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Abstract

The benefit in speech-recognition performance due to the compensation of a hearing loss can vary between listeners, even if
unaided performance and hearing thresholds are similar. To accurately predict the individual performance benefit due to a
specific hearing device, a prediction model is proposed which takes into account hearing thresholds and a frequency-
dependent suprathreshold component of impaired hearing. To test the model, the German matrix sentence test was
performed in unaided and individually aided conditions in quiet and in noise by |8 listeners with different degrees of hearing
loss. The outcomes were predicted by an individualized automatic speech-recognition system where the individualization
parameter for the suprathreshold component of hearing loss was inferred from tone-in-noise detection thresholds. The
suprathreshold component was implemented as a frequency-dependent multiplicative noise (mimicking level uncertainty) in
the feature-extraction stage of the automatic speech-recognition system. Its inclusion improved the root-mean-square
prediction error of individual speech-recognition thresholds (SRTs) from 6.3dB to 4.2dB and of individual benefits in
SRT due to common compensation strategies from 5.1 dB to 3.4 dB. The outcome predictions are highly correlated with
both the corresponding observed SRTs (R?=.94) and the benefits in SRT (R*=.89) and hence might help to better
understand—and eventually mitigate—the perceptual consequences of as yet unexplained hearing problems, also discussed
in the context of hidden hearing loss.
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Introduction TR o :
quantitative indication of how the individual hearing

Humans with hearing loss generally show a decreased performance will benefit from a specific device in a

and more individual hearing performance when com-
pared with listeners with normal hearing. Hearing aids
offer relief to listeners with impaired hearing by improv-
ing their hearing performance. However, hearing devices
cannot always live up to these expectations. For exam-
ple, it is common to find that two listeners with very
similar audiograms benefit differently from the same
device (e.g., Stenfelt, 2008). Also, it is known that the
compensation of hearing loss with hearing aids provides
only limited benefit in noisy environments (Plomp,
1978). This study therefore pursues the goal of accurate-
ly predicting the benefit that can be provided by an indi-
vidual hearing aid. The predictions should provide a

given communication situation.

Valid and reliable objective methods for the predic-
tion of individual benefits are needed for the efficient
development of hearing aid algorithms and the fitting
of a hearing aid to an individual user. To perform accu-
rate individual predictions, and to evaluate the
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prediction accuracy, high-precision data observations
are required.

Speech-recognition performance is traditionally mea-
sured either as the percentage of correctly recognized
words for a given set of speech items or as the speech
level at which a given proportion of the words, for exam-
ple, 50% are correctly recognized in a given acoustic
environment (e.g., Hagerman, 1982). This is referred to
as the speech-recognition threshold (SRT). SRT meas-
urements have the advantage that the resulting speech
level is a physically interpretable quantity which can be
compared with, for example, real-world speech levels
employed by people speaking in noisy environments
(Olsen, 1998). They can be measured with high test—
retest reliability using the matrix sentence test
(Kollmeier et al., 2015), and the outcomes show pro-
nounced differences across different listening conditions,
that is, maskers (Hochmuth et al., 2015), and among
listeners with impaired hearing (Wardenga et al.,
2015). Hence, the matrix sentence test, which is available
in more than 20 languages, was chosen as the measure-
ment for the target quantity: SRT in dB sound pressure
level (SPL) or dB signal-to-noise ratio (SNR).

To reflect daily-life speech communication situations
as closely as possible, a great variety of masker types and
spatial test conditions would be desirable. However, no
single masker can represent all the properties of real
environments and simultaneously provide a high test—
retest reliability. As a compromise, a set of different
maskers might represent important listening conditions.
To reflect the conflicting requirements of measurement
precision, time, and validity, a set of three types of
maskers is suitable and therefore was employed here:
(a) none, representing low-noise environments (i.e., mea-
surement in quiet), (b) (statistically') stationary maskers,
representing environments with a comparatively low
residual dynamic range, and (c) fluctuating, representing
environments with a large dynamic range that result in
lower SRTs compared with the chosen stationary noise
condition for listeners with normal hearing.

The benefit in SRT is derived as the difference of the
SRTs in an aided and the corresponding unaided condi-
tion. Most of the common compensation strategies aim
to selectively amplify or attenuate portions of the sound,
depending on input levels; for example, with dynamic
range compression. Where present, multiple micro-
phones can be used to exploit the time difference
between direction-of-arrival of signals, for purposes of
noise suppression. Therefore, in addition to the unaided
condition, a set of three compensation strategies was
chosen to cover possible realistic configurations: (a)
linear amplification, (b) compression amplification, and
(c) compression amplification combined with a noise-
suppressing beamformer. The additional complexity
introduced into the interaction between the sound field

and the (aided) listener by binaural hearing is, however,
beyond the scope of the current contribution.

The technical suitability of models for the prediction
of the outcome of the matrix sentence test that take into
account (a) nonlinear signal processing, (b) impaired
hearing, and (c) fluctuating noise maskers was discussed
by Schadler et al. (2018). It was shown that many pro-
posed models that could be used to predict the outcome
were not, without further modifications, designed to
consider all three conditions simultaneously. To directly
predict the outcome of the matrix sentence test, that is,
the individual SRT, for listeners with impaired hearing
in aided listening conditions in different fluctuating noise
maskers, Schadler et al. (2018) proposed simulating the
experiments with the simulation framework for
auditory discrimination experiments (FADE, Schadler,
Warzybok, et al., 2016). In the proposed approach, an
automatic speech-recognition (ASR) system was individ-
ualized by taking individual hearing thresholds in the
feature-extraction stage into account and was used to
simulate and predict the outcome of speech-recognition
experiments. While Schadler et al. (2018) found that the
effect of a variety of noise-suppression algorithms could
be predicted with good accuracy in a real cafeteria and in
babble noise for a group of listeners with impaired hear-
ing, the individual predictions only slightly correlated
(R*>~.10) with the observed data. From correlations
between the prediction error (PE) in the two different
noise conditions, they concluded that this systematic
error could be due to an individual component that
was unexplained by their model. This was likely to be
an individual, suprathreshold component of the hearing
loss.

Such a suprathreshold (or distortion) component of
hearing loss was postulated by Plomp (1978, 1986) who
described the speech-recognition performance of listen-
ers with impaired hearing using two parameters: (a) an
attenuation component of hearing loss that can be com-
pensated by amplification and (b) the aforementioned
distortion component of hearing loss that cannot be com-
pensated by amplification and hence should play a signif-
icant role in speech-recognition performance in noise.
Kollmeier et al. (2016) considered, in addition to the
hearing thresholds, a multiplicative noise (which was
implemented as a level-uncertainty parameter) in the
feature-extraction stage of an ASR system. The level
uncertainty is defined as the standard deviation of a
noise that is added to logarithmic amplitude values
and aims at describing the individually reduced ability
to use differences in sound levels to solve recognition
tasks, that is, a level-dependent distortion. They com-
pared their model with that of Plomp (1978) and
showed that the hearing threshold was responsible for
the attenuation component of hearing loss, and that the
level uncertainty (i.e., multiplicative noise) would
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account for the distortion component of that loss. The
individual level uncertainty of listeners with impaired
hearing was inferred from their speech-recognition per-
formance in stationary noise and was successfully used
to predict the speech-recognition performance in fluctu-
ating noise. They thus used an individually inferable
model parameter in addition to the hearing threshold,
with an ASR-based model to explain the speech-
recognition performance in different listening condi-
tions. However, the level uncertainty could be a
frequency-dependent parameter, which cannot be
derived from SRT measurements. In this study, this
shortcoming is approached by inferring the individual
suprathreshold parameter—the level uncertainty—from
the outcome of psychoacoustic experiments instead of
speech-recognition  experiments, which  provides
listener-specific, frequency-dependent information.

Therefore, FADE (Schadler, Warzybok, et al., 2016)
was used to simulate outcomes of tone-in-noise detection
experiments, to determine the individual frequency-
dependent level uncertainty parameter that best fitted
the observed tone-in-noise detection thresholds. For
the single-interval, two-alternatives forced-choice task,
we consider a directed discrimination experiment (tone
vs. no tone), to be equivalent to a (tone) detection exper-
iment. The former is actually performed by the FADE
model, while the latter is actually performed by the lis-
teners. In both cases, an input token must be assigned to
one of the two classes: tone present or tone absent.
Furthermore, we assume that, for each individual, the
same suboptimal signal processing (i.e., the level uncer-
tainty) affects both speech-recognition and tone-
detection performance in noise. This assumption is a
hypothesis. It is based on the observation that an
increased level uncertainty decreases tone-in-noise detec-
tion and speech-recognition performance similarly in
model simulations with FADE. If the assumption is
incorrect, one would expect no increase in the prediction
accuracy of the individual speech-recognition perfor-
mance by using the same suboptimal signal processing
for the simulation of tone-in-noise detection and speech-
recognition experiments.

To assess the contribution of the level uncertainty for
individual predictions of SRTs and the benefits in SRT
from different hearing loss compensation strategies, the
prediction accuracy of the individualized model is eval-
uated in relevant aided listening conditions for listeners
with different degrees of hearing loss, with and without
using the suprathreshold information. In this first step,
only monaural listening conditions were considered in
order to rule out any influence of (possibly individual)
binaural listening. To address the concerns mentioned
by Schadler et al. (2018), that measurement errors in
the audiogram could be a source of systematic PEs,
the individual audiograms were measured with high

precision. For individual predictions of single measure-
ment outcomes, measurements with high precision, that
is, high test-retest reliability, are more important than
for group predictions because the individual measure-
ment errors do not average out.

The contributions of this article are two-fold: (a) An
empirical data set of high-precision measurements of
individualization parameters and speech-recognition
performance in unaided and aided listening conditions
for listeners with and without impaired hearing is pre-
sented. (b) The simulation FADE (Schadler, Warzybok,
et al., 2016) is used to perform predictions of the indi-
vidual speech-recognition performance, and the
observed speech-recognition data are used to evaluate
the prediction accuracy.

