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ABSTRACT
Objective  The gut virome is a dense community of 
viruses inhabiting the gastrointestinal tract and an 
integral part of the microbiota. The virome coexists 
with the other components of the microbiota and 
with the host in a dynamic equilibrium, serving as 
a key contributor to the maintenance of intestinal 
homeostasis and functions. However, this equilibrium can 
be interrupted in certain pathological states, including 
inflammatory bowel disease, causing dysbiosis that 
may participate in disease pathogenesis. Nevertheless, 
whether virome dysbiosis is a causal or bystander event 
requires further clarification.
Design  This review seeks to summarise the latest 
advancements in the study of the gut virome, 
highlighting its cross-talk with the mucosal 
microenvironment. It explores how cutting-edge 
technologies may build upon current knowledge to 
advance research in this field. An overview of virome 
transplantation in diseased gastrointestinal tracts is 
provided along with insights into the development of 
innovative virome-based therapeutics to improve clinical 
management.
Results  Gut virome dysbiosis, primarily driven by the 
expansion of Caudovirales, has been shown to impact 
intestinal immunity and barrier functions, influencing 
overall intestinal homeostasis. Although emerging 
innovative technologies still need further implementation, 
they display the unprecedented potential to better 
characterise virome composition and delineate its role in 
intestinal diseases.
Conclusions  The field of gut virome is progressively 
expanding, thanks to the advancements of sequencing 
technologies and bioinformatic pipelines. These have 
contributed to a better understanding of how virome 
dysbiosis is linked to intestinal disease pathogenesis 
and how the modulation of virome composition may 
help the clinical intervention to ameliorate gut disease 
management.

INTRODUCTION
The intestine is the body’s most extended interface 
where the majority of the exchanges between the 
host and the external environment occurs; it is also 
where the stimulation and development of mucosal 
immunity take place.1 The human gut is populated 
by billions of commensal microbes, collectively 
known as intestinal microbiota,2 living in a delicate 
equilibrium that has to be preserved to ensure proper 
immune responses and mucosal homoeostasis.1 

Imbalances of this state alter mucosal functions 
and activate a series of responses, mainly immune, 
aimed at restoring equilibrium. When immune and 
non-immune reactions fail to self-resolve, chronic 
inflammatory disorders ensue.2

Inflammatory bowel disease (IBD) is a class of 
chronic inflammatory disorders including Crohn’s 
disease (CD) and ulcerative colitis (UC), affecting 
an estimated 4.9 million individuals as of 2019.3 
Although these two forms of chronic intestinal 
inflammation have overlapping symptoms and 
proinflammatory signals, they differ in the pattern 
and extent of inflammation and disease loca-
tion,3 as well as the composition of the intestinal 
microbiota.2

Intestinal dysbiosis, an altered composition of the 
gut commensals, has been previously linked to IBD 
pathogenesis.2 However, whether dysbiosis causes, 
directly or indirectly, or is a consequence of IBD is 
still contentious. Microbes can directly interact with 
the host’s cells, modulating specific immune path-
ways and activating both immune and non-immune 
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cells that can participate in IBD pathogenesis. At the same time, 
changes in the intestinal milieu due to inflammation might alter 
the composition of its inhabitants, causing dysbiosis.4

This conflicting evidence is partly attributed to the sheer 
complexity of the intestinal microbiota, which is composed of 
trillions of diverse micro-organisms, including bacteria, archaea, 
protists, fungi and viruses. While the role of bacteria in health 
and disease is starting to be characterised, that of other enti-
ties, such as viruses, has been neglected until recently. Viruses 
are 10-fold more abundant than prokaryotes in the gut and 
have attracted interest mainly because of their ability to interact 
with both bacteria (bacteriophages) and host cells (eukaryotic-
targeting viruses), hence influencing intestinal homoeostasis.

In this review, we aim to summarise the latest evidence on the 
role of gut virome in gastrointestinal diseases, with a particular 
focus on IBD, and the novel techniques available to investigate 
it. We also highlight current technical challenges that are holding 
back the field and outline the therapeutic potential of targeting 
the virome.

Intestinal virome in IBD and its impact on the host’s 
physiology
For their evolutionary characteristics, viruses can be classified 
into bacteriophages and eukaryotic-targeting viruses, both of 
which can be constituted by single-stranded or double-stranded 
RNA or DNA genomes.5 This genomic diversity complicates 
analysis and since multiple conversion steps are necessary to 
sequence single-stranded DNA and RNA, these viral populations 
are often understudied.6 Classically, bacteriophages can directly 
shape bacterial composition, while eukaryotic viruses can 
interact with both the human host’s cells and other eukaryotic 
components of the microbiota, such as fungi.7 Alterations in gut 
virome structure have been implicated in the onset and severity 
of IBD.8 9 As an example, a previous comprehensive review, 
while discussing the dynamics of the gut virome and methods 
to find out the candidate mechanisms underlying disease patho-
genesis, has also pointed out the virome dysbiosis as related to 
IBD development.10 Specifically, metagenomics analysis showed 
an increase in tailed bacteriophage (Caudovirales) and a decrease 

in the spherical Microviridae. However, given that these find-
ings vary considerably by cohorts and methodologies,10 the full 
picture of the virome’s role in IBD is still unclear.

