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Abstract: The molecular mechanism that contributes to nitrogen source dependent omega-3
polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp.,
was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the
supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared
with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3
PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid
(DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold
of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes
(RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and
RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the
stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of
essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of
delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain
fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation,
contributing to the extension and unsaturated bond formation. These findings indicated that
regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production
in Thraustochytriidae sp.

Keywords: nitrogen source; Thraustochytriidae sp; n-3 polyunsaturated fatty acids; elongation and
unsaturation; reference genes

1. Introduction

Fatty acids (FAs) are essential compounds that play significant roles in cellular structure,
energy storage, physiological metabolism as well as genetic regulation [1]. Omega-3 polyunsaturated
fatty acids (n-3 PUFAs) [2] have various health benefits such as healthy brain and eye development [3,4],
cardiovascular disease prevention [5,6], anti-inflammatory [7], and anti-cancer effects [8]. Currently,
marine oily fish is the main source of n-3 PUFAs, which has shown obvious drawbacks, including
accumulated contaminants and unstable wild fish stocks, hence alternative sources are required to meet
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the increasing global market demand [9,10]. Thraustochytrids, heterotrophic eukaryotic marine protists,
have attracted increasing attention for their significant lipid production capacities. Being considered
as a sustainable alternative source of n-3 PUFAs, Thraustochytrids have advantages of high lipids
contents, fast growth rate and easily large-scale fermentation [11]. For instance, maximum lipid yield
(% dry weight basis) achieved were 40.5% and 49.4%, respectively, in Schizochytrium sp. S31 (ATCC)
and Schizochytrium sp. DT3 [12]. Different fermentation strategies have been employed to improve lipid
yield and FA profile, such as optimization in salinity, pH, dissolved oxygen, temperature, carbon source
and nitrogen source [13,14]. Several desaturases and elongases participated in FAS pathway and
synthase involved in PKS pathway have been identified [15].

Nitrogen is an indispensable nutrient affecting microalgal growth and lipid production [16–18].
Previous research has shown that nitrogen starvation can effectively increase lipid content in
Thraustochytrids. Aurantiochytrium sp. strain T66, which accumulated the highest lipid content
of 63% (w/w) of dry cell weight under the condition of nitrogen limitation combined with O2

limitation [19]. Ren, Sun, Zhuang, Qu, Ji and Huang [14] reported that in the fermentation of
Schizochytrium sp. ABC101, limited nitrogen feeding increased lipid yield by 1.5-fold. With sodium
nitrate addition, Aurantiochytrium sp. KRS101 cultivated in orange peel extract medium achieved
50.23% total fatty acid (TFA, % DCW) and 28.51% docosahexaenoic acid (DHA) [20]. When using
urea as a nitrogen source, Aurantiochytrium sp. SD116 accumulated 71.09% TFA and 34.79% DHA [21].
However, the molecular mechanisms underlying the effect of nitrogen source on lipids production in
remains unclear.

The reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) is a widely
used technique for the determination of gene [22]. Reference genes (RGs) are of great importance to
normalize data and assure accurate results of RT-qPCR. For each experimental condition, it is essential
to validate the expression stability of RGs to avoid false results and/or erroneous interpretations [23].
To date, research about RGs in Thraustochytrids is limited. 18S rRNA was used as an internal RG of
Aurantiochytrium sp. under low temperature conditions [24]. Chen et al. [25] also used 18S rRNA
as an internal standard in Schizochytrium sp. S056 when glycerol is used as a carbon source in
fermentation. ACT (actin) was set as a RG to validate genes involved in biosynthetic pathways of
docosahexaenoic acid (DHA) and the ketocarotenoid astaxanthin in Aurantiochytrium sp. SK4 [26].
However, previous publications have indicated that housekeeping genes are not universally suitable
RGs for various microorganisms and experimental conditions [27–29]. Currently the suitable RGs in
Thraustochytriidae sp. PKU#Mn16 under nitrogen stress is lacking.

In this study, we investigated the effects of different nitrogen sources (e.g., sodium nitrate or urea)
on the lipid production in Thraustochytriidae sp. PKU#Mn16. To further explore the molecular
mechanism that contributes to nitrogen source dependent n-3 PUFAs synthesis in Thraustochytriidae sp.
PKU#Mn16, several crucial genes (delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase,
fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, acetyl-CoA carboxylase and nitrate
reductase) identified in our previous transcriptome studies were quantitated by using RT-qPCR.
Due to the lack of available RGs for abovementioned experimental conditions, novel candidate genes
were selected and evaluated to obtain the most suitable RGs for gene expression in Thraustochytrids.
This study provides a better understanding of underlying mechanisms of the biosynthesis of n-3 PUFAs
in Thraustochytrids cultivated under different nitrogen sources.

