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Abstract: After more than 40 years of biopolymer development, the current research is still based on
conventional laboratory techniques, which require a large number of experiments. Therefore, finding
new research methods are required to accelerate and power the future of biopolymeric development.
In this study, promising biopolymer–additive ranking was described using an integrated computer-
aided molecular design platform. In this perspective, a set of 21 different additives with plant
canola and soy proteins were initially examined by predicting the molecular interactions scores and
mode of molecule interactions within the binding site using AutoDock Vina, Molecular Operating
Environment (MOE), and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA). The
findings of the investigated additives highlighted differences in their binding energy, binding sites,
pockets, types, and distance of bonds formed that play crucial roles in protein–additive interactions.
Therefore, the molecular docking approach can be used to rank the optimal additive among a set
of candidates by predicting their binding affinities. Furthermore, specific molecular-level insights
behind protein–additives interactions were provided to explain the ranking results. The highlighted
results can provide a set of guidelines for the design of high-performance polymeric materials at the
molecular level. As a result, we suggest that the implementation of molecular modeling can serve
as a fast and straightforward tool in protein-based bioplastics design, where the correct ranking of
additives among sets of candidates is often emphasized. Moreover, these approaches may open new
ways for the discovery of new additives and serve as a starting point for more in-depth investigations
into this area.

Keywords: plasticizers; cross-linkers; blending; plant protein; biopolymer; AutoDock Vina; molecular
docking; binding energy; MM-GBSA

1. Introduction

Recently, millions of tons of non-degradable polymers have been produced annually
worldwide. It was estimated that plastic consumption increased from 1.7 million metric
tons (Mt) in 1950 to 367 Mt in 2020 and accounts for the continued growth in production
year after year [1]. Plastics have become essential components of various products and
play a significant role in almost all aspects of daily life. This is because of the large-
scale production with fewer input costs and favorable features such as tensile and tear
strength, barrier properties, and the capability of a heat seal. However, plastic is made
from petroleum-based raw materials that are not readily biodegradable. Therefore, it poses
serious health and environmental concerns [2] because of its non-degradable nature and
persistence in the environment several decades after use [3]. Considering all these issues,
the ban on single-use plastics is expanding worldwide, and Canada recently announced a
ban on some single-use plastic items [4].

Polymers 2022, 14, 3690. https://doi.org/10.3390/polym14173690 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14173690
https://doi.org/10.3390/polym14173690
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-3567-7279
https://orcid.org/0000-0003-1801-0162
https://doi.org/10.3390/polym14173690
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14173690?type=check_update&version=1


Polymers 2022, 14, 3690 2 of 21

Currently, high-performance polymeric materials have become a more attractive
choice for a wide range of demanding applications. In this vein, extensive research efforts
have been devoted to developing high-performance polymeric materials to replace their
petroleum-based counterparts. Various bio-based polymers have been investigated for the
development of biodegradable materials. More specifically, sustainable bio-based polymer
alternatives, including polysaccharides, proteins, and lipids [5–8], have been explored
as candidates for bio-based polymeric materials. Among the various types of natural
polymers, proteins have been considered the ideal bio-based material for the future devel-
opment of bio-plastics due to their attractive combination of price, abundance, renewability,
and biodegradability. Canola and soy proteins are among the most investigated proteins
in biopolymer research. The main components of canola protein are napin (2S albumin)
and cruciferin (12S globulin), which are storage proteins. They account for 20% and 60%
of the total protein content [9]. Soy protein is composed of a mixture of globular proteins
containing 2S, 7S, 11S, and 15S fractions [10]. Canola and soy protein-based polymers can
be used as biodegradable films in packaging materials, adhesives, and or even as scaffolds
for tissue engineering [11]. These polymers show favorable material properties such as
biodegradability, biocompatibility, and lower toxicity than conventional synthetic polymers.
Unfortunately, most biopolymer-based materials suffer mechanical problems under low
values of applied stress and thermal stability in comparison to synthetic materials [12–14].
Therefore, it has always been critical to develop high-performance polymeric materials with
exceptional mechanical strength and toughness, thermal stability and, even healable prop-
erties for meeting their performance requirements in industry. The creation of plasticized,
cross-linked polymers and blended mixtures has been regarded as a promising approach
for developing strong and thermally stable polymers [15–17]. However, the proprieties
of these (bio)polymers can be optimized and improved according to their interactions
with the additives used in terms of compatibility, molecular weight, chemical structure,
functional groups, and number and positions of active groups. Therefore, the type and the
concentration of the additives used strongly affect the bioplastics formation and its final
properties [14,18,19]. The selection and utilization of plasticizer, cross-linkers and polymers
is a fundamental step in providing biopolymeric materials with satisfactory properties.
Selecting a suitable formulation is mainly dependent on the compatibility between the
agent and the protein in terms of solubility, molecular weight, polarity, hydrogen bonding,
and stability in the formed film, as well as on the efficiency in terms of the ratio [14,20,21].
Hence, it is critical to emphasize that the type of additive differs from one protein to
another. Therefore, selection and optimization of the suitable agent prior to being used
in the bioplastics film formation is highly required. Several advanced techniques, such
as calorimetry, gravimetry, dynamic mechanical analysis, and tensile testing, were used
to investigate the modification behavior and thermal and mechanical properties of the
modified protein-based films [22].