The virome can impact the other components of the micro-
biota, as reported in the study by Norman and colleagues, which 
described the expansion of Caudovirales bacteriophages in IBD 
compared with controls, coupled with decreased bacterial rich-
ness and diversity, two hallmarks of IBD-associated intestinal 
dysbiosis.11 Similarly, the dynamics of bacteriophages-bacteria 
parasitism have been studied in the case of Faecalibacterium 
prausnitzii, a bacterium generally depleted in IBD, whose low 
abundance in IBD has been associated with a higher prevalence 
of F. prausnitzii phages compared with controls, suggesting 
enhanced phage-mediated mortality of F. prausnitzii in IBD.12

Several additional studies and meta-analyses found an increase 
in Caudovirales and a concurrent decrease in overall virome 
diversity13 14 in both paediatric ileal CD15 and very early onset 
IBD.16 In addition to bacteriophages such as Caudovirales, 
eukaryotic viruses have also been associated with early stages of 
intestinal inflammation, suggesting a possible role in the patho-
genesis of IBD supported by their ability to interact with the 
host’s cells. In this regard, a higher abundance of the eukaryotic 
Orthohepadnaviridae transcripts was found in early-diagnosed 
treatment-naive patients with UC, when compared with those 
with CD and controls. Furthermore, patients with CD showed 
a higher prevalence of Hepeviridae and a lower prevalence of 
Virgaviridae.17 These findings were based on data derived from 
mucosal biopsies, highlighting the possibility of a direct inter-
action of the eukaryotic viruses with the host’s immune and 
non-immune cell functions. Similarly, a study reported a posi-
tive association between the eukaryotic Anelloviridae prevalence 
in early-onset patients with IBD along with immunosuppressive 
treatment.16 IBD-associated virome dysbiosis is summarised in 
table 1.

In summary, despite some variability across the studies, virome 
dysbiosis is associated with IBD pathogenesis. Caudovirales are 
likely to be the most enriched bacteriophages in patients with 
IBD, which may contribute to bacterial dysbiosis. In parallel, 
eukaryotic viruses, such as Hepadnaviridae and Hepeviridae, 
were found to be associated with early stages of intestinal inflam-
mation, posing the question of whether these can represent a 
leading cause in IBD pathogenesis as we discuss in the following 
section.

How the virome may interact with the host’s mucosal 
physiology and health implications
The intestinal mucosa is a multilayered tissue, composed of 
different cell types that together orchestrate pathways, signal 
synergistically and interact with each other and with the micro-
biota to maintain homoeostasis. However, in IBD, this equilib-
rium is disrupted.18

Intestinal viruses were shown to interact with the host’s 
mucosal cells, and in some cases, have been demonstrated to 
have a detrimental effect on intestinal physiology, where several 
specialised cells, both immune and non-immune, take part in the 
homoeostatic regulation. All these cells are essential to protect 
and defend against external insults.18

The first line of defence of the intestine is the epithelium lining 
the mucosal surface.19 This is key in maintaining mucosal protec-
tion against luminal commensals, and in favouring the exchange 
of materials with the external environment, which is necessary 
for the digestion of food, absorbing vitamins, or training our 
immune system.19

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Viruses are associated with gastrointestinal diseases 
and, together with the other gut commensals, with the 
maintenance of mucosal homoeostasis. However, their 
aetiological role is still debated.

WHAT THIS STUDY ADDS
	⇒ Recent studies have highlighted a possible causal role of 
virome components of the microbiota in triggering the 
disease in in vivo models, although clinical trials are lacking. 
Moreover, the latest advances in computational biology may 
help to better characterise the virome composition and its 
spatial organisation within a tissue, eventually uncovering 
novel virome-triggered or virome-mediated disease 
mechanisms.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR 
POLICY

	⇒ The full understanding of virome structure in the gut and its 
exact functions may promote advancements in therapeutic 
strategies, aimed at the reconstitution of the ‘good virome’ 
for amelioration, or even cure, of gastrointestinal diseases.
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The epithelial layer, organised in a very sophisticated manner, 
prevents excessive contact between immune cells with micro-
organisms and their antigens, thereby protecting the gut from 
unwanted immune reactions (figure 1A). This is possible thanks 
to tight junction proteins connecting a single layer of columnar 
intestinal epithelial cells (IECs) and other specialised cells such 
as goblet cells and Paneth cells, which are crucial to the innate 
immune response.19 Goblet cells create a thick mucus layer as 
part of the physical epithelial barrier, preventing direct contact 
of bacteria with the epithelium.20 Many commensals live within 
the mucus layer. However, the mucin protein layer can be 
disrupted by some parasites, pathogenic bacteria or even dietary 
emulsifiers,21 or by several other mechanisms, including aber-
rations in the immune system and impairment of the epithelial 
cell-forming barrier.22 When intestinal commensals reach the 
epithelial surface or cross it, the immune system is activated, 
triggering the canonical series of events at the basis of IBD 
pathogenesis4

Viruses contribute to barrier damage in various ways. Phages 
indirectly fuel the immune response through the release of bacte-
rial products following bacterial lysis or translocation across the 
epithelium (transcytosis), activating pattern recognition recep-
tors on the IECs or resident immune cells23 (figure 1B).

