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The modified method for random-effects meta-analysis, usually attributed to Har-

tung and Knapp and also proposed by Sidik and Jonkman, is easy to implement and is

becoming advocated for general use. Here, we examine a range of potential concerns

about the widespread adoption of this method. Motivated by these issues, a variety

of different conventions can be adopted when using the modified method in practice.

We describe and investigate the use of a variety of these conventions using a new

taxonomy of meta-analysis datasets. We conclude that the Hartung and Knapp modi-

fication may be a suitable replacement for the standard method. Despite this, analysts

who advocate the modified method should be ready to defend its use against the pos-

sible objections to it that we present. We further recommend that the results from

more conventional approaches should be used as sensitivity analyses when using the

modified method. It has previously been suggested that a common-effect analysis

should be used for this purpose but we suggest amending this recommendation and

argue that a standard random-effects analysis should be used instead.
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1 INTRODUCTION

The random-effects model for meta-analysis1,2 is now widely used to pool heterogeneous estimates and also obtain a meaningful

estimate of the average effect. The random-effects model provides a way to relax the common-effect (also often referred to as

the fixed-effect) model's usually implausible assumption that the studies estimate the same true underlying effect. The standard

method for making inferences using the random-effects model goes back at least as far as the seminal paper by DerSimonian

and Laird.3

The main statistical difficulty when applying the random-effects model in practice is that we must estimate the between-study

variance. The precision of the estimated between-study variance is generally low in small samples (ie, meta-analyses with few

studies), and this is reflected in the often very wide confidence intervals for this parameter.4 The uncertainty in this estimate is

not taken into account when applying the random-effects model to make inferences about the average effect in the usual way,

which means that the resulting statistical inference is often not very accurate. For example, the actual coverage probability of

confidence intervals for the average effect can deviate markedly from the nominal probability in small samples.5 In particular,

when substantial heterogeneity is present, the standard method produces actual coverage probabilities that are substantially less
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than the nominal level. Wider confidence intervals are needed in such instances to reflect the uncertainty in the between-study

variance and so more satisfactorily provide the nominal coverage probability.

In an attempt to improve upon the repeated sampling properties of the standard method for random-effects meta-analysis,

Hartung and Knapp6-8 and Sidik and Jonkman9 propose a modified (or refined) method. Like the more conventional and now

standard method, their modified method involves estimating the between-study variance and then treating this as if fixed and

known. Hence, both the standard and the modified methods are approximate methods. However, further calculations are made

by the modified method which justify using quantiles from a t, rather than a standard normal, distribution for making inferences

about the average effect. Although questions have been raised about the validity of the modified method,10,11 this method has

become accepted and advocated for general use.12,13 Furthermore, the modified method has been implemented as an option in

some standard meta-analysis software, for example, in the metafor14 and the meta15 packages in R. Extensions of the modified

method for meta-regression16 and multivariate meta-analysis17 have also been proposed.

Although alternative ideas have been suggested for improving the performance of frequentist methods for random-effects

meta-analysis,18,19 the modified method is appealing because it introduces no further numerical or computational difficulties:

if noniterative estimates of the between-study variance are used, or iterative methods are used that ensure convergence, then

both the standard and the modified methods do not encounter numerical problems. Furthermore, the theory that underlies the

modified method is relatively simple and is closely related to methods used in particle physics.20,21 Part of the attraction of the

modified method therefore must be that it is intuitively appealing. Simulation studies7-9,12 reassure us that the modified method

provides actual coverage probabilities that are closer to the nominal level than the standard method.

Given all the advantages of the modified method, it is perhaps surprising that it has not been more widely adopted. In this paper,

we will explore the issues presented by the modified method, and in doing so, we will carefully assess possible explanations for

why it is not used more often in application. The rest of the paper is set out as follows. In Section 2, we briefly describe both

the standard and modified methods for random-effects meta-analysis. In Section 3, we discuss a variety of possible concerns

faced by those who would advocate the modified method. In Section 4, we describe some different conventions that can be

adopted when using the modified method. In Section 5, we present our new taxonomy of meta-analysis datasets that we use as a

framework to assess the consequences of these conventions. To investigate the implications of using the proposed conventions

in practice, in Section 6, we perform an empirical investigation. We conclude in Section 7 with a short discussion.

2 THE STANDARD AND MODIFIED METHODS FOR RANDOM-EFFECTS
META-ANALYSIS

The conventional random-effects model assumes that the estimate from the ith study, i = 1, 2, · · · n, is distributed as Yi ∼
N(𝜇, 𝜎2

i +𝜏2). The within-study variances 𝜎2
i are treated as fixed and known in analysis but are estimated in practice. The param-

eter 𝜇 is the average effect and is the parameter of primary interest; 𝜏2 is the between-study variance. In the first computational

stage, 𝜏2 is estimated. This estimate can be obtained in a variety of ways,22 which provides variants of both the conventional

and modified methods. If 𝜏2 = 0, then the random-effects model is said to collapse to the common-effect model (where 𝜏2 is

assumed to be 0). Inferences for the average effect are made in the second computational stage. The estimated average effect is

𝜇̂ =
∑

wiyi∕
∑

wi, where wi = 1∕(𝜎2
i + 𝜏2). The same point estimates are obtained using the standard and modified methods

under the random-effects model.

Confidence intervals and hypothesis tests immediately follow using the standard method by assuming that

(𝜇̂ − 𝜇)
√∑

wi ∼ N(0, 1) (1)

so that, for example, a 95% confidence interval is obtained as 𝜇̂ ± 1.96∕
√∑

wi.

