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Abstract

Background—Transcranial direct current stimulation (tDCS) is a potential tool for alleviating 

various forms of cognitive decline, including memory loss, in older adults. However, past effects 

of tDCS on cognitive ability have been mixed. One important potential moderator of tDCS effects 

is the baseline level of cognitive performance.

Methods—We tested the effects of tDCS on face-name associative memory in older adults, who 

suffer from performance deficits in this task relative to younger adults. Stimulation was applied to 

the left inferior prefrontal cortex during encoding of face-name pairs, and memory was assessed 

with both a recognition and recall task.

Results—Face–name memory performance was decreased with the use of tDCS. This result was 

driven by increased false alarms when recognizing rearranged face–name pairs.

Conclusions—This result suggests that tDCS can lead to increased false alarm rates in 

recognition memory, and that effects of tDCS on a specific cognitive task may depend upon 

cognitive capability for that task.

Introduction

Older adults tend to suffer from cognitive deficits as a normal part of the aging process [1, 

2]. An intervention called transcranial direct current stimulation (tDCS) can be used to 

enhance both motor and cognitive performance in older adults [3–5; for reviews, see 6–9]. 

TDCS works by sending a small electrical current through the scalp, which modulates 

neuronal activity. Anodal stimulation is thought to increase the likelihood of neuronal firing, 

and hence improve neural and cognitive function, whereas cathodal stimulation is thought to 

reduce the likelihood that neurons will fire an action potential, and thus inhibit neural 
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function [8, 10]. Comparing active to sham stimulation, tDCS has been employed 

successfully in healthy older adult populations to improve performance on motor tasks [11], 

verbal fluency tasks [12], and working memory [13].

Older adults suffer specific deficits to episodic memory [14]. The associative memory deficit 

in older adults is the idea that they can better remember a given stimulus (i.e., item memory) 

than associations between stimuli (i.e., associative memory) [15]. Importantly, past work has 

demonstrated that tDCS can improve episodic memory performance in older adults, as 

measured by both recognition [16, 17], and recall tests [18, 19]. Proper name recall is 

improved with tDCS [20], and – important to the associative memory deficit – it has also 

improved object–location associative memory in older adults [21]. Taken together, this 

works suggests that use of tDCS may improve memory in older adults, but further work is 

needed to vet this possibility.

Not all tDCS studies, however, have successfully led to measurable improvements in 

performance, which constrains the claim that tDCS improves cognition. Although not all 

studies have focused exclusively on memory in older adults, there is a growing body of 

literature to suggest that tDCS does not universally improve cognition. For instance, aside 

from studies that have found no effects of tDCS on learning and memory performance [22, 

23], application of tDCS has decreased performance in target detection [24], working 

memory [25,26], and general intelligence tasks [27]. Thus, it is important to study the 

delineation of conditions under which cognition improves because of stimulation rather than 

suffers from it.

How well participants perform on a given task at baseline may influence how effective tDCS 

is at improving performance. Some previous work suggests that tDCS does not improve 

performance in tasks when performance is low initially. For instance, one study found that 

tDCS improved performance on a working memory task in older adults, but only for those 

with a higher level of education [3], suggesting that the capability of tDCS to improve 

cognition depends on prior cognitive efficacy. Similarly, tDCS inhibited target detection only 

for those with low baseline performance, whereas high baseline performers were not 

affected by stimulation [24]. These results seem to indicate that the effects of tDCS on 

cognitive performance may differ with baseline cognitive performance.

Examining stimulation effects on face–name associative memory in older adults could be 

used to assess whether or not tDCS has an adverse effect on tasks where performance is low. 

Compared to younger adults, older adults have especially pronounced memory deficits in 

associative memory tasks where participants are asked to remember whether or not items 

were paired together [28, 29]. Indeed, older adults perform worse than younger adults on 

face–name associative tasks, even when memory for the names and faces themselves is 

relatively intact [30].

Our recent work has shown that tDCS improves this ability in younger adults [31], who do 

not show the same deficits in task performance. If, however, tDCS leads to decreased 

performance on tasks where performance is already low, it is possible that older adults’ 

performance might not increase, but that they might instead show decreased face–name 
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memory. In other memory tasks, increasing false alarm rates has decreased performance 

with tDCS [32]. For this study, the authors deployed the Deese–Roediger–McDermott 

(DRM) task [33, 34] in which participants study category exemplars before the category 

theme is presented as a critical lure in a subsequent recognition task. Importantly, that work 

revealed that tDCS increased false alarms under active relative to sham stimulation. It is as 

yet unknown what effects tDCS might have on memory performance in healthy older adults 

on an associative memory task; a task in which older adults typically show low baseline 

performance and suffer from high rates of false alarms [15, 35].