This study was designed to test the following
hypotheses:

1. The ASR-based FADE modeling approach is suitable
for accurate individual, aided-patient performance pre-
dictions, that is, a PE can be expected that is in the
same range as the measurement error.

2. An individual suprahreshold component of hearing
loss measured with a tone-in-noise detection task is
suitable for improving the prediction accuracy.
According to Plomp (1978, 1986) and Kollmeier
et al. (2016), such an accurate prediction of individual
aided performance would have important implica-

tions for the individual, best-achievable aided
performance.
Methods

Psychoacoustic Tasks

A variant of the single-interval, adjustment-matrix
(SIAM) procedure for unbiased adaptive testing from
Kaernbach (1990) was implemented and used to deter-
mine tone- and tone-in-noise detection thresholds. With
this adaptive measurement paradigm, the tone level is
increased/decreased based on the response to each
single trial that has only a 50% chance of containing
the target. In this study, the participant was asked to
indicate by gesture when she/he heard a tone. No feed-
back, apart from the acknowledgment of the gesture,
was given. Compared with the widely used two- or
three-interval alternative forced-choice tasks, this adap-
tive procedure has the advantage that it closely resem-
bles a single-interval experiment that can be simulated
with FADE. Consequently, the tasks for the listeners
and the simulation model were very similar. In addition,
with SIAM, no cue lights are required to indicate the
different intervals for measuring tone-detection thresh-
olds in quiet, that is, for measuring the audiogram.
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Monte-Carlo simulations were performed to assess
the achievable accuracy and optimize the parameters
of the SIAM method for the tone- and tone-in-noise
detection experiments. The Monte-Carlo simulations
revealed a flaw in the method, which occurred when
the task was 75% correct tone detection: The published
algorithm caused the adaptive threshold to stay below
the true 75% threshold in some runs. In the original
work, such runs were also observed and excluded
based on their difference to the expected value. This out-
lier detection, however, requires repeated measurements,
which counteract efficiency and are thus suboptimal
in a study in which many different conditions are to
be measured. With a target of 87.5% correct tone detec-
tion, such outliers were not observed in our Monte-
Carlo simulations. In addition, the higher target
percentage resulted in more audible tones during the
measurement, which meant an increased comfort for
the listeners.

For the measurement of tone-detection thresholds in
quiet, the initial presentation level was 70 dB SPL, and
the initial step size was 8 dB. This was then halved to
4 dB after the second reversal and finally to 2 dB after the
third reversal. For the measurement of tone-in-noise
detection thresholds targeting a threshold Ilevel of
approximately 65dB SPL for normal listeners (see
later), the initial presentation level was 85dB SPL, initial
step size was 4dB, then halved to 2dB after the second
reversal, and finally to 1dB after the third reversal. The
adaptive measurements were not stopped until at least
14 reversals were recorded of which the first four were
discarded and until the target was presented at least 25
times after the first four reversals. The measurement
result, that is, the level at threshold, was the median of
the levels at the reversals. In 1000 runs of Monte-Carlo
simulations for each of a range of psychometric func-
tions with different realistic slopes (5.0, 6.25, and 7.5
percentage points per dB, i.e., transition regions of
10.0, 8.0, and 6.7dB, respectively) and thresholds
(=10, 0, and 10 dB), these settings resulted in an average
standard deviation of about 1.5dB with an average of
about 80 trials per run.

Individual hearing thresholds were measured with
pure tones of 500 ms duration flanked by 10 ms cosine
ramps, and at 250, 500, 1000, 2000, 4000, and 8000 Hz.
Individual tone-in-noise detection thresholds were mea-
sured with pure tones of 250 ms duration flanked by
10ms cosine ramps and at 500, 1000, 2000, and
4000 Hz. These were presented in a two-octave wide,
bandpass-filtered white noise with a power spectral den-
sity of 40dB SPL per Hz, which was centered on the
target frequency (on a log scale), where the total stimu-
lus duration was 750 ms. This procedure resulted in fixed
noise levels of 59.0, 61.2, 63.8, and 66.6dB SPL per
equivalent rectangular bandwidth at 500, 1000, 2000,

and 4000 Hz, respectively. The use of fixed noise levels
was a design decision to avoid the following problems:
(a) a particular overall presentation level must not be
exceeded, (b) the individual uncomfortable listening
level must not be exceeded, and (c¢) the individual
uncomfortable listening level is not known. In this con-
text, fixed noise levels guarantee safer, more robust, and
faster measurements. The comparatively high levels were
required to achieve suprathreshold measurements for the
majority of the listeners. The corresponding broadband
levels of the noise signals were 68.8, 71.8, 74.8, and
77.8 dB SPL, respectively.

Matrix Sentence Test

The German matrix sentence test (Wagener et al., 1999)
was used to measure the speech-recognition perfor-
mance. Matrix sentence tests exist in more than 20 lan-
guages and aim to represent the main phonetic features
of a language in a matrix of 50 common words that are
used to build sentences like: “Peter got four large rings”
or “Nina wants seven heavy tables.” The fixed syntax of
the sentences and the small vocabulary size are especially
well suited to be implemented in the ASR system used
for the simulations, in that the prior knowledge when
performing the task is very similar for the listeners and
the simulation model.

The SRT-50, that is, the speech level that results in
50% word correct-recognition rate, was adaptively
determined using lists of 20 matrix sentences
(Kollmeier et al., 2015). For listeners with impaired
hearing, a test-retest reliability (standard deviation) of
about 0.8 dB was reported for the German matrix test in
the stationary ICRA1 (Dreschler et al., 2001) noise con-
dition with 30 sentences (“inua, SRT” in Table 1 in
Wagener et al., 2006). Discarding the first five sentences
in an adaptive run as not being reliably close to the mea-
sured SRT, this would result for a measurement with 20
sentences in an estimated test-retest reliability of

(1/33=2-0.8~) 1.0dB. Hence, this value represents a

good estimate of the achievable prediction accuracy for
measurements with the German matrix sentence test in
stationary noise and 20 sentences. Even if the prediction
would be perfect, due to the measurement error, the
lower limit for the root-mean-square (RMS) PE would
be 1.0dB. For measurements in quiet or in fluctuating
noise, this limit can be assumed to be higher, possibly
double (“;,,4, SRT” in Table 3 in Wagener et al., 20006),
that is, 2.0 dB, because the corresponding psychometric
functions are shallower than in stationary noise. For
differences of SRTs, such as benefits in SRT, the mea-

surement error is again increased by a factor of /2
according to Gaussian error propagation; that is, it
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could realistically be (v/2 - 2.0dB~) 2.8 dB in quiet or in
fluctuating noise conditions.

Listening Conditions: Maskers and Spatial
Configuration

Three masker conditions were defined: Listening (a) in
quiet, (b) in a stationary noise masker, and (c) in a fluc-
tuating noise masker. The quiet condition represents sit-
uations with low ambient noise. For the stationary noise
condition, the male ICRA1 noise (Dreschler et al., 2001),
a stationary speech-spectrum-shaped noise, represented
situations with stable and hence predictable, noise levels.
For the fluctuating noise condition, the ICRA5-250
noise (Dreschler et al., 2001; Wagener et al., 2000), a
speech-spectrum-shaped noise with speech-like modula-
tions in three independent frequency bands, represented
situations with rather unpredictable fluctuations in the
noise level. While these conditions cannot account for all
possible listening situations, they reflect important dis-
tinct properties that result in very different outcomes of
the German matrix sentence test for listeners with
normal hearing corresponding SRTs of about 20dB
SPL in quiet, of about —7dB SNR in the stationary
ICRAI noise, and of about —19dB SNR in the fluctu-
ating ICRAS5-250 noise can be expected (Hochmuth
et al.,, 2015). At the common and realistic noise-
presentation level of 65dB SPL, these outcomes trans-
late to speech levels of about 20, 58, and 46dB SPL,
respectively.

Spatial head-related impulse responses from Kayser
et al. (2009) in the cafeteria scene (7T¢) = 1250 ms) were
used to simulate a realistic spatial listening condition in
which a beamformer could give a reasonable benefit.
This database provides impulse responses of acoustic
paths from different positions in a cafeteria environment
to the eardrum microphones of a dummy head and to
three microphones located at the front, middle, and back
sections of a behind-the-ear (BTE) hearing aid dummy
worn by the dummy head. For unaided conditions, the
impulse responses of the acoustic paths to the eardrum
microphone were used, while, for aided conditions, the
impulse responses of the acoustic paths to the BTE
microphones were used. The target, that is, the talker,
was located about 1 m in front of the listener, on the
opposite side of the table (cf. Position A Orientation 1
in Kayser et al., 2009). The maskers were positioned
about 0.5m to the left of the listener (cf. Position C
Orientation 1 in Kayser et al., 2009). To give a beam-
former a fair chance to remove the energy of this noise
source from the signal and hence to improve the SNR,
the signals on the left side (worse ear) of the virtual lis-
tener were used for the experiments. The resulting signal,
unaided, or aided was monaural and presented to the
preferred ear, for example, for telephone calls, of the

listener. The masker levels were chosen to achieve an
RMS level of 65dB SPL at the eardrum.

Aided Conditions: Compensation Strategies

To represent different compensation strategies for hear-
ing loss, three aided conditions were assessed: (a)
frequency-dependent linear amplification by 40% of
the individual hearing loss, (b) compression amplifica-
tion in nine frequency bands fitted to the individual
hearing loss according to the NAL-NLI prescription
rule (Dillon, 1999), and (c) in addition to the compres-
sion amplification (NAL-NLI1), adaptive differential
microphones (ADMSs; Elko & Pong, 1995), to suppress
a portion of the noise signal. Linear amplification repre-
sents a simple compensation strategy that does not
reduce the dynamic range of the input signals. A 40%
gain rule was chosen as a compromise between the half-
gain and the one-third gain rule, which can be consid-
ered appropriate for adult listeners (Snik & Hombergen,
1993). Compression amplification according to
NAL-NL1 represents a widely used compensation
strategy that aims to maximize speech intelligibility,
that is, speech-recognition performance, while limiting
loudness perception to normal or less. ADM is a
robust beam-former-based method for noise suppres-
sion, for which Volker et al. (2015) found a benefit in
SRT of about 3dB in the binaural cafeteria listening
condition from Kayser et al. (2009). ADM combined
with compression amplification according to NAL-
NLI1 represents a realistic compensation strategy for
BTE class devices.

