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Abstract

Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The
Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-
natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG)
with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in
Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-
Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy
number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts
and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a,
Morc3, Slc5a3, and Vwf) and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1). In addition cardiac connexins (Cx40,
Cx43) and sodium channel sub-units (Scn5a, Scn1b, Scn10a) were found down-regulated in Ts65Dn atria with additional
down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint
new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model.
In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal
lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve
the care of DS people.
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Introduction

Down syndrome (DS), caused by trisomy of human chromo-

some 21 (Hsa21; Hsa for Homo sapiens) is the most common

chromosomal anomaly and cause of intellectual disabilities [1–4].

Among DS newborns, 40% to 60% are affected by congenital

heart defects (CHD), consisting mainly of atrioventricular septal

defects (AVSD) with additional changes in the cardiac axis and

ECG [5,6]. In comparison incidence of CHD in all newborns is

between 8% and 14% and is the leading cause of death before 1

year of age [5]. Thanks to cardiac surgery and medical care, CHD

patient’s life expectancy has increased from 12 years in the 1940s

to 60 years nowadays [1,5]. However, even in the absence of overt

CHD, a number of functional anomalies have been observed in

adult DS patients, such as altered heart rate regulation [7,8],

valvular dysfunction [9,10], bradycardia and AV block [11,12].

Correspondingly, adult DS population has increased and requires

prolonged follow up and care, particularly in the cardiovascular

field.

To further study the correlation between phenotype and

genotype in DS, various mouse models have been created [2,4].

Indeed, the long arm of Hsa21 is approximately 33.9 Mb in length

and contains about 430 protein coding genes (either known or

putative) of which 293 have a homolog in the mouse genome

according to the NCBI37/mm9 genome sequence. Among those,

about 235 genes are located on syntenic regions on mouse

chromosomes 16 (Mmu for Mus musculus; Mmu16, 23.3 Mb, 166

genes), 17 (Mmu17, 1.1 Mb, 22 genes) and 10 (Mmu10, 2.3 Mb,

47 genes). The largest duplication created on the Mmu16, the

Dp(16)1Yey, results in a mouse trisomic for the whole region from

Lipi to Zfp295 that shows cardiac anomalies [13]. Similarly the

Ts(1716)65Dn (Ts65Dn) model, which carries a shorter trisomy

ranging from Mrpl39 to Zfp295, shows specific cardiovascular

malformations associated with post-natal lethality and reduced

transmission rate of the Ts65Dn allele at weaning [14,15]. This is
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also observed in trisomy for the Tiam1-Kcnj6 region [16]. Thus

candidate genes for cardiac and lethality phenotypes should be

located on the Hsa21 homologous region present on Mmu16.

At present, while morphological and histological aspects of the

cardiovascular phenotypes observed in DS mouse models during

perinatal age have been described, the functional aspects remain

unexplored in viable adult animals. Before the development of

cardiac imaging, ASD, VSD and AVSD were scored by abnormal

electrocardiographic recordings (ECG) in man. CHD could be

predicted on this basis in 80% of the cases in DS people. Most

characteristic features of CHD-induced changes in ECG are

superior frontal QRS axis deviation, first degree block and partial

bundle branch block [6,17–19]. QRS prolongation and P wave

axis changes are also common features [17]. When combined to

clinical examination and radiography, ECG becomes highly

sensitive and specific even though the best investigation remains

echocardiography.

The aim of the present study was to explore the cardiac function

in the Ts65Dn mouse model. Moreover we wanted to assess the

susceptibility to dosage effect of genes within the App to Runx1

region and their implications in heart defects and lethality by a

subtractive approach. For that we used a partial monosomic

model, Ms5Yah, carrying a deletion for the previously mentioned

region and we found that compound Ts65Dn/Ms5Yah mice were

partially rescued for the early post-natal lethality and some aspect

of ECG features. Furthermore re-establishing euploidy in the App-

Runx1 region modified gene expression changes, highlighting

several pathways involved in cardiac function that were deregu-

lated in the Ts65Dn DS mouse model.

Results

Ts65Dn transmission rate and heart anatomy and
histology

As a preliminary experiment, transmission rate of the Ts65Dn

allele at weaning was evaluated on a B6C3B mixed strain. Among

617 mice born from Ts65Dn x B6C3B crosses, 34% Ts65Dn

individuals were observed at weaning (Table 1), far below the 50%

that could be expected (x2 P = 1.7461028). Observation of litters

showed partial loss of progeny with death in the first 48–72 hours

and some complete loss of litters either abandoned or cannibalized

by Ts65Dn mothers. Heart and great vessels microdissection and

cardiac histology analyses showed one out of 18 Ts65Dn dead

pups presenting both great vessel and cardiac malformations

(Figure 1). In this Ts65Dn pup, the right subclavian artery arose

from the distal part of the aortic arch downstream the left

subclavian artery connection and described a retro-oesophagian

loop instead of arising from the proximal part of the aortic arch

forming a common trunk with the right carotid artery. Histology

of this pup also showed an inter-ventricular communication

(Figure 1D) while ventricular septation was complete in all wt pups

(Figure 1C). In adults, histological analysis of the heart (hematox-

ylin-eosin staining) showed no particular differences in trisomics

and controls. Fibrosis was checked in 3 individuals of each group

with trichrome coloration but no specific alteration and no large

fibrosis patch could be noticed. We conclude that in our breeding

colony, the Ts65Dn early post-natal death is associated with a low-

incidence of cardiac malformations similar to those of previous

reports [14,15].

Abnormal electrocardiologic pattern in Ts65Dn
Since DS patients can show electrocardiographic and functional

changes even in the absence of overt CHD, an electrocardio-

graphic investigation of Ts65Dn mice was performed to look at

more subtle phenotypes than gross morphological anomalies. The

six standard peripheral leads (DI, DII, DIII and aVR, aVL, aVF)

ECG of wt and Ts65Dn mice are illustrated in Figure 2. In

addition we defined four new precordial leads (V1, Vms, Vs and

V4) with respect to the Wilson reference terminal (Figure 2).

Recording from each lead showed a typical mouse ECG including

P and R waves and characterized by a large S wave followed by a J

wave. A delayed T wave, either positive or negative, was often

elusive except for the Vms lead in which it was always present and

positive as illustrated in Figure 2C and 2D. However, while P,

QRS and JT waves showed a smooth time-course in wt mice,

QRS exhibited a fragmented time-course in Ts65Dn mice

(Figure 2A and 2B). In most leads, QRS wave showed a notch

while V1 precordial lead exhibited an obvious RSR’ or RSR’S’

shape with a noticeable decrease of the S wave amplitude. Vms

showed a slurring at the foot of the R wave. Fragmented QRS

(fQRS) with notch were most frequent in the inferior frontal leads

(DII, DIII, aVF) and RSR’ with low voltage S wave and slurring

were more frequent in V1 and Vms precordial leads while V4 was

less affected. Relative distribution of these features in wt and

Ts65Dn are presented in Figure 2E showing that 63% of Ts65Dn

mice are affected by three of these anomalies at a time compared

to less than 3% in wild-type (wt). Fisher exact test was performed

on these qualitative features of the ECG as reported in Table 2

taking into account the presence of at least two of these features.