The modified method involves further calculating a quadratic form, whose square root we will call H*, where

H∗2 =
∑

wi(Yi − 𝜇̂)2

n − 1
. (2)

If 𝜏2 = 0, then H* = H, where H is the square root of the H2 heterogeneity statistic proposed by Higgins and Thompson. 23 If

all variances (both within and between studies) are taken as known, then confidence intervals and hypothesis tests immediately

follow using the modified method by assuming that

(𝜇̂ − 𝜇)
√∑

wi

H∗ ∼ t(n−1), (3)
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where t(n−1) denotes a t distribution with (n − 1) degrees of freedom so that a 100 × (1 − 𝛼)% confidence interval is obtained as

𝜇̂±t(n−1,𝛼∕2)H∗∕
√∑

wi, where t(n−1,𝛼/2) is the 1 − 𝛼∕2 quantile of a t(n−1) distribution.

Comparing (1) and (3), we can see that the modified method applies a scale factor of H* to the conventional standard error

1∕
√∑

wi and uses quantiles from t(n−1) instead of a standard normal distribution. We will therefore refer to H∗∕
√∑

wi as the

modified method's standard error so that the modified method can be interpreted as using a different standard error and reference

distribution. However, the standard and modified methods result from different types of statistical approximations shown in (1)

and (3) and so are perhaps most naturally conceptualised as being completely alternative statistical methods, where no direct

reference is made to scaling factors and reference distributions when comparing the 2 methods. We however find the notion of

the scaling factor H*, and the use of alternative reference distributions, to be useful ways of describing how the standard and

modified methods relate to each other numerically.

To summarise this discussion, the standard and modified methods are conceptually and computationally similar and both can

be applied when 𝜏2 = 0. In the next section, we will explore some possible reasons why the modified method has not become

more widely used in application.

3 THE MODIFIED METHOD: 4 CONCERNS

As explained in the introduction, simulation studies have found the modified method to perform better than the standard method.

It is therefore natural to ask the question “Why has the modified method not replaced the standard method already?” Part of the

reason may be that the standard method is the default in most statistical software and is so commonly used in application that

the case for any new, and so less familiar, method must be especially strong for it to be adopted. However, the modified method

raises immediate concerns that are not related to any difficulties that might be associated with overcoming statistical inertia. To

some extent, we play “devils' advocate” in this section and present 4 potential concerns about the use of the modified method,

and so for now, we present the case against it. These concerns are speculative in nature and provide a framework for the material

that follows. We will see that some of these concerns, which are very closely related, are not entirely substantiated.

3.1 Concern 1: the scaling factor H* is a poorly understood random variable
We need to much better understand the distributions of H*, and H∗∕

√∑
wi, before we can be comfortable using the modified

method. The scaling factor H*, which is applied to the standard error of the pooled effect by the modified method, is a function

of the Yi. Hence, it is a random variable. Furthermore, the distribution of the scaling factor H* is complicated and poorly

understood. This is because the 𝜒2 distributional assumption for H*2, which leads to the t(n−1) distribution in (3), is correct under

the random-effects model if wi = 1∕(𝜎2
i + 𝜏2).24,25 However, in these equations, we have wi = 1∕(𝜎2

i + 𝜏2), which distorts the

distributional assumptions.10 This is because the random-effect model's “weights,” wi = 1∕(𝜎2
i + 𝜏2), are also random variables

even under the random-effects model where we take the 𝜎2
i as fixed and known (because 𝜏2 is an estimate). The same comments

and concerns apply to the distribution of the modified method's standard error, H∗∕
√∑

wi. There is also a related concern that

taking the within-study variances as fixed and known can also distort distributional results of this type.26 In small samples, the

impact that the modification has on the conventional standard error can be anticipated to differ greatly from one meta-analysis

to the next. This means that the implications of using the scaling factor H* for any given meta-analysis are hard to predict.

3.2 Concern 2: the modified method can result in shorter confidence intervals for the average
effect than standard methods
When it is applied to some datasets, the modified method results in shorter confidence intervals, and so smaller P values, for

the average effect than the standard method. This can occur when H* is less than 1. The modified method then loses some face

validity, because usually the most pressing concern is that the standard method does not take the uncertainty in the between-study

heterogeneity into account and so produces confidence intervals that are too short, resulting in coverage probabilities that are

less than the nominal level. Furthermore, as Wiksten et al27 point out, the Hartung-Knapp method is not always conservative

compared to a common-effect meta-analysis. This is a more serious concern because the common-effect model makes the

strongest assumption about the homogeneity of the data.

A “hardcore frequentist perspective” might be to dismiss the concerns raised by Wiksten et al27 as unimportant, irrelevant, or

misguided. This is because it is the coverage probability of a confidence interval alone that is its defining characteristic. Hence,

some may be satisfied if the nominal coverage probability is (approximately) retained by a confidence interval regardless of

any other consideration. Furthermore, a confidence interval that provides short confidence intervals with the correct coverage
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is likely to be considered highly desirable. In practice, however, we suggest that it is also desirable that confidence intervals

possess additional good properties. For example, ideally, they should contain point estimates and be of nonzero but finite length.

In the context of random-effects meta-analysis, a highly desirable property is that a confidence interval for the average effect

should always be at least as wide as the corresponding confidence interval from the common-effect model. The standard method

ensures this, but the modified method does not.