The signal processing was implemented with the master
hearing aid (MHA) from Grimm et al. (2006), for which
the basic configuration was taken from Volker et al.
(2015). The MHA software platform allows for low-
latency, real-time processing, as well as offline batch proc-
essing of signals, and is hence well suited for research
purposes, as the same implementation can be used in the
measurements and the simulations.

In all aided conditions, a noise with a density of
approximately 24dB SPL per decade was added to
the microphone signals to simulate a limited
microphone sensitivity. For the aided conditions (a)
and (b), the signal of the simulated front microphone
of the BTE device was used. For the aided condition
(c), the signal of the simulated front and back micro-
phones of the BTE device were used. The center frequen-
cies of the frequency bands for compressive and linear
amplification were 177, 297, 500, 841, 1414, 2378, 4000,
6727, and 11314 Hz. The attack and release time con-
stants were 20 and 100ms, respectively. The linear
amplification prescription rule also added a noise gate
that attenuated input levels below 35dB SPL per band,
while the NAL-NLI prescription rule did not. The
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output amplitude was limited to 105dB SPL via soft
clipping.

Observed Data

The psychoacoustic experiments and the matrix sentence
test in all listening conditions (quiet, stationary noise,
and fluctuating noise) with all compensation strategies
(unaided, linear, compressive, ADM, and compressive)
were performed with 21 listeners with HDA200 audio-
metric headphones. The group consisted of listeners with
normal hearing and listeners with a symmetric hearing
loss close to the profiles N1, N2, N3, N4, N5, N6, S1, S2,
and S3 according to Bisgaard et al. (2010). These profiles
range from very mild (N1, S1), over mild (N2, S2) and
moderate (N3) to moderate/severe (N4, S3) and severe
(NS, N6) hearing loss. The letters N and S indicate mod-
erately sloping and steeply sloping hearing loss, respec-
tively. There were two listeners with normal hearing, and
two individuals for each profile, apart from profile N2
for which there were three people. Three listeners, two
from profile N6 and one from N5, had to be excluded
because they were not able to successfully finish the SRT
measurements in noise probably due to the artificial lim-
itation of the output amplitude via soft clipping.
Consequently, the data from 18 of 21 listeners were con-
sidered. The measurements were performed with the pre-
ferred ear of the listeners, for example, the one they used
for phone calls. Based on the clinical audiograms of

these listeners, the individual fittings with the two pre-
scription rules (linear and compressive) were performed
using the audiological user interface of the MHA, and
the resulting gain tables were stored.

The measurements were performed in two sessions,
each of about 90 min, according to the following proto-
col: The first session started with a training measurement
of the tone-in-noise detection task with target frequency
of 1000 Hz, followed by the measurements with the tone-
in-noise detection task, in which the order of the
conditions, that is, frequency, was randomized for each
listener. Then, two training lists with the matrix sentence
test were measured in the test-specific noise condition,
one unaided and one with the prescribed compression
amplification, in randomized order. Afterward, the
matrix sentence tests in noise (unaided and aided) were
performed, where the order of the conditions, that is,
noise maskers and compensation strategies, was ran-
domized for each listener. The listeners could decide to
take breaks after each measurement, that is, about every
3 min. The second session started with another training
list of the matrix sentence test in the test-specific noise
condition, followed by the matrix sentence test in quiet
(unaided and aided), again in randomized order. Finally,
the tone-detection thresholds in quiet were measured at
250, 500, 1000, 2000, 4000, and 8000 Hz.

The audiograms of the 18 listeners (aged 1881 years,
median 72), 9 of which were hearing-aid users, are
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Figure |. Audiograms of the 18 Listeners Included in the Study. The left panel shows the clinical audiogram, while the right panel shows
the measured tone-detection threshold relative to hearing thresholds of listeners with normal hearing according to International Standard
Organization (2003). The color encodes the rank of the unaided SRTs in quiet and is used consistently throughout the paper (cf. Figure 5),
where blue means best/lowest and red worst/highest. SIAM = single-interval, adjustment-matrix.
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depicted in Figure 1. The hearing performance of this
group can be expected to cover a wide range, from
normal hearing to severely impaired hearing.

Simulation of Experiments: Outcome Predictions
With FADE

One of the key features of the FADE approach
(Schadler, Warzybok, et al., 2016) is that the same
model can be used to predict the outcome of psycho-
acoustic and speech-recognition tasks. This allows infer-
ring the modelri individualization parameters from
psychoacoustic experiments and using the model with
individual parameters to subsequently predict the out-
come of speech-recognition tests. Hence, FADE was first
used to simulate the outcome of tone-in-noise detection
tasks with a range of generic parameter values for the
(suprathreshold) level uncertainty, to infer individual
parameter values from the observed data (as explained
in detail in the “Individualization: Inference of Model
Parameters” section). Afterward, FADE was used with
individual hearing thresholds and level uncertainties to
predict the individual outcomes of speech-recognition
tasks.

Therefore, for each condition considered separately,
ASR systems were trained and tested with the same stim-
uli that were used in the empirical measurements, for
example, tones or speech recordings in the presence of
noise maskers over a broad range of levels/SNRs,
including the potential processing of the signals with a
hearing device in aided listening conditions. From the
recognition performances that the ASR systems achieve,
the lowest achievable SRT/level-at-threshold in the given
condition, that is, the best achievable outcome, is
reported as the predicted outcome. Detailed descriptions
of how the ASR system in FADE is trained and tested to
derive the predicted outcome were given by Schadler,
Warzybok, et al. (2016).

Schadler et al. (2018) compared the FADE approach
with many other speech-intelligibility prediction models
in the context of aided listening performance predic-
tions. The key point is that the performance of the
ASR system in the simulations with FADE and the per-
formance of human listeners in the corresponding listen-
ing experiment are similarly limited. The recognition
performance can be limited, for example, due to the
presence of a noise masker, distortions by nonlinear
signal processing, or impaired hearing, while it may
also be improved by compensation strategies. While
the addition of maskers and the hearing aid signal proc-
essing can be performed in the same way as in the empir-
ical measurements, the implementation of impaired
hearing requires a modification of the (otherwise) stan-
dard ASR system.

Model of Impaired Hearing

Predictions with FADE were found to be close to the
performance of listeners with normal hearing across lan-
guages and in important noise conditions (Schadler,
Hiilsmeier, et al., 2016). The performance of listeners
with impaired hearing can be assumed to be decreased.
To simulate the removal of information which is not
available to the individual listener, hearing thresholds
and level uncertainties were implemented in the
feature-extraction stage, based on a standard log Mel-
spectrogram, basically as proposed in Kollmeier et al.
(2016). Note that the proposed implementation pro-
duced predictions that were well in line with the model
of Plomp (1978), where the hearing thresholds were
responsible for the attenuation component of hearing
loss, and the level uncertainties were responsible for
the distortion component, that is, the suprathreshold
component, of hearing loss. The main difference in the
present implementation was that the level uncertainty
could be frequency-dependent and that, instead of the
standard Mel-frequency cepstral coefficient, the more
robust separable Gabor filter bank (SGBFB) features
were extracted from the log Mel-spectrogram.

The effect of the implementation of the hearing
threshold and the level uncertainty on the log Mel-
spectrogram of clean speech presented at 65dB SPL is
depicted in Figure 2.

The hearing thresholds were implemented as a spec-
tral subtraction of the absolute hearing threshold from
the signal level in the log Mel-spectrogram, that is, the
levels above hearing threshold are represented, followed
by an element-wise maximum operation with values
drawn from a normal distribution with a mean of 0dB
and a standard deviation of 1dB. This implementation
assures variance greater than zero in the feature vector in
the case that the signal level does not exceed the hearing
threshold and is a requirement to train the ASR system.
The effect is that portions of the signal that are below the
hearing threshold are no longer represented and cannot
be used by the ASR system to recognize speech or detect
tones. In Figure 2, this can be observed at high frequen-
cies, comparing the upper and the middle panel, which
show a configuration with normal-hearing threshold and
a mild hearing loss, respectively.

The level uncertainty is then implemented by spec-
trally dividing the modified log-Mel spectrogram by
the individual frequency-dependent level uncertainty,
followed by the addition of values drawn from a
normal distribution with a standard deviation of 1dB.
In other words, the levels above hearing threshold in
each Mel-band are compressed by a factor equal to the
level uncertainty, while the actual additive noise has a
fixed standard deviation of 1dB. The effect of adding
noise to the logarithmic levels corresponds to a



Trends in Hearing

U~

WS~

Center frequency / Hz

W~
FUomo~IN FUIooo~IN PUuioo~IN

Noughhooe Noudbhot NougbLaoo
AW B E AW

0 500 1000

“|Normal hearing

Only threshold

Threshold & Level uncertaint

1500 2000 2500
Time / ms

Figure 2. lllustration of the Effect of the Hearing Threshold and

the Level Uncertainty on the Log Mel-Spectrogram of a Clean Speech

Signal at 65 dB SPL. Color encodes the relative level above threshold where yellow/light represents the maximum level of the depicted
utterance. As a reference, in the upper panel, normal-hearing thresholds were configured and no level uncertainty was applied. In the
middle panel, the measured hearing thresholds of a listener with mild hearing loss was configured without the level uncertainty, while in the
lower panel, the corresponding measured level uncertainty was additionally applied.

multiplicative noise in the linear domain and removes
information about the exact values of the levels that
might be useful to the ASR system to recognize speech
or detect tones. Compared with multiplying the additive
noise with the level uncertainty, this implementation has
the advantage that the levels of the spectro-temporal
representation from which the SGBFB feature are
extracted do not diverge for high values of the level
uncertainty but rather tend to zero. In Figure 2, this
can be observed comparing the middle and the lower
panel, which show a configuration with mild hearing
loss without and with applied exemplary frequency-
dependent level uncertainties, respectively. How the
frequency-dependent level uncertainty is determined
from the psychoacoustic measurements is explained in
the next section. From the modified log Mel-
spectrogram, SGBFB features are extracted and mean-
and-variance normalization is applied to the resulting
feature vector, as described in the original work of
Schadler, Warzybok, et al. (2016).

