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Abstract

Background: The study of the signal-receiver relationship between flowering plants and pollinators requires a capacity to
accurately map both the spectral and spatial components of a signal in relation to the perceptual abilities of potential
pollinators. Spectrophotometers can typically recover high resolution spectral data, but the spatial component is difficult to
record simultaneously. A technique allowing for an accurate measurement of the spatial component in addition to the
spectral factor of the signal is highly desirable.

Methodology/Principal findings: Consumer-level digital cameras potentially provide access to both colour and spatial
information, but they are constrained by their non-linear response. We present a robust methodology for recovering linear
values from two different camera models: one sensitive to ultraviolet (UV) radiation and another to visible wavelengths. We
test responses by imaging eight different plant species varying in shape, size and in the amount of energy reflected across
the UV and visible regions of the spectrum, and compare the recovery of spectral data to spectrophotometer
measurements. There is often a good agreement of spectral data, although when the pattern on a flower surface is complex
a spectrophotometer may underestimate the variability of the signal as would be viewed by an animal visual system.

Conclusion: Digital imaging presents a significant new opportunity to reliably map flower colours to understand the
complexity of these signals as perceived by potential pollinators. Compared to spectrophotometer measurements, digital
images can better represent the spatio-chromatic signal variability that would likely be perceived by the visual system of an
animal, and should expand the possibilities for data collection in complex, natural conditions. However, and in spite of its
advantages, the accuracy of the spectral information recovered from camera responses is subject to variations in the
uncertainty levels, with larger uncertainties associated with low radiance levels.
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Introduction

The pollination of flowering plants (angiosperms) is often

facilitated by animal vectors including bees and birds [1,2]. In

many cases, pollination vectors are attracted to visit flowers to

collect small nutritional rewards, and thus incidentally transfer

pollen between flowers of the same species to effect sexual

reproduction [3,4]. This model of plant reproduction has been

well studied since the time of Darwin [5] and has received

considerable attention from ecologists, botanists and evolutionary

biologists [6]. Early researchers already appreciated that animals

may have different visual perception to humans [7–10] and both

early film-based photographic [11–13] and spectrophotometer

[14] recordings revealed the presence of UV signals from some

flowers [15]. Since the publication of the influential book: ‘The

Ecology of Vision’ [16], there has been strong interest in collecting

empirical data to understand the signal-receiver relationship

between important pollinators such as bees and flowering plants

[3].

The accurate quantification of the physical component of

biological signals has been facilitated by improvements in

spectrophotometers and spectroradiometers [17]. Furthermore,

using these tools a strong fit has been found between the visual

discrimination abilities of bees and the spectral reflectance

characteristics of flowering plants visited by them [18–21], as well

as between bird vision and the spectral reflectance of flowers only

visited by birds [22]. However, in spite of the portability and

accuracy obtainable from modern spectrophotometers, these

instruments are often limited to measurements from a small

number of sample points on a surface [17,19]. This is potentially a

limitation in plant-pollinator studies since many flowers contain

complex colour patterns [23] and important pollinators like

honeybees can simultaneously perceive both colour and shape

information for making decisions about rewarding flowers [24,25].
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These previous findings therefore strongly suggest a need to

accurately map the spatial (2-dimensional) aspects of flower colour

patterns.

The popularisation in recent times of digital single lens reflex

(DSLR) cameras equipped with three different colour filters: ‘red’,

‘green’ and ‘blue’ (RGB), has inspired the development of

methodologies for quantifying flower colours directly from camera

responses [23]. However as responses from most consumer-level

digital cameras are not constrained to provide an accurate

measurement of the amount of energy reflected by a given object,

but to produce a visually appealing representation of the recorded

subject [26,27], unprocessed camera responses can not be used for

quantitative image analysis. In order to use camera responses as

measures of colour [28–30], linear camera responses must first be

recovered from the original, non-linear responses returned from

the camera before measuring incident irradiation from RGB

values at the pixel level [26,31].

RGB responses corresponding to signals reflecting radiation in

the UV region of the spectrum are also known to show a non-

linear response in two tested camera models [32,33]. Therefore, in

order to make use of the extended spectral sensitivity of specialised

digital cameras into the UV region, their responses should be

linearised as well. Fortunately, the same principles involved in the

linearisation of responses of digital cameras sensitive to visible

radiation also apply to those obtained from UV-sensitive cameras

[31]; thus once linearised, it is possible to make use of digital

imaging for measuring and studying plant-pollinator visual signals

in a spectral range of about 320 to 700 nm, which is visible to

many common pollinators [22,34,35].