3.3 Concern 3: Is it appropriate to use the modified method when 𝜏2 = 0?
This type of concern is exemplified by the investigation of Wiksten et al,27 who prove that the scaling factor H* is necessarily less

than 1 when the DerSimonian and Laird3 estimator is used and 𝜏2 is truncated to 0. This is a common occurrence in practice.28

This would seem to suggest that when 𝜏2 = 0, we may be at high risk of producing modified results that are subject to the

concerns in Section 3.2 above. Although the theoretical analysis of Wiksten et al relies upon the use of the DerSimonian and

Laird estimator (other estimators22 have been proposed and can be used in both the standard and modified methods, and we

consider 2 alternatives below), we consider their analysis to be instructive for meta-analyses using other estimators.

There is a more subtle, but very closely related, difficulty for those who would advocate the use of the modified method when

𝜏2 = 0. A potential criticism would then be that given that the estimated between-study variance is zero, as it is here, the analysis

of Wiksten et al27 suggests that the coverage probability of the modified method is not likely to be acceptable (because H* is

necessarily less than one), and hence, it should not have been used in this instance. The difficulty is that the modified method is

usually advocated on the grounds of its good unconditional coverage probability, but this concern is based on a concern about

a conditional coverage probability. A full discussion of conditional inference is beyond the scope of this paper, but Casella 29

provides an accessible overview and many useful references. As Casella explains, conditional inference relies on identifying

a recognisable subset of the sample space (such as the subset of meta-analyses where the estimated between-study variance is

zero). As Casella also explains, the unconditional coverage probability and the conditional probability, given that the sample

lies in the recognisable subset of the sample space, in general differ. Furthermore, “Poor conditional (post data) performance on

a recognisable set is taken as criticism” and “only reasonable procedures are free of conditional defects.”29 Hence, this potential

concern has a sound statistical basis.

3.4 Concern 4: The modified method raises the question of whether we should attempt
to further modify the standard method
To partially avoid the concern about the considerable variability of H* in small samples (see Section 3.1), a further ad hoc

modification of constraining H* ⩾ 1 has been suggested.16,17 This means that the modified method's use of quantiles from the

t distribution must result in wider confidence intervals than the standard method that uses quantiles from the standard normal

distribution. However, this approach can be anticipated to result in overcoverage and hence an inevitable loss of power.

Further modifications are of course possible. Hence, a concern is, by accepting the modified method, we open up possibilities

of further ad hoc modifications that are also likely to be objectionable for some reason or another. Thus, rather than substantially

improving upon the standard method, the modified method is likely to result in an even wider array of methods and hence

confusion for applied analysts.

4 THE MODIFIED METHOD: 6 POSSIBLE METHODS OF ANALYSIS

In this section, we describe some methods of analysis that are based on the modified method. As we will explain, some of these

possibilities would seem to be motivated by the concerns discussed in Section 3.

4.1 Never use the modified method
Although it cannot be truly represented as being an approach that uses the modified method, if we refrain from using the

modified method altogether, then we retain the conventional use of the standard method (see Equation (1)). We will therefore

present results using the standard random-effects approach, to compare the other possibilities to.
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4.2 Always use the modified method
The most obvious and direct use of the modified method is to always use it (see Equation 3). This has been advocated12 but is

open to the possible concerns described above in Section 3.

4.3 Constrain the scaling factor H* ⩾ 1

Some accounts of the modified method discuss the ad hoc additional modification of constraining the scaling factor H* ⩾ 1. 16,17

This means that the modified method always results in a more conservative analysis (wider confidence interval) than a standard

random-effects meta-analysis. This is because if the scaling factor H* is set to 1, then the use of quantiles from a t distribution

in the modified method necessarily results in wider confidence intervals than those from the standard method. This convention

directly avoids concern 2, and may have been motivated by this and also concern 1, but can be anticipated to come at a price of

producing analyses that are overly conservative and so incur a loss of power.

We next describe 3 “hybrid methods” that combine the use of the modified and standard methods, to make use of the modified

method and yet also avoid some of the possible concerns in Section 3.

4.4 Hybrid method 1: Use the modified method if and only if 𝜏2 > 0

This hybrid method is motivated by concern 3, which it directly avoids. Similarly to the previous convention, this is a further

modification and so is subject to concern 4.

4.5 Hybrid method 2: Apply both the modified and the standard random-effects method
and present the more conservative analysis
Another way to avoid some of the concerns described in Section 3 is to apply both the standard random-effects and the modified

methods and present the more conservative (widest confidence interval) analysis. This convention and all those above provide

the random-effects model's estimate of the average effect 𝜇̂. This convention can however be anticipated to come at a price of

producing analyses that are overly conservative and so incur a loss of power. Whether or not the modified method results in a

conservative analysis may depend on the value of 𝛼; we assume that 𝛼 = 0.05 has been used throughout. This observation also

applies in Section 4.6.

4.6 Hybrid method 3: Use both the modified and the standard common-effect method
and present the more conservative analysis
This convention is motivated by the suggestion of Wiksten et al27 who suggest presenting a sensitivity analysis using the

common-effect model. By “the more conservative analysis,” we will continue to mean the analysis that provides the wider

confidence interval (rather than necessarily provide the larger P value; since the common-effect model estimate of 𝜇 is not in

general equal to the corresponding random-effect model estimate, it is possible for the random-effect model to simultaneously

result in a wider confidence interval and a smaller P value30).

These 6 methods are closely related, and some result in the same statistical inferences for particular types of meta-analysis

datasets. To understand the implications of these methods, and also how they relate to each other, we will now develop a new

conceptual framework that can be used to compare and contrast the 6 analysis methods.