Computational protein–ligand docking analysis has been one of the most important
and basic tools in drug discovery and development. Generally, the process of compu-
tational protein–ligand docking begins with a protein target of known crystallographic
structure [23,24]. A molecular docking tool is usually used to model the interactions
between a protein and small molecules (ligands) at the atomic level by predicting their
optimal conformations and expected binding free energies [25,26]. The predicted binding
affinity is of great value. It is often used to predict the interactions between two molecules.
Thus, protein−ligand docking can provide important insights into the effects of a chemical
structure and the chemical nature of noncovalent interactions formed between proteins
and ligands [27]. The computational docking methodology is considered a rational tool for
drug discovery, and it enables the rapid identification and screening of millions of small
molecule drug candidates in an affordable time. It can also be used to inform subsequent
validation of conventional in vivo and in vitro models, thus reducing research time and
the costs of drug discovery efforts [25,28]. In this context, the experimental selection of
biobased additives to promote the formation of bioplastics is not only costly but also
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time-consuming and generally labor-intensive. Therefore, due to the above-mentioned
limitations of conventional approaches, limited efforts have been made to understand
protein–additive interactions at the molecular level. Nevertheless, computer-based meth-
ods might be an attractive way to better understand how different modifying agents may
interact and improve the protein-based bioplastics properties and then help in designing
bio-based polymer–additive complexes with superior properties in a smaller number of
experiments, lesser time, and lower cost. However, limited efforts have been made to
use molecular docking for predicting protein–additive interaction and ranking additive
suitability for making bioplastics. Therefore, we hypothesized that molecular docking
might be a rapid and reliable method in predicting protein–additive interactions leading to
the selection of suitable additives for designing bioplastics with better properties.

Based on the conclusions drawn from the current research in biopolymer formulation,
selecting a suitable additive is a key step and can have a strong impact on mechanical,
physical, and thermal properties and consequently on the efficacy and application of the
formulated biopolymer, as such better properties directly related to a specific interaction
between a polymer and particular additive. The latter is motivated by the proposed use
of computational studies. In essence, our studies in this area are based on the relation-
ship that exists between the compatibility of protein and particular additive and required
improvements according to the action of the additive used. Hence, the better the com-
patibility between two molecules, the stronger the interaction (affinity between them),
and the better the properties. Therefore, the aim of this work was to examine the feasi-
bility of the molecular docking approach as a fast tool to rank a set of potential additives
based on their binding score. A total of twenty-one additives of three modification classes
(plasticization, cross-linking, blending) were used to investigate their interaction with two
plant proteins (canola and soy proteins). We mainly focused on analyzing the binding
interactions between proteins and additives to help us understand and address key ques-
tions associated with the diversity of protein–additive interactions in terms of binding
affinities and specificity among the investigated additives. We, therefore, envisage that
the results of our computational study will find widespread use in areas of protein-based
bioplastics preparation.

2. Materials and Methods
2.1. Ligand and Protein Structures

The 3D structures of canola procruciferin, 11S globulin (PDB ID: 3KGL), soybean 11S
Globulin: Glycinin A3B4 glycinin (PDB ID: 1OD5) were used in this study and downloaded
from the Protein Data Bank (PDB). The 3D graphic structures of proteins used in this study
are displayed in Figure 1. Twenty-one structurally diverse additives such as plasticizers,
cross-linkers, and blinding agents were studied, which are treated as ligands in the docking
setup. The 2- and 3D structures of ligands were downloaded from the PubChem Compound
Database (National Center for Biotechnology Information; https://pubchem.ncbi.nlm.nih.
gov/) (accessed on 5 February 2022). The structures of each additive can be found in
Table 1.

2.2. Software and Programs Used

AutoDock Vina software employs the Lamarckian genetic algorithm was employed
to create input files for our docking calculations [29]. The MOE software with the newly
developed GBVI/WSAdG scoring function is used in the study [30]. For each protein
structure, the binding sites were predicted using the binding site finder of MOE tool and
CASTp analysis [31]. Vina output results were visualized using PyMol [32], Discovery
Studio Biovia 2015 [33], and Molecular Visualization VMD [34]. Open babel was used to
generate the 3D conformation of the ligand from the SDF format [35]. MM-GBSA module in
Schrödinger software was used to study the interactions for each complex resulting from the
docking simulations under default parameters [36]. The receiver operating characteristic

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/


Polymers 2022, 14, 3690 4 of 21

curve (ROC) and AUC (Area Under the Curve) curves were generated for AutoDuck Vina
methodology using OriginLab 2022b version [37].
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Table 1. Cont.

No. Additive PubChem CID Molecular Weight g/mol 2D Structure
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Table 1. Cont.

No. Additive PubChem CID Molecular Weight g/mol 2D Structure
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2.3. Preparation and Docking Protocol

Docking was carried out using AutoDock Vina and MOE methodology. Discovery
Studio Biovia software was used to prepare the required files by removing water molecules,
adding polar hydrogen atoms, and Kollman charges to the protein structures. Then PDBQT
files were generated to be used for molecular docking process. For docking protocol, both
protein coordinate files were deposited as the input receptors, while each additive was
treated as the input ligand. Additives were docked to each target receptor with grid boxes
of certain sizes for each receptor according to the pocket size and the number of residues
present in each respective binding site. The grid size and the grid center were designated
at x, y, and z dimensions. The binding affinities were typically calculated for the selected
poses from molecular docking using each software. The free energy for each selected
complex was estimated using the prime MM-GBSA energy function in the Schrodinger
software package. The complex binding pose with the best score from the MM-GBSA
calculation was subject to the mode of binding analysis. Subsequently, after all dockings
were performed, the selected complexes were visualized using PyMOL, Discovery Studio,
and VMD to display the sizes and locations of binding sites, as well as types and distances
of noncovalent interaction. For the visualization section, we report all the hydrogen bonds
with a cut of 4 Å and 65 angle cut-off from the position of the docked ligand.