Previous studies have made use of linear camera responses to

quantitatively characterise animal colour patterns in studies of

camouflage and behaviour in the visible [26,36] and UV regions of

the electromagnetic spectrum [32,37]; however, there is a paucity

of information detailing the use of this methodology in plant

studies. Recently, one study proposed the use of digital photog-

raphy as a tool for the characterisation of plant signals in studies of

diversity, conservation and plant-pollinator relationships [23].

However, the approach it described is limited to expressing

camera responses in a purely human-based colorimetric system

which significantly differs from the way most insect pollinators

perceive flowers [15,34]. Specifically, Lutz [38], described the

presence of UV-reflective elements in various flower species

independently from their appearance in the human visible region

of the spectrum. Since then, several authors have reported more

plant species whose flowers present UV-reflective elements using

film-based UV photography [15,39–41], and thus contribute to

overall bee colour perception [15].

Here we address some of the limitations of directly using images

as typically recorded by a camera for quantifying flower colours.

We present a robust methodology for quantifying floral visual

signals containing visible and UV components that employs

physically-meaningful units from RGB camera responses. We then

compare recovered reflectance values against theoretical values

calculated from standard spectrophotometric measurements and

the spectral sensitivity curves of the employed cameras.

Materials and Methods

Background and Definitions
Light reflected by an object and received on a photoreceptor

produces a signal response (g), which is a function of the spectral

sensitivity of the receptor (S), the spectral power distribution of the

illumination (E) and the reflectance spectrum (R) of the

illuminated object expressed as:

g~

ð?
0

R(l)E(l)S(l)dl: ð1Þ

Equation 1 is the core of most colourimetric equations replacing

(S) by a function describing the spectral sensitivity of one of the

three different cone classes in the human visual system [42].

Equation 1 can also be applied to model photon catches by non-

human visual systems [34,43].

When Equation 1 is applied to model the response of a CCD or

CMOS digital camera, the camera response (r) is expressed in

terms of pixel intensity levels. At any given pixel, the camera

response is a function of: the sensor response (g), the intensity of

the signal (I), the selected exposure parameters (H), including

selected aperture, integration time, image magnification and

sensor size [44], and the amplification (gain) of the sensor response

(G); a nontrivial function of I and H, which is unique to each

camera model and colour channel [26,31]. In the case of an RGB

device this relation is expressed as:

r(i)~G(i) g(i)
� �

, ð2Þ

for each colour channel i.

In digital cameras for technical use, G is a constant, thus the

camera response is linearly related to the intensity of the signal,

which in turn is controlled by the exposure settings. Hence we can

write Equation 2 as: r(i)~G(i):g(i). However, more typically, G

takes a non-linear form in RGB digital cameras producing camera

responses (r) which are not lineary related to signal intensity [44].

Moreover, consumer-level camera responses are also subject to

other non-linear operations, commonly referred to as ‘gamma

correction’ [26]. These aim to improve the aesthetic appearance of

the images when displayed on computer monitors and/or to

increase the effective dynamic range of the camera to human

perception [27], further contributing to the non-linear behaviour

of r [26,27]. Therefore, the parameter G in Equation 2 models

most of the non-linear operations introduced into the RGB

camera response [31].

When employing a digital camera to accurately quantify a visual

signal by means of Equation 2, it is essential to recover the linear

sensor response as a first step prior to any further analysis. This is

achieved by finding a non-linear mathematical expression

describing the G function and inverting it, implementing either

analytical or optimisation methods [26,31]. However, different

camera models may have different transfer functions and the

precise values of the coefficients describing the transfer function

for a particular camera must be found experimentally through a

characterisation and linearisation exercise. Details of different

camera characterisation methodologies and fitting functions are

available elsewhere (e.g. [31]), along with a precise mathematical

formulation of the procedure.

Camera System
We used a typical, consumer-level digital single lens reflex

(DSLR) camera: a Canon D40 (Canon Inc., Japan) and a Fuji S3

UVIR (Fujifilm Corp, USA) DSLR modified for ultraviolet and

infrared imaging to record flower reflection within a spectral

interval from about 320 to 710 nm. Canon Macro Lite (Canon

Inc., Japan) and Nikon Speedlight SB-14 (Nikon Corp., Japan)

electronic flash units were employed as illumination due to the

close resemblance of their spectral output to that of daylight [45].