5 A TAXONOMY OF META-ANALYSIS DATASETS

To provide a framework in which the consequences of the 6 methods described in Section 4 can be assessed, in this section, we

present a new taxonomy of meta-analysis datasets. This taxonomy is sufficient to categorise the type of analysis that each of

the 6 methods in Section 4 provide. The taxonomy is designed to serve as both a description of the implications of each of the

analysis methods and also as a tool to aid decision making for an “adaptive meta-analysis,” where decisions regarding which

analysis to present as primary depends on the nature of the data.
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5.1 Motivating the taxonomy
From the concerns in Section 3 and the analysis methods in Section 4, the consideration of 4 criteria is clearly important when

determining the implications of using the modified method. The first of these criteria is whether or not 𝜏2 > 0 (this criterion is

directly motivated by concern 3 and hybrid method 1). However, the random variable H* plays the most direct role in determining

the implications of using the modified method, and we should also consider the properties of H* directly (due to concern 1).

An important property of H* is whether or not it is more than 1, because this determines whether or not the modified method's

standard error is greater than the usual one. Hence, the second of our criteria is whether or not H* > 1. However, these 2 criteria

are not sufficient to fully consider concern 2, because the use of quantiles from a t(n−1) distribution by the modified methods may

overcome the tendency for H* < 1 to result in shorter confidence intervals than standard methods. Hence, the third and fourth

criteria are whether or not the modified method results in wider 95% confidence intervals than the standard random-effects

analysis and the common-effect analysis, respectively.

5.2 Sixteen possible groups
Our taxonomy is therefore based on 4 binary outcomes so that there are a maximum 24 = 16 groups of meta-analyses that

comprise it. Specifically, these binary outcomes are (1) 𝜏2 > 0, (2) H* > 1, (3) the modified 95% confidence interval is wider

than the corresponding standard random-effects model's confidence interval (as mentioned in Section 4.5, this outcome may

depend on the value of 𝛼; this comment also applies to the following fourth outcome and we assume 𝛼 = 0.05 throughout),

and (4) the modified 95% confidence interval is wider than the corresponding common-effect model's confidence interval. Our

taxonomy was formed by initially assuming that all 16 groups are possible. Groups 1 to 8 were allocated 𝜏2 > 0, and groups

9 to 16 were allocated 𝜏2 = 0; groups 1 to 4 and 9 to 12 were allocated H* > 1, and groups 5 to 8 and groups 13 to 16 were

allocated H* ⩽ 1; groups 1 to 2, 5 to 6, 9 to 10, and 13 to 14 were allocated “modified confidence interval is wider than the

standard confidence interval” and groups 3 to 4, 7 to 8, 11 to 12, and 15 to 16 were allocated “modified confidence interval is

not wider than the standard confidence interval”; finally, odd numbered groups were allocated “modified confidence interval

is wider than the common-effect model confidence interval,” and even numbered groups were allocated “modified confidence

interval is not wider than the common-effect model confidence interval.”

5.3 Eliminating 9 impossible groups and the resulting 7 group taxonomy
However, 9 of these 16 groups are impossible to observe, regardless of the estimator of 𝜏2 used (some groups can be deemed

impossible for multiple reasons). Groups 2, 6, 10, and 14 are impossible because they require the modified method to give

confidence intervals that are wider than those from the standard random-effects method, and yet not wider than those from

the common-effect model. Groups 3, 4, 11, and 12 are impossible because they require both H* > 1, and also the modified

confidence interval to be not wider than the standard one. Finally, group 15 is impossible because it requires the modified

method's confidence interval to be not wider than the standard one, and yet wider than the common-effect model's confidence

interval, when 𝜏2 = 0.

The resulting 7 group taxonomy is shown in Table 1. Here, we show the 7 possible groups and also the type of analysis that

each of the 6 methods described in Section 4 provides. “Mod” means that the modified standard error H∗∕
√∑

wi is used, “RE”

means that the conventional standard error 1∕
√∑

wi is used, and “CE” means that the conventional common-effect standard

error

√
1∕

∑
𝜎−2

i is used, either because the common-effect analysis was chosen or because 𝜏2 = 0 and the conventional

random-effects analysis collapsed to a common-effect analysis. Z and t in parentheses indicate that quantiles from a standard

normal or the t distribution are used, respectively.

Although Table 1 summarises the implications of using each of the conventions for analysis for different types of meta-analysis

datasets, it does not give an indication of which groups are more likely to be observed. Hence, this table is insufficient to

fully describe these implications. Our empirical investigation will explore this issue, but some observations from Table 1 are

immediate. Firstly, constraining H* ⩾ 1 results in a different analysis to all other conventions unless the meta-analysis is in

group 1 or 9. This shows that, in addition to our intuition that constraining H* ⩾ 1 will be overly conservative, in the majority of

groups, this mode of analysis results in a different analysis to other methods. Also from Table 1, we can see that hybrid method

2 is the only non-standard method that can result in the standard inference (denoted as “RE(Z)”) from the random-effects model

when 𝜏2 > 0. However, this only occurs for meta-analyses that belong to groups 7 or 8, and we will see that these groups are

quite rare.
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TABLE 1 A taxonomy of meta-analysis datasets

Never Always Constrain Hybrid 1 Hybrid 2 Hybrid 3
Group 𝜏2 > 0 H* > 1 Mod>RE Mod>CE (Section 4.1) (Section 4.2) (Section 4.3) (Section 4.4) (Section 4.5) (Section 4.6)