2. Results

2.1. Effects of Sodium Nitrate and Urea on the Growth of Thraustochytriidae sp. PKU#Mn16

To investigate the effects of different nitrogen sources on the growth of Thraustochytriidae sp.
PKU#Mn16, inorganic nitrogen source sodium nitrate (SN) and organic nitrogen source urea were
chosen as the sole nitrogen source, respectively. Seven concentrations of N in the medium (1, 5, 10, 15,
20, 30, and 50 mM) were tested for Thraustochytriidae sp. PKU#Mn16 flask cultivations. As shown in
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Figure 1a, the growth trends of Thraustochytriidae sp. PKU#Mn16 were generally similar to each other
for all the tested SN concentrations. Cell growth was relatively slow within the first 20 h, then entered
the logarithmic phase with the time to peak biomass of 68 h, after which cell growth started to decline.
At 68 h, the highest peak biomass (dry cell weight (DCW), 1.01 g/L) was observed in 30 mM SN
cultivation, followed by 20 mM (1.00 g/L), 5 mM (0.99 g/L), 15 mM (0.95 g/L), 10 mM (0.93 g/L),
50 mM (0.86 g/L), and the lowest peak biomass occurred in 1 mM cultivation (0.63 g/L). Comparing to
the sodium nitrate cultivation, the growth trends varied in different concentration of urea (Figure 1b).
The highest peak biomass occurred at 68 h in cultivation (0.93 g/L) supplemented with 50 mM urea,
followed by 30 mM (0.71 g/L). In cultivation with 15 mM and 20 mM urea, the time to peak biomass
(at 0.44 g/L and 0.53 g/L) was 92 h, while in those with 5 mM and 10 mM urea the time to peak biomass
(at 0.23 g/L and 0.33 g/L) was 116 h. The differential impact of SN and urea on biomass was also
reported in previously published literatures as follows [20,30].

In the large-scale cultivation of filamentous cyanobacteria Anabaena sp. PCC 7120, sodium nitrate
showed advantages over other nitrogen sources with 65% more growth [30]. Park et al. reported
that Thraustochytrid Aurantiochytrium sp. KRS101 showed better biomass when cultivated in orange
peel extract supplemented with sodium nitrate as a nitrogen source than with urea [20]. Since
similar peak biomass values were obtained at 68 h in two cultivations supplemented with 50 mM SN
or urea, 50 mM was chosen for further study to investigate how different nitrogen sources regulate the
FA synthesis.
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Figure 1. Growth of Thraustochytriidae sp. PKU#Mn16 cultivated with sodium nitrate (a) or urea
(b) as nitrogen sources. All tests were performed in biological triplicate. Values were means ±
standard deviation.

2.2. Effects of Sodium Nitrate and Urea on Fatty Acid Contents and Composition in Thraustochytriidae sp.
PKU#Mn16

To examine the effects of sodium nitrate and urea on fatty acid contents and composition
for Thraustochytriidae sp. PKU#Mn16, 500 mg cells (dry cell weight, DCW) that cultivated in
50 mM sodium nitrate or 50 mM urea for 68 h were collected for lipids extraction. As shown in
Figure 2, the total lipids extracted from SN cultivation accounted for 66.27% of DCW, which is
21.93% more than from urea cultivation (44.34% of DCW). The total lipids extracted mainly
comprised six types of fatty acids, namely tetradecanoic acid (TDA, C14:0), hexadecanoic acid
(HAD, C16:0), octadecanoic acid (ODA, C18:0), eicosapentaenoic acid (EPA, C20:5), docosapentaenoic
acid (DPA, C22:5), and docosahexaenoic acid (DHA, C22:6) (Figure 3). The three most abundant
fatty acids under sodium nitrate cultivation were HAD, DHA and DPA, whereas those under urea
cultivation were DHA, ODA and DPA. It is noticeable that cells grown in the presence of urea
tended to produce more n-3 PUFAs. For cells supplemented with urea, DHA was detected as the
predominant composition of total fatty acids (TFAs, (49.49%)), which was 1.11-fold of that from
SN cultivation (44.51%). Besides, the percentage of DPA was 5.82%, about two times of that in SN
incubation (2.99%). EPA accounted for 0.37% of TFAs, also slightly higher than that derived from
SN cultivation. Interestingly, a significantly high proportion (40.83%) of ODA was also observed
from urea cultivation, while there was just 0.60% in their counterparts. The ratio of TDA was similar
between these two kinds of samples, at 1.21% and 0.96% respectively. For cells from SN cultivation,
the largest proportion of TFAs was HDA, at 48.92%, while HDA was barely detected in cells from
urea cultivation. Overall, using sodium nitrate as nitrogen source benefits the production of TFAs,
while urea as nitrogen source showed more advantage for n-3 PUFA accumulation.
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Figure 2. The total lipids content of Thraustochytriidae sp. PKU#Mn16 in 50 mM urea or 50 mM sodium
nitrate cultivation. DCW represents dry cell weight. All tests were performed in biological triplicate.
Values were means ± standard deviation. Statistically significant differences (p-value < 0.05 *) were
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Figure 3. Fatty acid profile of Thraustochytriidae sp. PKU#Mn16 in 50 mM urea or 50 mM
sodium nitrate cultivation. The name of fatty acids was shown in total carbon numbers:
C14:0 = tetradecanoic acid (TDA), C16:0 = hexadecanoic acid (HDA), C18:0 = octadecanoic acid (ODA),
C20:5 = eicosapentaenoic acid (EPA), C22:5 = docosapentaenoic acid (DPA), C22:6 = docosahexaenoic
acid (DHA). All tests were performed in biological triplicate. Data were shown as weigh percentage
of TFAs. Values were means ± standard deviation. Statistically significant differences (p-value < 0.5 *)
were tested by Student’s t-test, p * <0.05, p **<0.01, p **** <0.0001.