In the present study, we tested the effects of tDCS on face–name associative memory in 

older adults. We predicted one of two possible outcomes: according to the benefit 

hypothesis, tDCS will benefit memory performance compared to sham activation, as it has in 

prior work [18]. According to the baseline hypothesis, however, tDCS will inhibit memory 

performance compared to sham, given that older adult performance on this task is low 

initially. Because some tDCS work has shown improved memory performance for older 

adults as measured by either recognition [17] or recall procedures [18], we chose to include 

both of these memory tests – few studies have used them simultaneously to further elucidate 

the effects of tDCS on memory (although some of our prior work presents an exception 

[31]).

For recognition, there are several possible effects of tDCS on memory. If tDCS improves 

memory in accordance with the benefit hypothesis, then stimulation may improve hit rates 

(i.e., judging that previously paired items, were in fact paired together), decrease false alarm 

rates (i.e., judging items that were not previously paired), or a combination of the two. 

However, if tDCS hurts memory performance on tasks where performance is low, then hit 

rates might decrease or remain unaffected under stimulation, but critically, false alarm rates 

would increase. In general, older adults tend to experience higher numbers of false alarms on 

associative tasks [35], so tDCS might reduce overall recognition performance by increasing 

false alarms. This possibility would be consistent with prior work [32].

Further, to assess whether tDCS may lead to poorer memory performance in a task where 

performance is low, we introduced within-subject manipulation to yield higher and lower 

memory performance levels to test whether performance changes are most pronounced 

because of changes in baseline performance.

Methods

Participants

Fourteen right-handed older adults (age range: 60–90 years) participated in this study, 

recruited from the Chicago surrounding community. Exclusion criteria were: not meeting the 

handedness criteria [36], and presence of pacemakers, cochlear or metal implants; history of 

skull fracture, brain injury or surgery; personal or familial history of epilepsy; cuts, scrapes, 

or abrasions to the scalp at the time of the experiment; all contraindications to tDCS. No 

participants showed signs of dementia or Alzheimer’s disease, as measured by the Mini 

Mental State Exam (MMSE [37]). All participants received $50 for their participation.
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Materials

Sixty faces from the FACES database [38], and 60 names taken from the Social Security 

Administration list of most common names (see [31]) were used as stimuli.

Faces depicted equal numbers of younger (aged 18–30 years), middle-aged (aged 39–55 

years), and older adults (aged 69–80 years), as well as male and female targets.

Face stimuli were high quality images of people taken from the neck up in front of a gray 

background. Each face was assigned a name according to the Social Security Administration 

list of the most common names for that age group and gender. To counterbalance face–name 

pairs across participants, no name was paired with the same face across different versions of 

the experiment.

Procedure

The three main phases of the experiment were the study phase (during which stimulation 

was applied), and the two test phases (recall and recognition; see Figure 1). After giving 

informed consent to participate in the study, subjects received instruction and training on 

each phase of the memory task during a practice phase. After attaching the electrodes and 

starting stimulation, participants were asked to sit quietly for 4 minutes to allow habituation 

to the sensations inherent to stimulation. Two minutes after stimulation began, participants 

filled out a Time 0 sensation questionnaire to rate their perception of sensation on a scale of 

1 (very mild sensation) to 10 (extremely high, incredibly uncomfortable sensation) in terms 

of skin itching, burning, tingling, and mental fatigue. The study would be discontinued for 

any participants reporting a score of 7 or higher on any of these measures at any time, 

however this did not apply to any participant in our study. As stimulation continued, 

participants completed the study session, taking brief breaks to fill out further sensation 

questionnaires at four evenly spaced time points (Time 1–4). Specifically, participants 

completed blocks of 18 study trials, with a 1-minute break after each block (approximately 

every 2.5 minutes) to fill out the sensation questionnaire. At the end of each break, 

participants continued with the next study block, until all five study blocks were completed. 

Stimulation was discontinued after the study session; participants then completed the cued 

recall and recognition tasks, respectively. Participants then completed measures of fluid 

intelligence (digit symbol, and verbal fluency [39, 40]), crystallized intelligence (Shipley 

Vocabulary [41]), and the MMSE. Finally, participants filled out demographic and health 

questionnaires (Table 1).

tDCS

Stimulation was administered to participants’ scalps via ActivaTek ActivaDose II controllers 

with saline-soaked square sponge electrodes (11 cm2). Two stimulators were used to 

administer an electric current of either 2.0 mA (active) or 0.1 mA (sham). Participants were 

assigned in a random and double-blinded manner to receive either active or sham 

stimulation, as done previously [31].