1 Yes Yes Yes Yes RE(Z) Mod(t) Mod(t) Mod(t) Mod(t) Mod(t)

5 Yes No Yes Yes RE(Z) Mod(t) RE(t) Mod(t) Mod(t) Mod(t)

7 Yes No No Yes RE(Z) Mod(t) RE(t) Mod(t) RE(Z) Mod(t)

8 Yes No No No RE(Z) Mod(t) RE(t) Mod(t) RE(Z) CE(Z)

9 No Yes Yes Yes CE(Z) Mod(t) Mod(t) CE(Z) Mod(t) Mod(t)

13 No No Yes Yes CE(Z) Mod(t) CE(t) CE(Z) Mod(t) Mod(t)

16 No No No No CE(Z) Mod(t) CE(t) CE(Z) CE(Z) CE(Z)

As explained in Section 5.3, nine groups are impossible. “Mod>RE” and “Mod>CE” indicate that the modified 95% confidence interval is wider than the corresponding

standard random-effects confidence interval and the corresponding common-effect interval, respectively. “Mod,” “RE,” and “CE” indicate that the convention results in

presenting the confidence interval using the standard error from the modified method, the standard method, and the common-effect analysis respectively; “(Z)” and “(t)”

denote that quantiles from the standard normal and t distribution are used, respectively. For example, “Mod(t)” denotes that the modified standard error and quantiles

from a t distribution are used, and “CE(Z)” denotes that the common-effect standard error and quantiles from a normal distribution are used. For groups 9, 13, and 16,

we have 𝜏2 = 0 so that “RE” is equivalent to “CE,” but the resulting analysis is represented as “CE.”

To investigate the implications of each analysis method further, we will investigate how the taxonomy simplifies for particular

estimators of 𝜏2 and 2 special situations. As we will see, by considering special cases, we can further reduce the taxonomy, and

so more easily assess the implications of each analysis method.

5.4 Reduced taxonomies for particular estimators
Some further groups in Table 1 are impossible for particular estimators of 𝜏2 and so immediately simplify the taxonomy. Many

estimators of 𝜏2 have been proposed,22 and we will restrict our investigation to the Restricted Maximum Likelihood (REML),

DerSimonian and Laird, and the Paule-Mandel estimators because these 3 estimators are especially widely used in application

or advocated for this purpose. Hence, we assume throughout that one of these 3 estimators is used.

5.4.1 The REML estimator
We will see in our empirical investigation that all 7 groups in Table 1 are possible when using the REML estimator. Hence, no

further reduction in the taxonomy is possible when using REML.

5.4.2 The DerSimonian and Laird estimator
If however the DerSimonian and Laird estimator is used, then group 9 is impossible because it requires 𝜏2 = 0 and H* > 1 and

this is not possible.27 All other groups are possible.

5.4.3 The Paule-Mandel estimator
The Paule-Mandel estimator31 of 𝜏2 is defined as the value that satisfies H*2 = 1. Hence, when a positive 𝜏2 can be found as the

solution to H*2 = 1, we then have H* = 1 by construction. The distinction between groups 1 and 5 is therefore meaningless;

the choice between using the criterion of H* > 1 or alternatively H* ⩾ 1 in the taxonomy is intended to be of no importance

because it was assumed that H* would be a continuous random variable. Groups 7 and 8 in Table 1 are therefore impossible,

because H* = 1 means that the modified method must result in wider confidence intervals because of its use of quantiles from

a t distribution.

Furthermore, if 𝜏2 = 0 provides H*2 < 1 so that there is then no solution for H*2 = 1, the Paule-Mandel estimator is

truncated to 0. Hence, when the Paule-Mandel estimator is truncated to 0, then we have H* < 1 by construction, and group 9

is impossible. The Paule-Mandel estimator therefore results in an especially simple 3-group taxonomy. Assuming that 𝜏2 > 0

and the Paule-Mandel estimator is used, the modified method therefore simply replaces the standard normal quantile with one

from a t distribution, but otherwise the analysis proceeds as usual.

To obtain the very simple 3-group Paule-Mandel taxonomy for all 3 estimators of 𝜏2, and so more easily examine the

implications of using the modified method, we now consider 2 simple special cases.
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5.5 The reduced taxonomy for the special case where n = 2

When 𝜏2 > 0 and n = 2, we have H* = 1 for all 3 estimators of 𝜏2. This is partly due to the result of Rukhin,32 which states that

when n = 2, the DerSimonian and Laird and REML estimators of 𝜏2 coincide and can be written in our notation, and before

truncation, as 𝜏2 = ((y2 − y1)2 − 𝜎2
1
− 𝜎2

2
)∕2. We will see immediately below that the Paule-Mandel estimator also coincides

with this value when n = 2 so that all 3 estimators satisfy H* = 1 when 𝜏2 > 0 and n = 2.