2.3. Screen of the Reference Genes for RT-qPCR

To explore the molecular mechanism of how nitrogen sources affect lipids production in
Thraustochytriidae sp. PKU#Mn16, the expression levels of key genes involved in the fatty acid
metabolism pathway and nitrate metabolism pathway were quantified by RT-qPCR. However, due to
the lack of available RGs for RT-qPCR normalization, it is necessary to screen novel RGs for reliable
quantification. Ten putative RGs (CHIA, RPPK, NUC, MFT, CAMK1, HSF, VPS, SAC, RBATP and
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HTATP) were selected from the RNA-seq dataset (Table 1). Cycle threshold (Ct) value, the number
of cycles that the fluorescence signal reaches the set threshold level in every reaction, is used to
determine the expression levels of each gene. The higher the Ct value, the lower gene expression level,
and vice versa. The mean Ct values of ten candidate RGs ranged from 24 to 35. The RBATP displayed
the maximal Ct value of 24, while HTATP showed the minimal Ct value of 35. The Ct values of the
other RGs mainly fell between 27–34. To identify optimal RGs for Thraustochytriidae sp. PKU#Mn16
under sodium nitrate or urea cultivation, four statistical methods (geNorm, NormFinder, BestKeeper
and RefFinder) were employed to evaluate and rank the stability of their expression level (Table 2).

GeNorm analysis showed that among ten selected RGs, VPS had the lowest expression stability
(M) value of 0.127, which was regarded as the best RG under the experimental condition when sodium
nitrate and urea used as nitrogen sources. On the contrary, HTATP displayed the biggest M value of
0.94 and considered as the least stable RG in the same experimental treatment. Besides, the pairwise
variation V2/3 value was 0.112 (Figure 4), which suggested that the optimal number of RG for accurate
normalization was two. According to the stability value measured by NormFinder, MFT, CHIA and
NUC were the best three stably expressed RGs, with stability values of 0.238, 0.315 and 0.351 respectively.
The least stable RG determined with NormFinder was the same as by geNorm—HTATP, with a stability
value of 1.168. The result of BestKeeper analysis showed that the most stable RG was HTATP, followed
by SAC, RPPK and CHIA. VPS appeared to have the least stable expression in this algorithm. RefFinder
integrates four computational programs (geNorm, NormFinder, BestKeeper and delta Ct) to compare
and rank the candidate RGs. The comprehensive ranking recommended by RefFinder from the
highest to the lowest stability was as follow: MFT > NUC > CHIA > HSF > VPS > RPPK > CAMK >

HTATP > SAC > RBATP (Table 2). According to the comprehensive ranking of expression stability,
MFT and NUC were the best two RGs and used to normalize the expression of target genes in
Thraustochytriidae sp. PKU#Mn16 under the experimental condition of sodium nitrate and urea as the
respective nitrogen source.
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Table 1. Candidate reference genes and primer sets for RT-qPCR (real-time quantitative polymerase chain reaction).