Ts65Dn ECG are highly significantly different from those of wt

mice (Fisher exact test, P = 261025). Moreover, these ECG

features were found to be highly predictive of a Ts65Dn genotype.

Noticeable changes in the wave amplitudes were also recorded

in Ts65Dn as compared with wt (Table 3). In the frontal plane,

inferior lead QRS amplitude decreased by 25% for the R wave

and by up to 40% for the S wave while QRS amplitude on

superior leads increased by 7% for the R wave (non statistically

significant) and 80% for the S wave. Overall changes in waves

amplitudes resulted in large changes of the frontal ventricular

electrical axis as illustrated in Figure 2F. While 70% of the wt mice

axis is within 27u to 2124u, most of the Ts65Dn axis (79%) are

outside this range (Fischer exact test, P = 1.161024). Figure 2G

shows in addition that Ts65Dn ventricular electrical axis is evenly

distributed in contrast to wt. In the frontal plane, P wave

amplitudes changes followed that of the QRS. They showed a

slight decrease in the inferior lead while there was no significant

change in the superior leads.

Author Summary

Down syndrome is a common cause of birth defects
mainly due to heart diseases with an incidence of up to
50%. Nevertheless the pathophysiology of DS cardiac
anomalies and complications are not well understood.
Here we have been able to demonstrate using a series of
DS mouse models that birth defects and changes in ECG,
similar to those in humans, are linked to dosage sensitive
genes located in the App-Runx1 genetic interval. Further
molecular characterization revealed an overall perturba-
tion of transcription, a few candidates homologous to
human chromosome 21 genes, and changes in the
expression of several genes, including cardiac connexins
(Cx40, Cx43) and sodium channel sub-units (Scn5a, Scn1b,
Scn10a), likely contributing to ECG defects. This model
provides a unique opportunity to study further the DS
heart diseases and to propose therapeutic avenues for
treatment of DS cardiac complications observed in adults.

Heart Diseases Associated with Gene Dosage
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The results were at variance in the precordial leads (Table 3;

Figure 2G). R wave amplitude changes were small and non-

significant but S wave was significantly reduced by 60 to 70% in

V1, Vms and Vs. Figure 2G shows much smaller waves changes in

left hand side lead V4 (only 25%) than in right hand side lead V1.

P wave was reduced by 20% to 30% in V1, Vms and Vs but

increased in V4 by 68% (Table 3). Waves related to the

repolarisation process (J and T) were also affected in Ts65Dn

compared to wt mice. J amplitude was reduced by 20 to 40% in

the inferior leads and in V1, Vms and Vs (Figure 2G). In contrast

the change was much smaller in superior leads (aVR, DI, 10%)

and V4 (Figure 2G). As illustrated in Figure 3, T wave amplitude

was also reduced in Vms. Not only Ts65Dn mice ECG showed

changes in wave shapes and amplitudes but they also showed

changes in wave durations and intervals. The RR intervals were

prolonged in Ts65Dn leading to a reduction of heart rate from

667611 bpm to 606613 bpm (n = 30; Student t-test; P = 96
1024). PR was prolonged from 35.360.5 ms to 44.661.1 ms

(Student t-test; P = 761025). QRS wave duration was also

increased by 8%. Values were respectively 9.0260.21 ms in wt

and 9.8960.2 ms in Ts65Dn (Student-t-test; P = 0.027). QT and

QTc were also larger in Ts65Dn (73.062.0 ms and 73.061.3 ms

respectively) than in wt (67.561.0 ms and 71.060.1 ms; Student

t-test; P = 0.004 and 0.02). Since the above-described results point

to conduction changes in Ts65Dn as compared to wt, a sub-group

of these mice (N = 8) were treated with the Na channel blocker,

flecainide. As reported in Table 4, flecainide (20 mg/kg)

significantly prolonged all intervals and wave durations (P, R

and QRS waves and RR, PR and QT intervals). With this

treatment, adult Ts65Dn showed a specific electrophysiologic

signature as compare to wt mice. Not only was the wave-front

activation changed but a first degree conduction bloc and

alteration of the repolarisation were also recorded in the DS

mouse model. Thus the investigation of Ts65Dn mice revealed

several electrocardiographic phenotypes even in the absence of

gross morphological anomalies in this DS model.

Early post-natal lethality of Ts65Dn mice is partially
rescued by the Ms5Yah monosomy of the App-Runx1
interval

The Ts65Dn allele induces early post-natal lethality which has

also been described in Ts1Yu mice, a trisomic model for a larger

region of Mmu16 extending from Lipi to Zfp295 [16]. Such a

lethality was not found in the Ts1Cje mouse model which is

trisomic for a smaller segment from Sod1 to Zfp295, nor in the

Ts1Rhr carrying a trisomy from Cbr1 to Orf9 [3,4,20]. Accordingly

we tested if the early post natal lethality was associated with 3

copies of the Mrpl39-Sod1 interval. Thus we developed a partial

monosomic model named Ms5Yah carrying a 7.7 Mb deletion on

Mmu16 between the App and Runx1 genes (Figure S1). The

Table 1. Transmission rates of the Ts65Dn and Ms5Yah alleles observed at weaning in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah mice.

Original cross Genotype Observed number Observed ratio x2 P

Ts65Dn x F1B6C3B wt 407 66.0% 31.8 1.74610208

Ts65Dn 210 34.0%

Ms5Yah x F1B6C3B wt 85 83.3% 23.5 1.27610206

Ms5Yah 17 16.7%

Ts65Dn x Ms5Yah wt 73 39.5% 8.51 3.5561023

Ts65Dn 50 27.0% 0.01 0.90

Ms5Yah 16 8.6% 0.27 0.60

Ts65Dn/Ms5Yah 46 24.9% 24.0 9.77610207

All the lines were kept on a mixed B6C3B background. Ts65Dn and Ms5Yah lines showed a reduced transmission rate of their respective allele at weaning that was
related to post-natal lethality. Combination of both aneuploidies leads to a partial rescue for this lethality as shown by the ratio observed for the Ts65Dn/Ms5Yah
genotype.
doi:10.1371/journal.pgen.1002724.t001

Figure 1. Changes in cardiovascular morphology observed in
the Ts65Dn model. Posterior view of a wt individual illustrates the
normal location of the aorta and efferent vessels (A). Posterior view of a
Ts65Dn individual shows an aberrant right subclavian artery (RSA)
arising from the distal part of the aortic arch and describing a retro-
oesophagian loop (B). Haematoxylin-eosin staining of histological cross-
sections illustrates full septation of the ventricles with individualized
valves in wt (C) while Ts65Dn heart cross-section shows an upper
communication of the ventricles (D; arrow). This cardiovascular anomaly
was observed in 1 in 18 Ts65Dn dead newborns. LSA, left subclavian
artery; RSA, right subclavian artery; DA, descending aorta; RA, right
atrium; LA, left atrium; RV, right ventricle; LV, left ventricle; Sept,
septum; OT, outflow tract. Scale bars represent 1 mm in A, B and
400 mm in C,
doi:10.1371/journal.pgen.1002724.g001