In addition, specific virome-derived factors can interfere with 
barrier integrity and impact intestinal physiology, often through 
interaction with the other commensals. As an example, Sinha 
et al pooled viral-like particles (VLPs) from three UC patients, 
mainly enriched in Microviridae phages and, to a lesser extent 
in crAss-like, Siphoviridae and Podoviridae phages, and trans-
planted them into human microbiota-associated mice. UC VLP 
transplantation exacerbated colitis severity24

Another recent study showed that the gut-virome colonising 
Orthohepadnavirus genus was associated with UC pathogenesis 
in both paediatric and adult patients.4 17 In particular, the viral 
protein Hepatitis B X (HBx) disrupts the epithelial barrier in 
the intestine by shaping epithelial cell functions toward a dedif-
ferentiated state, eventually leading to alteration of the immune 

milieu and intestinal inflammation in vivo4 (figure 1C). As per 
the literature, the primary site of Orthohepadnavirus infection 
is the liver, where this genus of virus replicates and induces an 
immune response, leading to chronic inflammation and cancer.25 
However, non-human hepatitis B virus (HBV) lymphotropism 
and its ability to use lymphoid cells as extrahepatic reservoirs 
have been reported in lymphoid tissues, including spleen and 
lymph nodes.26–28 This supports the concept that the virome is 
made up of a large plethora of entities not necessarily colonising 
their preferential tissues but residing on the mucosal surfaces 
while stimulating tissue immunity, even in the absence of a canon-
ical infection cycle.7 29 As an example, Massimino et al reported 
HBx positivity in a subcohort of UC patients independently of 
HBV chronic or acute infections, suggesting that HBx presence 
in their intestines can be the result of environmental exposure 
to waters contaminated with non-human infecting Orthohepad-
navirus.4 This may represent one of the environmental factors 
predisposing to UC development.30

Similarly, Adiliaghdam et al found that the healthy virome 
directly elicited atypical anti-inflammatory innate immune 
activity, while viromes isolated from UC and CD, mainly 
enriched in Picornaviridae and Enterovirus B, induced inflamma-
tion, successfully reverted by non-IBD viromes.31

Other studies pointed out the impact of viruses on innate 
immunity. For instance, filamentous Pf bacteriophages produced 
from Pseudomonas aeruginosa are internalised by dendritic cells 
(DCs), macrophages and B-cells to induce type-I interferon 
responses, thereby facilitating infection by related bacteria.32

Interestingly, a recent study reported that viral infections with 
enteric viruses promoted the expansion of some specific immune 
cell populations in the intestine, such as colonic and small intes-
tinal lamina propria leucocytes, including effector memory T 
cells, macrophages and plasmacytoid DCs.33

Despite these pieces of evidence, the investigation of the 
virome’s impact on intestinal immunity and barrier functions 
is still in its infancy. Apart from the characterisation of virome 
dysbiosis in IBD, studies describing virome-induced pathogenic 

Table 1  Viruses involved in IBD.

Virus Host Alteration Potential mechanisms Clinical significance

Caudovirales Cyanobacteria, heterotrophic 
bacteria, archaea

↑ in IBD10 11 13–16 Induction of the production of interferon γ 
through toll-like receptor 9 signalling

Escalating disease severity reduction of Caudovirales 
diversity, richness and evenness reduced bacteria diversity

Microviridae Gram-negative bacteria ↓ in IBD10 Their loss is probably due to the higher 
fluid flow or loss of mucosa that do not 
retain phages

Contribution to bacterial dysbiosis in IBD (expansion of 
bacterial commensals). Exacerbation of colitis severity in 
mice

crAss-like phage Bacteroidota ↑ in UC24 Impact on bacterial dysbiosis Exacerbation of colitis severity in mice

Siphoviridae Bacteria, archaea ↑ in UC24 Impact on bacterial dysbiosis Exacerbation of colitis severity in mice

Podoviridae Bacteria ↑ in UC24 Impact on bacterial dysbiosis Exacerbation of colitis severity in mice

Faecalibacterium 
prausnitzii phages

Faecalibacterium prausnitzii ↑ in IBD12 Enhanced temperate phage-mediated 
mortality of F. prausnitzii

Gut inflammation might increase prophage induction 
thereby promoting bacterial lysis and aggravating dysbiosis 
and reinforcing the inflammatory loop

Orthohepadnavirus Mammals ↑ in UC4 17 Disruption of epithelial cells and induction 
of ulcers

The expansion may be involved in the early cause of UC in a 
subcohort of UC patients

Hepeviridae Mammals ↑ in CD17 Unknown The expansion may be involved in the early cause of CD

Virgaviridae Plant cells ↓ in CD17 Unknown The reduction may be associated with low fibre diet

Enterovirus B Mammals ↑ in IBD31 Unknown Trigger of proinflammatory response

Picornaviridae Mammals ↑ in IBD31 Unknown Trigger of proinflammatory response

Anelloviridae Mammals ↑ in IBD16 Unknown Positive correlation with immunosuppressive treatments 
Abundance is likely related to reduced immune surveillance

Upwards arrow means increased abundance in disease by comparison with the healthy controls.
Downwards arrow means reduced abundance in disease by comparison with the healthy controls.
CD, Crohn’s disease; IBD, inflammatory bowel disease; UC, ulcerative colitis.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/faecalibacterium-prausnitzii
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events in the intestinal mucosa are still limited. However, 
compelling, these studies need further validation, particularly 
because interindividual and intercohort variabilities limit the 
generalisability of their results.

New technologies for studying the gut virome in the intestine
There are conflicting findings on overall virome richness 
in IBD and inconsistent bacteriophage and eukaryotic viral 
biomarkers.11 13 16 34 These inconsistencies could be attributed 
to cohort variation and database-dependent profiling methods, 
which may introduce biases or inaccurate taxonomic assign-
ments.35 Clooney et al, who adopted a database-independent 
method for profiling, did not find significant changes in 
overall virome richness, and only observed significant increases 
in Caudovirales richness in CD compared with controls.36 
However, numerous virome studies included a multiple displace-
ment amplification (MDA) step before sequencing,11 16 36 which 
may favour the amplification of small, circular and single-
stranded DNA viruses,37 38 although introducing the undesired 
amplification bias.39 To address this, Stockdale et al omitted the 

MDA step and compared results to matched 16S sequencing 
analyses of the same cohort.38 They found that interindividual 
variation was increased using unamplified viromes, causing 
differences in gut virome richness between IBD and controls to 
be less pronounced compared with 16S sequencing. By contrast, 
the unamplified approach showed the opposite, with the healthy 
gut virome enriched in viruses compared with the IBD viromes. 
Thus, these findings raise the need to identify and characterise 
commensal viruses shared in populations. Given the high inter-
individual variation of viromes, these shared communal viruses 
likely vary by geographical regions and disease states.