Blinding was executed by attaching both active and sham current generators to a blinding 

box with six settings, each connected to either the active or sham circuit unknown to the 
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experimenter or the participant, as done in previous work [42]. Stimulation (active or sham) 

lasted exactly 25 minutes. The anodal electrode was placed on the scalp over the left inferior 

prefrontal cortex (located above F9 using the international 10–20 system and over the left 

sphenoid bone), and the reference electrode was placed on the contralateral upper arm. This 

brain region is known to be important in associative memory tasks in older adults [43, 44, 

45].

Study session

Participants studied 60 face–name pairs on a computer screen. Each trial was presented in a 

pseudo-random order for 8 seconds, split into two segments. First, participants were shown 

the face along with the name written in white, 18-point Arial font for 5 seconds. Second, the 

participants were given 3 seconds to indicate whether they thought the name “fit” the face, 

as has been done previously [45]. The purpose of this “fit” judgment was to orient attention 

to both the name and the face in order to facilitate associative memory. Trials were presented 

in blocks of approximately 2.5 minutes, and at the end of each block, participants rated their 

perceived physical sensations. As a manipulation of difficulty, half of the face–name pairs 

were presented twice and the rest only once. Thus, 90 trials were presented during study. 

After 25 minutes of stimulation, participants immediately began the memory test phases of 

the experiment.

Cued recall test

During the self-paced cued recall task, participants viewed each of the 60 faces in a different 

pseudo-random order, with the proviso that no more than four faces from the same age 

group were presented in a row. For each face, participants were asked to type in the name 

associated with the face. Participants were instructed to type “no” if they did not remember 

the name.

Recognition test

For the recognition task, participants were shown 60 face–name pairs. For half of trials, 

participants were shown the intact face–name pair they studied during encoding. For the 

other half of the trials, participants were shown rearranged pairs, whereby a face was 

presented with a different name to that presented at study. For the rearranged pairs, faces 

were only repaired with names matched for gender and age group (e.g., older female faces 

would only be re-paired with names associated with older female faces at study). For each 

recognition trial, participants judged whether each face–name pair was intact or rearranged 

in a self-paced manner. Recognition trials were presented in a new pseudo-random order 

with no more than four rearranged/intact trials presented in a row.

Blinding probe

As a manipulation check of our blinding procedures, after the memory tests, participants 

were asked to indicate whether they thought they were in the active or sham condition, or if 

they could not tell the difference.
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Data analysis

To serve as a measure of recall performance, we calculated the proportion of names correctly 

typed by participants during the recall task (incorrect spellings were counted as correct). 

Several measures were used for recognition performance. Hit rate was calculated as the 

proportion of successfully recognized intact trials, and false alarm rates were calculated as 

the proportion of incorrectly indicated rearranged trials. Our corrected measure was A′, 

which takes into account both hit rate and false alarm rate [46]. Each of these four dependent 

variables (recall percentage correct, hit rate, false alarm rate, and A′) were used as 

dependent measures in the study.

Results

Behavioral measures

We were primarily interested in the effects of tDCS on memory performance, as measured 

by both recall and recognition tasks. Recall performance, hit rates, false alarm rates, and A′ 
scores are shown as a function of stimulation condition (active versus sham) and 

presentation (1 versus 2) in Table 2. Each measure was entered into a 2 (stimulation: active 

versus sham) × 2 (presentation: 1 versus 2) mixed ANOVA to test for tDCS effects, the 

effects of the difficulty manipulation (i.e., items presented once versus twice), and their 

interaction. For recall, only the main effect of difficulty manipulation was significant (F[1, 

12] = 13.20, p < 0.05), showing that recall was significantly improved when participants 

studied trials twice rather than once.

There was, however, a marginal main effect of stimulation, such that participants in the sham 

condition outperformed those in the active condition in the recall of names (F[1, 12] = 3.54, 

p = 0.08).