3. Results and Discussion

Native protein biopolymer often has a weak performance, and, therefore, processing of
biopolymers requires the addition of one or more different additives to obtain the required
properties for a particular application. Different types of additives were used to improve the
processability and performance of biopolymers. Generally, these improvements are mainly
attributed to the amino acid composition, and the diversity of side chains groups of proteins,
such as hydroxyl, amino, and carboxyl groups, enables proteins to have multiple reaction
options with a variety of additives [38]. As a result, certain important properties can be
altered through chemical modification reactions between additives and functional groups,
such as hydrophilic or hydrophobic characteristics, elasticity, adsorption, thermal proper-
ties, and mechanical resistance [15]. In cross-linking modification process, the biopolymer
can be cross-linked through covalent bonds, hydrogen bonds, or Van der Waals bonds
cross-linking, depending on the type of the protein cross-linking agent interaction [39].
Recently, several authors have demonstrated the possibility of carrying out the cross-linking
process in the modification of the structure of a protein through noncovalent secondary
interactions such as hydrogen bonds, electrostatic interactions, and hydrophobic forces,
and without unnecessary extra reactions [40–42]. However, this cross-linking process may
produce structural changes that not only influence the mechanical and microstructural
properties of the material but could also make modifications to the functional and applica-
tion properties [43,44]. On the other hand, plasticizers are the most widely used additives
in both synthetic and bioplastics, which are added to improve several properties, such as
chain flexibility. Polar plasticizers such as polyols could easily fit into the protein chains
and bind at the respective binding sides. Protein–plasticizer interaction could establish a
greater number of hydrogen bonds with reactive groups of proteins and cause increases
in the free volume. Thereby, the protein biopolymer mobility and material elasticity are
increased [42]. However, selecting the proper additives for an application has always been
a daunting task. This is because the compatibility and performance of additives vary with
the types of protein biopolymers. Multiple parameters can indicate this variation, including
molecular weight, polarity, hydrogen bonding (or H-bond), and solubility [45]. For better
performance, it is very important to estimate the efficiency or trend of the additives from
the readily available parameters that characterize the performance of the intended addi-
tive. Unfortunately, no single parameter can be used as an indicator for the compatibility
between the polymer and suitable additive. Another challenge in the development of
bioplastic materials is that the enhancement of one property is frequently accomplished at
the expense of another. Thus, the designing of bioplastic materials demands an intensive
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assessment of multiple performance criteria in a coordinated manner. An overall and
deeper understanding of the connection between the additive and host polymer is highly
desirable and might help to overcome the challenges of obtaining a bioplastic with an
outstanding property. Therefore, predicting accurate protein–additive binding affinities
and exploring the interaction mechanisms among a set of additives can be a valuable
tool not only for ranking additive efficiency but can provide insight into the mechanism
behind the ranking. However, we do not pretend to be comprehensive in this study, but
an overview of the molecular mechanisms behind the protein–additive interaction will
be provided. Indeed, it is not possible to uncover the molecular mechanisms behind all
observations in a single study, especially in complex polymer systems. Therefore, for every
additive class reported in this study, variations in binding scores among a set of every class
are reported, and the 3D structures of protein–ligand interactions are analyzed to provide
valuable insights for polymeric materials formulations. Moreover, to provide a full picture,
insights from our modeling results were combined with a relevant previous experimental
study that investigated the same group of additives and proteins.

In the present study, the crystal structure of canola procruciferin, 11S globulin from
Brassica napusis, and soybean 11S Globulin (Figure 1) were used as the target proteins, with
different classes of biopolymer additives used as ligands. The study aimed to predict and
compare the binding affinities that describe the strength of interactions between additives
and proteins and then rank the interactions according to their binding energies. The first
investigated class of bioplastic additives is plasticizers. In the utilization of biopolymers
for bioplastic synthesis, plasticizers are among the most widely used additives. They
are typically used as a flexibilizing agent to reduce the glass transition temperature, thus
producing a flexible polymer. Seven of the most widely used plasticizers in bioplastic
formulations were selected, and their interactions were investigated. The results showed
that all the plasticizers docked with negative binding energy values indicative of the affinity
of the additives for their target proteins. For most docking protocols, the lowest binding
affinity of top-ranked poses is generally regarded as the standard selection in a typical
docking analysis. The calculated binding energies of plasticizers’ interactions are shown
in Table 2. Comparing the docked plasticizers showed considerable differences in their
interaction strength and binding sites with the studied proteins. The binding affinities
values for all the plasticizers resulting from the AutoDock Vina and MOE have close
scores, and values range (from −2.0 to −5.9 kcal/mol) as reported in Table 2. Both Vina
and MOE scores showed low binding scores, indicative of very weak binding, whereas
strong interactions were recorded in MM-GBSA energies. Thus, we base our discussion on
MM-GBSA calculations to rank the studied additives.

Table 2. Binding energies of protein–plasticizer interactions.

Plasticizer

Canola Protein Soybean

Vina
(kcal/mol)

MOE
(kcal/mol)

MM-GPSA
kcal/mol

Vina
(kcal/mol)

MOE
(kcal/mol)

MM-GPSA
(kcal/mol)

Formamide −2.7 −3.252 −14.85 −2.7 −3.408 −7.67
Urea −3.5 −3.323 −15.44 −3.6 −3.874 −17.93

Ethylene glycol −3.8 −3.830 −18.70 −3.8 −4,129 −13.29
Glycerol −4.2 −4.698 −23.27 −3.9 −4.666 −35.58

Triethanolamine −4.4 −5.564 −27.17 −3.9 −5.815 −36.15
Sorbitol −4.9 −5.727 −28.86 −4.5 −6.313 −45.90

Phthalate −5.4 −5.906 −30.05 −5.5 −6.325 −60.87

However, in molecular computational modeling, the Molecular Mechanics/Generalized
Born Surface Area (MM-GBSA) binding free energy is an important and widely used
method for binding free energy prediction. This method calculates the binding free en-
ergies of molecules by combining molecular mechanics calculations and continuum sol-
vation models. Accordingly, the MM-GBSA binding free energy has been successfully
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applied to various protein–ligands or protein–protein/peptide complexes. It has also
been widely reported that the binding scores calculated using MM-GBSA energies can
predict binding affinities with higher accuracy than most of the scoring functions. As
shown in Table 2, the predicted MM-GBSA of plasticizers are ordered as follow: phthalate
(−30.05 kcal/mol) > sorbitol (−28.86 kcal/mol) > triethanolamine (−27.17 kcal/mol) > glyc-
erol (−23.27 kcal/mol) > ethylene glycol (−18.70 kcal/mol) > urea (−15.44 kcal/mol) > for-
mamide (−14.85 kcal/mol). Phthalate, sorbitol, triethanolamine, and glycerol all have
higher free binding energy calculated using MM-GBSA compared to that of formamide,
urea and ethylene glycol (<−20 kcal/mol). On the other hand, our docking modeling
convincingly predicted the similarity trend between the two proteins. This is because
canola and soybean proteins are identical in their amino acid profiles [46]. According to
the analysis of the soybean protein–plasticizer complex, the lowest binding affinity and
MM-GBSA (Table 2) were found for phthalate, followed by sorbitol and triethanolamine,
respectively. The correlation coefficient was 0.9197, which reveals that the predictions
from binding scores and MM-GBSA methodologies were efficient and capable of ranking
plasticizers with similar and diverse structures. The predictions for soybean proteins were
strong, and the binding free energies of the plasticizer–soybean complexes fall within a
rather broad range, from −7.67 to −60.87 kcal/mol.

