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Summary
Background Patients with type 1 diabetes (T1D) and type 2 diabetes (T2D) present intestinal disturbances. Recent
epidemiological data have showed that, worldwide, over half of newly diagnosed T1D patients were adults. However,
the gut microbial alterations in adult-onset T1D are unclear. We aimed to identify the signatures of gut microbiota
and metabolites in patients with adult-onset T1D systematically, comparing with T2D patients and healthy controls
(HCs).

Methods This study enrolled 218 subjects from February 2019 to April 2022 (discovery cohort: 36 HCs, 51 patients
with adult-onset T1D and 56 patients with T2D; validation cohort: 28 HCs, 27 patients with adult-onset T1D and 20
patients with T2D). Gut microbial profiles of the study subjects were investigated by metagenomic sequencing, and
their faecal and serum metabolites were measured with targeted metabolomics. The study was registered on
ClinicalTrials.gov (NCT05252728).

Findings Patients with adult-onset T1D had significant differences in the composition of bacteria and their
metabolites, characterized by notable depletion of short-chain fatty acid-producing bacteria, especially Eubacterium
rectale. This was associated with a severe loss of phenolic acids and their derivatives, including gallic acid
(associated with glucose metabolism) and 3,4-dihydroxyhydrocinnamic acid (linked with glucose metabolism and
pancreatic beta cell autoimmunity). A predictive model based on six bacteria and six metabolites simultaneously
discriminated adult-onset T1D from T2D and HCs with high accuracy. Interestingly, bacterial-viral or bacterial-
fungal trans-kingdom relationships, especially positive correlations between bacteriophages and beneficial bacteria,
were significantly reduced in adult-onset T1D compared to HCs.

Interpretation Adult-onset T1D patients exhibit unique changes in host-microbiota-metabolite interactions. Gut
microbiota and metabolite-based algorithms could be used as additional tools for differential diagnosis of different
types of diabetes and beyond.
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Research in context

Evidence before this study
Over half of newly diagnosed cases of type 1 diabetes (T1D)
occur in adults, however, nearly 40% of adult-onset T1D is
initially misdiagnosed as type 2 diabetes (T2D), with serious
medical consequences. We searched PubMed with the terms
“type 1 diabetes”, “metagenome”, “microbiota”,
“metabolome” and “metabolites” for original articles and
reviews published up to April 13th, 2023. Previous studies
have illustrated that gut microbiota and metabolites
contribute to the pathogenesis of both childhood-onset T1D
and latent autoimmune diabetes in adults (LADA), but none
of them mentioned the adult-onset T1D. The efficacy of
differential diagnostic methods for different types of diabetes
based on gut microbes and metabolites may be
underestimated.

Added value of this study
To the best of our knowledge, this is the first study using
metagenomics and metabolomics to identify not only the

altered gut bacteria but also intestinal viruses and fungi in
patients with adult-onset T1D in comparison with patients
with T2D and/or healthy controls (HCs). A predictive model
based on gut microbiota and metabolic features has been
developed using machine learning techniques, demonstrating
high efficacy for the diagnosis and classification of diabetes
after further validation.

Implications of all the available evidence
Our study highlighted the alteration of gut microbiota and
metabolites in adult-onset T1D. The marker panel of bacterial
species and faecal metabolites provided a potential diagnostic
tool for discriminating adult-onset T1D from T2D and HCs.
These predictive models have the potential to be applied in
public healthcare settings and community-level populations,
thereby promoting precision diagnosis and treatment of
diabetes.
Introduction
Type 1 diabetes (T1D) is caused by autoimmune
destruction of pancreatic beta cells, leading to severe
insulin deficiency and requires life-long insulin therapy.1

It is historically considered as a disease of childhood and
adolescence, but recent epidemiological studies showed
that approximately half of the new-onset T1D cases occur
in adults worldwide.2 The correct diagnosis of childhood-
onset T1D is straightforward, however, nearly 40% of
adults with T1D are often initially misdiagnosed with
type 2 diabetes (T2D),3,4 which is associated with insulin
resistance and not absolute insulin deficiency. Mis-
diagnosing T1D as T2D can lead to poor blood glucose
control, increased risk of ketoacidosis, and possibly life-
threatening complications.5 Thus, it is critical to identify
the molecular basis and explore new diagnostic bio-
markers for adult-onset T1D.