The feature-extraction stage of the model was individ-
ualized by either using (A) the clinical audiogram, (B)
the measured tone-detection thresholds in quiet, or (C)
the measured tone-detection thresholds in quiet and in
noise as described in “Individualization: Inference of
Model Parameters” section. The level uncertainty was
only considered with the last option (C), while the first
two options differ in the accuracy of the hearing thresh-
olds. Regarding the model individualization, the tone-
detection threshold measurements used with option (B)
can be assumed to be more accurate than the clinical
audiogram data used with option (A) because they

were measured with more precise tracking rules and
with the same equipment used for the SRT measure-
ments. All simulations were performed with each of
the individualization options.

Individualization: Inference of Model Parameters

Ideally, the model parameters, that is, hearing thresholds
and level uncertainties, which best explain the outcomes
of all psychoacoustic experiments, including the tone
and tone-in-noise detection thresholds, would be deter-
mined in an adaptive procedure. Because some listeners
had hearing thresholds above the noise level, no infor-
mation about the tone-detection performance in noise
was available for these listeners at some frequencies,
which resulted in an underdetermined optimization
problem. Also, an adaptive procedure would require sev-
eral simulations per listener and frequency and would
not reveal the systematic relation between level uncer-
tainty, frequency, and tone-detection performance.
Hence, a direct mapping approach was used in which
the individual frequency-dependent level uncertainties
were determined by comparing the observed tone-in-
noise detection performance to a table of (pre)simulated
outcomes of the tone-in-noise detection task with differ-
ent values for the level uncertainty.

Therefore, the tone-in-noise detection experiment was
simulated for center frequencies of 500, 1000, 2000, and
4000 Hz, with level uncertainty parameters of 1, 2, 3, 4,
5,6,7,8,9,10, 12, 14, 16, 18, 20, 22, 24, and 26 dB. Each
simulation was repeated 4 times. The resulting tone-
detection thresholds are plotted as circles as a function
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of the level uncertainty in the left panel of Figure 3. The
relation seems monotonic, and the data were fitted with
second-order polynomial functions for each frequency.
The corresponding functions are plotted in the left panel
of Figure 3 and their inverse functions in the right panel.
The values of the inverse function, the level uncertain-
ties, were limited to the range from 1 to 20dB. The lim-
ited inverse curves were used to map the individual
outcomes of the tone-in-noise detection experiment to
the model parameter level uncertainty. However, this
direct mapping is only possible if the tone-in-noise mea-
surement was clearly suprathreshold, that is, if the noise
level was above the individual absolute hearing thresh-
old, which was not always the case. Hence, both cases
need to be handled correctly, and the transition between
them should be smooth.

The following steps® are proposed for a conservative
estimate of the level uncertainty: First, a criterion is
needed to distinguish three cases: (a) The tone-in-noise
experiment was clearly supra-absolute-threshold, (b) the
tone-in-noise experiment was clearly sub-absolute-
threshold, or (c) something in between. The detection
levels for listeners with normal hearing were used to sep-
arate between the cases. Therefore, the measured tone-
in-noise detection levels (depicted in Figure 4 and
described later in “Results” section) were used to pro-
pose reference levels for normal-hearing listeners, which

e —3.5, —2.0, 2.0, and 4.5dB at 500, 1000, 2000, and
4000 Hz, respectively. If the individual tone-in-quiet

detection threshold was found to be below the tone-in-
noise detection threshold, the tone-in-noise experiment
was supra-absolute-threshold. Otherwise, it might have
been subabsolute-threshold. To quantify this, a criterion

Detection thresholds / dB
=
w

0.5 1.0 2.0 4.0
Frequency / kHz

Figure 4. Measured Tone-in-Noise Detection Thresholds of the
18 Listeners Included in the Study, Where the Levels at Threshold
Are Reported Relative to 65dB SPL. The color indicates the
individual with the same coloring scheme as in Figure I. Circles
indicate proposed reference values for normal-hearing listeners.
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Figure 3. Frequency-Dependent Relations of Simulated Tone-in-Noise Detection Thresholds and Varying Values of Level Uncertainty.
The left panel shows the simulated data points plotted as circles, where the levels at threshold are reported relative to 65dB SPL. The
curves are second-order polynomials that were fitted to the corresponding simulated data. The right panel shows the same curves with
inverted relations, that is, the inverse curves, but limiting the values of the level uncertainty to the range from | dB to 20 dB.
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value was calculated, for each frequency separately, by
mapping the difference to a value between 0 and 1; 1 if
the tone-in-quiet detection level was measured more
than 5dB above the normal-hearing reference (cf.
Figure 4 and note the inverse ordinate axis), 0 if it was
measured more than 5dB below the normal hearing ref-
erence, and linearly interpolated in between. The criteri-
on can be interpreted as a proxy for the probability that
the measurement was not supra-absolute-threshold.

The next step was to obtain a conservative estimate of
the level uncertainty in both cases and separately for
each frequency:

Criterion Equal to 1. Assuming a subthreshold mea-
surement, the level-uncertainty values for listeners with
normal hearing were used, which were determined from
the tone-in-noise detection levels for listeners with
normal hearing proposed in Figure 4; the values are
1.4, 2.7, 44, and 4.3dB, at 500, 1000, 2000, and
4000 Hz, respectively, and will be discussed later.

Criterion Less Than 1. Assuming a (partially) supra-
absolute-threshold measurement, the level uncertainty
was looked up for the individual tone-in-noise detection
threshold using the curves inverted from the left panel in
Figure 3. However, in the transition region, the hearing
threshold could increase the tone-in-noise detection
threshold and hence the level-uncertainty estimate. To
avoid this potential increase, the portion of the level
uncertainty that can be explained by the fone (in quiet)
detection threshold was removed from the Ilevel
uncertainty.

Finally, for each frequency separately, the weighted
average of the level uncertainty values from both
extreme cases was taken as the individual level uncer-
tainty, where the weight for the subthreshold case was
the criterion value and the weight for the supra-absolute-
threshold case was one minus the criterion. To take into
account that the tone-detection thresholds are a product
(i.e., sum of logarithms) of the attenuation and the dis-
tortion component of hearing loss, the portion of the
tone-detection thresholds that can be explained by the
level uncertainty was removed from the tone-detection
thresholds. The resulting tone-detection levels and level
uncertainty values are used to individualize the feature
extraction as, for example, in Figure 2, in order to
remove from the feature vector information that is not
available to the individual listener. Based on the criteri-
on, a subgroup was defined in which the values were 0,
that is, clearly supra-absolute-threshold condition, for
all frequencies; it consisted of 11 listeners.

Evaluation and Statistical Analysis

A special property of the observed data set is that it
consists of individual SRT measurements of which
none can be assumed to result in the same outcome. In

other words, there are no repeated measurements and no
groups of listeners whose average outcomes can be
assumed to be the same.

The task for the model is to predict as accurately as
possible this specific, observed SRT data set, without
prior knowledge of any observed outcomes of the
speech-recognition tests.

Hence, the model is evaluated first and foremost with
respect to its ability to accurately predict this specific,
observed data set (listeners, conditions, and compensa-
tion). The main quantity to assess the accuracy of pre-
dictions is the PE determined for each pair of predicted
and the corresponding observed outcomes as the differ-
ence between both values. The measurement error of the
observed outcomes can be estimated from the test-retest
reliability, which is probably highest in quiet or in the
fluctuating-noise condition and lowest in the stationary
noise condition (Wagener et al., 2006). Here, it was
assumed to be normally distributed, with a standard
deviation of 2.0dB. With this assumption, 90% confi-
dence intervals (5th to 95th percentiles) for all derived
quantities were estimated in Monte-Carlo simulations
with 10,000 samples.

To obtain an estimate of the significance level (under
the null hypothesis that the difference of the means is
zero) when comparing the confidence intervals of two
distributions, we assume standard normal distributions,
that is, mean p;=p; =0 and standard deviation
o9 = 01 = 1. Then, the difference is a normal distribu-
tion with u=0 and ¢ = v/2. An observed coincidence of
the 5th percentile of one distribution with the 95th per-
centile of the other distribution (or vice versa) corre-
sponds to a difference of the means of approximately
+1.645- (09 + 1) = £3.290. The one-sample, two-
sided Z test indicates that the probability of rejecting
the null hypothesis is then p=.02.

To compare the differently-individualized models
(cf. “Model of Impaired Hearing” section), the following
quantities are reported:

95th percentile (95P) of absolute PEs is derived from
a set of predictions and the corresponding observed data
by determining the 95th percentile of the absolute values
of the PEs. This value can be interpreted as a limit of the
expected deviation from the true value. As a guideline,
perfect predictions for the benefit in a test with a test—
retest reliability of ¢=2.0 would yield a value of
(1.96 -2 - 6~) 5.5dB.

RMS PE, in dB, is derived from a set of predictions
and the corresponding observed data by calculating the
square root of the average over the squared PEs. If the
PEs were normally distributed and the mean value were
zero, the RMS PE would indicate the standard
deviation.

Bias is the expected value of the PE estimated by the
average over the PEs. This value indicates how much
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the predictions generally over- or underestimate the
observed values.