According to the theories and mechanisms of plasticizer action, plasticizing efficiency
depends on the chemical properties of molecular polarity, volume, and weight. In reality,
the interaction between the plasticizer polar groups with the polar group on the polymer is
an intermolecular plasticizing step. From the result presented in Tables 2 and S1, plasticizers
with a higher polar group, such as triethanolamine, sorbitol, and phthalate, showed stronger
interaction. In this prospect, we suggest that plasticizers that bind strongly with the host
polymer matrix are expected to be more stable, thus giving superior and stronger properties.
This is essentially the rationale behind the plasticization theories. These results are in
agreement with experimental data available in the literature. For example, canola protein
plasticization experiments using different polyols plasticizers, such as sorbitol, glycerol, and
polyethylene glycol-400, indicated that the best mechanical properties were recorded with
sorbitol followed by glycerol [47]. Furthermore, compared to glycerol, sorbitol was found
to show higher and the best mechanical properties than glycerol for the plasticization of soy
protein-based bioplastic [48]. The observations of this study were also very consistent with
the previous study that involved AutoDock Vina and the experimental study of glycerol
and sorbitol-plasticized soybean-based bioplastic. The authors reported that the results of
AutoDock Vina helped explain the trends with the experimental results of the mechanical
properties for the investigated bio-plastics [49]. Aguilar et al., 2020, investigated the effect
of different plasticizers on the thermal, physical, and mechanical properties of soy-based
bioplastics. They found that glycerol is more compatible with soy-based bioplastics than
ethylene glycol. The same study also estimated the plasticizer’s volatility after 9 days of
storage. Their results showed only glycerol remained in the bioplastic, highlighting the
volatility of ethylene glycol as a primary aging factor [50]. Based on our docking results,
this was not surprising since ethylene glycol was found to have a weaker interaction, thus,
less stability when compared to glycerol. According to the basic principle of protein–ligand
interaction chemistry, and laws of thermodynamics, the complexes with lower energies are
more stable. Therefore, assessing binding scores can be confidently used as a parameter to
predict and discriminate the additive stability among a set of candidates.

However, it is clear to note from our results that increasing the molecular weight
led to an increase in the strength of the interaction between the protein and plasticizers,
regardless of the number of polar groups the plasticizers had or the number of hydrogen
bonds formed (Table 1), which are known to promote the protein–plasticizer interactions.
Interestingly, none of the covered plasticizers which have a molecular weight lower than
60 g/mol, such as formamide (−14.85 kcal/mol), urea (−15.44 kcal/mol), and ethylene
glycol (−18.70 kcal/mol) form a good binding affinity. This observation can be explained
by variations in the molecular weight of the plasticizer and ligand binding pockets/cavities,
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which vary with the protein size. Our observations suggest that the higher the molecular
weight of the plasticizers, the better the molecular fit and the stronger the interaction
to form a more stable complex. This is due to the large size pocket/cavity of canola
protein where larger plasticizers can properly fit and take effects than a smaller plasticizer’s
weight. Consequently, a sufficiently high-affinity plasticizer can be confidently expected
to be highly specific for its target. Concerning the pocket size, it has been previously
reported that protein–ligand binding sites tend to take place within the largest and deepest
pocket/cavity on the protein’s surface [51]. In order to assess the role of pocket size, protein
structure topology was also investigated using the alpha shape method and CASTp 3.0
method [31]. CASTp pocket measurement is represented as pocket volume based on the
solvent-accessible surface (SA) and pocket solvent-accessible surface area (SA). According
to our visualization analysis, canola proteins typically have up to 100 pockets/cavities,
which vary widely in size. As illustrated in the snapshot (Figure 2A), the size of the largest
cavity (Green color) lies within 1523 Alpha Spheres and 11340 (SA) of pocket surface area
or 11948 (SA) of pocket volume. This pocket comprises about 276 hydrophobic sites and
676 hydrophilic. Most of the additives investigated in this study were found to bind to this
larger pocket/cavity, with the exception of the smaller molecular weight additives, which
do not bind to the largest pocket. The size of the second larger cavity (Red) lies within
391 Alpha Spheres and 1270 (SA) or binding site volume of 2677 (SA), comprising around
74 hydrophobic sites and 174 hydrophilic sites. It should be noted that the interactions of
the small molecular weight plasticizers such as formamide, urea, and ethylene glycol took
place only at the smaller pocket/cavity. Moreover, water is the main solvent used in natural
bioplastic fabrication. The co-plasticizing effect of water on proteins and polysaccharides
has been widely investigated and demonstrated [52]. Our result showed that water has
the lowest interaction with a binding affinity of −2.00 kcal/mol. The observation of water-
protein interaction shows that water has a binding site composed of a single small pocket
with a surface area of 7.426 (SA) and several small neighboring pockets. Hence, water seems
to be a bit lower in efficiency than formamide and urea. Since their favorable interactions
are not the largest pockets, therefore they did not show a stronger interaction, and such
plasticizers are not expected to have longer stability within the bioplastic formulated.
Contrary to canola protein, all plasticizers were docked into a single pocket, which contains
the most active sites on the soybean protein. This is due to the smaller pocket/cavity size
of soybean protein. The size of the largest pocket/cavity of soybean protein (Figure 2B)
lies within 261of Alpha Spheres, and 811 (SA) comprising about 48 hydrophobic sites and
138 hydrophilic sites, whereas the size of the second large cavity (Red) lies within 61 of
Alpha Spheres, and 769 (SA) or binding site volume of 1748 (SA).