Heart Diseases Associated with Gene Dosage
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Figure 2. ECG analyses of urethane anaesthetized Ts65Dn adult mice revealed cardiac conduction anomalies. Peripheral (A) and
precordial (B) leads are presented for the wt and the Ts65Dn mice in the left and right columns respectively. Wt ECG showed a smooth tracing in all
leads. P wave, QRS complex and J wave are clearly distinguishable. Ts65Dn ECG showed notching of the S wave in most leads. In V1, QRS amplitude
was reduced with a fragmented RSR’S’ complex. A slurr was found in the Vms lead. Notice the prolonged PR interval. Representation of Vms lead from
wt (C) and Ts65Dn (D) showed measurements performed on wave amplitudes and durations. The isoelectric line (zero) was taken as the mean
potential just preceding the R wave and J and T waves were labeled. The T wave was always positive in this lead while it could be elusive in other
leads. ECG features (E) were classified according to the presence of fragmented QRS (RSR’S’), slurr and S wave absence (Vx.0) in the precordial leads.
62% of the Ts65Dn mice showed 3 anomalies while 61% of the wt was free of such features. Frontal QRS electrical axis distribution (F) was evenly
distributed in Ts65Dn while that of wt animals showed a leftward preferential orientation. Measurement of wave amplitudes in precordial leads (G)

Heart Diseases Associated with Gene Dosage
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transmission rates at weaning for Ms5Yah allele and the

combination between Ts65Dn and Ms5Yah (Ts65Dn/Ms5Yah)

alleles are reported in Table 1. From the 102 individuals alive at

weaning in the Ms5Yah breeding colony, 16.7% of the mice

carried the App–Runx1 deletion. This transmission rate for the

partial monosomy is below the Mendelian ratio (x2

P = 1.26610206) indicating that the region causes lethality due

to haploinsufficiency. Interestingly the transmission rate was

evaluated at 27.9% at post natal day 1 (N = 43, x2

P = 1.2610203) and 48.3% at embryonic day 18.5 (N = 31, x2

P = 0.85) indicating a lethality within this period. Thus we

considered the App-Runx1 region as a haploinsufficient region

inducing post-natal lethality. We checked whether the Ms5Yah

pups were carrying cardiovascular defects as observed in the

Ts65Dn newborns using microdissection and histological analyses.

No cardiovascular malformations, either in the great vessels or in

the intra-cardiac septation could be seen in 18 dead pups. 185

Ts65Dn/Ms5Yah offspring were obtained at weaning from the

breeding of Ms5Yah males with Ts65Dn females. The expected

ratios were calculated considering the previously described

transmission rates obtained for Ts65Dn line and Ms5Yah line.

Transmission ratios for Ts65Dn and Ms5Yah alone were not

significantly different from the expected ratio (27.0% and 8.6%

respectively, x2 P.0.05). However, the transmission rate for

combined Ts65Dn/Ms5Yah alleles was 24.9%, as expected for a

Mendelian ratio showing that the Ts65Dn-allele-induced lethality

was completely rescued by the monosomy of the App-Runx1 region

(x2 P = 4.861027). However the transmission rate for the Ms5Yah

allele did not reach the expected value showing that Ms5Yah-

induced lethality still occurs. Thus the deletion between App and

Runx1 genes (Ms5Yah) induced a severe postnatal lethality that is

partially rescued by combining Ms5Yah with the Ts65Dn model

suggesting effect due to the new chromosomal configuration.

Combination between Ms5Yah and Ts65Dn models
rescues part of Ts65Dn ECG phenotypes

As we found that the Ms5Yah monosomy rescued Ts65Dn post-

natal lethality, we decided to look at ECG in Ts65Dn/Ms5Yah

adult mice to determine whether the combination between these

two models had an effect on electrocardiologic pattern. Ts65Dn/

Ms5Yah mice showed wave shape anomalies similar to those

described above for Ts65Dn mice. However, relative distribution

of these features in Ts65Dn/Ms5Yah (Figure 3A) showed a

noticeably lower rate of notching in the lower frontal leads as well

as a reduced frequency of RSR’S’ waves in V1 and Vms as

compared with Ts65Dn. Taking into account the presence of at

least two wave shape features, Ts65Dn/Ms5Yah mice could no

longer be distinguished from wt and were significantly different

from the Ts65Dn mice (Table 2) supporting an overall rescue-like

effect of the Ms5Yah allele. This occurred because Ts65Dn

features no longer cumulated and were reduced to a single

anomaly in 65% of the Ts65Dn/Ms5Yah individuals

As Ts65Dn mice showed a variable orientation of the QRS axis,

this item was also determined for Ts65Dn/MS5Yah mice.

Repartition of this axis for wt, Ts65Dn and Ts65Dn/Ms5Yah

by quadrants is reported in Figure 3B. Most wt mice showed an

electrical axis in the 0u;290u quadrant (upper right) while Ts65Dn

ventricular electrical axis was evenly distributed. No obvious

rescue of the electrical axis was found in Ts65Dn/Ms5Yah mice.

75% of the axis of the latter mice stayed outside the 27u;2124u
interval previously mentioned with a median value of +162u. This

significantly differed from the wt (Fisher exact test, P = 0.014) but

not from the Ts65Dn (P = 0.53).

In the frontal plane, wave amplitude of Ts65Dn/Ms5Yah mice

showed the same trend as Ts65Dn mice when compared with wt,

with significant decrease of the S wave amplitude in inferior leads,

increase in superior leads and smaller changes in R waves. While

the Ts65Dn/Ms5Yah model did not rescue the changes in wave

amplitudes in the frontal plane, it completely rescued changes in

the sagittal plane (precordial leads) as illustrated in Figure 3C for

the Vms lead. With the exception of the S wave in the V1 lead,

none of the precordial P, R, S, J and T waves of Ts65Dn/Ms5Yah

mice was different from those of wt mice in each of the four

precordial leads. The rescue holds not only for the ventricular S

wave but also for the auricular P wave and for the J and T waves

related to repolarisation in the precordial leads. In these mice RR

(97.864.0 ms) and PR (39.364.5 ms) were shorter than in

Ts65Dn mice but these values did not differ significantly from

either wt (P = 0.23 and P = 0.052) or Ts65Dn (P = 0.57 and

P = 0.48) mice. QTc was significantly reduced down to

65.562.8 ms (P = 0.03; n = 12) in Ts65Dn/Ms5Yah mice. This

value was no longer different from the wt value (P = 0.075). Thus

two copies of the App-Runx1 region in Ts65Dn/Ms5Yah mice led

to a partial recovery of the Ts65Dn electrocardiographic

phenotypes. Wave shape anomalies, wave amplitudes on precor-

dial leads and QTc duration were rescued whereas wave

amplitudes on peripheral leads were not and RR and PR were

partially rescued as they showed an intermediate duration between

Ts65Dn and wt values.

showed a large decrease of S and J waves on V1 and limited changes in V4 whereas R waves were found normal in both V1 and V4 (n = 31 and 29 for
wt and Ts65Dn respectively) (Student t-test p-values: **: P,0.01; ***: P,0.001).
doi:10.1371/journal.pgen.1002724.g002

Table 2. Comparison of ECG anomalies in the different mouse lines.