The Speedlight unit was modified by an expert camera technician

(Beyond Visible, USA) to increase its UV output (&320{399
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nm), thus facilitating the use of this unit in the field. To prevent

radiation longer than about 395 nm from reaching the sensor of

the Fuji S3 UVIR camera, a Baader U filter (Company Seven,

USA) was fitted in front of a Micro Nikkor 105 quartz lens by

means of a filter holder. The use of quartz optics ensured the

transmission of ultraviolet radiation down to about 200 nm [33].

Flower visual signals within the visible region of the spectrum

(&400{710 nm) were recorded with the Canon D40 camera.

The camera was equipped with a Canon 100 mm Electro-Focus

(EF) lens (Canon Inc., Japan) which was equipped with a skylight

filter (Hoya, Philippines) for cutting-off radiation below about

390 nm.

Characterisation methods and reconstructed spectral sensitivity

curves for the Fuji S3 UVIR camera have been published

elsewhere [33]. This methodology was employed here to

reconstruct the spectral sensitivity curves of the red, green and

blue channels of the Canon 40D digital camera (Figure 1).

Reconstructed linear spectral sensitivity functions of the two

cameras were modelled fitting a Gaussian function including either

one or two exponential terms:

S(l)(i)~l
(i)
1 exp {

l{m
(i)
1

n
(i)
1

 !2
2
4

3
5

or

S(l)(i)~l
(i)
1 exp {

l{m
(i)
1

n
(i)
1

 !2
2
4

3
5zl2 exp {

l{m
(i)
2

n
(i)
2

 !2
2
4

3
5, ð3Þ

for the ith colour channel available on each camera. We chose the

form of Equation 3 which best fits the sensitivity data for each

colour channel based on the statistical significance of each

individual parameter. Mean values and 95% confidence intervals

for the obtained coefficients are provided in Table 1.

Image Recording
We recorded images in the visible and ultraviolet region of the

spectrum from flowering plants belonging to the species: Oxalis pes-

caprae, Goodenia ovata, Geranium sp., Malus domesticus, Gazania rigens,

Freesia laxa, Sonchus oleraceus, and Eremophila macculata, which were

available at the campus of Monash University (Clayton, Victoria,

Australia), during mid-spring of 2013. The use of electronic flash

units with known spectral power distributions as irradiation

sources reduced potential effects of variations in ambient

illumination. Images were always recorded in a shadowed area,

and exposure was set to minimise the contribution of ambient light

to each exposure.

Flowers were first recorded using the ultraviolet-sensitive

camera and immediately after, with the camera sensitive to visible

radiation. Images were recorded with magnification ratios

between 1:3 and 1:7 as indicated by the size scale included on

each panel of Figures 2 and 3. ISO was set at 200 on both

cameras. To account for image registration, the same image

magnification ratio was fixed on both the Nikon and Canon lenses

prior to photographing each one of the flower samples. Focus was

achieved in all images by carefully positioning each one of the

cameras.

Three different calibration targets were included on each frame

as reference for setting an adequate photographic exposure: i) a

NIST traceable white reflectance standard for spectrophotometry

(Ocean Optics, USA), ii) a grey achromatic target made of barium

sulphate and activated charcoal uniformly reflecting about 33% of

incident radiation within a 300 to 400 nm spectral interval [46],

(Figure 4 panel I), and iii) the ‘white’ target of a Passport Colour

Checker (Xrite, USA) uniformly reflecting about 95% of visible

radiation within a 400 to 710 nm interval [47].

Images were recorded on the native RAW format for each

camera: CR2 for the Canon camera and RAF for the Fuji S3

UVIR camera. RAW image files were processed employing the

Camera Raw plug-in v.6.3 (Adobe, Inc., USA) for Photoshop CS5

(Adobe, Inc,. USA). Processed RAW files were encoded into

uncompressed 8-bit TIFF files using the same software package,

and subsequently linearised using custom codes written for Matlab

release 2012b (The Mathworks, USA) [31]. Matlab m-code is

available from the authors by request.

Image Processing, Linearisation and Segmentation
Exposure of each individual image was standardised based on

the camera response predicted by Equation 1. For the exposure

calculations we used reflectance spectra corresponding to the

achromatic calibration targets. The CIE daylight illuminant at

6500 K (D65) was selected as reference illumination (E) for all

calculations. Spectral power distribution for the selected illuminant

was calculated following the CIE method [42].