It has been reported that there is a dysbiosis of gut
microbiota in childhood-onset T1D and adult T2D.6,7

Patients with childhood-onset T1D exhibit composi-
tional alterations in the gut microbiota, which are often
seen as a decreased ratio of Firmicutes/Bacteroides and
an increased abundance of potential pathobionts,
including Bacteroides and Blautia.8,9 Patients with T2D
exhibit a loss of butyrate-producing bacteria, especially a
decreased abundance of Akkermansia muciniphila,10 and
an increased abundance of bacteria (e.g., Prevotella copri
and Bacteroides vulgatus) with potential of branched-
chain amino acids (BCAAs) biosynthesis which may
contribute to increased peripheral BCAAs concentra-
tions and insulin resistance.11,12 However, the change in
the gut microbiota in adult-onset T1D has not been
elucidated, systemically.

In addition to the direct interaction of gut microbiota
with host tissue cells including immune cells, the
impact of the gut microbiota can also be mediated by
their metabolites that are able to induce host immuno-
logical and physipathological responses in the intestine
and at distant organs. Microbe-derived metabolites
showed obvious alterations in T2D,13 especially BCAAs
produced by intestinal bacteria, which are related to the
deterioration of insulin sensitivity.11 In patients with
latent autoimmune diabetes in adults (LADA), a subtype
of T1D, the composition of the gut microbiota and its
metabolites were different from those in T2D patients
and healthy controls (HCs), especially with a severe
deficiency of short-chain fatty acid (SCFA)-producing
bacteria in LADA.14 Microbial signatures can help
discriminate patients with longstanding T1D from
HCs.15 However, thus far, no integrated analysis of
www.thelancet.com Vol 62 August, 2023
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multiomics data from the gut microbiome and metab-
olome has been conducted to identify novel biomarkers
differentiating adult-onset T1D patients, T2D patients
and HCs.

To bridge the abovementioned knowledge gaps, we
applied whole-genome shotgun metagenomic analysis
to elucidate the overall landscape of the gut microbiota
in patients with different subtypes of diabetes.
Furthermore, we identified various metabolites and
clarified the relationship between gut microbiota and
metabolites, as well as the host phenotypes. Finally, we
established a multiomic classifier that discriminates
adult-onset T1D patients from T2D patients and HCs.
Methods
Ethics
All procedures were in accordance with the principles of
the Declaration of Helsinki and were approved by the
Human Ethics Committee of Second Xiangya Hospital
of Central South University (No. 2019-Research-30).
Written informed consent was obtained from each
subject at enrolment. The study was registered at
https://clinicaltrials.gov(NCT05252728).

Subject recruitment
A total of 218 study subjects were recruited from
February 2019 to April 2022, including a discovery set
from Changsha, China (discovery set, n = 143) and an
external validation set from Pingjiang, China (validation
set, n = 75). In the discovery set, three groups, including
HCs (n = 36), adult-onset T1D (n = 51) and T2D (n = 56),
were recruited. The validation set enrolled three sex- and
age-matched groups, including HCs (n = 28), adult-onset
T1D (n = 27) and T2D (n = 20). All HCs enrolled in this
study were unrelated to the patients. All patients
enrolled in this study fulfilled the 1999 World Health
Organization criteria for diabetes.16 The anthropometric
and biochemical characteristics of HCs and patients
with adult-onset T1D or T2D in the discovery set and
validation set are summarized in online Supplementary
Table S1. T1D was diagnosed according to the criteria of
the American Diabetes Association.17 In addition to the
diagnosis of diabetes, the followings were also taken into
account in the diagnosis of T1D: symptoms, signs, his-
tory, dependence of insulin application, absence of
pancreatic beta cell function, and were positive for at
least one of islet autoantibodies, including glutamic acid
decarboxylase antibody (GADA), insulinoma-associated
protein 2 antibody (IA-2A), or zinc transporter-8 anti-
body (ZnT8A). Adult onset was defined as an onset age
≥20 years. Subjects with the following conditions were
excluded: severe gastrointestinal, cardiovascular, cere-
brovascular, liver or kidney diseases; other autoimmune
diseases; a history of gastrointestinal surgery; tumours;
pregnancy; treatments with oral hypoglycaemic agents
or immunomodulators; and use of probiotics, prebiotics
www.thelancet.com Vol 62 August, 2023
or antibiotics within one month. All subjects had an in-
person interview, in which host metadata, disease status,
dietary intake and lifestyle information were collected.

Metagenomic sequencing, taxonomic classification
and functional annotation
Faecal samples were directly stored in a −80 ◦C freezer
after sampling. Faecal DNA was extracted following the
manufacturer’s protocol.18 DNA was fragmented to
construct a paired-end library by using a Covaris M220
sonicator. Samples were sequenced on the Illumina
platform according to the standard protocol. Clean raw
reads were obtained by removing the raw sequence
reads with low quality (paired-end; insert size, 350 bp;
read length, 150 bp) and using Burrows-Wheeler
alignment (BWA) to remove human-derived reads, and
32.6 million reads per sample on average remained.