Fisher exact test (2 tailed)

Genotype 2 features 1 or 0 feature Total versus wt versus Ts65Dn

wt 8 (25%) 23 (75%) 31

Ts65Dn 27 (93%) 2 (7%) 29 P = 2.261025

Ts65Dn/Ms5Yah 4 (33%) 8 (67%) 12 P = 0.444 P = 1.861024

ECG anomalies were featured by RSR’S’ fragmented QRS waves. low voltage S wave in V1 and/or Vms. and presence of a slurr in V1 or Vms. Values correspond to the
number of mice with the proportion given in parentheses.
doi:10.1371/journal.pgen.1002724.t002

Heart Diseases Associated with Gene Dosage
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Changes in whole-genome expression in Ts65Dn and
compound mutant hearts

The rescue of Ts65Dn viability and electrocardiographic

phenotypes by reestablishing the App-Runx1 region to two copies

in Ts65Dn mice points at the gene dosage effect related to this

interval. Whole genome expression arrays were then performed on

adult mice heart samples to determine genes that are dosage

sensitive and to observe the deregulations on the whole genome.

Wt, Ts65Dn, Ms5Yah and Ts65Dn/Ms5Yah heart samples were

analysed using Affymetrix Gene Chip technology. RMA normal-

ized data obtained from Affymetrix Expression Console software

were filtered using an expression level threshold above 50 in raw

data (5.644 in log scale 2) and fold change (FC) between wt and

transgenic mice .1.2 or ,0.8. We measured the expression levels

of 25,099 transcripts, representing 22,193 genes. Among those,

9,017 genes (40.6%) had a fluorescence signal above the threshold

in wt samples and were considered as expressed genes in adult

mouse heart. The ratio of gene expression across chromosomes

between aneuploid and wt mice was 1.0060.002 (ranging from

0.9860.003 to 1.0360.005) except for genes located on the

monosomic and trisomic intervals located on Mmu16 and Mmu17

for the specific region found in the Ts65Dn minichromosome [20]

(Figure 4A; see below).

In order to further analyze gene expression modifications

GeneSpring software was used to define the most significantly

deregulated genes using one way ANOVA and a Tukey HSD post

hoc analysis. The clustering on arrays of most significantly

deregulated genes (ANOVA, P,0.1) are represented on Figure 4.

A partial correlation was observed between Ts65Dn/Ms5Yah and

Ts65Dn arrays on one hand and between wt and Ms5Yah arrays

on the other hand as shown by the upper tree. This is due to the

number of genes in common between Ts65Dn and Ts65Dn/

Ms5Yah on the one hand and between wt and Ms5Yah on the

other hand. The deregulation of 5 genes of the Mmu16 was

confirmed by QRT-PCR in the heart with different genotypes and

confirmed the results of the microarray analysis (Table 5).

Gene expression profiles were categorized in seven distinct

groups with respect to genotype-associated expression patterns

that are listed in Table 6 and Table S1. The first group was mainly

composed by triplicated genes in both Ts65Dn and Ts65Dn/

Ms5Yah mice, either located on Mmu16, upstream of App or

downstream of Runx1, or on the Mmu17 centromeric regions of

the Ts65Dn minichromosome. These genes were found over-

expressed in both Ts65Dn and Ts65Dn/Ms5Yah arrays but not in

Ms5Yah arrays. We also found a set of 12 genes located elsewhere

whose expression follow the same rationale, 9 overexpressed and 3

down-regulated as shown on Table 6. These genes might

correspond to targets of the triplicated genes in the Ts65Dn/

Ms5Yah mice. A second group of genes was mainly composed by

genes located within the Ms5Yah region and were found over-

expressed in Ts65Dn, under-expressed in Ms5Yah and with

comparable expression level in wt and Ts65Dn/Ms5Yah arrays.

Interestingly we found one gene from the telomeric part of

Mmu16, Msx2, and only 6 additional genes from different

chromosomes that had similar expression variations correlated

with changes both in the number of copy of the App-Runx1 region

and in the Ts65Dn trisomy. The other groups were mainly

composed of genes located outside the above-mentioned Mmu16–

Mmu17 regions and were distinguished by their expression

patterns. Genes from the third group were differentially expressed

in Ts65Dn arrays, while comparable to wt in Ms5Yah and in

Ts65Dn/Ms5Yah arrays. 3 genes from this group were found in

the proximal region of Mmu17 that is trisomic in the Ts65Dn

model and one, Tiam1, was located in the App-Runx1 region but

whose expression is not sensitive to dosage in Ms5Yah mice. The

expression of genes from the fourth group was modified only in the

Ms5Yah model. Among those genes, one gene, Sft2d1, comes from

the centromeric region of Mmu17 and 5 genes (Ifngr2,

1110004E09Rik, 2610039C10Rik, Sod1 and Atp5o) are from the

Ms5Yah interval. They were all down-regulated. In addition 13

down-regulated genes and 18 up-regulated genes are found outside

the aneuploid regions. A fifth group contained 10 genes over-

expressed in Ms5Yah and Ts65Dn/Ms5Yah arrays whereas 15

additional genes displayed a more complex expression pattern

(groups 6 and 7).

Looking more closely at the 109 Mmu16 known protein coding

genes present on the Ts65Dn minichromosome, we found that 4

were absent from the chip and 39 were expressed below

background level. Among the 66 remaining genes expressed in

adult mice heart, 78.8% were up-regulated in Ts65Dn arrays with

a mean fold change of 1.3660.01 (ranging from 1.20 to 1.61).

Similarly, of the 43 Mmu17 known protein coding genes located

on the Ts65Dn minichromosome, 8 were absent from the chip

and 7 were not expressed. Of the 28 Mmu17 remaining trisomic

genes expressed in adult mice heart, 78.6% were upregulated in

Table 3. P, R, and S wave amplitudes (mV) of wt and Ts65Dn mice (n = 18) for superior leads (DI and aVR), inferior leads (DII, DIII,
and aVF), and precordial leads (V1, Vms, Vs, and V4).

Waves P R S

lead wt Ts65Dn wt Ts65Dn wt Ts65Dn

DI 0.08160.005 0.08560.008 0.33460.034 0.35660.037 20.18760.028 20.34760.033**

-aVR 0.13860.007 0.12060.017 0.44660.031 0.33260.047* 20.33160.024 20.40160.026*

DII 0.17260.009 0.15960.009 0.67060.036 0.54560.039* 20.66260.039 20.52760.044*

DIII 0.09360.008 0.09060.018 0.55560.031 0.43360.029** 20.79360.067 20.50460.071**

aVF 0.12860.008 0.10760.010* 0.62260.033 0.46860.032** 20.75660.051 20.45260.053**

V1 0.10760.009 0.07360.018* 0.87960.056 0.77060.104 20.35860.070 20.11960.041**

Vms 0.18160.010 0.15160.013* 1.57460.106 1.46660.157 20.72360.096 20.29160.156**

Vs 0.11760.009 0.09760.011* 0.89760.049 0.71660.043* 20.71460.059 20.31360.048***