White balance was set at 5100 K for the RGB images recorded

with the Canon camera and left as interpreted by the ‘daylight’

setting available on the Fuji S3 UVIR camera. All images were

encoded in the Adobe RGB 1998 colour space [48].

Processed TIFF files were linearised using look-up tables (LUT)

constructed by inverting a biexponential function of the form:

G(i)~255{b(i): exp ({c(i):g(i)
r ){d(i): exp ({g(i):g(i)

r ), ð4Þ

Figure 1. Spectral sensitivities corresponding to the red, green
and blue colour channels of a Canon D40 camera (solid lines)
and the UV-sensitive red channel of a Fuji S3 UVIR digital
camera (magenta solid line), along with the long (red dashed
line), medium (green dashed line) and short (blue dashed line)
human photoreceptors [61]. Spectral sensitivities were normalised
by dividing the sensitivity at each l by the total area under each
channel/photoreceptor curve.
doi:10.1371/journal.pone.0096646.g001
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which describes a readily-applicable version of the function for the

different transfer functions for each one of the i~3 colour

channels of both cameras [31]. For the particular case of the

i = ‘red’ UV-sensitive channel of the Fuji S3 UVIR, a function

with a single exponential term of the form:

G(i)~255{b(i): exp ({c(i):gr), ð5Þ

with coefficients and 95% confidence bounds: b~244+31:8 and

c~374+42:6 was selected to fit the transfer function. However,

functions like Equation 5 do not necessarily fit transfer functions

for other colour channels and/or camera models as is the case with

the Canon 40D, whose transfer functions are only accurately fitted

by including a second exponential term as in Equation 4 [31].

In order to recover reflectance rather than radiance values from

linear RGB camera responses, the linear responses were divided

by the exposure value required to obtain a maximum camera

response value equal to 245 intensity levels. Selecting a maximum

camera response value below the maximum r value attainable for

an 8-bit colour space, i.e. 256 pixel intensity levels, ensured that

average camera responses did not include overexposed (‘clipped’)

pixel data points [26]. Total irradiance (intensity) values required

to obtain r~245 for each colour were: g~2:82|10{3mmol,

2:98|10{3mmol, 2:72|10{3mmol, for the red, green and blue

channels of the Canon camera and 8:58|10{3mmol for the red

UV-sensitive channel of the Fuji S3 UVIR camera. Exposure was

calibrated individually for each channel to avoid using software-

based white balancing algorithms.

Spectrophotometric Measurements and Technique
Comparison

Spectral reflectance data from the selected flower species were

recorded using an Ocean Optics spectrophotometer (Ocean

Optics, USA) equipped with a PX-2 pulsed xenon light source

(Ocean Optics, USA). A UV-reflecting white standard from the

same manufacturer was used for calibration. To account for the

multiple colours displayed by the selected flowers, we measured

reflectance from three different points along the major axis of each

petal [19,22]. A larger spectrophotometric sample, including 15

pseudo-randomly allocated points, was taken from a Goodenia ovata

flower to better gauge the amount of chromatic variability. The

increased sampling area enclosed the three bottom petals of the

flower (Figure 4, panel b).

Camera responses (r) predicted by Equation 1 were compared

against r values obtained from two different image sampling

schemes: i) point sampling and ii) local variability to a) estimate the

magnitude of the differences expected between the photographic

and spectrophotometric methods and, b) assess the amount of

chromatic variability unaccounted for when point samples rather

than larger areas are used to model the visual appearance of

flowers.

For the point sampling experiment, 15|15 pixel areas were

sampled from linearised images recorded using visible (&400 to

710 nm), and UV (&320 to 395 nm) radiation reaching the sensor

of the Canon and Fuji cameras respectively. For the local

variability experiment, three different square pixel areas were

pseudo-randomly selected from either a 4|3 (sampling scheme

A), or a 6|2 (sampling scheme B) square grid. The sampling

scheme was selected so that a single petal of each one of the

measured species was totally enclosed by the grid as depicted in

Figure 5.

Results

Evaluation of the Linearisation Function
Accuracy of the linearisation procedure was tested by compar-

ing the recovered normalised linear camera responses obtained

from the six achromatic samples present in the X-Rite Colour

Checker passport against their reflectance values measured with a

standard spectrophotometer (Figure 6).