By harnessing the potential of molecular biology, metabo-
lomics and metaproteomics, researchers have employed mass 
spectrometry to analyse the proteins and metabolites in the 
microbial environment and their interactions with the host. This 
comprehensive understanding of biochemical processes has shed 
light on the underlying mechanisms of certain human diseases.40 
Additionally, it is essential to profile transcriptomics, metatran-
scriptomics and biological processes through functional enrich-
ment methods.41 Metatranscriptomics provides valuable insights 

Figure 1  (A) Environmental effects on mucus barrier function. The healthy colon features a layer of mucus that separates the microbiota and its 
products from the epithelium (left). (B, C) On infection by parasites, pathogenic bacteria or viruses (B), or orthohepadnavirus-derived factors (C) results 
in enhanced microbial penetration eventually triggering the activation of both innate and adaptive immune systems. HBV, hepatitis B virus.
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into the active micro-organisms present in a specific environ-
ment and their ability to encode specific gene products. Since 
gene expression plays a significant role in phenotypic expression, 
investigating differences in gene expression between various 
conditions, including the presence and absence of a disease, can 
aid in comprehending the molecular mechanisms responsible for 
human disorders.

Today, metagenomics and metatranscriptomic methods 
predominantly rely on Illumina sequencing technologies, such 
as HiSeq or NovaSeq, which offer high throughput and cost-
effectiveness.42 For gene expression analysis, one of the most 
widely used tools is DESeq2.14 To classify taxonomic informa-
tion from microbial reads obtained through sequencing, tools 
like Kraken2 are crucial.14 However, in microbiota gene expres-
sion analysis, the annotated genes’ structural and functional 
complexity can be overwhelming, necessitating the use of tools 
like Cd-hit43 and DeepNOG to reduce structural and functional 
redundancy in the identified gene set.44 Such reductions help 
in lowering computational expenses, making it more feasible 
to use protein structure prediction tools like AlphaFold, which 
provides insights into protein structure and reactivity,45 further 
aiding in understanding their function.

Recently, single-virus sequencing has emerged as a promising 
tool for uncovering the diversity and abundance of viruses46 47 
and for the identification of host–phage interactions.48 Coupled 
with third-generation long-read sequencing,49 single-virus 
sequencing may serve as a powerful framework for the accu-
rate recovery of viral genomes and high-throughput cataloguing 
of host–phage interactions. Both will facilitate the formation of 
phage cocktails targeting IBD-related bacteria.

Virome organisation with spatial transcriptomics: an 
innovative technology for investigating host–microbe 
interaction
Spatial transcriptomics is a cutting-edge technology that combines 
traditional gene expression analysis with spatial information.50 It 
enables analysing gene expression patterns within tissues while 
maintaining their spatial context, providing a deeper under-
standing of how genes are regulated and interact within specific 
regions of an organ or tissue. In the gut, spatial transcriptomics 
typically involves RNA sequencing of spatially barcoded tissue 
sections or laser capture microdissected tissues.50 In combina-
tion with single-cell RNA sequencing, these spatial sequencing 
approaches allow for the construction of spatial transcriptional 
maps at almost single-cell resolution.

Lötstedt et al presented spatial host-microbiome sequencing, 
an all-sequencing-based approach that captures tissue histology, 
polyadenylated RNAs, and bacterial 16S sequences directly 
from tissues on spatially barcoded glass.51 Application of this 
approach, coupled with deep-learning-based data mapping, 
revealed spatial niches that were impacted by microbial bioge-
ography in mouse gut.51

In the human context, Niño et al applied in situ spatial 
profiling technologies and single-cell RNA sequencing to oral 
squamous cell carcinoma and colorectal cancer (CRC) to reveal 
spatial, cellular and molecular host–microbe interactions.52 They 
showed that instead of being randomly distributed, microbiota 
within a tumour is highly organised in micro niches with immune 
and epithelial cell functions that promote cancer progression.

Looking to the future, spatial transcriptomics holds significant 
potential for studying the intestinal virome. By integrating spatial 
transcriptomics with viral metagenomics/metatranscriptomics, 
researchers may be able to investigate the spatial distribution 

of viruses within the intestinal tissue and examine their inter-
actions with the host cells. This approach could help identify 
specific viral species, characterise their gene expression patterns 
and explore their potential roles in health and disease. However, 
efforts are needed to develop, optimise and standardise this 
approach.

VIROME DATABASES
Several recently published studies have used bulk and/or VLP-
enriched metagenomes to catalogue their diversity, identifying 
thousands to hundreds of thousands of novel viruses, and vastly 
expanding the catalogue of known human gut viruses.