Furthermore, the effect of molecular weight of plasticizers from experimental inves-
tigations has been the focus of a number of publications. Admittedly, the selection of an
ideal molecular weight of plasticizer used in bioplastic formulation is recommended to be
fully considered. In addition to its role in the protein–plasticizer interaction, the molecular
weight of the additive can play a crucial role in the manufacturing process, such as time,
diffusion, and energy required for the absorption process into the host polymer, as well as
migration and stability of plasticizer within the polymer. However, there is no clear trend in
the literature about the effect of the molecular mass of plasticizers on bioplastic properties,
and there are numerous levels of discrepancies among these in the literature. Therefore,
in terms of plasticizer efficiency, key conclusions from our docking observations suggest
that molecular weight is among the key contributors to the specificity of interactions. This
finding motivated us to hypothesize that the role of molecular weight of an additive could
be identified based on pocket/cavity size on the host polymer where they bind. Moreover,
we are confident that the binding of the plasticizer on the largest pocket/cavity of the
polymer plays a crucial role, hence significantly influencing the plasticization efficiency.
This implies the necessity to consider the relationship between the pocket/cavity size and
plasticizer molecular for the selection of the right choice plasticizer.
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In spite of the fact that the values of the binding score are informative of ligand
binding in the active pocket, types of molecular interactions between the protein and
ligands are indicative of ligand binding in favorable conformations. The wide variety
of additive types covered in the study showed different types of interactions, residues,
and pocket/cavities. Noncovalent interactions such as hydrogen bonding, electrostatic,
π-effects, and hydrophobic effects govern the most attractive interactions between the two
molecules. Hydrogen bonds are extremely important, especially in polymer modification
interactions which play a key role in the stability and properties of the produced bioplastics.

To estimate the difference in the noncovalent bond-forming abilities among the inves-
tigated plasticizers at the molecular level, visualization of protein–plasticizer interaction,
as presented in Figure 3A,B and Table S1, showed that all protein–plasticizer complexes
are mainly stabilized by noncovalent interactions, particularly hydrogen, hydrophobic
and salt bridges which are mediated by the corresponding amino acid residues in each
protein–plasticizer interaction. The results also showed that certain types of polar groups
along the plasticizer chains are involved in developing protein–plasticizer hydrogen bonds,
replacing the protein–protein interactions in the bioplastics formulation. It has been widely
reported that an additive interacts with protein biopolymer through hydrogen bonding,
salt bridges, and hydrophobic groups are considered the most suitable candidates for many
protein-based polymeric materials. A set of hydrogen bonding interactions with polar side
chains, such as tyrosine, threonine, asparagine, serine, cysteine, and glutamine, have been
observed at distances within 4 Å. The total number of hydrogen bonds was almost the
same for all plasticizers, with the exception of phthalate, which showed lower values but
higher hydrophobic interactions, which may play a major role in the process of plasticiza-
tion. It is known that the formation of hydrogen bonding between the plasticizer and the
biopolymer leads to a decrease in intermolecular chain entanglement, which can directly
affect the different properties, such as the glass transition (Tg), of polymeric materials.
Herein, it is important to emphasize that the formation of extensive hydrogen bonding
networks between the plasticizer and host biopolymer might lead to forming a more rigid
plasticizer–biopolymer complex and therefore reduce the plasticization efficiency. Thus,
the role of hydrogen bonding needs to be assessed through dynamic molecular simulation
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tools to provide a clearer picture. However, our docking calculations and visualization of
11S globulin of soy protein/plasticization were in accordance with the result obtained by
Patnode et al., 2021, in which lysin, serine, threonine, leucine, asparagine, glutamine was
the most favorable pose for sorbitol and glycerol plasticizers [50]. Similarly, another study
revealed that threonine, lysin, and proline are the key amino acid residues for 11S globulin
of soy protein [53]. However, details of all additives interactions within the predicted
active pocket of investigated proteins, including key residues involved in the interactions,
distance between interacting residues, and additives atom from our modeling, and results
found in the literature are presented in Tables S1 and S2.
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In general, processing biopolymer without additives is not viable. Therefore, the com-
bination of two or more is a common procedure for the development of high-performance
biopolymeric materials. For example, a combination of plasticization with cross-linking or
blending with other polymers or the use of all these together is the common procedure for
the development of bioplastics. On the other hand, the addition of more than one additive
might interface or influence each other and may lead to opposite effects on properties.
Therefore, there should be reasons for the polymer-type specific additives, which require a
deeper understanding of their interactions at the molecular level, and consequently, these
additives must be designed based on the mechanisms of interactions and according to the
molecular basis of the components and the biopolymer type. Hence, comprehensive knowl-
edge of the interaction between protein and additives at the molecular level is required and
can be directly achieved through the molecular docking approaches in order to effectively
guide the continuous discovery and development of high polymeric materials.

Through our investigation in this study, we attempted to gain molecular-level insights
into the protein–additive interactions. Therefore, a wide scope of modification classes was
investigated throughout this study to help in making any molecular interpretation. Thus,
the second class of bioplastic additive investigated in this study was cross-linker. In recent
years, the cross-linking approach has been among the most promising research gateway
focusing on the development of bioplastics materials. In this approach, a biopolymer can
be chemically cross-linked through covalent or noncovalent interactions to form a strong,
rigid, three-dimensional network [54]. Contrary to plasticization, the formation of a rigid
three-dimensional network of the additive–polymer complex is highly desired and core
for cross-linking efficiency. This process can affect some physicochemical properties, in-
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cluding mechanical and thermal performance and enhanced gas barrier properties, among
others [55]. Herein, we investigated the specific interaction of different cross-linking agents.
We docked seven among the most used cross-linkers to cover different cross-linker reac-
tive groups. Comparison between those cross-linkers allowed detailed discussion about
the effects of molecular weight and functional groups, where the effects of additives on
molecular weight and functional groups are substantial.