Coefficient of determination (R*) was calculated as
the square of the Pearson correlation coefficient, which
indicates the proportion of the variance in the observed
data that is explained by the predictions.

Results

First, the outcomes of the psychoacoustic tasks are pre-
sented. Then, the observed unaided SRTs, and the ben-
efits in SRT due to the different compensation strategies,
are described. Finally, the predictions of SRTs and the
benefits in SRT are separately evaluated by comparing
them with the corresponding observed data.

Psychoacoustic Tasks

The results of the tone-detection experiments in quiet,
measured in situ with the SIAM procedure, are plotted
in the right panel of Figure 1 as the level above the
hearing thresholds of listeners with normal hearing at
the eardrum according to International Standard
Organization (2003) and Shaw and Vaillancourt
(1985). These thresholds were found to be generally sim-
ilar to the corresponding audiograms, as depicted in the
left panel in Figure 1. However, for important speech
frequencies (500, 1000, 2000, and 4000 Hz), the thresh-
olds measured with the SIAM procedure were found to
be, on average, 7.8 dB lower than the estimated levels at
the eardrum from the corresponding audiograms. These
differences were frequency-dependent: 5.7 dB at 500 Hz,
6.3dB at 1000Hz, 13.0dB at 2000 Hz, and 6.1dB at
4000 Hz.

The results for the tone-in-noise detection task are
presented in Figure 4. The outcomes varied greatly
across listeners, but listeners with low unaided SRTs in
quiet (e.g., normal-hearing listeners) showed low tone-
in-noise detection levels, whereas listeners with higher
unaided SRTs in quiet tended to show increased detec-
tion levels. Apart from the listener close to profile NS,
whose hearing thresholds were greatly elevated, the var-
iability was found to be lower at the lower frequencies
(<2000 Hz; approximately 10 dB compared with more
than 20dB at 4000 Hz). Proposed estimated values for
normal-hearing listeners are indicated by circles. The
tone-in-noise detection levels increased with frequency,
as expected because of the increased auditory filter width
at higher frequencies. However, according to the map-
ping of tone-in-noise detection thresholds to (the model
parameter) level uncertainty, the level uncertainties for
normal listening then are 1.4, 2.7, 4.4, and 4.3 dB, at 500,
1000, 2000, and 4000 Hz, respectively, and hence fre-
quency-dependent.

Observed SRTs

The measured unaided SRTs in noise (in dB SNR) are
plotted as a function of the corresponding SRTs in quiet
(in dB SPL) in Figure 5, where the squares and triangles
indicate the performance in the stationary and fluctuat-
ing noise conditions, respectively. The color code indi-
cates the rank of the unaided SRT in quiet. The noise
level was 65dB SPL; hence, a speech-presentation level
of 0dB SNR equals 65dB SPL on the abscissa, which is
indicated by the dash-dotted line. The continuous black
line shows where the speech-presentation level in quiet
and the speech level in noise are equal. The lowest
unaided SRTs were measured for a listener with
normal hearing, with 16.5dB SPL in quiet, —9.8dB
SNR (=55.2dB SPL) in stationary noise, and —18.3dB
SNR (=46.7dB SPL) in the fluctuating noise condition.
The highest unaided SRTs were measured for a listener
with severely impaired hearing (Bisgaard profile NY),
with 81.3dB SPL, 18.3dB SNR (=83.3dB SPL), and
16.0dB SNR (=81.0dB SPL), respectively. Hence, as
could be expected, the increase in SRT due to impaired
hearing was largest in quiet (=65 dB) and smallest in
noise (=25 dB in stationary and ~35 dB in fluctuating
noise). All other 16 outcomes lie between these extremes
in the respective listening conditions.

The difference between the outcome in the stationary
and the fluctuating noise conditions was most pro-
nounced for the listeners with low SRTs in quiet (dark
blue symbols) and reduced or even inverted for listeners
with SRTs greater than 27 dB SPL in quiet. Hence, with
unaided hearing, these listeners were found to benefit
from the modulation of the fluctuating noise masker in
the speech-recognition task. Listeners with high unaided
SRTs in quicet tended to perform similarly in noise and in
quiet probably because the masker levels were mostly
below their hearing thresholds. The observed unaided
SRTs in quiet and in noise show a differentiated group
of listeners that covers a wide spectrum of listening per-
formance, as could be expected from the audiograms in
Figure 1.

Observed Benefits in SRT

In Figure 6, the benefits in SRT are plotted as a function
of the corresponding average hearing levels (HL) over
500, 1000, 2000, and 4000 Hz, also referred to as pure-
tone average (PTA), where the squares and triangles
indicate the performance in the stationary and fluctuat-
ing noise conditions, respectively. The observed benefit
data show a wide spectrum of effects, from decreases in
performance by almost 15dB to improvements of more
than 30dB, that is, spanning a range of about 45dB.
Differences in improvements between linear and com-
pression amplification can be observed as well as a
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pronounced improvement due to the ADM in the noisy
listening conditions. The lowest and the highest benefit
in SRT were found in the quiet listening condition (indi-
cated by circles) with about —15dB and 30dB,

respectively. The benefit in the quiet listening condition
was found to be strongly dependent on the PTA, that is,
the higher the PTA, the greater the benefit from any of
the compensation strategies. Listeners with PTAs below
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20dB HL did not benefit from the compensation due to
the simulated microphone noise, which effectively
increased their hearing threshold with aided hearing.
The break-even point can be observed at a PTA of
about 20dB HL, beyond which the users start benefiting
from the compensation strategies in quiet.

In the noisy listening conditions (indicated by squares
and triangles), the picture is very different. The benefits
are scattered around 0dB for linear and compression
amplification and do not exceed 5dB up to PTAs of
about 50dB HL, which is already close to the level of
the noise signal (65dB SPL). While the benefits in quiet
tended to be higher with the compression amplification
according to NAL-NLI1, the benefits in noisy listening
conditions were lower and tended to be negative.
Only in combination with ADM noise reduction were
the benefits in noisy listening conditions greater
or equal to zero but were at the expense of a
detrimental effect in the quiet listening condition com-
pared with compression amplification alone. Notably,
for many listeners, close to zero or negative improve-
ments were observed due to amplification alone, whether
compressive or not. Thus, ADM can only improve
the SRT if the target source is spatially separated from
the noise source, which was the case in the condition
tested.

Evaluation of Predicted SRTs

In Figure 7, the predicted SRTs are plotted as a function
of the corresponding observed SRTs for the three

different individualization options, and a statistical anal-
ysis of the data is presented in Table 1. The diagonals
indicate perfect predictions and the deviations from it on
the ordinate indicate the PEs. Compared with the range
of the observed data, the predictions were found to be
relatively close to the observed data, that is, close to the
diagonal, which resulted in high correlation coefficients
(R? > .80) for all individualization options.

Regarding absolute PEs, 95% were less than 11.1dB
in the audiogram case (AG), less than 12.2dB in the
tone-detection thresholds case (A), and less than 7.9dB
when additionally considering the distortion component
(AD). Similarly, the RMS PEs were 5.8, 6.3, and 4.2dB,
respectively. The tendency of the predictions to underes-
timate the observed performance, expressed by the bias,
was —1.9, —5.0, and —2.7dB, for the AG, A, and AD
individualization, respectively, and can also be observed
in Figure 7. With the individualization options A and
AD, only a few outcomes were underestimated and the
tendency to overestimate the human performance was
more pronounced when the suprathreshold component
was not considered.

Interestingly, the individualization with the supposed-
ly more accurate psychoacoustically measured tone-
detection thresholds (A) did not result in a lower bias
and consequently also not in lower PEs than with stan-
dard audiograms (AG). However, the predictions based
on the audiogram (AG) explained 82.6% of the variance
in the observed data compared with 91.0% which could
be explained when the predictions were based on the
tone-detection thresholds (A). The strongest correlation
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Figure 7. Predicted SRTs Plotted as a Function of Measured SRTs of |8 Listeners for Three Individualization Options: Left Panel With
Clinical Audiogram (AG), Center Panel With Tone-Detection Thresholds (A), and Right Panel With Tone and Tone-in-Noise Detection
Thresholds (AD). Filled symbols indicate unaided listening, open symbols aided listening. Color indicates the individual with the same

coloring scheme as in Figure |. Circles, squares, and triangles indicate the quiet, stationary, and fluctuating noise conditions, respectively.

SRT = speech recognition threshold; SPL =sound pressure level.
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(R*=.940) was observed when the predictions were
based on the tone and tone-in-noise detection thresh-
olds, that is, considering the attenuation and distortion
components (AD).

Opverall, the most accurate outcome predictions in
terms of the various measures were achieved when the

Table |. Statistical Analysis of the Predicted SRTs of the 18
Listeners in All Listening Conditions for the Three
Individualization Options: (AG) Based on the Clinical Audiogram,
(A) on the Tone-Detection Thresholds Alone, and (AD) on Tone
and Tone-in-Noise Detection Thresholds.

Quantitiy Indiv. Value Confidence interval
95P PE AG 11.07 dB [-0.79, +0.83]dB
95P PE A 12.19dB [-0.77, +0.83]dB
95P PE AD 7.92dB [-0.73, +0.80] dB
RMS PE AG 5.78dB [-0.22, +0.22]dB
RMS PE A 6.32dB [-0.22, +0.22]dB
RMS PE AD 4.16dB [-0.21, +0.22]dB
Bias AG —1.89dB [-0.22, +0.22]dB
Bias A —4.96dB [-0.23, +0.22]dB
Bias AD —2.69dB [-0.22, +0.22]dB
R? AG 826 [-0.014, +0.013]
R? A 910 [-0.010, +0.010]
R? AD 940 [-0.009, +0.009]

Note. The 95th percentile (95P) of the absolute PE is reported along with
the RMS PE, the bias, and the squared Pearson correlation coefficients (R?).
The confidence intervals were determined with Monte-Carlo simulations
assuming an average test—retest reliability of the observed SRTs of 2.0 dB
and are reported relative to the value. PE = prediction error; RMS = root-
mean-square.

suprathreshold distortion component of hearing loss was
also considered (AD). To test whether accurate predic-
tions of SRTs also translate to good predictions of the
benefit in SRT due to using a compensation strategy, the
predicted benefits (as the difference in SRT between
unaided and aided listening condition) were evaluated
separately.