Reflectance values obtained from the linear camera responses

did not differ from those obtained by spectrophotometric readings

for the achromatic samples reflecting from 9% up to about 95% of

incident irradiation (tv1:31,Pw0:190). Reflectance values pre-

dicted from linear camera responses for the ‘black’ swatch,

reflecting 3.10% of the incident radiation, did significantly differ

from data published for this sample (t~2:72,P~0:006) (Figure 3,

panel a). For the non-linearised camera responses, all but those

responses corresponding to the brightest achromatic sample

(t~{1:18,P~0:230) were significantly different from the

responses predicted from spectrophotometric readings

(t~v{26:4,Pv0:001) (Figure 3, panel b).

Images representing linear camera responses were always

darker than their unprocessed, non-linear counterparts (Figure 6

image stripes and Figures 2–3). Reduced brightness in linearised

image results from displacing the compressed camera responses at

high irradiance levels (Figure 6, panel b) towards the middle region

of the transfer curve (Figure 6, panel a).

Quantitative Evaluation of Floral Chromaticity
Images representing linear camera responses in the visible and

UV spectral regions were reconstructed from floral specimens of

the species: Oxalis pes-caprae, Goodenia ovata, Gazania rigens, Geranium

Table 1. Coefficients for Gaussian functions (Equation 2) fitting the spectral sensitivity curves of the ‘red’, ‘green’, and ‘blue’
channels of a Canon 40D camera and the UV-sensitive ‘red’ channel of a Fuji S3 UVIR digital camera.

Canon 40D Fuji S3 UVIR

‘red’ ‘green’ ‘blue’ UV-‘red’

l1 0:028+4:58|10{3 0:054+7:55|10{3 0:018+8:91|10{3 0:311+10:7|10{3

m1 594+1:80 523+6:90 436+2:40 3610+0:50

n1 20:4+3:52 35:8+5:16 12:8+5:71 18:3+7:20|10{1

l2 0:042+3:80|10{3 0:028+10:1|10{3 0:083+2:78|10{3 {

m2 619+3:30 572+11:3 466+2:20 {

n2 53:6+2:68 32:2+7:97 31:8+2:34 {

doi:10.1371/journal.pone.0096646.t001
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sp., Malus domesticus, Freesia laxa, Eremophila macculata and Sonchus

oleraceus (Figures 2 and 3). On each image an achromatic,

spectrally-flat standard was included as an internal control for

exposure calibration and potential variations in colour that might

have arisen as a result of the independent processing of each

colour channel of the different images.

Total reflectance as measured by the camera was obtained from

three 15|15~225 pixel2 sampling areas located at the tip,

middle and base of a single petal of each one of the selected

species, and from wider sampling areas (mean = 2860+2200

pixel2), representing wider areas than those covered by the

spectrophotometer probe.

Figure 2. Standard, non-linear, digital images of flowers belonging to the species Oxalis pes-caprae, Goodenia ovata, Gazania rigens
and Geranium sp. in the visible region of the electromagnetic spectrum (first column); reconstructed images representing the linear
camera response in the visible region of the electromagnetic spectrum as recorded by the red, green and blue colour channels of a
Canon 40D camera (second column); and, pseudo-colour representations of reconstructed images representing the linear camera
response in the UV region of the spectrum (third column) as recorded by the ‘red’ UV-sensitive channel of a Fuji S3 UVIR camera.
Second column insert depicts the mean spectral reflectance of three readings taken at the tip, middle and bottom of a single petal to account for
spatio-chromatic variability within a single flower [22]. Included on each image is a white reflectance standard for spectrophotometry (large circle)
and a grey achromatic standard reflecting about 33% of incident radiation. Error bars on the reflectance spectra represent one standard deviation in
all cases.
doi:10.1371/journal.pone.0096646.g002
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In most of the cases the two methods differed in the magnitude

of the mean total reflectance measured for the flower samples

across the different spectral bands (Figure 7), but they were not

statistically different for the achromatic calibration standard

(tv1:63,Pw0:103). Moreover, the magnitude of the standard

deviation from the intensity values obtained from linear camera

responses was higher than that corresponding to the measured

reflectance spectra (Figure 7). These results suggested that the

differences observed in intensity values between the two methods

are produced by the intrinsic local spatial variability of the samples

rather than an inaccurate recovery of total reflectance from RGB

responses.