Writing the summation (2) explicitly as the sum of n = 2 terms, using a common denominator of w1 + w2 for all expressions

inside the quadratic terms, and simplifying the resulting expression gives

H∗2 =
w1w2(y1 − y2)2

w1 + w2

. (4)

To estimate 𝜏2 using the Paule-Mandel method, we set H*2 = 1. Setting (4) equal to 1 gives (y1 − y2)2 = 1∕w1 + 1∕w2 =
𝜎2

1
+𝜎2

2
+2𝜏2 so that the Paule-Mandel estimator is equal to the expression for the DerSimonian and Laird and REML estimators

given by Rukhin. Hence, all 3 estimators satisfy H*2 = 1 whenever 𝜏2 > 0 and n = 2, because all 3 estimators are then the same

and the Paule-Mandel estimator ensures this by construction. Therefore, groups 7 and 8 are impossible, because H*2 = 1 ensures

that the modified method's 95% confidence interval is the widest. Group 9 has already been established to be impossible for the

DerSimonian and Laird and Paule-Mandel estimators, and Rukhin's demonstration of the equivalence between the REML and

DerSimonian and Laird estimators when n = 2 means that this group is also impossible when using REML in this setting.

Hence, for the special case where n = 2, we have the Paule-Mandel 3-group taxonomy identified in Section 5.4.3 but it now

applies to all 3 estimators. The 3-group taxonomy consists of group “1 or 5,” 13, and 16 as shown in Table 2. Since H* = 1

when 𝜏2 > 0 for this special case, all methods that use the modification when 𝜏2 > 0 are tabulated as “RE(t)” for group 1 or 5,

because the modified method's standard error is the same as the conventional one when H* = 1. None of the 3 groups provide

H* > 1 in this special case, and so the role of H* in the reduced taxonomy is omitted in Table 2.

5.6 The reduced taxonomy for the special case where all studies are the same “size”
We will also examine the special case where all studies are the same “size,” that is, 𝜎2

i = 𝜎2 for all i. This artificial special

case has been used previously to give an indication of how methods for meta-analysis perform.5,18,33 The mathematics is greatly

simplified in this situation. In this special case, the DerSimonian and Laird, REML, and Paule-Mandel estimators become

equivalent and, before truncation, we have 𝜎2 + 𝜏2 = s2, where s2 is the sample variance.18,33 This result is easily established

for the DerSimonian and Laird and Paule-Mandel estimators from equating 𝜎2
i = 𝜎2 in their estimating equations and using

a little algebra, where we also note that the pooled estimators of 𝜇 that appear in the estimating equations are equal to ȳ. For

REML, this result is similarly easily obtained from the expression for the restricted log likelihood given by Normand,34 her page

336, upon setting 𝜎2
i = 𝜎2, differentiating with respect to 𝜏2 and setting the resulting expression to 0. Hence, we have a second

special case where all 3 estimators coincide.

Hence, if 𝜏2 > 0, then 𝜏2 = s2 − 𝜎2. Furthermore 𝜇̂ = ȳ, where ȳ is the average of the Yi. Equating 𝜏2 = s2 − 𝜎2 and 𝜇̂ = ȳ in

(2) immediately yields H*2 = 1. This means that the distinction between groups 1 and 5 in Table 1 becomes meaningless, just

as it is for the case where n = 2. Furthermore, groups 7 and 8 are impossible when 𝜎2
i = 𝜎2 for all i because we have seen that

𝜏2 > 0 implies that H* = 1, which ensures that the modified method's 95% confidence interval is the widest. Finally, group 9 is

impossible in this special case because all 3 estimators reduce to the same estimator for this special case, and we have already

established the impossibility of group 9 for both the DerSimonian and Laird and Paule-Mandel estimators.

Hence, in this special case, the taxonomy of datasets in Table 1 becomes the same 3-group taxonomy as for the n = 2 case,

as already shown in Table 2. This 3-group taxonomy would therefore appear to be sufficient to give a reasonable guide to how

TABLE 2 A taxonomy of meta-analysis datasets as in Table 1 but for the much simpler special cases where n = 2 or all studies are the same “size”

Never Always Constrain Hybrid 1 Hybrid 2 Hybrid 3
Group 𝜏2 > 0 Mod>RE Mod>CE (Section 4.1) (Section 4.2) (Section 4.3) (Section 4.4) (Section 4.5) (Section 4.6)

1 or 5 Yes Yes Yes RE(Z) RE(t) RE(t) RE(t) RE(t) RE(t)

13 No Yes Yes CE(Z) Mod(t) CE(t) CE(Z) Mod(t) Mod(t)

16 No No No CE(Z) Mod(t) CE(t) CE(Z) CE(Z) CE(Z)

H* = 1 when 𝜏2 > 0, so the modified standard error is the same as the standard one for group “1 or 5.” Hence, all methods that use the modification when 𝜏2 > 0 are

tabulated as “RE(t)” for group 1 or 5.



JACKSON ET AL. 3931

the various methods for analysis compare, because it is likely to be adequate to describe small n scenarios (it describes the

n = 2 case) and because it is likely to be an adequate representation when study sizes are not very disparate (it describes the

𝜎2
i = 𝜎2 case). The analysis of these 2 special cases indicates that we can anticipate that meta-analyses in groups 7, 8, and 9

will be rare so that the other 4 groups in Table 1 will be the most important when determining the implications of using each of

the 6 analysis methods. This will be confirmed in our empirical investigation, and so we suggest that the reduced taxonomy in

Table 2 will often be adequate to obtain a guide to the implications of using each method. We will use the full taxonomy in our

empirical investigation, but the reduced taxonomy greatly simplifies the assessment of the likely implications of analyses based

on the modified method. Applied analysts may therefore prefer to justify their choice of analysis using the reduced, rather than

the full, taxonomy.