Evaluation of Predicted Benefits in SRT

In Figure 8, the predicted benefits in SRT are plotted as
a function of the corresponding observed benefits for the
three different individualization options, and a statistical
analysis of the data is presented in Table 2. The diagonal
indicates perfect predictions, and the deviation from the
diagonal on the ordinate indicates the PE. The predicted
benefits are scattered around the diagonal with all three
individualization options, where the predictions seem
most accurate with the individualization based on tone
and tone-in-noise measurements (AD), and least accu-
rate with the individualization based on the audiogram
(AG). In contrast to the PEs of the SRTs, the PEs for the
benefits in SRT are, by all measures, larger when the
individualization was performed with the audiogram
(AG) compared with when it was performed with the
tone-detection thresholds (A). The lowest PEs by
all measures were achieved when, additionally, the
suprathreshold component was taken into account
(AD). The 95th percentiles of the absolute PEs were
13.4, 10.7, and 7.1dB, and the RMS PEs were 7.1, 5.1,
and 3.4dB with the AG, A, and AD-individualization,
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Figure 8. Predicted Benefits in SRT Plotted as a Function of Measured Benefits in SRT of 18 Listeners for Different Individualization

Options: Left Panel With Clinical Audiogram (AG), Center Panel With Tone-Detection Thresholds (A), and Right Panel With Tone and
Tone-in-Noise Detection Thresholds (AD). Color indicates the individual: Coloring scheme as in Figure |. Shapes indicate the listening
condition: circle, square, and triangle represent quiet, stationary, and fluctuating noise, respectively. SRT = speech recognition threshold.
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Table 2. Statistical Analysis of the Predicted Benefits in SRT of the
18 Listeners in All Listening Conditions for the Three
Individualization Options: Based on the Clinical Audiogram (AG),
on the Tone-Detection Thresholds Alone (A), and on Tone and
Tone-in-Noise Detection Thresholds (AD).

Quantitiy Indiv. Value Confidence interval
95P PE AG 13.37dB [—1.11, 1.23]dB
95P PE A 10.74dB [—1.06, 1.18]dB
95P PE AD 7.14dB [-0.97, 1.12]dB
RMS PE AG 7.12dB [-0.36, 0.35]1dB
RMS PE A 5.12dB [-0.35, 0.34]1dB
RMS PE AD 341dB [-0.32, 0.33]1dB
Bias AG 4.35dB [-0.37,0.37]1dB
Bias A 3.09dB [-0.37,0.37]dB
Bias AD 1.40dB [-0.36, 0.36]dB
R? AG 671 [—0.036, 0.035]
R? A 826 [—0.030, 0.030]
R? AD .888 [—0.028, 0.026]

Note. The 95th percentile (95P) of the absolute PE is reported along with
the RMS PE, the bias, and the squared Pearson correlation coefficients (R?).
The confidence intervals were determined with Monte-Carlo simulations
assuming an average test—retest reliability of the observed SRTs of 2.0 dB
and are reported relative to the value. PE = prediction error; RMS = root-
mean-square.

respectively. On average, the predicted benefits overesti-
mated the observed benefits by 4.4, 3.1, and 1.4 dB, with
the AG, A, and AD-individualization, respectively.
Also, the correlation between the predicted benefits in
SRT with those observed was highest with the AD indi-
vidualization (R*>=.888), lower with the A-individuali-
zation (R*=.826), and lowest with the AG
individualization (R*=.671). Lower correlation coeffi-
cients compared with those for the SRT predictions
were expected due to the 20dB smaller range (45 vs.
65dB), and due to increased measurement error, by a
factor of approximately v/2, as the benefit was derived
from two measured SRTs.

In cases in which the tone-in-noise measurement was
not suprathreshold, no information about the supra-
threshold component of hearing loss could be retrieved
and the proposed values for listeners with normal
hearing (cf. Figure 4) were applied with the
AD-individualization. The statistical analysis of the pre-
dictions of benefit in SRT only for the subset of the data
from the 11 listeners who performed all tone-in-noise
measurements supra-absolute-threshold are reported in
Table 3. The 95th percentile of the absolute PEs as well
as the RMS PEs and the bias were found to be reduced
for this group compared with the full group of listeners.
For this subgroup, the lowest bias, the lowest PEs
regarding extreme deviation (95 P), and regarding aver-
age deviation (RMS) were found with the AD-
individualization and equaled 0.6dB, 5.2dB, and
2.7dB, respectively. These values indicate a prediction

Table 3. Statistical Analysis of the Benefits in SRT of the Subgroup
With the || Listeners Who Performed Suprathreshold Tone-in-
Noise Experiments at All Frequencies, Analog to Table 2.

Quantitiy Indiv. Value Confidence interval
95P PE AG 12.51 dB [—1.48, 1.61]1dB
95P PE A 7.41dB [—1.18, 1.29]1dB
95P PE AD 5.16dB [—1.08, 1.21]1dB
RMS PE AG 6.38dB [—0.45, 0.45]dB
RMS PE A 4.02dB [—0.43, 0.43]dB
RMS PE AD 2.74dB [-0.40, 0.41]dB
Bias AG 4.09dB [-0.47, 0.47]1dB
Bias A 1.92dB [—-0.47, 0.47]1dB
Bias AD 0.60dB [—0.48, 0.47]1dB
R? AG 578 [—0.064, 0.064]
R2 A 719 [—0.063, 0.060]
R2 AD 825 [—0.058, 0.054]

Note. PE = prediction error; RMS = root-mean-square; AG = clinical
audiogram; A = tone-detection thresholds alone; AD = tone and
tone-in-noise detection thresholds.

accuracy for individual measurements that is already at
the limit of that which can theoretically be achieved
assuming a test—retest reliability of (¢ =) 2.0dB, that is
(196 -v2-0~) 5.5dB for the 95P of the PE and
(V2 -o~) 2.8dB RMS PE. This means that the RMS
PE was less than half compared with the RMS PE with
the (in practice usually available) clinical audiogram
(6.4dB). Notably, the more accurate measurement of
the hearing threshold with the SIAM procedure
(A-individualization) itself already reduced the RMS
PE to 4.0dB. With the AD-individualization, the corre-
lation for this subgroup was at a high level (R* = .825),
while the predictions with the AG-individualization
explained only slightly more than half of the variance
(R*=.578) in the observed data.

These results show that the highest prediction accu-
racy with respect to several important measures (95th
percentile of absolute PEs, RMS PE, and correlation
coefficient) was only achieved by considering the supra-
threshold component of hearing loss inferred from tone-
in-noise measurements. This was found to be true for the
prediction of SRTs as well as for the prediction of bene-
fits in SRT due to using different compensation
strategies.

Discussion

The presented modeling approach with FADE was used
to infer parameters from psychoacoustic experiments
describing the individual hearing performance of listen-
ers with impaired hearing. These parameters were then
successfully exploited to improve the prediction accuracy
of the individual speech-recognition performance under
a broad range of listening conditions. The modeling
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results show that the approach established a link
between individual tone-detection performance (both in
quiet and in noise) and individual aided speech-
recognition performance. Such a link between individual
psychoacoustics and individual speech recognition is
highly desirable to better understand as yet unexplained
hearing problems (Plack et al., 2014; Plomp, 1978, 1986).
In the following, the empirical and modeling results are
discussed with respect to this important link and its
potential meaning for a better understanding of the per-
ceptual consequences of hearing loss for speech
recognition.

The unexplained suprathreshold hearing problems
that may be characterized closer by the approach fol-
lowed in this study have been discussed recently in the
context of hidden hearing loss, as interpreted as being
cochlear synaptopathy. However, the relation between
psycho-acoustical or speech-recognition functions and
cochlear synaptopathy in humans is still unclear and
hard to find (Bramhall et al., 2019). Likewise, this
study does not make any claims about the pathologies
underlying hidden hearing loss and the causes of the
elevated tone-in-noise detection thresholds and SRTs
in humans with sensorineural hearing impairment.
Instead, in this contribution, the potential behavioral
correlates of hidden hearing loss are related to each
other and to the distortion component of hearing loss
already postulated by Plomp (1978).

SRT Data for Model Evaluation

The main design goal of the empirical speech tests was to
obtain individual, precise data in relevant aided listening
conditions for listeners with impaired hearing, which
should serve as a benchmark to evaluate the prediction
accuracy of speech-intelligibility models. Hence, one
goal was to achieve pronounced differences in the
speech-recognition performance due to (A) the degree
of hearing impairment, (B) the listening condition, and
(C) the compensation provided. The observed data indi-
cate that this goal was achieved: (A) The listeners, whose
hearing spanned a broad range of impaired hearing,
showed great variability in the outcome of the speech
tests; (B) the recognition performance for many listeners
varied strongly across the listening conditions; and (C)
the benefit in recognition performance due to a provided
compensation depended on the strategy and also varied
strongly across individuals.

The large variability in the observed data covers many
aspects of (aided) listening of impaired listeners in quiet
and in noise, with three common compensation strate-
gies. For example, it is noteworthy that listeners with
only slightly increased hearing thresholds (with unaided
SRTs below 35dB SPL in quiet), also already showed
increased SRTs in stationary noise (cf. Figure 5). As the

noise level for these listeners was generally above their
hearing thresholds for important portions of the speech
spectrum, these differences are likely due to a supra-
threshold component of the hearing loss. Also, the
increase of SRT in noise due to impaired hearing was
more pronounced in fluctuating noise than in stationary
noise. While listeners with normal hearing were observed
to achieve lower (i.e., better) SRTs in the fluctuating
ICRAS5-250 noise than in the stationary ICRA1 noise,
for many listeners with impaired hearing, the difference
in performance was much less pronounced or even
inverse, as could be expected from previous observations
(Wagener et al., 2006). One explanation for this obser-
vation could be the limited frequency range available to
listeners with impaired hearing, which Oxenham and
Simonson (2009) found to reduce the masking release
due to temporal modulations of noise maskers. In line
with the measured data, Oxenham and Simonson (2009)
and Bernstein and Grant (2009) suggested that
fluctuating-masker benefits generally depend on the
SNR and are lower for higher SNR conditions. Hence,
the observed data show interesting and plausible individ-
ual behavior regarding listening in different noise
maskers.