In this section, we are, however, unable to find corresponding experimental results,
and therefore, we will limit our discussion to our modeling calculations. From our docking
results (Tables 3 and S1), we observed that all cross-linkers used in this study showed differ-
ent interaction affinities with the investigated proteins. As shown in Table 3, we observed
an increase in the cross-linker interactions in the following order tannic acid > genipin > cit-
ric acid > succinic anhydride > maleic anhydride > glutaraldehyde > glyoxal which fell
into a range of MM-GBSA from −11.0044 to −60.1099 kcal/mol, with canola proteins. A
similar trend was observed with soybean proteins; the tannic acid, followed by genipin,
stood out as having the highest interactions, as inferred by the lowest binding energy from
the MM-GBSA calculation (Table 3). These results suggested that the stronger interac-
tions of these cross-linkers can stabilize the complex properly and effectively, leading to
improvements in some physicochemical properties. However, as indicated by the sign
of the correlation coefficient, the binding free energies predicted by MM-GBSA achieved
relatively satisfactory correlations with the binding affinity of the AutoDockVina results
(correlation coefficient r = 0.9465 and 0.9322 for canola and soybean protein, respectively).

Table 3. Binding energies of protein–cross-linker interactions.

Cross-Linkers
Canola Protein Soybean

Vina
(kcal/mol)

MOE
(kcal/mol)

MM-GPSA
kcal/mol

Vina
(kcal/mol)

MOE
(kcal/mol)

MM-GPSA
(kcal/mol)

Glyoxal −3.1 −3.261 −11.00 −3.5 −3.874 −22.09
Glutaraldehyde −3.3 −3.917 −13.84 −3.5 −4.355 −23.80

Maleic
anhydride −5.2 −4.049 −17.87 −4.4 −4.674 −25.22

Succinic
anhydride −5.2 −4.837 −19.44 −4.5 −5.383 −27.25

Citric acid −5.9 −5.874 −28.90 −5.7 −6.029 −32.09
Genipin −6.9 −9.639 −45.79 −5.8 −6.643 −46.99

Tannic acid −9.1 −15.542 −52.21 −7.1 −12.125 −61.10

By observing the interaction at the large size pocket/cavity on canola proteins, all
cross-linkers properly interacted except glyoxal. Glyoxal (58.04 g/mol) showed the least
interaction, and the interactions were found at the second largest pocket/cavity. This result
was also indicative of the influence of the additive and pocket/cavity size. The same trend
with plasticizer interactions is shown as well. This finding is again consistent with our
conclusion, where molecular weight and pocket size on the host polymer play a key role in
the interaction, stability, and selection of a suitable additive. Therefore, we thus conclude
that the binding location of the additives on the polymer backbone can play a crucial
role. This knowledge can be extremely useful in the designing of protein-based bioplastics
by understanding and choosing the right additives to overcome the issues of additives
competing with each other. The finding led us to seriously consider the effect of two or
multiple diverse additive functional groups binding at the same single protein site, either
by interacting with largely the same residues or different residues within it. Results from
our docking show similarity to the binding site with some of the investigated additives. For
example, in the case of canola protein, ARG 190 B is the preferred site for triethanolamine,
citric acid, and agar, while HIS 184 B and ARG 190 C were preferred for citric acid and
agar. ARG 190 D is the preferred site for sorbitol, genipin, dextran, and cellulose. LEU
181 Fand ASN 186 F are the preferred sites for glycerol and kefiran in which two to three
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strong hydrogen bonds are formed with each additive. These results indicate that there is
lower compatibility between two or more additives such as glycerol with kefiran. Thus,
this partly interference may lead to minimizing (within uncertainty) the strength of the
interaction. However, comprehensive investigation behind every observation in a single
study is not a trivial task, and further investigation of the competition between the intended
additives is highly important to obtain the right action for each additive used.

Visualization analysis of the interaction showed that hydrophobic, π-stacking, salt
bridges and hydrogen bonds (Table S1) had been found to favor the formation of the
complex. Multiple active site residues were involved in the interaction with every cross-
linker investigated here. For example, carboxylic acids such as tannic acid and citric acid
were shown to actively participate in hydrogen bonding interactions with other polymer
networks, improving their properties due to their carboxylic (COO) and hydroxyl (OH)
groups. It has been recently reported that the utilization of natural cross-linking agents,
such as tannic, acetic acid, and malonic acid, gives the necessary improvements in tensile
characteristics and increased stability under aqueous conditions in various biopolymer
applications. Our docking results found tannic acid to be the most active compound
in this series. The observed MM-GBSA values of tannic acid–canola protein and tannic
acid–soybean protein was −52.21 Kcal/mol and −61.10 Kcal/mol, respectively. The pres-
ence of a central glucose molecule and multiple hydroxyl moieties (Table 1), together with
its molecular weight, enables tannic acid to interact strongly with protein via multiple
noncovalent interactions. As can be seen in Figure 4A,B, the visualized results confirmed
the formation of multiple H-bonds between the phenolic OH groups of tannic acid with the
protein functional groups (-N- or -O-); thus, tannic acid molecules served as a molecular
bridge to connect protein chains into bundles. A total of 15 hydrogen bonds within a cut-off
of four angstroms were observed via the interaction of tannic acid with canola proteins.
The most active canola protein residues involved in this interaction via hydrogen bonding
through the participation of oxygen atoms of the tannic acid in the interactions are summa-
rized in Table S1. Recently, the cross-link strategy based on the formation of an H-bond
has been widely used to design high-performance plastics with remarkable mechanical
performance. Hence, the formation of multiple H-bonds between proteins and cross-linkers
can considerably improve the mechanical and physical performance of bioplastics without
sacrificing the extensibility and toughness because of their directionality, versatility, and
reversibility [56]. In addition, a set of hydrophobic and π-stacking interactions within the
specified cut-off were found, which often play important roles in protein–ligand interaction.
Such interactions are favorable as they exhibit multiple functionalities, such as mechanical
tenability and thermal stability. Additionally, when tannic acid is docked with soybean
proteins in its most favorable binding cavity, there are nine amino acid residues interacting
by hydrogen bonds, seven hydrophobic interactions, and one salt bridge formed by the
interaction between positively and negatively charged amino acid side chains within 4 Å.
Genipin was also observed to interact with canola and soybean proteins (−45.79 kcal/mol
and −46.99 kcal/mol, respectively), exhibiting a strong interaction with a set of amino
acid residues. Genipin cross-links canola proteins through strong hydrogen bonding of
N-H-O and H-N-H of the cysteine, arginine, and asparagine groups. The complex is also
stabilized by a set of hydrophobic interactions associated with genipin and the surrounding
protein residues. Moreover, glutaraldehyde and maleic anhydride were found to stabilize
the protein by hydrogen bonds along with hydrophobic interactions (Table S1). The contri-
bution of such interactions to the fabrication of thermostable proteins has been previously
demonstrated and shown to be crucial for its unusual high thermal stability [57].
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In this section, the compatibility ranking between two polymers are described and
proposed. Polymer blending approach offer an accessible route for the development
of novel, high-performance polymeric materials. It can produce materials with better
properties than its individual counterpart [58]. However, this section aims to predict the
compatibility of the blend based on the strength of the polar group’s interaction between
biopolymers and their role in the miscibility of the resulting biopolymer blend. The study
is based on assessing the binding scores and the formation and number of hydrogen bonds
to attain the miscibility of the blend. The role of hydrogen bonds as stabilizing interactions
became an interesting subject of biopolymer blend research and development. It has been
demonstrated that the formation of intermolecular hydrogen bonds between polymer
blends not only enhances polymer blend miscibility or compatibility but also effectively
promotes different properties of the polymer [59].