The clean reads were assembled into contigs by us-
ing MEGAHIT. MetaProdigal was used to predict the
open reading frames from each contig. The sequences
of predicted genes were clustered using CD-HIT soft-
ware. High-quality reads were aligned to the nonre-
dundant (NR) gene set using SOAPaligner, and the
relative abundance of genes was calculated as described
by Qin et al.7 For the taxonomic annotations of bacteria,
viruses and fungi at different taxonomic levels, the NR
gene set was aligned to the National Centre for
Biotechnology Information (NCBI) NR database with an
e-value cutoff of 1e-5 using DIAMOND. Genes with a
relative abundance of less than 0.01% were removed for
the subsequent analysis. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional annotation of
different categories was conducted using DIAMOND
with an e-value cutoff of 1e-5.

Metabolomic analysis of faecal and serum samples
Samples were directly stored at −80 ◦C until analysis. An
ultra-performance liquid chromatography coupled to
tandem mass spectrometry (UPLC-MS/MS) system
(ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford,
MA, USA) was used for targeted metabolomic analysis.
Quality control (QC) samples were assembled by mixing
equal amounts of each sample and were injected at
regular intervals. UPLC-MS/MS was used to acquire
raw data files. Peak integration, calibration, and quan-
titation for each metabolite were performed by using
MassLynx software (v4.1, Waters, Milford, MA, USA).
Metabolites with a relative SD of >30% across QC
samples and present in <80% of samples in any group
were removed for further analysis. The missing values
were filled with minimum values, and the abundance
data were log2-transformed.

Clinical parameter measurements
Demographic and clinical data were collected, including
age, sex, body mass index (BMI), and diabetes duration,
according to standard measurement methods.19 Venous
3
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blood samples were collected in the morning after
overnight fasting and 120 minutes after a mixed meal.
Fasting blood glucose (FBG), and postprandial blood
glucose (PBG) were measured. Haemoglobin A1c
(HbA1c) was determined by a Bio-Rad VARIANT II
Haemoglobin Testing System (Hercules, CA, USA).
Serum levels of fasting C-peptide (FCP) and post-
prandial C-peptide (PCP) were assessed by the Advia
Centaur System (Siemens, Munich, Germany).
Homoeostasis model assessment (HOMA) 2 estimates
of β-cell function (HOMA2-B), insulin sensitivity
(HOMA2-S) and insulin resistance (HOMA2-IR) based
on C-peptide concentrations were calculated with the
HOMA calculator.20 GADA, IA-2A, and ZnT8A were
detected by radioligand assays as previously described.19

Statistics
Differences in clinical parameters were analysed using
the chi-square test or Kruskal–Wallis test, and multiple
comparisons were corrected with Bonferroni post hoc
tests. Due to lack of data on the gut microbiota differ-
ences among adult-onset T1D, T2D and HCs, no sta-
tistical methods were used to estimate the sample size,
but our sample size is similar to those reported in
childhood- and adolescent-onset T1D and HCs.21,22 Sig-
nificant differences in the relative abundances of taxa
were identified by linear discriminant analysis (LDA)
effect size (LEfSe) analysis, and P values were corrected
using the Benjamini and Hochberg false discovery rate
(FDR). Taxa with LDA values > 2.0 and P < 0.05 were
considered differentially abundant, and taxa with Pfdr <
0.1 were considered significantly changed. Permuta-
tional multivariate analysis of variance (PERMANOVA)
for microbiota beta diversity comparison and redun-
dancy analysis (RDA) for evaluating the effects of
demographical variables on microbiota community
variation were conducted using the R package vegan.
The multivariate association with linear models
HC Adult-onset T1D T2D
Stool sample
Serum sample

Validation set

Discovery set N=36 N=51 N=56

N=28 N=27 N=20

Trans-kingdom relationship Microbe-metabolite interaction

Fig. 1: Diagram of th
(MaAsLin) framework was used to adjust the effects of
host factors. Orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) algorithms were applied to
visualize the comparison in the metabolite profiles.
Variable influence on projection (VIP) scores from the
OPLS-DA were calculated. Random forest models were
built to differentiate different groups (randomForest
package in R) based on the microbial features, metabolic
features and a combination of the two types of data. All
statistical analyses were performed in SPSS version 26.0
and R 4.0.4. Pfdr < 0.1 was considered statistically
significant.