From 5742 gut metagenomic assemblies, Benler et al identi-
fied 3738 putative phage genomes, which were further derep-
licated into 1886 genomes (at 95% average nucleotide identity, 
ANI).53 However, around 69% of these genomes could not be 
assigned a viral family approved by the International Committee 
on the Taxonomy of Viruses, and 71% did not have a predicted 
host.53 Similarly, using bulk metagenomes (n=11 810), Nayfach 
et al identified nearly 190 000 viral draft genomes that represent 
54 118 viral species genomes (clustered at 95% ANI and 85% 
alignment fraction (AF)) to form the Metagenomic Gut Virus 
catalogue.54 Of these viral genomes, 53% did not cluster with 
any then-known viral genomes, 43% could not be assigned a 
family-level taxonomy and 10% did not have a predicted host.54 
In the largest study to date, Camarillo-Guerrero et al analysed 
over 28 000 bulk gut metagenomes and 2898 gut bacterial refer-
ence genomes to form the Gut Phage Database, consisting of 
142 809 non-redundant phage genomes (95% ANI and 75% 
AF).8 Similarly, a majority (71.3%) of these phages could not 
be linked to a host. The authors further clustered these phage 
genomes with those in existing databases (90% ANI, 75% AF) 
to generate 21 012 non-singleton viral clusters with at least one 
genome from the GDP, 80% of which could not be assigned 
a viral family.8 In addition, using 2697 bulk (48%) and VLP-
enriched metagenomes (52%), Gregory et al created the human 
Gut Virome Database (GVD) of 33 242 viral species genomes 
(95% ANI), with <15% assigned a family-level taxonomy and 
56% having a host identified.55 Furthermore, Zhao et al applied 
ultra-deep third-generation and next-generation sequencing 
to a faecal DNA sample with VLP enrichment (collected 
from a middle-aged woman) and obtained 1058 novel gut 
viral genomes, including 13 long ones.56 These new genomes 
improved viral profiling, and a combination of 14 of them 
differentiated patients with CRC from controls with an AUROC 
of 0.85 and 0.73 in independent cohorts.56 Several other studies 
have constructed virome databases from the metagenomes or 
metatranscriptomes of multiple human body sites55 57 58 or of all 
sources—mainly environments59—and reported a great amount 
of previously uncharted genetic material therein. These studies 
highlight the immense unexplored viral diversity in the human 
gut and facilitate the characterisation and analysis of gut virome 
without de novo assembly.

However, studying the role of the gut virome in IBD remains 
challenging. First, there is biased geographical coverage of 
sampling. Although more prevalent in European and American 
populations, IBD cases have accumulated most rapidly in Asia 
and Africa over the past two decades.60 61 Yet, only one-third 
of the samples used in database creations were rooted in Asia 
or Africa.62 Greater efforts are needed to improve the represen-
tativeness of the viral diversity for these populations. Second, 
documented gut viral populations are biased toward DNA 
viruses. While a few databases cataloguing RNA viromes are 
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available,63–65 only a handful of metatranscriptomes collected 
from the human gut have been included. By contrast, the DNA 
virome databases, except GVD, were sourced primarily or exclu-
sively from bulk metagenomes.55 Given that bulk and VLP-
enriched metagenomes likely capture different portions of the 
viral population,55 the generation of more VLP-enriched data-
sets would allow for comprehensive profiling. Furthermore, the 
assembly of complete viral genomes from shotgun metagenomic 
sequencing data is challenging due to genomic mosaicism. This 
may be circumvented by applications of single-virus sequencing 
paired with long-read sequencing. Given various bioinformatic 
tools, a robust and standardised analytical workflow, such as the 
one proposed by Li et al, should also be used to improve in silico 
annotations, reduce cross-study heterogeneity and enable meta-
analysis.62 Finally, being genetically distinct from known viruses, 
most metagenome-derived viral genomes lack taxonomic and 
functional annotations. Isolation and characterisation of phages 
are therefore necessary to further characterise the viral ‘dark 
matter’ and determine their links to biological functions and 
diseases.

In summary, existing GVDs have immense viral genomic 
diversity but are biased towards bulk metagenomic data and have 
incomplete annotations. Improvements in sampling, extraction 
of genetic materials, phenotyping and database annotation will 
be necessary to unravel the complexity of the human gut virome, 
potentially revealing novel avenues for screening, diagnosing, 
preventing and treating human diseases including IBD.

The role of the virome in other intestinal pathologies
Clostridioides difficile infection
The main alterations of the gut virome observed in IBD have 
also been found in the context of Clostridioides (formerly Clos-
tridium) difficile infection. In particular, patients with C. difficile 
infection have a higher abundance of bacteriophage Caudovi-
rales compared with healthy controls while featuring reduced 
overall diversity.9 At the same time, the success of faecal micro-
biota transplant, an approved treatment for recurrent C. difficile 
infection, has been associated with the colonisation of donor 
Caudovirales and restoration of microbial diversity.9 These 
observations support the importance of phages in the bidirec-
tional regulation of gut homoeostasis.

Colorectal cancer
CRC is the third most commonly diagnosed cancer and the 
second-leading cause of cancer deaths worldwide. Aetiogenic 
factors underlying CRC pathogenesis are multiple, both genetics 
and environmental, and are still partially unknown.66

Similarly to IBD, CRC is also associated with microbiota 
dysbiosis, including that of the virome, whose direct and indirect 
links with CRC have been proposed only recently.67 At least one-
sixth of the entire global cancer burden has been attributed to 
viral infections including Epstein-Barr virus (EBV), human papil-
lomavirus (HPV), human Kaposi sarcoma virus, HBV, hepatitis 
C virus (HCV), human immunodeficiency virus (HIV), human 
T‐cell lymphotropic virus genotype 1 and Merkel Cell Poly-
omavirus (MCPyV or MCV).68 Although mainly associated with 
other malignancies, all these eukaryotic viruses have been asso-
ciated also with CRC risk and pathogenesis. However, evidence 
of causality between viral infections and CRC is still lacking.66

Community-based viral shotgun NGS techniques have revealed 
alterations in the colon virome diversity in patients with CRC. 
Nakatsu et al identified Orthobunyavirus, Tunalikevirus, Phik-
zlikevirus and 19 other viral genera that discriminate patients 

with CRC from controls, with the evidence that different virome 
signatures correlate with the cancer stage and that specific 
virome-associated risk groups had independent prognostic 
significance.69