Gene Name Gene Symbol Primer Sequence (5′–3′)
(Forward/Reverse) Product Size (bp) RT-qPCR Efficiency (%) R2

Chitinase CHIA
GACCCGCTCACCTACTTCAA

118 101.616 0.998
TCTGTCATCTGCTGCTCCAC

Ribose-phosphate pyrophosh-okinase RPPK
GAGGCCGTGGGTAGTAAAGG

172 98.02 0.996
GGATTGGACTGAGGAGGAGC

Nucleolin NUC
GACGAGCGTGAACTTGAGCG

106 109.201 0.994
AACCAGACGAAGAGGACGAG

Mitochondrial folate transporter MFT
ACACTACCGCAGCCTATCAC

113 97.816 0.995
ATCCATCTGTCAAGCCATCC

Calcium dependent protein kinase I CAMK1
CACCAGAACGGCATCATCCA

154 95.226 0.997
GACCAAAGTCACAAAGCACC

Heat shock transcription factor HSF
TCCCTTCAGTTTCACCACAT

192 102.598 0.998
AAGCACCCACTATTCCAACG

Vacuolar protein sorting-associated protein VPS
CCCCAGAAGGAAACCATCAC

164 102.201 0.996
TTCATCGCACAGCAGTAGGC

Saccharolysin SAC
TAAGGGTCCAAGAAGAATGA

100 99.577 0.996
CTGACGGCGAAGTTCCTGTG

Ribosome-binding ATPase RBATP
CCTTGGGCATGTCTACTTCT

126 97.341 0.998
GTCTGAAACGAGCGAACACC

H+-transporting ATPase HTATP
TATCCAACCGTAGCCACAGA

123 102.301 0.998
AGGGTTTCGAGTAGGAGTGC

The RT-qPCR amplification efficiency and the R2 of efficiency for each primer were determined by QuantStudio Software V1.2.4. The range of RT-qPCR efficiency should be 90–110%,
and R2 should be greater than 0.98.

Table 2. Ranking of the expression stability of 10 candidate reference genes (ranking order: Better-Good-Average).

Method 1 2 3 4 5 6 7 8 9 10

Delta Ct MFT NUC HSF CHIA CAMK RPPK VPS SAC RBATP HTATP
BestKeeper HTATP SAC RPPK CHIA RBATP MFT NUC HSF CAMK VPS

NormFinder MFT CHIA NUC HSF CAMK RPPK VPS RBATP SAC HTATP
geNorm VPS HSF CAMK NUC MFT CHIA RPPK SAC RBATP HTATP

Comprehensive ranking MFT NUC CHIA HSF VPS RPPK CAMK HTATP SAC RBATP
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2.4. Effect of Various Nitrogen Sources on the Expression of the Key FA Synthesis Genes of Thraustochytriidae sp.
PKU#Mn16

Six genes that play important roles in fatty acid biosynthesis and metabolism were chosen to
explore the mechanism on how the different nitrogen source influence the production of the fatty acids.
Similar expression profiles were obtained with using either MFT or NUC as a reference gene (Figure 5),
which confirmed that the methods to quantify gene expression were reliable in the present study.

Nitrate reductase gene (NR) encoding enzymes that catalyzed the first step in nitrogen assimilation
pathway [31] was down-regulated in urea cultivation, as the normalized NR transcripts against MFT
and NUC were 34% and 85% of those from SN cultivation respectively. However, five genes
(delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain
fatty acid acyl-CoA ligase and acetyl-CoA carboxylase) involved in lipids metabolism were all
up-regulated in urea cultivation. Delta(3,5)-delta(2,4)-dienoyl-CoA isomerase gene (DCI) played a
significant role in the beta-oxidation of PUFA [13]. It was up-regulated 10.27-fold when using MFT as
an RG, while up-regulated 1.20-fold using NUC. Long chain fatty acid acyl-CoA ligase gene (LCFAAC)
participated in the fatty acid biosynthesis pathway [32]. The relative expression level of LCFAAC
varied significantly between urea cultivation and SN cultivation, with the prominent up-regulation
by urea observed (113.82-fold (MFT as RG) and 15.95-fold (NUC as RG), respectively). Fatty acid
elongase 3 gene (FAE3) was an indispensable gene in fatty acid elongation [33]. When normalized
against MFT, FAE3 was slightly up-regulated (1.22-fold). Enoyl-CoA hydratase gene (ECH) encoded
enzyme which catalyzed a critical step of fatty acid metabolism [34]. It was up-regulated by 3.14-fold
with NUC normalization. In addition, upregulation by urea was observed for acetyl-CoA carboxylase
gene (ACC) (1.50-fold with MFT as RG), which encoded a key regulator in fatty acid biosynthesis.
As shown in Figure 3, cells grown in urea medium accumulated more DHA, DPA, EPA and ODA
than those in sodium nitrate. These five genes played significant roles in the biosynthesis of these
accumulated lipids and were presumably responsible for producing significant quantities of n-3 PUFAs
in Thraustochytriidae sp. PKU#Mn16.
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Figure 5. Relative expression levels of key genes involved in nitrogen metabolism and fatty acid
biosynthesis using the best stable reference genes (MFT and NUC). Two best stable reference genes,
MFT (mitochondrial folate transporter) and NUC (nucleolin) were selected from Thraustochytriidae sp.
PKU#Mn16 transcriptome data and identified by four statistical methods (geNorm, NormFinder,
BestKeeper and RefFinder) for stability. Relative quantification of six lipids related genes
(delta(3,5)-delta(2,4)-dienoyl-CoA isomerase (a), long-chain fatty acid acyl-CoA ligase (b), fatty acid
elongase 3 (c), enoyl-CoA hydratase/isomerase (d), Acetyl-CoA carboxylase (e) and nitrate reductase
(f)) were normalized by reference genes MFT and NUC. The average Ct value was calculated from
three biological and technical replicates and used for relative quantification of genes expression using
2−∆∆CT method. Values were means ± standard deviation.