V4 0.09660.053 0.16160.019* 1.17860.084 1.29060.075 21.13760.079 20.83260.097**

Significance is given with P values of 0.05 (*). 0.01 (**) and 0.001 (***).
doi:10.1371/journal.pgen.1002724.t003
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Ts65Dn arrays with a mean fold change versus wt of 1.3660.02

(ranging from 1.21 to 1.55). Thus the presence of the Ts65Dn

minichromosome results in an overall upregulation of genes

present in three copies as shown on Figure 5. Interestingly

Ts65Dn/Ms5Yah arrays showed an overall upregulation profile

close to that of the Ts65Dn arrays, except for genes located within

the App-Runx1 region that were expressed at a ratio versus wt close

to 1.0. As shown in Figure 5, some genes do not seem to be dosage

sensitive and show no change versus wild type in all aneuploid

samples. Actually most of these genes (22 located on Mmu16 and 8

on Mmu17) showed a raw expression below background level and

are in fact not expressed in adult mice hearts. Nevertheless five

genes located on Mmu16 (Atp5j, Cldn14, Erg, Pcp4 and Prdm15) and

four on Mmu17 (Pisd-ps2, Zdhhc14, Synj2 and Prr18) were found

expressed but not dosage sensitive in heart.

Five genes were selected to validate expression levels observed

with arrays using quantitative PCR analysis (Figure 5B, Table 6).

Usp16, Cct8 and Bach1 (located between App and Runx1 genes)

showed fold change versus wt above 1.2 in Ts65Dn, below 0.8 in

Ms5Yah and close to 1.0 in Ts65Dn/Ms5Yah samples. Dyrk1a and

Sh3bgr (located between Runx1 and Zfp295) showed over-expres-

sion (fold change above 1.2) in Ts65Dn and Ts65Dn/Ms5Yah and

fold change close to 1.0 (Dyrk1a) and slightly under-expressed

(Sh3bgr) in Ms5Yah samples. All these data confirm the results

obtained from expression arrays. Thus variation of gene expres-

sion was scored and partly verified for several genes which belong

to groups of genes misregulated as a consequence of Ms5Yah or of

Ts65Dn aneuploidies. Some of them were located outside the

aneuploid regions, indicating a genome-wide trans effect on gene

expression in Ts65Dn, Ms5Yah andTs65Dn/Ms5Yah mice

hearts.

Connexins and sodium channels expression is altered in
the Ts65Dn mouse

To go further in the understanding of ECG anomalies, an

additional experiment was designed by targeting and measuring

expression levels of genes related to conduction anomalies in

ventricles and atria separately. Action potential propagation in the

cardiac cellular network mostly depends on three factors:

geometry (i.e. His-Purkinje system, fibrosis & morphology), cardiac

connexins and ion channels availability, in particular sodium

channels [21]. ECG recordings point to altered conduction in

aneuploid mice, and no evident trace of fibrosis could be found

(data not shown). Thus we decided to obtain anatomical

observations of the His-Purkinje system in Ts65Dn hearts using

the Cx40eGFP transgenic mouse model whose heart conduction

system is labeled with Green Fluorescent Protein (GFP) [22].

Three Cx40eGFP/+;Ts65Dn mice affected by clearcut ECG

phenotypes were compared to three Cx40eGFP/+ disomic mice

showing no ECG anomaly. Left and right ventricles were dissected

out as described by Miquerol et al. [22]. Right and left His bundles

specifically labeled by GFP in the ventricle showed characteristic

strong fluorescence and gave rise to a dense network of Purkinje

fibers. Gross anatomical observation with stereomicroscope

Figure 3. Partial rescue of ECG features in Ts65Dn/Ms5Yah
compound mice. (A) ECG features from urethane anaesthetized adult
mice were classified according to the presence of fragmented QRS
(RSR’S’), slurr and S wave absence (Vx.0) in the precordial leads. 62% of
the Ts65Dn mice showed 3 anomalies while 61% of the wt was free of
such features. Only 16% of Ts65Dn/Ms5Yah mice exhibited 3 anomalies
and 65% had none or only one anomaly. (B) In the frontal plane, the
electrical axis of both Ts65Dn and Ts65Dn/Ms5Yah animals were evenly
distributed while that of wt showed a leftward preferential orientation.
(C) wt, Ts65Dn and Ts65Dn/Ms5Yah ECG wave amplitudes were
recorded in the precordial Vms lead. P, S, J and T waves’ amplitudes
were all reduced in Ts65Dn mice as compared to wt while R wave was
not changed. Double transgenic mice (Ts65Dn/Ms5Yah) rescued these
effects (Mean 6 sem with ANOVA p values ***: P,0.001; **: P,0.01; *:
P,0.05 for 29, 18 and 12 wt, Ts65Dn and Ts65Dn/Ms5Yah respectively).
doi:10.1371/journal.pgen.1002724.g003

Table 4. Effect of the sodium channel blocker flecainide on
the duration (ms) of P, R, and QRS waves and RR, PR, QT, and
QTc intervals in Ts65Dn mice (N = 8).

Interval/wave control Flecainide

RR 94.0062.69 111.8862.92***

PR 38.5061.67 55.6362.23***

P 11.7560.53 21.1362.31***

R 6.5060.68 14.2560.77***

QRS 9.6360.32 14.2560.77***

QT 66.5761.13 81.8862.58**

QTc 68.6961.38 77.4962.33**

Significance is given between control and flecainide with P values of 0.05 (*).
0.01 (**) and 0.001 (***).
doi:10.1371/journal.pgen.1002724.t004
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showed no obvious differences between wt and Ts65Dn groups

(data not shown). Three additional Ts65Dn and 14 wt hearts with

various ECG anomalies were dissected and showed no other

visible structural differences than inter-individual variations as

described by Miquerol et al. [22].

Even though no anatomical differences were observed in the

His-Purkinje system, alterations in connexins or sodium channels

expression could still account for electrophysiological anomalies.

Connexins Cx40, Cx43, Cx45 and Cx30.2 are chamber- and tissue-

specific in the heart [23] and were analyzed accordingly in both

the atria and the ventricle. We looked at the Scn5a gene which

codes for a pore forming protein and is mutated in human heart

conduction diseases (Online Mendelian Inheritance in Man

601144, 113900) and for which heterozygous mutant mice suffer

from abnormal heartbeats and defects in the impulse conduction

system and also at Scn10a recently implicated in heart conduction

[24]. The beta-subunit of Na+ channel Scn4b was found under-

expressed in Ms5Yah mice using affymetrix array and we also

investigated the other beta-subunit Scn1b [25]. Connexin mRNA

levels were measured by QRT-PCR. Atria showed a down-

regulation of Cx40 and Cx43 by 34 and 39% respectively and

sodium channels-coding genes Scn5a and Scn10a were also down-

regulated by 42% and 31% respectively and Scn1b by 29%

(Figure 6A). Cx45 and Cx30.2 expression levels were not modified

in Ts65Dn atria. In Ts65Dn ventricles, Cx40 was down regulated

by 23% but Cx43, Cx45, Scn1b, Scn5a and Scn10a expression levels

were not significantly changed (Figure 4B). Ts65Dn adult mice

showed no obvious anatomical anomalies of the cardiac specific

conduction system but a decrease of Cx40 expression in both atria

and ventricles and an atria specific decrease of Cx43, Scn1b, Scn5a

and Scn10a expression. Thus downregulation of these genes might

participate to conduction anomalies observed in Ts65Dn adult

mice.