It should be noted that a consistent explanation of the
data is hard to find on a heuristic level as the observed
masking thresholds result from the highly nonlinear
interactions of all auditory signal processing steps
involved and probably more, yet unknown properties.
Hence, pinpointing effects like the fluctuating-masker
benefit in relation to other auditory functions like effec-
tive auditory bandwidth or SNR is an important but not
completely satisfactory achievement as the influence of
all other factors cannot be quantitatively assessed (as
pointed out, e.g., by Bernstein & Brungart, 2011).

The modeling approach presented here, on the con-
trary, does not select the appropriate processing strategy
heuristically but is based on the information available in
the input signals. Thus, it avoids heuristic interpretations
of the different factors involved and, instead, explains
the modeled data based on the assumption that the
removal of information from the input signals translates
to worse recognition scores, that is, masking. It still has
to be shown that such an approach is advantageous in
comparison to the conventional, heuristic explanation
approaches.

Most importantly, the benefit due to using a compen-
sation strategy depended on the degree of the hearing
impairment, the listening condition, and the compensa-
tion strategy (cf. Figure 6). In quiet, the observed SRT
benefit was mainly related to the amplification provided,
where the simulated microphone noise limited the hear-
ing performance for listeners with low hearing thresh-
olds. In noise, the observed SRT benefit from
amplification was very limited, that is, less than 5dB,
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or even negative for the majority of listeners. Part of the
negative benefit was probably due to the different simu-
lated microphone positions in the unaided (in ear) and
aided conditions (BTE), which are known to result in
worse SNRs for normal-hearing listeners (Cubick
et al., 2018). The nine-band compression amplification
(according to NAL-NL1), which is generally employed
with the aim of improving audibility while avoiding
excessive loudness percepts for high input levels, did
improve SRTs in quiet for many listeners but simulta-
neously tended to reduce the speech-recognition perfor-
mance in noise.

In the data set, the use of the ADM shifted the
observed negative SRT benefit of the compression
amplification in the listening-in-noise conditions to the
positive domain by improving the SNR. The spatially
separated target and noise signals enabled the ADM to
cancel out portions of the noise signal, exploiting the
time delay due to the different incidence directions. In
more realistic listening conditions, such as more remote
noise sources, this cannot always be assumed.

Apart from pronounced differences, the high preci-
sion of the empirical measurements assured good dis-
criminability in model evaluations. Predictions cannot
show a higher accuracy than the precision of the data
that is used for their evaluation. Hence, a good test—
retest reliability (i.e., precision) of the speech test was
crucial for obtaining individual, precise data, but it con-
flicted with reflecting the relevant variable environments
that listeners generally encounter in daily life. The eval-
uation of the prediction results for the subgroup of 11
listeners for which the suprathreshold individualization
data was available (cf. Table 3) showed how important
precise speech-recognition measurements are to enable
the evaluation of individual performance. The lowest
95th percentile of the absolute PEs of the benefit predic-
tions (5.2 dB) was found to approach a theoretical lower
bound given by an assumed test—retest reliability of ¢ =
2.0 dB; that is, a lower bound of (1.96-v2 - 6~) 5.5dB
for the 95 percentile of the absolute PEs. The assumed
test—retest reliability of 2.0dB is realistic for the fluctu-
ating listening condition. Any additional variation, such
as longer pauses of the masker, changing SNRs over
time, or less balanced speech material, would probably
increase that value and hence reduce the suitability of
any observed data for the purpose of evaluating accurate
predictions. The decision to use controlled laboratory
conditions instead of more realistic conditions, for
example, with recorded maskers, is supported by the
achieved prediction accuracy.

Hence, for the purpose of evaluating the prediction
accuracy of models, it was suitable to challenge different
aspects of the listeners individual hearing abilities in dif-
ferent simple speech-recognition tasks, rather than in
one complex task. In this context, the 95th percentile

of the absolute PE provides a more reasonable summary
of the evaluation than the RMS PE in which a single
problematic condition would be weighted less. However,
as can be observed in the Tables 1 to 3, the confidence
intervals are larger for the 95th percentile of the absolute
PEs than for the RMS PE. Thus, these prediction results
suggest that both have their advantages and should be
reported.

In summary, the pronounced and individual differen-
ces in the outcomes of the speech tests, the comparative-
ly high precision of the measurements, and the
consideration of common compensation strategies in
idealized extreme listening conditions (quiet, stationary,
and fluctuating noise) make this empirical data set a very
suitable basis for evaluations of prediction models.

Psychoacoustic Data for Model Parameter Inference

The main design goal of the empirical psychoacoustic
tests was to obtain precise data about the individual
hearing abilities (independent of speech tests) from
which the observed outcome of the speech tests could
then be accurately predicted. The outcome of the tone-
detection task in quiet showed similar results to the clin-
ical audiogram (cf. Figure 1), which indicates that both
could serve this purpose. For the SRT prediction and
according to the 95th percentile of the PEs, there was
no advantage in using the in-situ measured hearing
threshold (A) over the audiogram (AG). The observed
differences in the hearing thresholds (cf. Figure 1)
resulted in different prediction biases (cf. Table 1);
which was comparatively low with the AG-
individualization (—1.9dB) and pronounced with the
A-individualization (—5.0dB). For the predictions of
benefits in SRT, by contrast, the picture was different.
Here, the 95th percentile of the PE reduced from 13.4dB
to 10.7dB only when using the hearing thresholds that
were measured in situ with the STAM procedure (A),
instead of the clinical audiogram (AG). The in-situ mea-
surement—that is, with the same headphones and cali-
bration—avoided systematic measurement errors due to
using different equipment for determining the hearing
thresholds and for performing the speech tests. In addi-
tion, the measurement of the hearing threshold at one
frequency with the SIAM procedure was based on more
stimulus presentations (at least 25) than is usual for clin-
ical audiograms. The current data set does not allow
separating systematic from random errors in measure-
ments of the audiogram, but it shows clearly that precise
measurements of hearing thresholds are needed for accu-
rate predictions of benefits in SRT.

The tone-in-noise detection experiments showed a
surprisingly high variability in the individual outcomes.
Because the noise level was 40dB SPL per Hz, it
exceeded the individual hearing threshold in most of
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the measurements. For frequencies below 2000 Hz, no
tone-in-noise detection levels below 60dB SPL were
found, which means that for all but one listener
(cf. right panel in Figure 1), absolute pure tone thresh-
olds were below the lowest tone-in-noise detection
threshold. In that frequency range, the differences
between listeners were found to be up to 9dB, where
the test-retest reliability can be assumed to lie between
1dB and 2dB. Hence, the results strongly indicate that
the variance in the tone-in-noise detection thresholds at
lower frequencies in Figure 4 could be mainly due to
suprathreshold components of hearing loss for all but
one listener. Interestingly, when inferring the model
parameters from the tone-in-noise detection data, the
level uncertainty for the proposed normal-hearing con-
figuration was found to be frequency-dependent between
1.4dB (at 500 Hz) and 4.4dB (at 2000 Hz). This finding
is qualitatively in line with findings on the tone detection
efficiency by Moore et al. (1990).

The outcome of the tone-in-noise detection test was
used as an individual measurement of the distortion
component of hearing loss, as defined by Plomp (1978)
and implemented by Kollmeier et al. (2016), but applied
for tone detection instead of speech recognition. Its use
improved the prediction accuracy according to all meas-
ures (95th percentile of absolute PEs, RMS PE, and cor-
relation coefficient). For the group of 11 listeners for
which all tone-in-noise detection threshold were clearly
supra threshold, the accuracy of the predicted benefits
already reached the theoretical limit, assuming an aver-
age test—retest reliability of 2.0dB. This result clearly
shows the potential of tone-in-noise detection tasks to
quantify an individual suprathreshold component of
hearing loss that could be exploited to increase the
accuracy of individual(ly-aided) speech-recognition
performance.

The observed outcomes of the in-situ tone and tone-
in-noise detection tasks provided data that were suitable
for increasing the prediction accuracy far beyond the
baseline with the clinical audiogram. The clinical audio-
gram provided only information for expected maximum
(95th percentile of absolute) PEs of 13.4dB, or average
(RMS) PEs of 7.1dB, whereas the more suitable in-situ
tone-detection thresholds improved the maximum PEs to
10.7dB, or average PE of 5.1 dB. Furthermore, the use of’
the tone-in-noise detection thresholds reduced the maxi-
mum expected error additionally to 7.1 dB and the aver-
age PE to 3.4dB. Hence, the observed psychoacoustic
data were very suitable to characterize the individual
hearing abilities needed for speech recognition, as
tested with the matrix sentence test.

In summary, for a functional characterization of the
individual speech-recognition performance with only a
few measurements, the results strongly suggest measur-
ing the hearing thresholds with an automatic adaptive

procedure, such as, for example, SIAM, and tone-in-
noise detection thresholds at high levels, that is, above
the hearing threshold.

Individual Aided Performance Predictions

The possibility of obtaining reasonable predictions of
the individual speech-recognition performance of indi-
vidually aided listeners with impaired hearing is new.
The results show that individual predictions of the mea-
surable benefit in SRT due to a hearing device are not
only feasible but can already be achieved with good
accuracy. The fitting process of hearing devices for indi-
vidual listeners, which is still a manual task, could pos-
sibly be aided by model predictions to reduce the
required time and improve the fitting result. Such a
model-assisted fitting that employs a user-adapted com-
promise between different model quantities, such as, for
example, speech intelligibility and loudness, has been
proposed by Volker et al. (2018). However, field tests
will be necessary to evaluate whether the prediction
accuracy of the proposed model suffices for this task.