3. Discussion

3.1. Essential Genes Involved in FAS and PKS Pathways of Fatty Acid Production

The biosynthesis of fatty acids in microorganism is commonly achieved by a cyclic reaction pathway
by stepwise, iterative elongation with acetyl-CoA and malonyl-CoA as precursors. Fatty acid synthase
(FAS) pathway mainly utilizes the large multifunctional enzyme–fatty acid synthase to catalyzes the
fatty acids biosynthesis [35]. FAS harbors four catalytic domains for a respective reaction as follow:
condensation, ketoacyl reduction, hydroxyacyl dehydration, and enoyl reduction [36]. In FAS pathway,
saturated acid C16:0 (HDA) was formed after the cyclic FAS-catalyzed reactions using acetyl-CoA
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and malonyl-CoA as precursors. C16:0 was converted to C18:0 (ODA) by elongase. Then C18:0 was
catalyzed by a series of desaturases (delta 9-desaturase, delta 12-desaturase, delta 15-desaturase delta
6-desaturase, delta 5-desaturase and delta 4-desaturase) and elongases to finally synthesize n-3 PUFAs,
such as C20:5 (EPA), C22:5 (DPA) and C22:6 (DHA) [37,38].

Cells grown in sodium nitrate medium produced more C16:0, while those grown in urea medium
produced less C16:0 but enormous C18:0. In addition, higher contents of C20:5 (EPA), C22:5 (DPA)
and C22:6 (DHA) were also observed in cell cultivated in urea medium. Fatty acid elongase 3 (FAE 3)
was detected in Thraustochytriidae sp. PKU#Mn16 and was up-regulated under urea cultivation.
This indicates that under urea cultivation, a higher level of FAE gene expression was achieved, leading
to more conversion of C16:0 to C18:0 and subsequently higher n-3 PUFA production by FAEs. It was
reported that overexpressing the endogenous fatty acid elongase genes in Thalassiosira pseudonana led to
the improvement of LC-PUFA production, with a 4.5-fold increase in DHA levels [39]. Hamilton et al.
also found that overexpression of delta-5 elongase in diatom Phaeodactylum tricornutum led to an
8.0-fold increase in DHA [40]. Acetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step of the
FAS pathway, converting acetyl-CoA to malonyl-CoA [41,42]. In this study, the gene expression level
of ACC was also up-regulated under urea cultivation, which might correspond to the higher PUFAs
accumulation. It was reported that the overexpression of ACC significantly increased the conversion of
acetyl-CoA to malonyl-CoA in Aspergillus terreus [43]. The ACC containing mutant S1157A resulted in
a 3-fold increase in both polyketide and fatty acid production in yeast [44]. The Enoyl-CoA hydratase
(ECH) is a homohexamer which belongs to a low sequence similarity family of CoA-binding proteins
that share a hydratase/isomerase sequence motif [45]. It participated in the fatty acid metabolism process
which generated acyl-CoA molecules [46]. The abundant expression of ECH in Thraustochytriidae sp.
PKU#Mn16 under urea cultivation might translate to the generation of adequate precursors for
downstream PUFA production. Long-chain fatty acid acyl-CoA ligase (LCFAAC) is an important
enzyme that converts free fatty acids into fatty acyl-CoA esters, which are crucial intermediates for
complex lipid biosynthesis [47]. The high expression level of LCFAAC in cells under urea cultivation
might also lead to the high PUFAs production in Thraustochytriidae sp. PKU#Mn16.