In another study, while the overall alpha diversity (richness 
and Shannon diversity) and beta diversity (Bray-Curtis dissim-
ilarity) were similar between healthy subjects and patients with 
cancer, specific colonic virus communities were associated with 
CRC and altered the overall bacterial composition of the gut,70 
supporting the predator–prey relationship.11

While there have been some successes in predicting CRC 
from viral alterations, mechanistic links between the altered 
gut virome and CRC onset and/or progression have yet to be 
elucidated. Virome–CRC associations could potentially involve 
host bacteria. Among the aforementioned meta-analyses, two 
found increased abundances of F. nucleatum or Fusobacterium-
related phages in CRC.71 72 Given that the phages’ potential 
host F. nucleatum is enriched in CRC across different cohorts, 
these phages may simply ‘piggyBack’ F. nucleatum. Regard-
less, Enterobacteriaceae-targeting phages were also found to be 
enriched in CRC.72 73 These phages may kill commensals such as 
Escherichia coli, resulting in dysbiosis and favouring the coloni-
sation of CRC-promoting pathogens.74 Phages that have highly 
antigenic outer capsid proteins may also contribute to CRC. The 
capsid immunoglobulin-like domains allow them to adhere to 
mucins and form an antibacterial layer.75 Since cancer cells have 
altered glycosylation, it is possible that their interactions with 
these phages are altered and their defence against pathogens 
weakened.

In addition to shaping the bacterial community, bacterio-
phages have also been shown to transfer directly into colonic 
epithelial cells, promoting tumour growth and invasiveness in 
CRC. For example, bacteriophages from the order Caudovirales 
have been observed to directly interact with human cells, cross 
epithelial barriers, and produce proinflammatory responses.76–78

An altered virome could also affect the risk of CRC inde-
pendently of bacteria. Zuo et al reported that patients with CRC 
had elevated pathways for fatty acid biosynthesis and depleted 
production of chemicals in their gut virome that inhibit CRC 
cell proliferation (L-methionine) or maintain homoeostasis 
(acetate).73 These findings suggest that an altered virome may 
also have a direct role in oncogenesis and/or tumour progres-
sion, but more mechanistic studies are needed to establish its 
validity.

However, the complex relationships between the gut virome, 
the host and gut bacteria, as well as the intricate interplay 
between the metabolic and immunological pathways, are not yet 
fully understood. Novel insights into these areas are crucial for 
developing accurate diagnostics and efficacious precision thera-
peutics.79 80

CRC-associated virome dysbiosis is summarised in table 2.

Irritable bowel syndrome
Irritable bowel syndrome (IBS) is a spectrum of gastrointestinal 
disorders characterised by chronic abdominal pain, bloating 
and altered bowel habits, further subdivided into constipation-
prevalent (IBS-C), diarrhoea-prevalent (IBS-D) and mixed (IBS-
M). Despite the high prevalence, the pathogenesis of IBS remains 
elusive the absence of macroscopic alterations has suggested that 
less evident mechanisms, such as dysbiosis, could be key.

The concept of the human ‘virotype’29 or that the virome 
regulates transcription in asymptomatic hosts depending on host 
genetics is particularly intriguing in the setting of IBS. However, 
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despite the elegance of the hypothesis, the evidence remains 
limited.

Data on gut virome in IBS are very heterogeneous, possibly 
reflecting the broad spectrum of IBS itself. Overall, most studies 
point to a reduced alpha diversity of both bacterial-targeting81 
and eukaryotic-targeting viruses,82 two observations that are 
broadly consistent with what is known of the bacterial micro-
biome in IBS. Interestingly, unlike the bacterial microbiome, the 
virome seems to be temporally stable and independent of IBS 
symptom flare.83 84

No clear viral pathogenic family or species has been iden-
tified, although the comparison between IBS subtypes and 
healthy controls has identified phages, such as the Microviridae, 
Myoviridae and Podoviridae families, increased in IBS-D, and 
other Microviridae and Myoviridae species elevated in IBS-C, as 
compared with healthy controls84 (table  3). Predictably, some 
differentially abundant viruses in IBS and controls have been 

found to co-vary or inversely vary with bacteria and metabolites, 
which, in turn, have been associated with positive or negative 
effects. In fact, most of the supposed clinical implications of 
these differences are mediated by the impact of viruses on the 
bacterial microbiome. For example, Lactobacillus virus LBR4 8, 
a phage that infects Lactobacillus brevis, commonly considered 
a probiotic, was increased in IBS-C patients, possibly interfering 
with L. brevis activity.85

THERAPEUTIC POTENTIALS OF VIROME: A SUMMARY OF 
THE ONGOING CLINICAL TRIALS
Given the role of gut virome in modulating the bacteriome, host 
immunity and consequently gut pathologies, there is a growing 
research interest in virome and phage-based therapies. Although 
clinical trials involving these treatments are in their infancy, 
preclinical studies on their viability are growing at a rapid pace.

Table 2  Viruses involved in IBS.

Virus Host Alteration Potential mechanisms Clinical significance

Microviridae, Myoviridae, Podoviridae Bacteria, archaea ↑ in IBS-D84 Unknown Contribution to IBS bacterial dysbiosis

Microviridae, Myoviridae Bacteria, archaea ↑ in IBS-C84 Unknown Contribution to IBS bacterial dysbiosis

Lactobacillus virus LBR4 8 Lactobacillus brevis ↑ in IBS-C85 Reduction of the beneficial L. brevis activity Contribution to IBS bacterial dysbiosis

Upwards arrow means increased abundance in disease by comparison with the healthy controls.
Downwards arrow means reduced abundance in disease by comparison with the healthy controls.
IBS, irritable bowel syndrome; IBS-C, IBS-constipation; IBS-D, IBS-diarrhoea.