To obtain a better understanding of the nature of the observed

differences, we performed a new comparison between the total

reflectance obtained from the two methods by sampling a wider

area of Goodenia ovata incorporating the three lower petals of the

flower and including the UV-reflective marks (Figure 4, panels a

and b). For this measurement, the number of samples measured

with the spectrophotometer was increased to 15 and the image

sampling area was increased to cover an area of 2500 pixels2

matching that sampled with the spectrophotometer.

Total reflectance calculated from spectral data and recovered

by the camera system is graphically summarised in Figure 4 panel

c, along with the measurements obtained from the grey

calibration standard. Consistent with data in Figure 3, total

reflectance values obtained from spectrophotometry and from

linear camera responses significantly differ from one another for

the red, green and blue channels of the Canon 40D (Wilcoxon

rank sum test Wred~202,Pv0:001, Wgreen~24,Pv0:001,

Wblue~0,Pv0:001); however, we did not find significant

differences in the amount of total reflected UV measured by

the two methods (Wred UV{sensitive~113,Pw0:910).

Results from the last experiment suggest that chromatic variability

is not equal across the different spectral bands but higher in some

spectral regions. In the case of Goodenia ovata, the lowest variability

was observed in the UV-sensitive channel and highest in the long

wavelength (red) channel (Figure 4, panel I). Distributions of the total

brightness values for each colour channel are summarised in Figure 8.

Total reflectance values recovered by all but the red channel of the

Canon 40D camera were found to be significantly non-normal at an

a level of 0.05 (Shapiro-Wilk Wred~0:96,P~0:790, Wgreen~

0:836,P~0:011, Wblue~0:767,P~0:001, Wred UV{sensitive~

0:755,P~0:001).

Figure 3. Standard, non-linear, digital images of flowers belonging to the species Malus domestivus, Freesia laxa, Eremophila macculata
and Sonchus oleraceus in the visible region of the electromagnetic spectrum (first column); reconstructed images representing the
linear camera response in the visible region of the electromagnetic spectrum as recorded by the red, green and blue colour
channels of a Canon 40D camera (second column); and, pseudo-colour representations of reconstructed images representing the
linear camera response in the UV region of the spectrum (third column) as recorded by the ‘red’ UV-sensitive channel of a Fuji S3
UVIR camera. Second column insert depicts the mean spectral reflectance of three readings taken at the tip, middle and bottom of a single petal to
account for spatio-chromatic variability within a single flower [22]. Included on each image are a white reflectance standard for spectrophotometry
(large circle) and a grey achromatic standard reflecting about 33% of incident radiation. Error bars as per Figure 4. Note: Images in row 2 column 1–2
are rotated relative to the image in row 2 column 3.
doi:10.1371/journal.pone.0096646.g003
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Discussion

Flower Spatio-chromatic Variability
Naturally occurring samples typically present wide variations in

their total reflectance values across two dimensions (Figure 4). This

variation arises from intrinsic characteristics of each sample such

as pattern texture, shape and volume (Figure 2–3). These

characteristics are often overlooked, probably because of the

difficulty of measuring them accurately using point samples

[49,50]. Yet measuring this variation is potentially of biological

importance since it provides insight into the challenges faced by a

pollinator’s visual system for detecting and correctly discriminating

target flowers in visually complex environments. Our finding is

consistent with a recent report that spectral measurements from

different flowers of the same species often show wide variability in

spectral signals to pollinators [19].

Figure 4. Images representing the recovered linear response of Goodenia ovata as recorded by a Canon 40D camera sensitive to
visible radiation (panel a) and a Fuji S3 UVIR camera sensitive to UV radiation (panel b). Panel c) summarises the total reflectance
recorded by the red, green, blue and ‘red’ UV-sensitive channels of the two cameras (hatched bars), and the predicted total reflectance recorded by
each colour channel (white bars) along with the results of their statistical comparison. Predicted camera responses were calculated by applying
Equation 1 to 15 independent spectrophotometric readings taken across the lower petals of the floral sample (graphically summarised in panel II).
Panel I depicts mean reflectance spectrum, predicted and actual camera responses (Panel I insert) for an achromatic grey sample used as exposure
control. Error bars represent standard deviation in all cases. ��P-value significant at a~0:05; NS P-value not significant at a~0:05. Refer to text for
details.
doi:10.1371/journal.pone.0096646.g004