The polyketide synthase (PKS) pathway synthesized lipids through repetitive cycles of four
principal reactions: condensation by ketoacyl synthase (KS), ketoreduction by ketoreductase (KR),
dehydration by dehydratase (DH), and enoyl reduction by enoyl reductase (ER). An isomerase was
in charge of the conformation of the fatty acid chain [48]. However, this pathway was reported
to be lack of complete enzymes in Thraustochytrids [49]. In our genome sequencing annotation of
Thraustochytrium sp. SZU445 [13], KS, KR and ER was detected, but DH and isomerase were not
identified. However, delta(3,5)-delta(2,4)-dienoyl-CoA isomerase (DCI) that catalyzed the isomerization
of 3-cis-octenoyl-CoA to 2-trans-octenoyl-CoA was detected, and it was regarded as the isoenzyme
of DH and isomerase in PKS pathway, which lead to the transpose of the unsaturated carbon bonds
to the correct sites. In the urea cultivation, a higher level of DCI gene expression was observed,
probably contributing to the formation of the carbon-carbon double bonds in DHA and EPA. Rai et al.
found that overexpression of human peroxisomal enoyl-CoA delta isomerase2 HsPECI2 changed
the polar lipid content of tobacco. The production of phosphatidylcholine, phosphatidylserine and
digalactosyldiacylglycerol were moderately upregulated [50].

3.2. Effects of Nitrate Reductase on Nitrogen Assimilation and Lipids Production

Nitrogen is one of the essential components in living organisms due to its participation in the
construction of biomolecules such as proteins and nucleic acids [51]. Previous studies have shown that
Thraustochytrids harbor the ability to utilized nitrate and a variety of nitrogen-containing compounds
as nitrogen sources (Table 3). The preferable and non-preferable nitrogen source for Thraustochytrids is
species specific. However, most of the previous study mainly focused on the fermentation optimization
by using various nitrogen sources, the molecular mechanism that contributes to the nitrogen source
dependent PUFA production was seldom explored.
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Table 3. Effects of different nitrogen sources on lipids production of Thraustochytrids.

Nitrogen Source Species Culture Time Culture Mode

Lipid Content (%)

ReferencesTFAs
(% DCW)

DHA
(%TFAs)

Orange peel extract
& sodium nitrate

Aurantiochytrium
sp. KRS101 108 h baffled flasks 50.23% 28.51% [20]

Yeast extract Schizochytrium
sp. PQ6 96 h 10 L fermenter 38.67% 43.58% [52]

Monosodium
glutamate

Aurantiochytrium
sp. SW1 96 h Shake flasks 79.60% 47.90% [53]

Ammonium nitrate Aurantiochytrium
sp. SW1 96 h Shake flasks 46.76% 31.25% [53]

Sodium nitrate Thraustochytriidae
sp. PKU#Mn16 68 h Shake flasks 66.27% 44.51% This study

Urea Thraustochytriidae
sp. PKU#Mn16 68 h Shake flasks 44.34% 49.49% This study

TFAs: total fatty acids; DHA: docosahexaenoic acid; DCW: dry cell weight.

In the nitrate assimilation pathway, nitrate reductase (NR) plays an important role and can be
found in bacteria, microalgae, fungi and plants [51,54,55]. NR is a cytosolic enzyme that catalyzes the
very first step in nitrogen assimilation, that is, to convert nitrate (NO3

−) to nitrite (NO2
−). The nitrite

is then catalyzed by nitrite reductase to ammonium (NH4
+) [56]. It has been demonstrated that the

activities of NR are high in nitrate cultivated cells and low when ammonium used as a nitrogen
source to cultivate cells [57]. Urea is an economical friendly organic nitrogen source. In the urea
metabolism, urease, one of the extracellular enzymes of Thraustochytrids [58], catalyzes the conversion
of urea to carbon dioxide and ammonia. Interestingly, in the present study the gene expression
of NR was down-regulated in Thraustochytriidae sp. PKU#Mn16 under urea cultivation compared
to that under sodium nitrate cultivation, which was consistent with NR activities. In the study of
Benhima et al., sodium tungstate was used to inhibit NR in microalgae Dunaliella tertiolecta, resulting
in a 50% increase of neutral lipids. Besides, fatty acid methyl esters composition showed a slight
variation of polyunsaturation and elongation [59]. McCarthy et al. found that the knockout (KO)
of NR gene impacted the lipids metabolism in model pennate diatom Phaeodactylum tricornutum.
The concentration of triacylglycerol was increased in NR-KO cells, consistent with up-regulated key
genes of triacylglycerol biosynthesis [56]. Consistent with published works, our results showed sodium
nitrate induced a relatively high expression level of NR, and urea down-regulated NR expression
resulting in more long chain PUFAs.