Discussion

Ts65Dn is the most widely used mouse model of DS and

displays a large panel of DS features. The present study confirms

previous results observed on this model, in terms of birth defects

and CHD [14,15] and points to additional cardiac dysfunctions.

CHDs were observed in dead Ts65Dn pups by Moore et al. [14]

who reported 3 out of 36 dead pups (8.3%) showing septal defects.

Further analysis reported a frequency of 15.3% among 52 dead

neonates having some type of cardiovascular abnormality [15].

Our study showed one out of 18 dead pups (5.5%) presenting

CHD. This low frequency is certainly due either to the different

genetic background of the mice or most probably to the small

number of animals analyzed. The frequencies of CHD observed in

Figure 4. Clustering derived from statistically deregulated
genes in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah. Whole genome
microarray expression analysis was performed on RNA isolated from
whole adult mouse hearts and statistically deregulated genes were
assessed using GeneSpring software. Clustering showed proximity
between Ts65Dn/Ms5Yah and Ts65Dn arrays on one side, and between
wt and Ms5Yah arrays on the other side. Under-expression and over-
expression are represented in green and red respectively, expression
levels were calculated by comparison to mean expression level of all
arrays for each gene.
doi:10.1371/journal.pgen.1002724.g004

Table 5. Ratio of the expression level of 5 genes located on
Mmu16 in the heart of mutant compared to disomic control
mice.

Gene Ts65Dn Ts65Dn/Ms5Yah Ms5Yah

Usp16 1.6860.21* 1.1660.30 0.5460.16*

Cct8 1.7260.14** 1.0160.14 0.4460.09**

Bach1 1.7760.31** 1.1060.22 0.5860.16*

Dyrk1a 1.5760.12** 1.6460.20** 1.0660.10

Sh3bgr 1.6860.22* 1.5760.27* 0.7460.11

The analysis was done by qRT-PCR. Significance is given with P values of 0.05 (*).
0.01 (**).
doi:10.1371/journal.pgen.1002724.t005
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Table 6. Genes deregulated in the heart of Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah compound mice.

Genotype Ts65Dn Ms5Yah Ts65Dn/Ms5Yah

Group Gene Name Chr Anova mean ± sem mean ± sem mean ± sem

1 AU021092 16 ** 1.2660.11* 0.8760.04 1.3260.1**

Heph X *** 1.2760.06* 1.1160.05 1.4360.1**

Fbln2 6 ** 1.360.08** 0.9660.03 1.3460.08***

AI593442 9 ** 1.8360.39** 0.9460.06 1.6860.25**

Pdgfd 9 * 1.2360.02** 0.9460.04 1.2160.08*

F5 1 1.4960.14** 1.0860.12 1.2260.05

Vwf 6 1.3260.08** 1.0260.08 1.2760.08**

Pcbd1 10 1.6660.22** 0.8660.1 1.3460.3

P2ry12 3 1.2660.08** 1.0160.06 1.2260.07**

Lrp2bp 8 0.6560.04*** 0.8360.13 0.6460.07***

Htr2a 14 0.760.06*** 0.8360.07 0.6760.1**

Clk1 7 0.7760.05* 0.8560.05 0.7260.03**

2 Irf7 7 1.3760.26* 0.6760.13 0.9360.13

Zfp583 7 1.2960.1** 0.7260.15 0.9960.05

Slc38a4 15 ** 0.7660.06*** 1.2760.14 0.8660.07

Slc8a1 17 0.860.07 1.3460.14 1.0360.11

Adam19 11 * 1.2860.2 1.8960.34* 1.0660.09

Vmn2r86 10 * 1.5960.22** 1.3860.13** 1.160.12

3 Wrb 16 *** 1.2260.02*** 0.8960.02 1.1860.04

St8sia5 18 1.2760.14** 1.1960.08 1.1860.06

Slc39a6 18 1.2560.11** 0.9760.04 1.1460.08

Abi3bp 16 1.4260.11** 1.0360.1 1.260.06

BC055004 5 1.560.22** 0.8460.07 1.1460.23

Dyrk1b 7 * 0.7360.04*** 0.8260.02 0.8460.03

Ypel2 11 * 0.7960.06 1.1860.1 0.960.1

Chrna2 14 0.7860.1** 0.860.04 0.8160.09

Ldhd 8 0.7960.05** 0.9360.03 0.8660.03

Gm16493 9 0.7160.07* 1.0160.07 0.8960.06

Pm20d1 1 0.6560.08*** 0.9660.1 0.8860.12

Nudt8 19 * 0.7960.05** 1.0560.04 0.9460.01

4 Carkd 8 * 0.9360.04 0.7960.01** 0.9160.05

Amot X * 1.0260.12 0.7260.06* 1.0160.02

Pnck X * 0.9460.09 0.6460.09** 0.8560.02

Gm8566 6 * 1.1360.05 0.7460.1** 0.9660.01

Gm5436 12 ** 1.1460.1 0.7160.09* 0.9760.03

Hmcn2 2 * 1.1260.13 0.7860.06 1.1960.11

Scn4b 9 ** 1.0660.22 0.3460.08* 1.1260.18

Rasl10b 11 * 0.960.05 0.7260.06 1.0260.07

Tnxb 17 0.9660.1 0.7560.05 0.9660.05

Pde7b 10 0.8760.07 0.7360.03* 0.960.08

C1qa 4 1.0160.08 0.7460.07 1.0760.06

Ccne2 4 0.9960.07 0.7160.06* 0.8260.07

Crnkl1 2 0.9260.04 0.7960.01 0.8560.04

Cerk 15 * 1.1160.1 1.2960.06 0.9460.03

2810410L24Rik 11 0.9460.07 1.2460.11 1.1460.1

Gm10400 6 0.8660.09 1.2860.09 0.9160.1

2210021J22Rik 15 1.0560.07 1.3560.02 1.0860.08

Fam189a1 7 1.0160.07 1.2360.08 1.1560.05

Adamts6 13 160.06 1.3660.18 1.0160.08
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the Ts65Dn model are however much lower than the 40%

observed in human DS. This difference can result from additional

contribution of Hsa21 homologous genes not found in the Ts65Dn

model, i.e. located outside of the Mrpl39-Zfp295 interval. A strong

candidate is the Col6a2 gene located in the Mmu10 homologous

region and recently found to interact with Dscam, trisomic in the

Ts65Dn model, to induce cardiac hypertrophy and generate ASD-

like septal defects in mouse [26]. Hence, the full range of CHD

defects observed in DS results from a combination of genetic

interactions between multiple loci along the Hsa21, supporting the

‘‘multigenic’’ theory in which several overexpressed genes interact

to establish the DS phenotypes.

