom of setting off fireworks during the Chinese Lunar New Year has been passed down for
thousands of years, and it seems too arbitrary to completely abolish this custom only for air pollution
consideration. We believe that this significant custom should be continued with minimized negative
effects, with the assistance of new technology and scientific management.
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