4. Materials and Methods

4.1. Microorganism Cultivation

Thraustochytriidae sp. PKU#Mn16 was preserved in China General Microbiological Culture Center
(CGMCC) under the accession nos. 8095. Modified artificial seawater [60] (0.05 g/L KH2PO4, 0.6 g/L KCl,
2.44 g/L MgSO4, 0.3 g/L CaCl2.2H2O, 1 g/L Tris-HCl (pH 8.0), 10 mL/L PI metal, 3 mL/L chelated iron
solution, 18 g/L NaCl and 20 g/L glucose dissolved in deionized water) was used to prepare nitrogen
addition medium. 2 M sodium nitrate solution and urea solution were prepared and added into
the modified artificial seawater respectively to make a series of concentrations of nitrogen medium:
1 mM, 5 mM, 10 mM, 15 mM, 20 mM, 30 mM and 50 mM. Cultures were then incubated on an orbital
shaker (LYZ-123CD, Longyue Company, Shanghai, China) at 23 ◦C, 200 rpm for 140 h. Three parallel
cell samples were collected from each medium at regular intervals to analyze biomass and generate
growth curve. Cells were washed three times with deionized water and centrifugated (Z366K, HERMLE,
Wehingen, Germany) at 25 ◦C, 7871× g for 6 min, then cell pellets were lyophilized in a freeze dryer
(Triad 2.51, Labconco, Kansas City, MO, USA) to calculate dry cell weight (DCW).
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4.2. Lipids Extraction and Fatty Acid Composition Analysis

Lipids of three biological replicates were extracted by the modified Bligh and Dyer procedure [61].
500 mg freeze-dried cells were extracted with a solvent mixture of chloroform/methanol (1:2, v/v) in
a Soxhlet extractor at 70 ◦C for 96 h. Crude total lipids were gained after the solvent mixture
was evaporated. Fatty acid methyl esters (FAMEs) were prepared by a direct acid-catalyzed
transesterification [62,63]. Crude lipids were added to 4 mL 4% sulfuric acid in methanol and
incubated at 70 ◦C for 1 h. Subsequently, FAMEs were extracted in 2 mL n-hexane and 2 mL
deionized water. After the upper organic layer was transferred to a new tube and dried with
nitrogen stream, 1 mL dichloromethane was added and the whole solution was transferred to a
chromatography bottle, ready for gas chromatography-mass spectrometry (GC-MS, 7890-5975 Agilent,
Santa Clara, CA, USA) analysis.

In the GC-MS analysis, GC column used for the determination of FAMEs is HP-5MS (19091S-433,
30.0 m × 250 µm, I.D. × 0.25 µm film thickness, Agilent J&W) with a maximum temperature of 350 ◦C.
An aliquot of 1 µL of each sample was injected into the GC column. The inlet temperature of GC was
set to 250 ◦C. High purity Helium was used as the carrier gas. Constant pressure mode was used,
and the split ratio was 10:1. The temperature program was set as follows: first, the temperature is
raised from 60 ◦C at a rate of 25 ◦C/min to 180 ◦C, then the temperature was raised to 240 ◦C at a rate
of 3 ◦C/min, holding at 240 ◦C for 1 min, and then raised to 250 ◦C at a rate of 5 ◦C/min. The GC-MS
transfer line temperature was set to 250 ◦C, and the full scan mode was employed for the GC-MS
detection. A 37-component fatty acid standard mixture was used to validate the temperature program
that separated sequentially the peaks of 37 fatty acids. Nonadecanoic acid was used as an internal
standard and the content of the fatty acids was quantified by comparing the peak areas of that of the
internal standards. Three biological replicates were examined.

4.3. RNA Extraction and cDNA Synthesis

Cells were collected (7871× g for 6 min) after cultivation for 68 h. Cell pellets were then washed
three times with distilled water and subsequently frozen at −80 ◦C for 2 h. The frozen cell pellets were
ground in liquid nitrogen to fine powder then 100 mg powder was transferred into a clean 1.5 mL
centrifuge tube. Subsequently 1 mL TRIzol (Life Technologies, Carlsbad, CA, USA) reagent was added
into the tube and set in room temperature (RT) for 30 min, after that 0.2 mL chloroform was added
and the mixture was vortexed for 30 s, rest in RT for 5 min then centrifuged at 17,709× g for 15 min.
The upper layer was transferred to a new centrifuge tube and was added 0.5 mL isopropanol and
placed in RT for 10 min. Total RNA precipitate was obtained after centrifugation at 17,709× g for
15 min at 4 ◦C, and then it was washed twice with 75% ethanol and dissolved with DNase/RNase
free water. The integrity of RNA was checked by 1.5% (w/v) agarose gel electrophoresis. The quality and
concentration of RNA were determined using a NanoDrop-2000 spectrophotometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA). Total RNA with 260/280 nm ratio of 1.9–2.2 and 260/230 nm ratio
greater than 1.9 was used to synthesize cDNA with PrimerScriptTM RT reagent Kit (Takara, Japan)
according to the manufacturer’s guidelines. The cDNA was stored at −20 ◦C for later use.