6 EMPIRICAL INVESTIGATION

We performed an empirical investigation to further examine the implications of using the 6 analysis methods. For our empirical

investigation we use binary outcome data from meta-analyses included in the Cochrane Database of Systematic Reviews (Issue

1, 2008), which were provided to us by the Nordic Cochrane Centre. We use the log odds ratio as the measure of treatment effect,

where halves were added to all entries in tables that contain zeroes. Most Cochrane reviews contain multiple meta-analyses,

corresponding to different pairwise comparisons of interventions and different outcomes examined. Davey et al 35 classified

each meta-analysis by outcome type, the type of interventions compared, and the medical specialty. Here, we use data on the

first reported binary outcome meta-analysis within each of the 1991 Cochrane reviews reporting at least one binary outcome

meta-analysis in the full database extracted by Davey et al.35

However, we removed 13 of these meta-analyses from our investigation. Seven were removed because they involve 2 studies

that provide exactly the same estimated treatment effects; this is a theoretical impossibility under the random-effects model but

can occur in numerical data and causes immediate problems for the modified method. This is because then H* = 0 so that the

modified method's standard error is zero. Since it is difficult to ascertain what applied meta-analysts might do in such instances,

these meta-analyses were removed. For 6 other meta-analyses, the REML estimator of 𝜏2 failed to converge using the metafor
default settings; although it was possible, with effort, to force convergence in these instances, it is again unclear how applied

meta-analysts might proceed in such instances. This leaves us with 1978 meta-analyses in our empirical investigation.

There is then the difficulty that many of the remaining meta-analyses have n = 2 studies. As explained above, the full

taxonomy is not possible for these datasets. We therefore initially restricted our investigation to those meta-analyses that have

n ⩾ 3 so that the full taxonomy is possible and the results are shown in Table 3. As explained above, groups 7, 8, and 9 are

impossible if the Paule-Mandel estimator is used, and group 9 is impossible if the DerSimonian and Laird estimator is used; these

entries are shown with a “X” in Table 3. Furthermore, for the Paule-Mandel estimator, the distinction between groups 1 and 5 is

meaningless; all meta-analyses where 𝜏2 > 0 are denoted as group 1 in Table 3, and group 5 is denoted as a “X.” The estimator

of 𝜏2 does not greatly change the overall conclusions: Noting that for the Paule-Mandel estimator groups 1 and 5 are essentially

one group, the groups that meta-analyses are allocated to are in agreement 1366/1376 times (for the DerSimonian and Laird

and Paule-Mandel estimators), 1221/1376 times (REML and Paule-Mandel estimators), and 1179/1376 times (DerSimonian

and Laird and REML estimators). For the remaining n = 2 meta-analyses, all estimators are the same and 220/602 (36.5%)

meta-analyses belong to groups 1 or 5, 310/602 (51.5%) belong to group 13, and 72/602 (12.0%) belong to group 16.

The reader is encouraged to examine the proportions of meta-analyses in each group in this empirical investigation (Table 3),

and also to consider the type of meta-analysis that their preferred method produces (Table 1), to assess the likely implications

of their approach. Of interest is that no meta-analysis has been observed in group 8 when the DerSimonian and Laird estimator

TABLE 3 Empirical investigation: the number and percentage of meta-analyses that belong to each group in the taxonomy shown

in Table 1 for n ⩾ 3

Estimator Group 1 Group 5 Group 7 Group 8 Group 9 Group 13 Group 16

DerSimonian and Laird 422 (30.7%) 296 (21.5%) 10 (0.7%) 0 (0%) X 318 (23.1%) 330 (24.0%)

REML 378 (27.5%) 410 (29.8%) 39 (2.8%) 15 (1.1%) 10 (0.7%) 215 (15.6%) 309 (22.5%)

Paule-Mandel 728 (52.9%) X X X X 318 (23.1%) 330 (24.0%)

For the DerSimonian and Laird estimator, group 9 is impossible. For the Paule Mandel estimator, groups 7, 8, and 9 are impossible, and the distinction

between groups 1 and 5 is meaningless; all meta-analyses where the Paule-Mandel estimator is positive are denoted as group 1. “X” denotes that the

group is impossible for the estimator used, subject to the caveat that for the Paule-Mandel estimator groups 1 and 5 are essentially a single group.
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is used. We conclude therefore that it is extremely unlikely that the modified method provides shorter 95% confidence intervals

than the conventional common-effect model when the DerSimonian and Laird estimator is positive. This observation is a weak

type of transposition of the second potential concern in Section 3.2. However, we have simulated an example of a meta-analysis

that belongs to group 8 when using the DerSimonian and Laird estimator, to establish that this is possible. We note that the

Paule-Mandel and DerSimonian and Laird estimators allocate meta-analysis datasets to the same group more often than the

other 2 combinations of estimators. The empirical investigation suggests that this is because REML has a slight tendency to

produce fewer meta-analyses in group 13 and more meta-analyses in groups 7, 8, and 9 (and group 7 in particular, although

these groups remain rare). This suggests that REML may have a slightly greater tendency to produce positive estimates of 𝜏2

whilst resulting in modified confidence intervals that are shorter than the more conventional one.

One important observation from Table 1 is that the groups where hybrid methods 2 and 3 result in different analyses (groups

7 and 8) are in general quite rare. Recall that hybrid method 3 was motivated by the recommendation of Wiksten et al,27 who

suggest presenting a sensitivity analysis using the common-effect model. Hybrid method 2 can therefore be motivated by the

alternative recommendation of presenting a sensitivity analysis using the standard procedure for random-effects meta-analysis.