Figure 5. Examples of the two different grid schemes
employed to measure local chromatic variability within a
petal. a) Oxalis pes-caprae 4|3 sampling scheme, grid size 40 pixels.
b) Geranium sp. 6|2 sampling scheme, grid size 30 pixels.
doi:10.1371/journal.pone.0096646.g005

Flower Colour Quantification with Digital Imaging

PLOS ONE | www.plosone.org 7 May 2014 | Volume 9 | Issue 5 | e96646



Misrepresentation of visual complexity when using spectropho-

tometry may arise as point samples can not always represent

potential variation in shape, pigmentation and/or lighting effects

for a given flower. For example, the ‘white’ flower of Malus

domesticus has a complex three dimensional structure resulting in

self-shading effects that the visual system of a pollinator would

have to deal with (Figure 3). A spectrophotometer measuring

colour at an ideal angle would potentially underestimate spectral

signal variability (Figure 7). Thus the variability in the different

systems reported here should be taken as a representation of the

likely differences in signal processing attainable with a typical

spectrophotometer set-up and a digital camera system with a

limited number of spectral bands (n = 4) and staged in a consistent

manner. This can be clearly seen by comparing the variability of

colour signals within boxes of Figure 7, which illustrate the greater

variation in signal in Geranium sp. than in Oxalis pes-caprae.

The appearance of flowers may also be influenced by various

optical effects like iridescence [51,52] produced by microscopic

structures acting as photonic crystals or diffraction gratings [53].

Presence of iridescence in a petal or other plant material may

increase the intensity of a given colour signal compared to a

pigment-based signal [52,53], which may lead to overexposed

or clipped RGB values. The presence of these signals will

undoubtedly introduce artefacts in the estimation of the signal’s

radiance by means of linear camera responses [26]. This is one

Figure 6. Linear (panel a) and non-linear (panel b) camera responses to a set of six achromatic samples from an X-Rite Colour
Checker Passport corresponding to the green channel of a Canon 40D camera. The six achromatic samples uniformly reflect, from bottom
to top, 3.10%, 9.11%, 19.5%, 37.2%, 60.9% and 94.8% of incident visible irradiation [47]. Camera responses correspond to an area of 900 pixels2

located at the centre of each grey swatch. Error bars along the x-axis represent pixel intensity variation within the sampling square, whilst error bars
along the y-axis represent variation within recovered linear values arising from the uncertainty associated with the use of a biexponential linearisation
equation [31]. Error bars represent standard deviation in both cases. ��P-value significant at a~0:05; NS P-value not significant at a~0:05.
doi:10.1371/journal.pone.0096646.g006

Figure 7. Total reflectance recorded from flowers belonging to the genera Oxalis pes-caprae, Goodenia ovata, Gazania rigens, Geranium
sp., Malus domesticus, Fressia laxa, Eremophila macculata, and Sonchus olereaceus by the different colour channels of a Canon 40D and a
Fuji S3 UVIR. Expected camera responses, in reflectance values, calculated from spectrophotometric data and the spectral sensitivity curves of each
colour channel (Figure 1) (white bars), camera responses for three 225 pixel2 areas located at the tip, middle and bottom of the petals (cross-hatched
bars), and camera responses from sampling areas wider than those covered by a 400 mm standard spectrophotometer probe (diagonal-hatched bars).
Figure inserts represent measured and predicted camera responses for a spectrally flat, achromatic standard reflecting about 33% of incident
irradiation, which was included as an internal control on each image. Error bars represent standard deviation in all cases.
doi:10.1371/journal.pone.0096646.g007
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reason for employing specialised methods for the measurement of

these particular signals [53,54].

Variability on any given flower is not only limited to fluctuations

in total brightness across the sample, but it is also manifested

within the different spectral bands (Figure 8). This chromatic

variability is represented by discrepancies in the shape of the

distributions of the linear pixel intensity values within the UV,

blue, green and red spectral bands, and are likely produced by the

presence of pattern elements of varying hue and intensity within a

petal. For instance, the highest chromatic variability in Goodenia

ovata was observed in the red and green colour channels,

corresponding to the (human-perceived) yellow pattern, whilst

the lowest variability corresponded to the plain UV-reflective

marks (Figure 4).

Other sources of spatial variability may also include variations

in the recorded reflectance values produced by volume scattering,

which is characteristic of leaves, fine plant structures and small

dust particles [55]. Although the effect of volumetric scattering has

been studied for radar imagery and other remote sensing

techniques [55,56], its potential effects on measurements using

purely optical radiation remains untested. Future work could

address this issue, in particular, when using infrared digital

imaging.