4.4. Selection of Candidate Reference Genes from RNA-Seq Data

Candidate reference genes (RGs) were selected from the RNA-seq dataset of Thraustochytriidae sp.
PKU#Mn16 under nitrogen addition cultivation [15]. The coefficient of variation (CV) of FPKM
(Fragments Per Kilobase of transcript per Million mapped reads) was calculated across all the
treatments and genes with lower CV values were considered stably expressed. Candidate RGs were
chosen under the following requirements that the CV of FPKM was less than 10% and annotation of
genes was adequate.
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4.5. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

The primers used for real-time quantitative PCR (RT-qPCR) were designed according to
transcriptomic sequence data using Primer Premier 5 software. Primers were synthesized with
the following parameters: Primer length of 18–25 bp, product lengths of 80–200 bp, Tm values of
50–65 ◦C and GC content of 45–55%. RT-qPCR reactions were performed in the QuantStudio 6 Flex
Real-Time PCR System (ABI, Vernon, CA, USA). The SYBR TaqTM ExPremix (Tli RNaseH Plus) Kit
(Takara, Shiga, Japan) was used with the following cycling conditions: initial denaturation at 95 ◦C
for 30 s; 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s. The programs SDS v2.4 (ABI, Vernon, CA, USA)
were used for monitoring the qPCR reactions and for analyzing primer efficiencies, R2 of efficiencies and
gene expression level. To confirm primer specificity, only melting curves of amplicons presenting single
peaks were selected for further analysis. Relative gene expression was quantified using the 2−44CT

method [64]. Three biological and three technical replicates were performed in all RT-qPCR analysis.

4.6. Assessment of Gene Expression Stability

Four statistical programs, geNorm, NormFinder, BestKeeper and RefFinder, were used to assess
the stability of the RGs across all experimental conditions. The geNorm program calculates the gene
expression stability (M) value for each gene. Genes with an M value less than 1.5 are considered to be
stably expressed, the lower M value the more stable expression. In addition, this program also calculates
a pairwise variation (Vn/n + 1) value between genes. The value of “n” is the optimal number of RGs
when the pairwise value of variation (Vn/n + 1) is below a cut-off value of 0.15. The NormFinder program
evaluates the stability of candidate RGs by an assessment of within and between-group variations.
A lower variation value indicates a better reference gene. The BestKeeper program examines the
coefficient of variation (CV) and standard deviation (SD) based on the raw Ct values of all candidate RGs.
Any gene with an SD value lower than 1 was considered as a gene with stable expression. The most
stable RG recommended by BestKeeper program is the one with both the lowest CV and SD values.
The Delta Ct approach compares the difference in Ct values of RG pairwise and ranks the candidate RGs
using the variability of averaged SD. RefFinder (https://www.heartcure.com.au/reffinder/) integrates
the four algorithms (geNorm, NormFind, BestKeeper and delta Ct) methods. The stability of candidate
RGs was comprehensively validated and ranked by calculating the geometric mean of their weights
for the overall final ranking.

4.7. Validation of Reference Genes

Six genes (delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3,
long chain fatty acid acyl-CoA ligase, acetyl-CoA carboxylase and nitrate reductase ) which was
annotated in RNA-seq of Thraustochytriidae sp. PKU#Mn16 as responsible genes for lipid metabolism
were used to verify the stability of selected RGs. The top two best RGs were used to normalize the
expression of target genes in the present study. The RT-qPCR thermocycling protocol was the same as
described above.

4.8. Statistical Analysis

Statistical analysis of the experimental data was performed by using Students’s t-test in the
GraphPad Prism 8.0.1 software, and the statistical difference amongst groups was determined by the
p value at p *< 0.05, p * * < 0.01, p * ** < 0.001, p * ** * < 0.0001 [65].

5. Conclusions

In the present study, sodium nitrate as a nitrogen source is beneficial to the short-chain fatty acids’
accumulation in Thraustochytriidae sp. PKU#Mn16, while urea as nitrogen source has more advantage
for n-3 PUFA biosynthesis. Out of ten reference genes, two genes (MFT and NUC) showed higher
expression stability and were chosen for RT-qPCR normalization. Five essential genes related to the

https://www.heartcure.com.au/reffinder/
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long-chain fatty acid synthesis encompassing (delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA
hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase and acetyl-CoA carboxylase)
were up-regulated in the cultivation using urea as the nitrogen source, while nitrate reductase was
up-regulated in sodium nitrate cultivation. These findings shed light on the underlying molecular
mechanisms of n-3 PUFA production in Thraustochytrids and revealed the key genes which could be
exploited in the improvement of n-3 PUFA production.
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