Role of the funding source
The funders of the study had no role in study design,
data collection, data analyses, data interpretation, or
writing of the report. The corresponding authors had
full access to all the data in the study and had final re-
sponsibility for the decision to submit for publication.
Results
Demographics and baseline characteristics of
subjects
Subjects in these three groups were matched by age and
sex. The glucose metabolism parameters of patients
with diabetes, including FBG, PBG and HbA1c levels,
were significantly higher than those of HCs (P < 0.05),
and there was no significant difference between the two
diabetic groups. The serum levels of FCP and PCP in
patients with adult-onset T1D were significantly lower
than those in HCs and patients with T2D (P < 0.05,
Supplementary Table S1).

Alterations in the microbial diversity in adult-onset
T1D
The study design was illustrated in Fig. 1. We analysed
the microbial diversity of the three groups. For alpha
NH2

NHN

O
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Construction and validation 
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diversity, significant differences were found in the Chao
index of bacteria and viruses between adult-onset T1D
patients and HCs, but no significant differences were
found in the Shannon and Simpson index (Fig. 2A, C,
E). To further identify the overall microbial features of
the three groups, beta diversity comparison was per-
formed by PERMANOVA. Principal coordinates anal-
ysis (PCoA) based on Bray–Curtis distance showed that
the overall bacterial community structure of adult-onset
T1D patients was significantly different from that of
HCs and T2D patients (PERMANOVA test, adult-onset
T1D vs HC: P = 0.020; T2D vs HC: P = 0.013; adult-
onset T1D vs T2D: P = 0.030) (Fig. 2B). However,
there were no significant differences in the global viral
or fungal composition among these three groups
(Fig. 2D, F), which is probably due to the limited iden-
tification of viral or fungal species.

Taxonomic changes in microbial composition in
adult-onset T1D
Next, we analysed the microbial composition at different
taxonomic levels. The microbial composition at the
phylum and genus level were shown in Fig. 2G and H.
LEfSe analysis was used to identify the differentially
abundant microbial features among HCs, adult-onset
T1D patients, and T2D patients. A total of 102 species
between adult-onset T1D patients and HCs, 86 species
between T2D patients and HCs, and 49 species between
adult-onset T1D patients and T2D patients were identi-
fied as differentially abundant microbial species (LDA
value > 2, P < 0.05) (Supplementary Tables S2 and S3).
Given that host factors may influence microbial
composition, we applied RDA analysis to identify the
potential confounding factors associated with the mi-
crobial composition in these groups and then adjusted
them by the MaAsLin test. Host factors including age,
sex, BMI and duration of diabetes were included in RDA
analysis and BMI was identified as a confounding factor
(P = 0.038). Regarding the bacterial microbiota, when
compared with those in HCs, 15 taxa in adult-onset T1D
patients and nine taxa in T2D patients remained
significantly differentially altered after multiple testing
correction and adjustment for BMI (LDA value > 2, Pfdr

< 0.1). Among the 15 taxa that were altered in adult-
onset T1D, 12 taxa were exclusively changed in adult-
onset T1D patients, and ten of them were enriched in
adult-onset T1D, most of which belonged to the genera
Bacteroides, Catenibacterium, and Alistipes, while the
other two species were depleted in adult-onset T1D pa-
tients compared with HCs, including Eubacterium rectale
and unclassified Lachnospiraceae (Fig. 3A, D). Among the
nine taxa that were altered in T2D, six taxa were exclu-
sively decreased in T2D patients when compared with
HCs, and they belonged to the family Ruminococcaceae
and family Lachnospiraceae, such as Faecalibacterium
prausnitzii, and Agathobaculum butyriciproducens
(Fig. 3B, D). Further, three taxa were altered in both
www.thelancet.com Vol 62 August, 2023
adult-onset T1D and T2D patients as shown in Fig. 3C
and D. Additionally, we identified functional alterations
of gut microbiota in adult-onset T1D. We found that the
pathways of “Alanine, aspartate and glutamate meta-
bolism” and “Nucleotide excision repair” were signifi-
cantly enriched in adult-onset T1D patients when
compared with HCs and T2D patients (Supplementary
Fig. S1).

Regarding the viruses, when compared with those in
HCs, six taxa were differentially abundant in adult-onset
T1D patients, and five taxa were differentially abundant
in T2D patients (LDA > 2, P < 0.05, Supplementary
Tables S4 and S5). But only three of the taxa which
were altered in adult-onset T1D remained significant
after multiple testing correction and adjustment for
BMI. Regarding the fungi, compared with HCs, six
fungal species were found differentially abundant in
T2D patients (LDA > 2, P < 0.05, Supplementary
Table S6), and two of them remained significantly
decreased after multiple testing correction and adjust-
ment for BMI.