Our empirical investigation indicates that hybrid methods 2 and 3 will very often result in the same analysis, and our reduced

taxonomy (Table 2) supports this conclusion. On the basis that hybrid method 2 is likely to be preferable to analysts who would

prefer to avoid using the fixed-effect model, we therefore suggest an amendment to the recommendation of Wiksten et al 27:

we instead recommend that a conventional random-effects meta-analysis is performed as a sensitivity analysis when using the

modified method.

We can also use this empirical investigation to directly address concerns 2 and 3. We have established that groups 7 and 8

are quite rare, so it is unusual for the modified method to result in shorter confidence intervals than the standard method when

𝜏2 > 0. Group 16 is however quite common, which indicates that it is quite common for the modified method to result in shorter

confidence intervals when 𝜏2 = 0. Concern 2 is therefore genuine but is most likely to apply when 𝜏2 = 0. However, group

13 is also quite common, and the overall impression is that the modified method is as likely to result in longer, rather than

shorter, confidence intervals when 𝜏2 = 0. This indicates that inference conditional on 𝜏2 = 0 using the modified method will

not compare badly to the standard method; this conclusion is supported by simulation studies performed by the second author

that may form the subject of future work. We conclude that concern 3 is an illusion. Simulation studies such as these could

also be used to examine concern 1 in detail, and this too may be the subject of future work. The general impression from the

taxonomy in Table 1, and the empirical rates in Table 3, is that the way in which the modified method is used can have important

implications for the resulting analysis. Concern 4 would therefore also seem to be genuine.

To summarise our findings, we conclude that there are some residual concerns when using the modified method in practice.

Entirely abandoning the standard method would therefore seem to us to be, at best, premature. Despite this, because simulation

studies have consistently found that the modified method performs well,7-9,12 the case for it replacing the standard method as the

default remains strong.

7 DISCUSSION

We have explored the implications of using the modified method for random-effects meta-analysis. Further investigation would

be welcome, but we align ourselves with those who argue that the modified method should now be given a fundamental role

in standard meta-analysis methodologies. This is because simulation studies have repeatedly demonstrated that the modified

method performs well. We therefore suggest that groups such as Cochrane should consider using it in conjunction with more

standard approaches. Despite this, analysts who advocate the modified method should be ready to defend its use against the

possible objections to it that we have presented. The most serious, and quite commonly encountered, genuine concern about the

modified method that we have been able to identify is that it can provide shorter confidence intervals, and smaller P values, than

standard methods. This is a serious issue because the usual concern is that these standard methods are themselves anticonserva-

tive. We therefore advocate sensitivity analyses along the lines proposed by Wiksten et al when using the modified method. We

have however determined that, in practice, it is unimportant whether a common-effect or a conventional random-effect analy-

sis is used as a sensitivity analysis when using the modified method. Hence, we recommend amending the recommendation by

Wiksten et al; we suggest instead using a conventional random-effects analysis for the sensitivity analysis. This is based on our

preference for random-effects models. However, the main point would still seem to perform some form of sensitivity analysis

when using the modified method, especially when the data appear to be homogenous. This is because if H* is very small, then

artificially small standard errors, short confidence intervals, and small P values could be obtained when using the modified
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approach. Hence, we seek here to embellish the important work and main conclusion of Wiksten et al, rather than detract

from this.

One important contribution of this paper has been to create a new taxonomy of meta-analysis datasets. This provides a

conceptual framework in which the implications of the modified method can be assessed. Our hope is that our work will allow

applied analysts to make a more informed decision about whether or not the modified method should replace the standard

method as the default and also that this paper will further stimulate discussion relating to this issue. For example, the taxonomy

shows that the implications of using the modified approach are different when alternative estimators of the between-study

variance are used, although our empirical investigation suggests that the choice of this estimator does not greatly change the

main conclusions. Our new framework enables us to determine the implications of using the modified approach more clearly

and concretely than was previously possible. However, further refinement of the taxonomy is both possible and desirable. For

example, the taxonomy only identifies whether or not the modified method results in wider confidence intervals than standard

methods. It does not attempt to quantify the extent to which the lengths of modified confidence intervals differ with conventional

ones, and therefore whether or not particular methods may have performed poorly to the extent that they are misleading. Our

taxonomy was produced with the less ambitious aim to determine whether or not alternative conventions result in different

analyses being presented, rather than if qualitatively different conclusions are made. Extending the taxonomy, so that it contains

groups that depend on the extent to which the modified and standard methods differ, is an obvious next step. However, this

type of extension faces immediate challenges. This is because we must then determine additional thresholds, for example,

to determine whether or not the modified method provides a “notably shorter” confidence interval. Achieving a consensus

about what constitutes “notably shorter” will, however, be extremely difficult in practice. Another issue is that more ambitious

taxonomies such as this will result in more groups so that much larger empirical investigations will be needed to adequately

explore them. Despite this, forming taxonomies that explore a wider range of possibilities, with the aim of identifying when

the modified and standard methods result in markedly different, rather than just nonidentical, results is an important avenue for

further research. We encourage those with very large databases to consider this possibility. This type of investigation could begin

by using the taxonomy that we have proposed and then introducing more specific criteria that distinguish between inferences

from meta-analyses that are deemed to be different to a greater, or lesser, extent.

To summarise, we have developed a new conceptual framework to evaluate the modified method for random-effects

meta-analysis. We have investigated the implications of using the modified method empirically and have also examined some

closely related variants of it. We have suggested an amendment to a recently made recommendation. We are confident that

our amended recommendation will be more acceptable to those who favour the random-effects model over the common-effect

model.
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