For hit rate, only the main effect of difficulty manipulation was significant (F[1, 12] = 6.19, 

p < 0.05), showing that participants made more hits on trials presented twice than once. For 

false alarm rate, however, only the main effect of stimulation was significant (F[1, 12] = 

8.37, p < 0.05), which indicated that false alarm rates were higher in the active condition 

than the sham condition. Finally, for A′ scores, both the main effects of difficulty 

manipulation (F[1, 12] = 6.69, p < 0.05) and stimulation (F[1, 12] = 7.39, p < 0.05) were 

significant. Participants in the sham condition outperformed those in the active condition, 

and participants performed better for trials presented twice versus only once. No interactions 

between difficulty manipulation and stimulation were significant for any of our memory 

measures (all F’s < 2.39).

Assessment of our blinding procedures revealed that, after the memory tests: 57% of 

participants could not tell which group they were in, 21% correctly guessed their condition, 

14% answered incorrectly, and 7% did not indicate a response because of experimenter 

error. This suggests most participants could not tell which condition they were placed in.
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Sensation questionnaire

The means of physical sensations reported at each time point, split by stimulation condition, 

are reported in Table 3. Participants in the active condition provided significantly higher 

ratings than those in the sham condition at Time 0 for itching (t[12] = 3.25, p < 0.05), and 

burning (t[12] = 2.50, p < 0.05). At Time 1, only the differences in burning were significant 

(t[12] = 2.70, p < 0.05; itching p = 0.1), and all differences were marginal for both itching 

and burning at all time points thereafter (0.17 > all p’s > 0.05). These results suggest that 

participants initially felt significantly more itching and burning in the active condition than 

in the sham condition, and that these differences dissipated as the experiment progressed. To 

test whether these differences impacted memory performance, measures of itching and 

burning at each time point were entered into correlational analyses, with hit rates and false 

alarm rates as criterion variables. One marginally significant correlation was found between 

itching at Time 0 and false alarm rates (r[14] = 0.53, p = 0.053), suggesting that participants 

in the active condition may have been distracted by higher initial itching sensations than 

those in the sham condition. To test for overall differences in reported physical sensations 

across the entire stimulation period, time points of each physical sensation were combined 

into one measure. Participants reported more overall itching in the active condition (M = 

2.74, SD = 1.59) than in the sham condition (M = 1.23, SD = 0.60; t[12] = 2.34, p < 0.05), 

and more overall burning in the active (M = 2.65, SD = 1.46) than sham condition (M = 

1.23, SD = 0.41; t[12 = 2.49, p < 0.05), whereas there were no differences in tingling or 

mental fatigue (all p’s > 0.15).

Discussion

The goal of this study was to examine face–name associative memory performance in older 

adults under tDCS. There were two key findings. First, active tDCS decreased recognition 

performance in older adults, primarily indexed by increased false alarm rates. Second, self-

reported itching sensations were marginally correlated with higher rates of false alarms, 

suggesting that the sensory effects of stimulation may have interfered with memory 

processes.

Our results lend support to the baseline hypothesis of tDCS effects on memory, i.e., face–

name associative memory performance was decreased in older adults compared to sham 

stimulation. This is contrary to what we have previously found in younger adults [31]. 

Because older adults suffer deficits for face–name associative memory at baseline compared 

to younger adults [30], our results suggest that tDCS effects on cognition may be moderated 

by differences in baseline performance; specifically tDCS may hinder performance but only 

in conditions of already poor performance. Our finding that tDCS led to decreased memory 

performance in a task where performance is typically low may explain why tDCS effects on 

cognition have been mixed in the past [47, 48]. Using anodal stimulation, some studies have 

found null effects on cognition [22, 23], whereas others have shown decreased cognitive 

performance [24, 27]. The moderating influences of baseline performance may influence 

when tDCS improves cognition, such as when only adults with a high level education show 

benefits in working memory performance [3].
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We did not replicate our prior work in younger adults, which showed that active tDCS 

improved recall memory for face–name associations [31]. Instead, we found that in older 

adults, recognition memory decreased under stimulation on a task in which older adults 

typically perform poorly [29]; this supports the baseline hypothesis. Our finding of increased 

false alarms, however, is consistent with Pergolizzi and Chua [32], who found increased 

false memory rates under tDCS. This suggests that under certain conditions, such as with 

critical lures in the DRM paradigm, or in tasks where participants are more likely to falsely 

recognize items [35], application of active tDCS increases false alarm rates. These data 

further establish that measuring recognition memory using only a corrected measure (such 

as A′ or d′), as many prior tDCS studies have done, may gloss over important details of 

how tDCS may affect memory. In this study, reduced memory performance as measured by 

A′ was primarily driven by increased false alarms, not reduced hits. We recommend 

thoughtful interrogation of both hits and false alarms along with the corrected recognition 

measures in future work.