Table 3  Viruses involved in CRC.

Virus Host Alteration Potential mechanisms Clinical significance

Autographiviridae Bacteria ↑ in CRC72 Unknown Enriched in patients with CRC

Siphoviridae Bacteria, Archaea ↑ in CRC73 Impact on bacterial dysbiosis Enriched in patients with CRC

Gratiaviridae Bacteria ↑ in CRC72 Unknown Enriched in patients with CRC

Drexlerviridae Bacteria ↑ in CRC73 Unknown Enriched in patients with CRC

Inoviridae Bacteria ↑ in CRC73 Unknown Enriched in patients with CRC

Herelleviridae Bacteria ↓ in CRC73 Typically infecting members of the Firmicutes phylum Therapeutic potential for 
gastrointestinal infection

Podoviridae Bacteria ↑ in CRC73 Impact on bacterial dysbiosis Enriched in patients with CRC

Myoviridae Bacteria, Archaea ↑ in CRC73 Unknown Enriched in patients with CRC

Fusobacterium nucleatum phage Fusobacterium nucleatum ↑ in CRC71 FadA promotes cancer cell proliferation through the Wnt 
signalling

Potential CRC biomarker

Parvimonas micra phage Parvimonas micra ↑ in CRC71 Unknown Potential CRC biomarker

Peptacetobacter hiranonis phage Peptacetobacter hiranonis ↑ in CRC71 Unknown Potential CRC biomarker

Orthobunyavirus Mammals ↑ in CRC69 Unknown Enriched in patients with CRC

Tunalikevirus Gram-negative bacteria ↑ in CRC69 Capability of infecting commensals or lysing 
enteropathogenic strains of Escherichia coli

Enriched in patients with CRC

Phikzlikevirus Bacteria ↑ in CRC69 Unknown Enriched in patients with CRC

Inovirus Bacteria ↑ in CRC69 Unknown Enriched in patients with CRC

L5likevirus Bacteria ↑ in CRC69 Unknown Enriched in patients with CRC

Betabaculovirus Arthropods ↑ in CRC69 Unknown Enriched in patients with CRC

Sp6likevirus Bacteria ↑ in CRC69 Unknown Enriched in patients with CRC

Enterobacteria phage Bacteria ↑ in CRC74 Impact on bacterial dysbiosis Enriched in patients with CRC

Epstein-Barr virus Mammals ↑ in CRC66 Induction of intestinal damage and inflammation A possible risk factor for CRC

Human papilloma virus Mammals ↑ in CRC66 E5, E6 and E7 oncoproteins increase cellular alteration A possible risk factor for CRC

Hepatitis B virus (HBV) Mammals ↑ in CRC66 HBx interferes with p53 with it likely inducing malignant 
transformation

Chronic HBV infection is a risk factor 
for CRC

Merkel Cell Polyomavirus Mammals ↑ in CRC66 T-antigen-mediated inactivation of p53 and pRB A possible risk factor for CRC

Upwards arrow means increased abundance in disease by comparison with the healthy controls.
Downwards arrow means reduced abundance in disease by comparison with the healthy controls.
CRC, colorectal cancer; FadA, fusobacterial adhesin; p53, Tumor protein P53; pRB, retinoblastoma protein; Wnt, Wingless/Integrated.
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Faecal virome transplants
By contrast to traditional faecal microbiota transplantation 
(FMT), faecal virome transplantation (FVT) involves the trans-
plantation of only gut viruses from healthy donors into diseased 
patients. Most FVT studies were conducted via in vitro mouse 
models of diseases without clear biomarkers, such as obesity86 
and antibiotic-mediated dysbiosis.87 FVT significantly altered 
overall bacteriome compositions in terms of Firmicutes–Bacte-
roidetes ratios, diversity,86 87 and individual bacterial abundances, 
although the latter accounted for only a small proportion of the 
bacteriome.88

Clinical trials of FVT in IBD are limited. In one study by Ott 
et al, FVT preparations were sterile filtered and transplanted 
into five patients with C. difficile infection,89 including three 
that failed FMT and/or antibiotics and one that could not 
receive FMT due to infectious risk. All five patients recovered 
from C. difficile infection after FVT and remained symptom-
free for at least 6 months. Virome analysis, performed only 
on one patient, revealed that the patient’s phageome had 
changed significantly to resemble that of the donor.89 Unfor-
tunately, given the nature of the study focused on the efficacy 
of faecal filtrates rather than the virome specifically, and the 
limited sample size, no causal links between the virome and 
patient recovery could be established, nor specific beneficial 
phages identified.

FVT is advantageous over FMT since it decreases the risk of 
transferring unknown pathogens or bacteria with undesirable 
functionalities. Nevertheless, despite the immediate positive 
outcomes of FVT, its long-term efficacy and effects on the bacte-
riome are unclear. These studies did not identify the particular 
taxa, transplanted or displaced, contributing to the improve-
ment in obesity and IBD symptoms. Thus, while studies have 
demonstrated the virome’s therapeutic potential, progress in 
developing virome-based therapies can only be made if there is 
a better understanding of the taxa and mechanisms by which 
viruses affect host metabolism, and, in turn, contribute to both 
diseased and healthy gut states.24 88

Safety concerns regarding FVT have also been raised, 
including the potential transfer of eukaryotic viruses and 
prophage-encoded virulence factors. Thus, similar to FMT, 
FVT must develop donor assessment criteria and genetic 
screens to remove potential viral hazards of these sorts. 
In addition, healthy ‘super donors’ may be identified to 
provide qualified transplants. With advancements in phage 
isolation and characterisation, phage cocktails may also 
be created ad hoc to substitute whole-virome transplants 
(figure 2). Overall, despite promising case series, studies on 
FVT are poorly generalisable because of the small sample 
size and phageome interindividual variability, and thus 
further research is needed.