Decreased bacterial-viral/fungal associations in
adult-onset T1D
Accumulating evidence suggests that viruses and fungi
also play an essential role in maintaining the homoeo-
stasis of gut microecology and contribute to metabolic
diseases.23,24 We further explored the microbial re-
lationships among the bacterial, viral, and fungal prev-
alent species in different study groups. The number of
correlations between gut bacterial and viral commu-
nities was decreased in adult-onset T1D compared with
that in T2D patients and HCs (Fig. 4A–C). Positive
bacterial-viral trans-kingdom correlations accounted for
81.5% in HCs and 73.0% in T2D patients but only
56.3% in adult-onset T1D patients (Chi-squared test,
P < 0.001 for all). Compared with that in HCs, the
strength of correlations between the bacteriome and
virome was significantly weaker in the diabetic groups
and was the weakest in the adult-onset T1D group
(Fig. 4A–C). The significant reductions in bacterial and
viral associations in adult-onset T1D occurred mainly
between viruses assigned to the family Podoviridae or
Siphoviridae and bacteria from the genus Prevotella or
Oscillibacter. Interestingly, P. copri, which is the host of
crAss-like phages,25 showed a strong positive correlation
with CrAssphage sp. in HCs (Fig. 4A). However, the
similar correlation disappeared in adult-onset T1D pa-
tients (Fig. 4B). Moreover, the strength of correlations
between bacterial and fungal communities in the adult-
onset T1D and T2D groups was also significantly weaker
than that in the HC group (Fig. 4D–F). Taken together,
these results indicate that notable changes in the
bacterial-viral or bacterial-fungal trans-kingdom re-
lationships present in adult-onset T1D, which may
contribute to disease development. The robust positive
correlations between phages and their bacterial hosts
5
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Fig. 2: Faecal microbiome variations in patients with adult-onset T1D and patients with T2D. Alpha and beta diversity comparison of
bacteria (A, B), viruses (C, D) and fungi (E, F) among patients with adult-onset T1D, patients with T2D and HCs. (G, H) Percentage of bacterial
community abundance at phylum and genus levels; phyla or genera with a relative abundance <1% in each sample are merged into others. Box
plots show median ± quartiles, and the whiskers extend from the hinge to the largest or smallest value no further than 1.5 folds of the
inter-quartile range. *P < 0.05, Abbreviations: HCs, healthy controls; T1D, type 1 diabetes; T2D, type 2 diabetes; PCoA, principal coordinated
analysis; PERMANOVA, permutational multivariate analysis of variance.

Articles

6 www.thelancet.com Vol 62 August, 2023

www.thelancet.com/digital-health


A                                                                                  B

C                           D Bacteria

Adult-onset T1D vs HC T2D vs HC12 63

HC Adult−onset T1D T2D

* * * * * * * * * * * *

g__unclassified_f__O
doribacteraceae

s__[Eubacterium
]_rectale

s__Alistipes_senegalensis

s__Bacteroides_cellulosilyticus

s__Bacteroides_sp ._4_1_36

s__Bacteroides_sp._AF26−10BH

s__Bacteroides_s p ._AR
29

s__Bacteroides_uni for m
is_C

A G
:3

s__C
atenibacte rium

_m
itsuokai

s__Enterocloster_aspar agifo r m
is

s__O
dor ibacter_laneus

s__unclassified_f__Lachnospir aceae

−25

−20

−15

−10

−5

0 * ** ** * * *

f__Lachnospiraceae

g__Agathobaculum

g__Faecalibacterium

s__Agathobaculum
_b utyriciproducens

s__F aecalibacter ium
_pr ausnitzii

s__unclassified_g__Faecalibacte rium

−15

−10

−5

0

*
*

*
**

*
*

g__C
atenibacterium

g__unclassified_f__Lachnospir aceae

s__Bacteroides_intestinalis

−15

−10

−5

0

Adult-onset T1D signature

s__unclassified_f__Lachnospiraceae
s__[Eubacterium]_rectale
s__Bacteroides_cellulosilyticus
s__Bacteroides_sp._4_1_36
s__Alistipes_senegalensis
s__Catenibacterium_mitsuokai
s__Enterocloster_asparagiformis
s__Bacteroides_uniformis_CAG:3
g__unclassified_f__Odoribacteraceae
s__Bacteroides_sp._AR29
s__Bacteroides_sp._AF26-10BH
s__Odoribacter_laneus

Shared signature

g__unclassified_f__Lachnospiraceae
s__Bacteroides_intestinalis
g__Catenibacterium

T2D signature

f__Lachnospiraceae
g__Faecalibacterium
s__Faecalibacterium_prausnitzii
s__unclassified_g__Faecalibacterium
g__Agathobaculum
s__Agathobaculum_butyriciproducens