In these docking studies, different types of polymers as additives were docked into
protein structures and ranked by the calculated affinity. As can be seen, in Table 4, variations
in the binding scores have been obtained across the whole range of polymers investigated.
In this scene, the binding affinities of the seven polymer ligands in this class were docked
with the two proteins. As shown in Table 4, the results of MM-GBSA on the polymer-
binding system fall within a rather broad range, from −28.73 to −85.09 kcal/mol, show
variation in interactions among these polymers. Visualization of the complexes (Table S1)
indicated that the formation of different noncovalent interactions presents between the
polar groups of polymers used as ligands and charged groups on the protein surface. These
interactions very often lead to an increase in the compatibility and stability of the blends,
which are essential to performing desired functions required for the intended application.
In a molecular simulation, direct polar interactions are considered by specific terms such
as hydrogen bonding, which play an important role in the stability of protein–ligand and
polymer–polymer complexes and are required for most high-affinity ligands. Among
the set of the covered polymers, chitosan (Figure 5A,B, Table 4) was predicted to be the
most compatible with the investigated protein. Accordingly, the presence of primary and
secondary reactive hydroxyl groups -OH groups and NH2 groups in the chitosan gener-
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ates strong hydrogen bonds and salt bridges between the two polymers. Therefore, these
newly generated hydrogen bonds are the key to the interaction between the protein and
chitosan, favoring the compatibility of the system. The results are in good agreement with
the experimental results for blending chitosan with plant canola and soybean proteins.
Experimental observations guided by advanced analytical techniques revealed that the
addition of chitosan to canola proteins enhances the mechanical properties of the canola
protein films, from 15.4% to 25.0%. Hydrogen bonding was found to be the main force
that mediates the interaction between blended polymers, thus contributing to good com-
patibility. The same study revealed that the complexation of chitosan and protein leads to
polymer morphological changes [60]. In another study, the chitosan–soybean protein blends
displayed strong interactions mediated by hydrogen bonding, leading to significantly im-
proved mechanical properties in terms of tensile strength and elongation at the break of the
bioplastic by 118.78% and 74.93%, respectively. Moreover, the resulting bioplastic shows a
higher water contact angle and degradation temperature than that of pure soybean protein
bioplastic [61]. Another study investigated the compatibility between soybean protein
and agar, and their finding indicated that the formation of new hydrogen bonds between
soybean protein and agar blends enhanced the compatibility and subsequently improved
the mechanical properties [62]. As can be seen, our molecular docking results showed good
agreement with the experimental results; thus, they can be used as a straightforward tool
in the prediction of the compatibility and phase behavior of biopolymer blends.

Table 4. Binding energies of protein–binder interactions.

Polymers
Canola Protein Soybean

Vina
(kcal/mol)

MOE
(kcal/mol)

MM-GPSA
kcal/mol

Vina
(kcal/mol)

MOE
(kcal/mol)

MM-GPSA
(kcal/mol)

Cellulose −6.1 −7.148 −62.65 −5.7 −5.941 − 49.15
Starch −6.4 −7.340 −70.97 −5.8 −6.561 −76.67
Agar −7.3 −7.542 −52.69 −6.1 −6.963 −44.82

Kefiran −7.5 −7.782 −28.73 −6.2 −7.126 −35.43
Lignin −8.9 −8.754 −52.08 −6.8 −8.235 −61.66

Dextran −9.9 −8.935 −40.81 −7.9 −10.902 −56.53
Chitosan −10.7 −15.325 −85.09 −10.8 −11.999 −61.87
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4. Assessment of Docking Accuracy

In order to evaluate the quality of the results and the performance of the tools used,
binding scores were evaluated using AutoDock Vina and Molecular Operating Environment
docking protocol and compared to that of MM-GBSA prime. Up to 600 poses were explored
in each compound with an induced fit of the protein and ranked all docked poses. The top
10 poses reported in each compound relied on London delta G as the S score.

Binding scores of the best conformer of each additive are given in Tables 2–4. It
is important to emphasize that AutoDock Vina and MOE calculate docking scores with
different search algorithms. A comparison of the affinity order from each approach revealed
the same general trend, implying a common ground between AutoDock Vina and MOE
since the ranking of the additives in both docking programs appeared to be the same. The
majority of the poses predicted by MOE were located in close proximity to the site observed
in AutoDock Vina. In comparison to the MM-GBSA results, a noteworthy feature of the
results was that MM-GBSA had an almost similar trend but with a noticeable difference
between the binding scores and the values of MM-GBSA. These findings prompted us to
theoretically introduce MM-GBSA as a reliable indicator for ranking bioplastics additives.