Phage therapy
The therapeutic use of bacteriophages has been primarily inves-
tigated as an alternative to antibiotics for multidrug-resistant 
bacteria. In the context of gut diseases, ‘cocktails’ of bacterio-
phages known as phage therapy could be beneficial for condi-
tions associated with certain bacteria colonisation or infection 
such as IBD with Adherent-invasive E. coli, Klebsiella pneumo-
niae, C. difficile90 91 and CRC with Fusobacterium nucleatum.92

Compared with faecal transplants or antibiotics, phage thera-
pies are advantageous in that they allow them to target specific 
commensals, including drug-resistant ones, limiting unintended 
alterations in gut microbiota without transferring live bacteria.

In murine models of IBD artificially colonised with IBD-
related pathobionts, several phage cocktails have been tested. 
Results have been mainly positive in terms of target bacteria 
eradication, though clinical effects on disease activity beyond the 
resolution of the infection are difficult to infer. In addition to the 
animal model limitations, most studies on phage therapy in IBD 
targeted a single bacteria strain, an approach far too reductionist 
considering the microbial complexity of IBD.93

Besides IBD, phage therapies have also shown promising 
results for treating CRC. In a study by Dong et al, immuno-
genic M13 phages were engineered to target F. nucleatum (Fn) 
and were assembled with antibacterial silver nanoparticles.79 
The Fn-specific phages were administered in CRC mice models, 
in which the phages not only cleared Fn from the gut but also 
infiltrated CRC tissues via Fn-targeting. Given that M13 phages 
are immunogenic, phage entry into CRC tissues also facilitated 
leucocyte activation, undoing the tumour’s immunosuppressive 
characteristics. The treatment delayed CRC tumourigenesis and 
extended the mice’s survival time. However, phage immuno-
therapy alone was insufficient in removing tumours and all mice 
died after 23 days. Interestingly, M13 phages have also been 
engineered to target tumourous antigens, including epidermal 
growth factor (EGF) and carcinoembryonic antigen.94

Although preclinical animal model studies on phage therapies 
have shown promising results, there are several safety and regu-
latory concerns to address before extensive clinical applications 
(figure 2). Multiple early-phase clinical trials have reported that 
oral administration of phages is well tolerated in humans,95–97 
but these phages were administered in the context of a healthy 
gut. During inflammation, bacteriophage-induced lysis of patho-
gens may release pathogen-associated molecular patterns in the 
gut, potentially worsening inflammatory responses.19 31 For 
example, phage therapy worsened the symptoms of one patient 
suffering from a urinary tract infection, as phage-induced lysis 
of pathogenic P. aeruginosa may have released endotoxins into 
the patient’s gut.98 Moreover, phage virions may directly interact 
with host leucocytes and stimulate cytokine production, whose 
consequences are not fully understood in the context of gut 
inflammation and dysbiosis.24 99 Though phage-induced adverse 
events are rare, further studies are needed to identify the condi-
tions by which they occur. Lastly, regulations for phage therapies 
have yet to be fully established.100 As a result, most applications 
of phage therapies are constrained to compassionate use.

CONCLUDING REMARKS
Progress in sequencing technologies and GVDs have advanced 
our understanding of the gut virome and particularly its role and 
therapeutic potential in IBD, IBS, C. difficile infection and CRC. 
However, variations in sequencing and analytical methods, 
incompleteness of database annotations and substantial interin-
dividual and intercohort differences limit the interpretation and 
generalisation of the findings. Preliminary preclinical and clin-
ical studies have demonstrated the potential for phage therapy in 
the treatment of IBD and CRC, but further research is certainly 
needed.

To make valuable advancements in the field, experts should 
agree on some guidelines and delineate a consensus to conduct 
virome-based, disease-oriented research, thereby standardised 
protocols will generate reproducible data and build robust 
knowledge. For example, key opinion leaders, including clini-
cians, virologists and biologists, could collaborate to express 
a consensus where sequencing methods and their analysis are 
defined as the gold standard for virome-related studies. They 
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should contribute to compiling complete database annotations to 
make a straightforward interpretation of analysis results. More-
over, large sample-sized cohorts are highly desirable to overcome 
the intraindividual and interindividual variability, this being a 
limitation for all microbiota-related research. Patient stratifica-
tion based on geographical origin, sex, clinical characteristics 
and daily habits has to be considered a must when a virome-
based study is designed since all these traits represent some of 
the main causes of the high variability and study inconsistency.

Regarding the clinical applications of virome therapy, side 
effects, although rare, have been registered as discussed in this 
review. To avoid immune reaction during the virome transplan-
tation, a possibility would be to identify the specific bacterio-
phage defined as detrimental and to inactivate it before the 

administration in affected individuals. This could ameliorate 
tolerance and avoid side effects.

Conclusively, despite the extensive research required, the field 
is rapidly advancing and shows promising therapeutic potential 
by improving our understanding of the role of gut virome in IBD 
and other gastrointestinal diseases. Nevertheless, joint efforts 
among clinicians, microbiologists, bioinformaticians and regu-
latory bodies are urgently needed to overcome virome research-
related limitations and make important advances in the field, 
hopefully in the short term.
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