Fig. 3: Gut microbiota signatures in patients with adult-onset T1D and patients with T2D. (A–C) Boxplots show the relative abundance of
taxa exclusively altered in patients with adult-onset T1D (A), patients with T2D (B), and both patient groups (C) when compared with HCs. (D)
Venn diagram of 21 taxa with altered abundances in patients with adult-onset T1D, patients with T2D or shared in both patient groups. Box
plots show median ± quartiles, and the whiskers extend from the hinge to the largest or smallest value no further than 1.5 folds of the inter-
quartile range. *Pfdr < 0.1, **Pfdr < 0.05. Abbreviations: HCs, healthy controls; T1D, type 1 diabetes; T2D, type 2 diabetes.
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may be important in maintaining the ecological balance
of the gut microbiota.

Associations of the microbiota and faecal/serum
metabolites
To further elucidate the association between the
microbiota and host metabolism, we performed targeted
www.thelancet.com Vol 62 August, 2023
metabolomics using the faecal and serum samples.
When compared with the HC group, there were 23 and
25 differentially abundant faecal metabolites, as well as
57 and 71 differentially abundant serum metabolites in
adult-onset T1D and T2D, respectively (Pfdr < 0.1, Fig. 5,
Supplementary Figs. S2 and S3). Of note, some phenolic
acids and their derivatives were markedly decreased in
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Fig. 4: Trans-kingdom correlations in patients with adult-onset T1D, patients with T2D and HCs. The trans-kingdom associations of the
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adult-onset T1D patients, especially gallic acid and 3,4-
dihydroxyhydrocinnamic acid (Supplementary
Tables S7–S10). SCFA-producing bacteria and SCFAs
(e.g., butyric acid and propionic acid) also showed
significantly decreased abundance in adult-onset T1D
patients compared to those of HCs, though the decline
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of these bacteria and SCFAs were comparable between
adult-onset T1D and T2D patients. Next, we performed
correlation analysis to investigate the associations be-
tween differentially abundant bacteria and metabolites.
We found that HC-enriched bacteria had strongly posi-
tive correlation with HC-enriched metabolites but were
negatively correlated with diabetes-enriched metabolites
(Fig. 5B and D). Notably, we found that some less
abundant phenolic acids and their derivatives (e.g., gallic
acid and 3,4-dihydroxyhydrocinnamic acid) were posi-
tively correlated with SCFA-producing bacteria, which
were decreased in adult-onset T1D. And most of these
SCFA-producing bacteria belonged to family Lachno-
spiraceae, genus Clostridium, and genus Anaerostipes
(Fig. 5D).

Associations of the altered microbes and
metabolites with clinical parameters
To better understand the role of gut microbiota in dis-
ease progression, we analysed the associations of clinical
parameters and differentially abundant bacteria or me-
tabolites in adult-onset T1D and HC (Fig. 6). We found
some adult-onset-T1D-related taxa, including some
SCFA-producing bacteria that showed significant cor-
relations with glucose-related parameters and pancreatic
beta cell function, which were in accordance with pre-
vious study.26 For instance, E. rectale, a butyric acid-
producing bacteria, was negatively correlated with PBG
and HbA1c (ρ = −0.25, P = 0.029; ρ = −0.26, P = 0.019;
Fig. 6A), and was positively correlated with PCP and
HOMA2-B (ρ = 0.25, P = 0.024; ρ = 0.26, P = 0.016).
Some viruses such as Salmonella virus SJ46, uncultured
Caudoviralesphage and unclassified Caudovirales, also
showed negative correlations with PBG and HbA1c, or
positive correlations with PCP and HOMA2-B (Fig. 6A).
In addition, we found some novel links between host
phenotypes and faecal metabolites including faecal gallic
acid, an adult-onset T1D-depleted phenolic acid, which
was negatively correlated with PBG (ρ = −0.31,
P = 0.020, Fig. 6B). Regarding serum metabolites, four
serum amino acids were decreased in adult-onset T1D,
including L-glycine, L-serine, L-threonine, and L-gluta-
mine, which were negatively associated with glucose
metabolism-related parameters but positively correlated
with pancreatic beta cell function (Fig. 6C). In patients
with adult-onset T1D only Bacteroides faecis was nega-
tively correlated with FBG and titres of ZnT8A
(ρ = −0.32, P = 0.027; ρ = −0.31, P = 0.029; respectively).
Serum rhamnose, which was depleted in adult-onset
T1D patients, was positively correlated with PCP
and HOMA2-B (ρ = 0.42, P = 0.037; ρ = 0.48, P =
0.016; respectively). Additionally, serum 3,4-
was transformed into Z scores. +P < 0.05, *Pfdr < 0.1, **Pfdr < 0.05, ***Pf
OPLS-DA, orthogonal partial least squares discriminant analysis; VIP, varia
betes; T2D, type 2 diabetes.
dihydroxyhydrocinnamic acid was negatively correlated
with titres of ZnT8A (ρ = −0.38, P = 0.047)
(Supplementary Fig. S4). These findings suggest
potential links between gut microbiota, metabolites and
pancreatic beta cell autoimmunity in adult-onset T1D.