However, to validate our docking predictions, a statistical correlation was built be-
tween the docking scores of AutoDock Vina and MOE as well as between MM-GBSA and
AutoDock Vina to see whether the binding scores predicted by AutoDock Vina, and MOE
can correlate with MM-GBSA scores to correctly rank the binding affinities of the studied
additives. The calculated binding affinity between plasticizers and cross-linkers with stud-
ied proteins from the AutoDock Vina and MOE correlated very well (correlation coefficients
(r) of plasticizers = 0.9339 and 0.8457, correlation coefficient (r) of cross-linkers = 0.9301
and 0.9055, correlation coefficient (r) of blends 0.8787 and 0.9379 for canola and soybean,
respectively). While it is clear that MM-GBSA showed stronger interaction than those pre-
dicted by docking scores, the finding showed that the AutoDock Vina and MOE results of
plasticization and cross-linkers exhibited good rank correlation with the MM-GBSA results
(correlation coefficient (r) = 0.9472, and 0.9197 for canola and soybean protein plasticization
and 0.9465 and 0.9322 for canola and soybean protein cross-linking). Thus, the prediction
performance of these methods was statistically identical and correlated strongly. However,
the correlation coefficient of the AutoDock Vina results with MM-GBSA for polymer blend-
ing system of canola and soybean, are (r) 0.2339 and 0.2135, was not as satisfactory as that
of low molecular weight additives such as plasticizers and cross-linkers. Thus, the rankings
of large ligands with many rotatable bonds need to be confirmed experimentally.

In addition, a receiver operating characteristic curve (ROC) and area under the curve
(AUC) were used in this study to obtain more accurate virtual screening results. The
model’s performance of the AutoDock Vina method in attributing the best scores was
confirmed by distinguishing false positives from true positives. Twenty decoy compounds
were generated for phthalate and citric acid using the DUD-E platform. Then, the additives
and decoy compounds were docked by the AutoDock Vina methodology, and the area
under the ROC curve (AUC) was calculated for the two complexes. As illustrated in Figure
S1, the docking results of the two additives (phthalate and citric acid) showed that the active
molecules and inactive molecules could be properly docked into the active cavity. The AUC
values of the phthalate–canola protein complex and phthalate–soybean protein complex
was 0.7189 and 0.805, and those of the citric acid–canola protein complex and soybean
protein complex were 0.8223 and 0.9611, indicating a good performance respectively. As can
be seen from Figure S1, perfect performance is one that hugs along the outer left and top of
the chart. Therefore, the ROC and AUC showed good results, confirming that the additives
were properly docked into the active cavity using the AutoDock Vina methodology. It
should be noted that the AUC value ranges from 0–1.0; a perfect performance will have
an AUC of 1, whereas values of ≤0.5 imply a perfectly random process, while an AUC of
0 indicates a severe failure on the modeling side. At 0.728 to 0.93, our model’s AUC implies
good performance. For the visualization, protein–additives complexes were visualized and
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double-checked using the Pymol, Discovery Studio, and VMD. Only confirmed and shared
interactions between the three tools were considered in this study.

5. Conclusions

In the present study, we evaluated the performance of MM-GBSA, AutoDock Vina,
and MOE to predict how plant canola and soybean proteins interact with additives. The
binding poses and affinity of each investigated additive with the proteins were analyzed,
and the preferred binding sites were determined. Binding scores were mainly used to rank
twenty-one of the most widely used additives as ligands in protein bioplastic.

Based on the results, it can be concluded that the investigated additives displayed
a wide range of binding strengths, binding sites, and the number of formed hydrogen
bonds, indicating variation in their strength of interactions. Therefore, an additive with
a considerably stronger affinity is suggested to be selected as optimum for further de-
velopment. Moreover, our results showed that MM-GBSA gave a better indication for
protein–additives interactions and showed a good performance for additives with diverse
molecular sizes and functional groups. Thus, our assessment of MM-GBSA in additives
ranking is believed to show the best overall performance. Most notably, the interactions of
plant protein–additives are very sensitive to the molecular size of the used additive and
the pocket size of the host protein, which is directly related to the characteristics of the
binding interface. In addition, our results showed that the protein–additive complexes
are stabilized mainly by hydrogen bonds and hydrophobic and electrostatic forces. A
variation in the density of the formed hydrogen bonds among the additives was observed,
but the density of hydrogen bonds does not seem to have an effect on the strength of
the interaction; therefore, the role of hydrogen bonding in additive efficiency needs to be
assessed by molecular dynamic simulation. Certainly, our docking simulation results are in
good agreement with the experimental measurements present in the literature. Therefore,
the proposed method can be confidently used to predict the compatibility, efficiency, and
volatility of the additives intended to be incorporated into the protein for the purpose of
bioplastics preparation.

In summary, the molecular docking approach can serve as a fast and powerful tool in
bioplastic additive ranking. This method allows for characterizing the compatibility and
competition between protein and additives and between additives without the necessity of
more sophisticated methods. Furthermore, implementation of such tools can help scientists
to shorten the cycle of bioplastic development and thus make the process more cost-
effective, obtain the hidden relationship between different variables, guide the chemical
synthesis route, understand the mechanism of action, and identify and discover new
potential additives with a significant reduction in cost and time. However, there is no
doubt that the feasibility of molecular docking in predicting protein–additive interactions
need to be experimentally examined. Obviously, comprehensive investigation behind every
observation and optimizing the optimal computational protocol and the parameter in a
single study is a non-simple task that requires more investigation, which could increase the
accuracy and reliability of the results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14173690/s1, Figure S1: ROC curves for docked canola-
phthalate (A), soybean- phthalate (B), soybean-citric Acid (C) and canola-citric Acid (D) by AutoDuck
Vina; Table S1: Protein-additive interaction profile; Table S2: Predicted binding sites of 11S globulin
plant protein obtained by the different docking routines.
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