A number of functional heart anomalies have been observed in

adult DS patients. But this aspect remained unexplored in mouse

models. We therefore characterized cardiac function in Ts65Dn

animals and we found 93% of Ts65Dn mice carrying constant,

robust, and specific ECG signatures strongly different to that of wt

littermates. Ts65Dn adult mice exhibited QRS fragmentation (f-

QRS), frontal QRS axis dispersion, decrease in right precordial

lead amplitude and P wave changes, replicating in part the defects

observed in DS people. PR interval prolongation (first degree AV

block) observed in Ts65Dn mice includes auricle, AV node and

His bundle conduction time. Gross morphology of the His bundle,

as deduced from CX40-GFP labeling, does not appear to be

changed. The AV node is more likely to account for PR interval

prolongation even though enlargement of the auricle, as suggested

by P wave amplitude increase in V4 lead and P wave axis change,

could also be involved. In DS patients, such AV block and P wave

Table 6. Cont.

Genotype Ts65Dn Ms5Yah Ts65Dn/Ms5Yah

Group Gene Name Chr Anova mean ± sem mean ± sem mean ± sem

Zc3h12c 9 1.0960.06 1.360.03 1.0860.06

Lrrfip1 1 1.0260.06 1.2560.03 1.0560.05

Lce1m 3 1.0760.05 1.2560.06 1.1560.09

Fzd3 14 1.160.07 1.2160.09 0.9360.06

Pnrc1 4 1.0260.04 1.3360.05 1.0760.05

Tnni1 1 * 1.0160.1 1.3460.1** 1.1360.05

mIR697 4 * 0.9960.03 1.2560.09** 1.0660.06

St3gal4 9 ** 160.05 1.2760.03*** 1.1560.08

Mapk4 18 * 0.8660.07 1.2860.13* 0.9160.07

Ybx2 11 * 0.8260.09 1.2360.13* 0.9660.02

Cass4 2 * 1.0260.05 1.2560.09** 1.1660.03

Clec12b 6 * 0.9360.06 1.3360.1* 1.0560.08

5 Ccl24 5 *** 0.9960.14 2.1360.38** 1.3160.11

ENSMUSG00000073686 4 * 160.04 1.2260.06*** 1.2360.08**

Olfr234 15 * 1.0960.07 1.3960.16** 1.3860.07***

Disp2 2 * 0.9560.07 1.3360.12** 1.2660.07**

Mmp9 2 0.9960.11 1.7860.25 1.5360.34

Tnrc4 3 1.0460.05 1.2960.06 1.2860.12*

Loxhd1 18 1.1460.11 1.3260.09 1.260.06**

Adamts18 8 1.160.07 1.2360.06 1.3460.12**

mIR125a 17 1.1360.05 1.2760.06 1.2260.08**

Grin2b 6 ** 1.1560.03 1.2360.04*** 1.2660.03***

6 Plvap 8 * 1.5960.17** 1.3460.03*** 1.4260.1**

S100a11 3 1.4360.11** 1.2160.1 1.460.07**

Kctd15 7 1.2160.05** 1.360.08 1.360.09**

Abcd3 3 0.7760.06** 0.7960.06* 0.7560.05***

Tubb1 2 1.9360.2** 1.1760.15 1.560.13

Ppbp 5 * 5.2761.51** 1.7560.38 3.4560.75**

7 Irs3 5 ** 0.9460.05 1.0960.07 1.2160.05***

Gon4l 3 0.8460.06 0.9160.05 0.7960.05***

Sesn3 9 0.8560.06 0.8760.04 0.7960.05***

Fam163a 1 1.0760.05 160.06 1.2160.07**

Slco3a1 7 1.0360.04 1.1460.03 1.260.09**

Aard 15 1.0760.04 1.1260.04 1.260.05***

Only the genes for which the Anova test is below 0.1 and which are not triplicated on the Ts65Dn minichromosome are listed here. (P values: ***: P,0.001; **: P,0.01; *:
P,0.05).
doi:10.1371/journal.pgen.1002724.t006

Heart Diseases Associated with Gene Dosage

PLoS Genetics | www.plosgenetics.org 10 May 2012 | Volume 8 | Issue 5 | e1002724



Heart Diseases Associated with Gene Dosage

PLoS Genetics | www.plosgenetics.org 11 May 2012 | Volume 8 | Issue 5 | e1002724



changes have been recorded [6,17] and related to the AV node

displacement in AVSD [11]. Changes in the electrical axis,

duration of the QRS and fragmented QRS, observed in Ts65Dn

hearts are all characteristics of abnormal ventricular activation

that have been described in Hsa21 trisomy [6,17–19] and more

generally in CHD [27–29]. S wave amplitude, specifically large in

mouse and most likely due to specific His-Purkinje bundle and

strands/fasciculae distributions [22], contributes largely to the

QRS axis changes. In DS and CHD, different QRS axis

orientations are related to either primum or secundum ASD,

VSD or AVSD [28,29] and changes in the activation front. An

altered organization of the AV node axis [11,28] and a conduction

defect in the trabecular myocardium and papillary muscles

sustaining the valves involving the His-Purkinje system [29] could

account for such changes. Fragmented QRS (f-QRS) are

predictive of arrhythmias [30,31], a common complication of

DS and CHD [5,11,12]. f-QRS with a relatively small increase in

the QRS duration preferentially reveals a dys-synchrony second-

ary to heterogeneous intraventricular activation and uncoordinat-

ed depolarization of cardiomyocytes in human [30,31]. This

would have escaped observation without the systematic recordings

of the precordial leads. These recordings not only point to large

changes in shape and amplitude of right side waves in Ts65Dn but

also show that the P wave is reduced in Vms and increased in left

lead V4.

Most of the observed effects of the Ts65Dn trisomy on ECG are

related to conduction known to depend on membrane excitability,

intercellular coupling and tissue architecture [21,32]. This is well

illustrated by the presence of fragmented QRS, QRS axis

deviation and PR or QRS increase in various transgenic mice

that have mutations in or under-express genes coding sodium

channels [33], connexins [34,35] and transcription factors [36,37].

However, a combination of two of these factors is usually necessary

to impair conduction [23]. Since the Na channel blocker flecainide

[38] prolongs all wave durations and intervals in Ts65Dn mice, it

appears unlikely that decreased availability of Na channel alone

could account for the observed changes in conduction. The

concomitant reductions in Cx40, Cx43 and Na channels expression

that we observed in the auricle of Ts65Dn mice could account for

the first degree AV block supported by the prolongation of the PR

interval that includes auricle, AV node and His conduction time.

This could also account for the P wave amplitude changes.

Enlargement of the auricle as suggested by P wave amplitude

increase could also participate to PR prolongation. Both the effect

of flecainide and the absence of Na channel expression changes in

ventricles do not support a decrease in Na channel availability. In

the absence of large patch of fibrosis and of clear-cut change in

CX40 distribution in Ts65Dn, f-QRS could be related to local

defect in CX40 associated to discrete local increase in collagen.

This needs further investigation but could account for the

observed loss of Cx40 expression.

Restoring the disomy of the genes present in the App-Runx1

fragment in the Ts65Dn model (double transgenic Ts65Dn/

Ms5Yah mice) resulted in the rescue of Ts65Dn postnatal lethality,

indicating that one or more genes present on this region are

responsible for the observed lethality and that Ts65Dn trisomic

genes located on Mmu17 are not major players in this phenotype.