Multiomic classifier discriminating patients with
adult-onset T1D from HCs or patients with T2D
We next assessed the potential value of using the gut
microbiota and metabolites as biomarkers for the dif-
ferential diagnosis of diabetes. We built random forest
models based on faecal taxonomic or metabolic features
that were altered in adult-onset T1D or T2D to
discriminate adult-onset T1D patients from HCs and
from T2D patients (Supplementary Table S11). A
random forest model was employed to select key
discriminatory gut microbiota or metabolites constitu-
ents. We identified a bacterial signature composed of six
bacterial species that could distinguish patients with
adult-onset T1D from HCs or patients with T2D (adult-
onset T1D vs. HC: area under the curve (AUC) = 0.931
[95% CI 0.881–0.982]; adult-onset T1D vs. T2D:
AUC = 0.932 [95% CI 0.887–0.978]). In addition, the
diagnostic efficacy of another random forest model
based on six identified faecal metabolites showed
similar results (adult-onset T1D vs. HC: AUC = 0.836
[95% CI 0.740–0.933]; adult-onset T1D vs. T2D:
AUC = 0.844 [95% CI 0.761–0.927]). Notably, using six
identified bacterial species and six identified metabo-
lites, the combined model yielded an AUC of 0.988
(95% CI 0.970–1.000) in discriminating between pa-
tients with adult-onset T1D and HCs, and the same
model reached the AUC of 0.981 (95% CI 0.959–1.000)
for discriminating patients with adult-onset T1D from
patients with T2D (Fig. 7A and B).

Moreover, we verified the diagnostic performance of
the above models in the validation set independently.
Accordingly, we found that the combined marker panel
of six bacterial species and six faecal metabolites could
still effectively differentiate patients with adult-onset T1D
from HCs with an AUC of 0.824 (95% CI 0.698–0.951)
and differentiate patients with adult-onset T1D from
patients with T2D with an AUC of 0.812 (95% CI
0.687–0.936) in the validation set (Fig. 7C and D).
Discussion
In this study, we reported the metagenomic and
metabolomic features of adult-onset T1D. To our
knowledge, this is the first study using metagenomics
and metabolomics to identify not only the altered gut
bacteria but also intestinal viruses and fungi in patients
dr < 0.01, ****Pfdr < 0.001, #VIP >1. Abbreviations: FC, fold change;
ble influence on projection; HCs, healthy controls; T1D, type 1 dia-
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with adult-onset T1D in comparison with patients with
T2D and/or HCs. The faecal and serum metabolomic
profiles were also significantly distinct across the three
study groups and were tightly linked with microbiota
compositions. Importantly, we found that microbial and
metabolic changes in adult-onset T1D were associated
with islet autoimmunity and pancreatic beta cell func-
tion. Using different models, we independently vali-
dated a biomarker panel of gut bacteria and metabolites
that can distinguish patients with adult-onset T1D from
HCs as well as from patients with T2D with high ac-
curacy. Moreover, we detected different signatures of
the gut viral and fungal species in patients with adult-
onset T1D and found that the bacterial-viral or
bacterial-fungal correlations were significantly reduced
in patients with adult-onset T1D in comparison to HCs.
Most of the studies have been focusing on intestinal
bacteria, little is known about intestinal viral and fungal
signatures in diabetes, thus, our findings lay the foun-
dation for better understanding the role of the entire
www.thelancet.com Vol 62 August, 2023
intestinal ecosystem in different types of diabetes and
may provide a more precise diagnostic tool for adult-
onset T1D.