In this study we included a difficulty manipulation to further test the baseline hypothesis. 

Our reasoning for this was that memory support should be reduced for more difficult items 

than the easier items. Our difficulty manipulation did not interact with tDCS effects on 

memory performance, which somewhat mutes the baseline hypothesis interpretation. More 

research is needed to determine the degree to which individuals must over-perform or under-

perform at baseline on certain tasks for tDCS to be beneficial. More repetitions may be 

necessary to increase baseline performance to a level at which older participants would show 

memory improvements under tDCS.

A few studies have shown beneficial effects of stimulation when baseline performance is low 

[49], so perhaps the true relationship between tDCS efficacy and baseline performance is 

nonlinear, or moderated by other variables related to participant age. For example, older 

adults show altered patterns of task-related brain activity [50], and electrode locations that 

facilitate performance in one population may not be evident in another. Indeed, past work 

has shown similar effects of tDCS in both younger and older adults, but only when 

stimulation was applied to different cortical regions for one group versus the other ([20, 51]; 

although see 17]. Thus, stimulating the same location in both younger and older adults may 

lead to different effects depending upon the population tested [52–54]. Clearly, the full 

relationship between tDCS effects and baseline performance requires further study.

Greater perception of sensations (e.g., itching) correlated negatively with performance on 

the recognition task. This effect was not present in our prior study with younger adults [31], 

so perhaps increased sensations disrupted successful memory encoding processes for our 

older adult participants to a greater degree than it did in the younger adults. Older adults 

begin with fewer processing resources to devote to cognitive tasks [55], so partial distraction 

may particularly affect them. This effect should be taken into account in future research in 

this area.

Examining ways to improve memory performance in older adults is an important and rich 

area of study [56–61]. As an intervention, tDCS shows promise in improving memory, but 

more work is necessary to understand the conditions under which tDCS might lead to 
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improved memory performance in older adults. We found that tDCS increases false alarm 

rates when stimulation is applied over the left inferior frontal gyrus at 2.0mA, but 

stimulation to other scalp locations and/or at different current strengths might improve 

memory.

Conclusions

Our results suggest that tDCS applied over the left inferior frontal gyrus increases false 

alarm rates during a face–name associative memory task, which could lead to decreased 

memory performance. In conjunction with prior results with younger adults, our current 

findings indicate that tDCS may be effective when baseline performance is high, but 

decreases performance when baseline is low. Future research is needed to identify the 

specific effects of tDCS on cognitive ability, and how this relationship is moderated by 

baseline cognitive performance.
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Figure 1. 
Overview of the study procedure.

Participants practiced each session of the experiment before completing the stimulated study, 

recall, and recognition sessions. Stimulation began 4 minutes before the study session, and 

continued for 25 minutes. The recall session immediately followed stimulation cessation.

Leach et al. Page 13

Healthy Aging Res. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Leach et al. Page 14

Table 1

Demographics/neuropsychological measures of study participants

Condition

Measure Active M (SD) Sham M (SD)

Females:Males 5:2 4:3

Age 72.86 (6.01) 70.57 (6.05)

Health ratinga 4.00 (0.58) 4.14 (0.90)

Health satisfaction 3.71 (0.76) 4.14 (1.07)

Digit comparison 54.29 (11.13) 57.86 (10.95)

Digit symbol 28.57 (8.16) 31.00 (8.33)

Digit span 11.00 (3.65) 13.43 (6.16)

Verbal fluency 86.43 (18.28) 87.71 (20.11)

Vocabulary* 33.71 (2.14) 36.71 (1.38)

MMSE 27.29 (1.98) 28.00 (1.53)

*
Difference between active and sham condition, significant at p < 0.05

a
Health questionnaire ratings on scale of 1–5

Abbreviations: SD, standard deviation; MMSE, Mini Mental State Examination
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Table 2

Behavioral means

1 Trial 2 Trials

Active M (SD) Sham M (SD) Active M (SD) Sham M (SD)

Recall 0.02 (0.02) 0.09 (0.09) 0.09 (0.07) 0.23 (0.20)

HR 0.80 (0.14) 0.84 (0.20) 0.89 (0.11) 0.91 (0.11)

FAR 0.79 (0.19)* 0.49 (0.21) 0.73 (0.15)* 0.48 (0.23)

A′ 0.47 (0.22)* 0.76 (0.18) 0.68 (0.15) 0.81 (0.14)

*
Difference between active and sham conditions, significant at p < .05

Abbreviations: SD, standard deviation; HR, hit rate; FAR, false alarm rate
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