Suprathreshold Component of Hearing Loss

The proposed parameter to describe the suprathreshold
component of hearing loss was implemented as a level
uncertainty (also describable as multiplicative noise or
detector noise). This implementation was shown by
Kollmeier et al. (2016) to induce a behavior that would
be expected from the distortion component of hearing
loss according to Plomp (1978). Its individual consider-
ation in the predictions clearly reduced the overestima-
tion of the SRTs, that is, predicted SRT below observed
SRT (cf. center and right panel in Figure 7). The remain-
ing overestimation might be due to other factors that are
not reflected in the current model, such as, for example,
cognitive impairments. The level uncertainty can be used
to increase the SRTs almost independently from the pre-
sentation level by removing information that is encoded
in small differences in amplitude, that is, portions of
spectral and temporal dynamics (cf. Figure 2). The pre-
dictions by Kollmeier et al. (2016) showed that a part of
the removed information is involved in the speech-
recognition process, which led to deteriorated recogni-
tion performance when removed. The presented data
support the hypothesis that the same suboptimal signal
processing likewise affects speech-recognition and tone-
detection performance of human listeners in noise.
Furthermore, Kollmeier et al. (2016) found that the
importance of the information which is removed due to
the level uncertainty depends on the noise masker; here,
the increase of the distortion component of hearing loss
due to an increased level uncertainty was less pro-
nounced for a stationary noise masker than for a
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fluctuating one. The data do not contradict a translation
of this finding to human listeners. In other words, if the
suprathreshold component of hearing loss (regarding
speech recognition and tone-in-noise detection) can be
universally described with the level-uncertainty parame-
ter, which the data suggest, then the effect of the supra-
threshold parameter will probably have different
consequences for speech recognition in different noise
maskers. Also, it might have consequences for the per-
ception of compressed signals, where the differences in
amplitude are reduced.

Kollmeier et al. (2016) found that a part of the dis-
tortion component of hearing loss can be predicted from
the audiogram by using values for the level uncertainty
that are typical for a certain group of audiograms. This
suggest that the attenuation and distortion component
of hearing loss are correlated. Due to the limited number
of listeners in this study, a satisfactory estimate of the
relationship is, however, beyond the scope of this
contribution.

Possible Implications and Opportunities

According to Plomp (1978), the supra-threshold, that is,
distortion, component of hearing loss cannot be com-
pensated for by linear amplification and therefore repre-
sents a limitation in the compensation of a hearing loss.
With increased level uncertainty, the model shows exact-
ly this behavior (Kollmeier et al., 2016). From a model
perspective, standard multiband dynamic compression
cannot improve the situation, as the dynamics, and
hence the differences in the output levels, are only
reduced and hence more likely to be exceeded (and
masked) by the level uncertainty.

The functional, that is, executable, description of the
process that removes the (speech) information that is not
available to listeners with impaired hearing offers the
opportunity to design signal preprocessing strategies
that are specifically tailored to minimize the loss of infor-
mation, that is, to maximize the speech-recognition per-
formance under this constraint. The proposed model
could objectively quantify the effect of such a compen-
sation strategy for the suprathreshold component of hear-
ing loss in terms of speech-recognition performance and
might be useful in guiding the development process. If a
(partial) compensation of the distortion component of
hearing loss is possible, the individual quantification of
the level uncertainty would provide relevant information
for diagnostic purposes and the prescription of a suitable
compensation strategy.

Comparison With Other Models

As discussed by Schadler et al. (2018) and to the best of
our knowledge, no model has been successfully

evaluated for the prediction of the individual aided
speech-recognition performance of listeners with
impaired hearing in fluctuating noise conditions.
Building and evaluating another model was out of the
scope of this contribution. The ASR-based modeling
approach  FADE has been compared with other
models using less complex observed data sets for which
compatible models existed in speech recognition as well
as in basic psychoacoustic tasks (Kollmeier et al., 2016;
Schadler, Hiilsmeier, et al., 2016; Schadler, Warzybok,
et al., 2016; Schadler et al., 2015, 2018). To facilitate the
comparison with future models on the same or other
data sets, the anonymized observed data, the MHA con-
figurations, the source code of the measurement proce-
dures, the source code of the modeling framework,
including the modified feature extraction as well as the
evaluation scripts, are available online.’

Conclusions

The most important findings of this work can be sum-
marized as follows:

e Individual predictions of the outcome of the German
matrix sentence test for listeners with aided, impaired
hearing are possible with an automatic-speech-
recognition-based model (FADE) across a diverse
range of (A) degrees of hearing loss, (B) listening con-
ditions, and (C) compensation strategies. This was
achieved by simulating the whole speech-recognition
process under conditions that closely resemble the
corresponding conditions for human listeners.

e The achieved prediction accuracy was already satis-
factory, with an RMS PE of 5.8 dB and a squared
correlation coefficient of 0.826 across all predictions,
when the model was individualized with the clinical
audiogram. The result could be improved to 4.2 dB
and 0.940, respectively, by explicitly taking a supra-
threshold component (similar to the distortion com-
ponent of Plomp, 1978) of hearing loss into account.
For the benefits in SRT due to different compensation
strategies, the improvement was even more pro-
nounced; from 7.1 dB and 0.670 to 3.4 dB and
0.888, respectively.

e The implementation of a level uncertainty in the fea-
ture extraction of the recognition system provides a
promising functional description of the suprathres-
hold component of hearing loss. It appears promising,
as its value can be derived individually from a few
tone-in-noise detection measurements, and it results
in substantial improvements in the prediction accura-
cy. On the other hand, the approach appears promis-
ing because it describes an effective sensory
impairment to be compensated for by future signal
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processing strategies that aim at ameliorating hearing
loss beyond the restoration of audibility.

Appendix

Code Listing for Model Parameter Inference

Listing 1: Portion of the Octave/Matlab reference imple-
mentation used to infer the individual model parameter
values, that is, hearing loss and level uncertainty, from the
outcome of the tone and tone-in-noise detection tasks.

% Frequencies to interpolate.
£ =[125 250 500 750 1000 1500 2000 3000 4000 6000 8000] ;
% Hz

% Frequencies of tone-detection thresholds.
f_ht_siam= [250 500 1000 2000 4000 8000]; % Hz

% Frequencies of tone-in-noise detection thresholds.
f_ul_siam= [500 1000 2000 4000]; % Hz

% Tone-in-noise detection thresholds.
% Proposed values for normal-hearing.
tin_siam_nh=[-3.5-2.02.04.5]; % Relative level to

noise

% We need to consider three cases:

% 1) The TIN experiment was clearly supra-threshold
(as intended)

% 2) The TIN was clearly sub-threshold

% 3) Something in between.

% We will use the "normal hearing" thresholds as
"separator"

% between these cases.

ul_siam_nh=tin2ul (f_ul_siam, tin_siam_nh);

% Represent the tone-detection levels in dB SPL at
eardrum.

tone_in_quiet_level =ht_siam;

tone_in_noise_level =calcorr(f_ul_siam,
tin_siam+65);

tone_in_noise_level_normal =calcorr(f_ul_siam,
tin_siam_nh + 65);

% Define a soft (continuous) criterion for which rule
to apply:

% 1) Tone-in-noise detection threshold more than 5dB
% below mnormal-hearing tone-in-noise detection
threshold

% -> supra-threshold,

% 2) Tone-in-quiet detection threshold more than 5dB
% above detection
threshold

% -> sub-threshold,

normal-hearing tone-in-noise

% 3) Interpolate between both to make the transition
smooth.

thresholdness =tone_in_quiet_level(2:end-1) -
tone_in_noise_level_normal;
criterion=interpl([—100;—-5;0;5;100],
[0;0;0.5;151],

thresholdness, linear, extrap);

% Calculate a conservative maximum value

% for the level uncertainty ul.

% First calculate ul from tone-in-noise experiments.
ul_noise=tin2ul(f_ul_siam, tin_siam);

% Then calculate which values would be indicated

% only by absolute hearing threshold.

ul_quiet =tin2ul(f_ul_siam,
end-1) - 65);

% Subtract any effect due to the absolute hearing
threshold.

ul_diff =ul_noise - (ul_quiet-1);

tone_in_quiet_level(2:

% Use the criterion to make the transition between the
estimates.

% If the experiment was sub-threshold we can’t sepa-
rate ul and ht.

% Hence, if the criterion is 1, ul_eff is ul of normal
hearing.

% Limit the maximum to 20dB.

ul_eff =tin2ul(f_ul_siam, tin_siam_nh).*criterion+
min(20, ul_diff.*(1-criterion));

% Estimate the corresponding increase in
tone-detection threshold

% due to the level uncertainty.

dl_eff =max(0,ul2tin(f_ul_siam,ul_eff)-
ul2tin(f_ul_siam,zeros(size(ul_eff))));

% Calculate the effective hearing loss due to
attenuation ONLY

% by removing the estimated effect of the level
uncertainty using

% values from 500Hz and 4000Hz at 250Hz and 8000 Hz,
respectively.

ht_eff =ht_siam - dl_eff([1,1:end,end]);

% Interpolate the parameters that describe

% attenuation loss (ht_eff) and distiortion loss
(ul_eff).

ht =interpl(f_ht_siam, ht_eff, f,linear, extrap);
ul =interpl(f_ht_siam, ul_eff([1,1:end,end]),
f,linear, extrap);

ul_nh=interpl(f_ht_siam, ul_siam_nh([1,1:end,
end]), f,linear, extrap);

% Keep values in reasonable ranges.
ht =max(0,min(130,ht));
ul =max(ul_nh,min(20,ul));
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