Lack of uniformity in the brightness values through the sampled

area and the selected spectral bands, suggests that visual signals

produced by flowers are complex and should be regarded as

multidimensional entities where each dimension potentially

represents a different source of variability.

Considerations when Using Consumer-level DSLR for
Measuring Flower Colours

In spite of the advantages of digital photography to measure

spectral and spatial variation in flower signals, recovered linear

camera responses are limited to: i) the uncertainties associated

with the implementation of a biexponential linearisation equation,

ii) the colour gamut covered by the camera’s own colour space and

iii) the spectral interval spanned by sensitivity curves of the colour

channels available in the camera system.

The uncertainty associated with the recovered linear response is

not uniform along the different values of the camera response [31],

being particularly high at r values corresponding to less than

about 9% of incident radiation (Figure 6). Below this point camera

responses are dominated by noise and are very likely described by

a different relationship than camera responses at higher irradiance

levels [26,57].

In spite of being qualitatively close to the perceived aspect of a

flower by a human observer, camera responses corresponding to

highly saturated, human-perceived yellow and orange colours,

such as those displayed by Gazania rigens and Sonchus oleraceus, do

not correspond to those expected from their reflectance spectra; in

other words, camera responses are not radiometrically faithful for

these hues. This problem arises due to the smaller colour space

reproduced by digital devices compared to animal colour spaces

and that of a human as described by the CIE observer [48,58].

It is likely that in order to reproduce a colour perceptually

similar to that observed in highly saturated yellow samples, the

inbound camera software increases the red channel response

above the physical reflectance value for these samples whilst

lowering the response of the green channel (Figures 2–3 and 7). As

a consequence, linear camera responses corresponding to these

hues are likely to be inaccurate. An efficient way to evaluate this

potential problem is by measuring the RGB values in the non-

linear image. Values corresponding to the red channel for the

sample should never be above those reported for an achromatic

calibration target reflecting more than about 90% incident

irradiation. However with the current data it is not possible to

identify the precise mechanism by which this correction is made,

or if it involves a linear or non-linear transformation. A better

understanding of the way the camera software deals with these

colour samples remains an open field for research, and could be of

value for other image processing tasks involving linear camera

responses such as spectral reconstruction [59].

Finally, caution is suggested when interpolating linear camera

responses to other trichromatic colour spaces, including CIE

uniform colour spaces such as the CIE Lab, as the spectral tuning

of the two systems may not completely overlap [60]. For example,

a direct mapping between the Canon 40D camera employed here

and any colour space based on human vision is very likely to be

inaccurate as the spectral tuning of the respective systems differs

(Figure 1). This limits the number of visual signals that can be

accurately mapped to those whose spectral signature matches the

spectral interval shared by the sensitivity functions of the two

systems predicted by Equation 1, and has motivated the

development of methodologies for spectral reconstruction from

RGB camera responses [27,60]. Future work should aim to obtain

a better understanding of mappings between camera colour space

and those of different animal observers through carefully designed

camera characterisation experiments.

Conclusion and Recommendations

Most consumer-level RGB cameras constitute an adequate

means to recover total energy reflected within a spectral interval

equal to that spanned by the spectral sensitivity of each channel,

which, for certain specialised models, may include the UV region

of the spectrum. However, the accuracy of recovered reflectance

information is dependent on a proper characterisation process,

including modelling of the unique transfer function of a specific

camera, and the formulation of a linearisation equation.

Linear camera responses may be used to assess the intrinsic two-

dimensional chromatic variability of naturally-occurring objects

due to the simultaneous measurement of many points, each

represented by a single pixel within an image. The measurement

of spatio-chromatic variability allows this system to gauge the

complexity of natural environments, thus giving researchers an

Figure 8. Graphical summary of the mean total reflectance
recovered from fifteen 900 pixel2 square sampling areas
covering the entire lower petals of a floral specimen of
Goodenia ovata by the red, green and blue channels of a Canon
40D camera sensitive to visible radiation and the red UV-
sensitive channel of a Fuji S3 UVIR camera.
doi:10.1371/journal.pone.0096646.g008
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insight into the challenges met by animal visual systems. Future

applications could include accurate mapping of variability in

natural backgrounds.
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