In the current study, we identified distinctive signa-
tures of microbiota and metabolites in adult-onset T1D.
It is striking that the metabolites of patients with adult-
onset T1D showed significantly decreased abundance
of some phenolic acids and their derivatives (e.g., gallic
acid, 3,4-dihydroxyhydrocinnamic acid). Phenolic acids,
an important category of polyphenols, exert high anti-
oxidant properties, antidiabetic ability and anti-
inflammatory effects on accelerating the differentiation
of T cells, increasing the number of Tregs, and repres-
sing the release of inflammatory cytokines from mac-
rophages.27,28 Plant extracts containing polyphenols like
gallic acid could reduce insulitis and maintain serum
insulin levels in NOD mice.29 Intriguingly, studies have
indicated phenolic acids, particularly gallic acid, can in-
crease the levels of SCFAs, which are known to have
important beneficial functions locally in the intestine
11
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Fig. 7: Disease classification based on the signatures of gut microbiome and metabolome. Random forest classifiers composed of bacteria,
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and immuno-modulatory effects systemically.30 In line
with those findings, we found an apparent loss of SCFA-
producing bacteria accompanied by decreased levels of
serum SCFAs in patients with adult-onset T1D, which
were linked to pancreatic beta cell function and islet
autoimmunity. Animal studies showed that SCFA-rich
diets could protect NOD mice from the development of
T1D through enhancing gut integrity and increasing the
number and function of Tregs.31 It is conceivable to
speculate that the severe loss of phenolic acids lead to the
decrease in the abundance of SCFAs-producing bacteria
and the subsequent reduction of SCFAs, which is a risk
factor for the onset of T1D.26,31 Therefore, the supple-
mentation of these phenolic acid compounds could be a
promising approach to alleviate the disease severity.

Some recent studies have suggested that enterovi-
ruses and fungi may play essential roles in the patho-
genesis of autoimmune diabetes.24,32 Interestingly, we
found that viruses from patients with adult-onset T1D
showed higher alpha diversity than those from HCs.
However, the positive correlations between bacteria and
viruses in patients with adult-onset T1D were lower and
weaker than those in HCs and in patients with T2D. To
a large extent, most of the reduced positive correlations
found in patients with adult-onset T1D were between
viruses and beneficial bacteria. Interestingly, similar
reductions in trans-kingdom correlations were also
found in other autoimmune diseases, such as ulcerative
colitis.33 Although limited fungal taxa were identified in
our study, we did find a mild reduction in bacterial-
fungal trans-kingdom relationships in patients with
adult-onset T1D compared to those in HCs. Little is
known about the role of fungi in autoimmune diseases
such as T1D and it is clear that some extensive and in-
depth investigations are needed to elucidate their role in
the pathogenesis of adult-onset T1D.
www.thelancet.com Vol 62 August, 2023
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Importantly, based on gut microbial signatures and
metabolic features of the disease, we built a prediction
model of adult-onset T1D, which could accurately
identify the disease. We showed that the differentiation
power of the model could be further improved with the
addition of metabolites, and the use of the “6 + 6”model
could simultaneously distinguish patients with adult-
onset T1D from patients with T2D and from HCs.
Thus, it is possible to differentiate the disease from the
perspective of gut microbiota and metabolites. More
importantly, the efficacy of the model was sufficiently
validated in an external validation cohort. At present, the
methods to differentiate adult-onset T1D from T2D are
limited to the use of clinical phenotypes such as disease
onset pattern, C-peptide levels, BMI and islet autoanti-
body levels. However, the increasing prevalence of
obesity in patients with T1D, due to environment and
lifestyle factors, the presence of ketosis-prone in patients
with T2D and idiopathic T1D, as well as unavailable
facility for autoantibody detection in some clinics make
it difficult to accurately classify different types of dia-
betes. In that sense, our study provides a valuable
auxiliary aid to diagnostic precision of diabetes.

Our study has several limitations. First, despite our
efforts to address for confounding factors when
comparing among the three groups (sex- and age-
matched with comparable demographic characteristics,
antibiotic exposure and comorbidities), our findings
could be influenced by other confounders including
described differences such as disease duration, and not
well documented dietary intake which was based solely
on a questionnaire. Second, there might be missing
information on the RNA virome, as our approach could
only identify faecal eukaryotic viruses. Additionally, the
methods used in this study were not specifically
designed to capture viral or fungal changes. Third, our
study only evaluated the prediction value of microbial
and metabolic features, and a prediction model inte-
grating demographic and clinical variables with gut
microbial features and metabolic characteristics is
required to achieve higher efficacy and accuracy. Fourth,
due to the cross-sectional design, the results cannot
establish a causal relationship between the identified gut
microbiota and adult-onset T1D. Finally, the sample size
of this study was relatively small, and the subjects were
restricted to a specific ethnic population and geographic
region, which may limit the generalizability of the re-
sults. Therefore, the significance of these findings on
the new biomarkers for adult-onset T1D remains to be
confirmed by larger prospective follow-up studies
involving more ethnic populations and geographic
regions.

In summary, our study indicates that patients with
adult-onset T1D have altered host-microbiota-metabolite
interactions, which is likely involved in the pathogenesis
of the disease. Moreover, our study provides some
www.thelancet.com Vol 62 August, 2023
insight into gut microbiota and metabolite signatures
that could be useful tools in the differential diagnosis of
different types of diabetes.
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