Our finding, combined with the different observations of CHD

and lethality present or absent from other DS models [3,16] and

summarized on Figure 7. This restricts the list of candidates genes

for the cardiac defects to a few genes, namely Sod1, Tiam1 and

unknown predicted genes such as Gm10789 or Gm2771 that are

trisomic in Dp16(2)Yey mice which display CHD but are only in

two copies in the Ts1Cje, Dp(16)1Yey/Df(16)2Yey, and Ts65Dn/

Ms5Yah models. Sod1 was found decreased in Ms5Yah but not

overexpressed in Ts65Dn. On the contrary Tiam1 was found

increased in Ts65Dn heart and not significantly downregulated in

the Ms5Yah. Thus Tiam1 is a candidate for cardiac defect in

Ts65Dn. Tiam1 encodes an ephrin related receptor that influences

Figure 5. Expression profile of genes located on the Ts65Dn minichromosome obtained from whole-genome microarray expression
analysis from whole adult mouse hearts. (A) Mean gene expression ratios between Ts65Dn and wt mice according to chromosomal location
showed an increase for genes located on the Ts65Dn minichromosome (Mmu16 and 17). (B) Differences in the expression of genes present on the
Ts65Dn minichromosome in the different mouse models and showing ,1.5 fold over expression in the Ts65Dn model, ,0.5 fold downregulation of
genes between App and Runx1 (located upstream of Cbr1) in Ms5Yah mice with a normal expression of other Ts65Dn minichromosome genes, and
up-regulation comparable to Ts65Dn except for genes between App and Runx1 that are found expressed normally in Ts65Dn/Ms5Yah mice. Hence
combination of Ms5Yah and Ts65Dn constructions led to gene expression rescue within the App–Runx1 region.
doi:10.1371/journal.pgen.1002724.g005

Figure 6. Atrial and ventricular connexins and sodium channel
genes expression levels in wt and Ts65Dn mice. (A) Atrial; (B)
ventricular. Connexins and sodium channels genes expression levels
were assessed by qRT-PCR using RNA extracted from adult mice cardiac
atria and ventricle separately. Ts65Dn show an overall decrease in
connexin and sodium channel mRNA expression except for Cx45 and
Cx30.2 in the atria. Cx40 expression level is reduced in the ventricles. No
amplification was obtained for Cx30.2 in ventricle extracts confirming its
atria specific expression pattern. Mean6sem with Student t-test P-
values, N = 7 and 5 for Ts65Dn and wt respectively.
doi:10.1371/journal.pgen.1002724.g006
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synapse functions and controls epithelial tight junctions [39]. It

may contribute to Ts65Dn heart defects together with additional

genes such as Bach1 and Rcan1 which were found deregulated in

Ts65Dn and Ms5Yah arrays but not in Ts65Dn/Ms5Yah

samples. Nevertheless in Ts65Dn/Ms5Yah mice the monosomy-

induced lethality of the Ms5Yah allele is in part rescued but not as

complete as for the Ts65Dn allele. Somehow some genes that are

not included in the Tiam1-Cbr overlap between Ms5Yah and the

Df(16Tiam1-Kcnj6)Yey/+, but located at the boundaries of the

considered region, i.e. in the Mrpl39-Tiam1 or Kcnj6-Zfp295

intervals, must have a major effect on survival of the Ms5Yah

mice. However, the CHD observed in Ts65Dn dead pups is lower

than that observed in DS patients, indicating that one or more

gene outside of the Mrpl39-Zfp295 region are contributing to

CHD.

Many aspects of the ECG phenotypes observed in adult

Ts65Dn mice were rescued by re-establishing euploidy of the

App-Runx1 region in double transgenic Ts65Dn/Ms5Yah mice.

Reduced heart rate and prolonged QRS and QT observed in

Ts65Dn mice were all back to normal in Ts65Dn/Ms5Yah mice,

whereas the first degree block (PR) was only partially restored. The

essential role of the App-Runx1 region in the appearance of the

Ts65Dn electrocardiographic pattern is hence highlighted by the

reduced ECG phenotype in Ts65Dn/Ms5Yah mice. The obvious

changes recorded in the waves registered by precordial recording

between Ts65Dn and Ts65Dn/Ms5Yah and the rescue of the QT

phenotype point again to a major contribution of the App-Runx1

region to Ts65Dn ECG phenotypes. However, ECG defects are

not completely recovered in the Ts65Dn/Ms5Yah compound

animals and are probably induced by complex interactions

between genes located in distinct regions of the Mmu16.

Recent evidence suggests that the same genes that cause defects

in heart development and CHD might be involved in cardiac

dysfunction such as abnormal electrical conduction and dimin-

ished contractile function [40]. Recent studies on adult DS

individuals free of any CHD point to cardiovascular dysfunctions

such as altered heart rate regulation [7,8], valvular dysfunction

[9,10], bradycardia and AV block [11,12]. Some of these life-

threatening pathologies such as the observed bradycardia in

Ts65Dn and altered heart rate control are also observed in

another DS mouse model overexpressing Kcnj6 [41]. Thus post-

natal lethality in Ts65Dn or Ms5Yah does not necessarily involve

overt CHD but could be related to altered cardiovascular function.

Likely targets are the Na and K currents and/or Cx deficiency. In

this respect, calcineurin-NFAT signaling controlled by Rcan1 is

clearly involved in the formation of the annulus fibrosis between the

auricles and ventricles as well as in the formation of the valvules

[40,42,43]. Post-natal lethality in DS hence might be the result of a

complex set of different events with the App-Runx1 region that

triggers conduction defects and contributes to the risk of CHD.

We compared transcriptional profiles of RNA from adult mouse

heart of 2n, Ts65Dn, Ms5Yah and Ts65Dn/Ms5Yah mice in

order to determine aneuploid genes that are sensitive to gene

dosage and hence might be candidate for the heart phenotypes,

and to attempt to correlate observed transcript level differences to

pathways impacted by the different aneuploidies. Most of the

expressed triplicated/monosomic genes were up-regulated in

Ts65Dn, down-regulated in Ms5Yah and expressed at similar

levels in wt and in Ts65Dn/Ms5Yah hearts. 73 genes located on

the Ts65Dn chromosome were overexpressed in the heart with a

ratio versus wt of 1.3460.15; only 12 were not found deregulated.

19 of those genes were located on the Mmu17 region triplicated in

the Ts65Dn [20]. In the Ms5Yah heart, 30 genes from the App-

Runx1 interval whose expression was detected in the heart were

down-regulated to 0.6860.08 expression level compared to wt and

3 genes, Tiam1, Slc5a3 and Mrps6, were not affected by decrease in

copy number. For most of those aneuploid genes, expression level

returned to normal (1.1060.1) in Ts65Dn/Ms5Yah double

Figure 7. Representation of the DS mouse models displaying lethality and cardiac features. The position of the trisomic segment with
the homologous regions to Hsa21, or the Hsa21 regions found in Tc1, is indicated in grey black blocks. While the disomic segments in compound
mutants Dp(16)1Yey/Df(16)2Yey or in Ts65Dn/Ms5Yah or the deleted segments in Tc1 are indicated in dashed boxes. ‘‘+’’ indicates the presence and
‘‘2’’ the absence of phenotypes whereas ND indicates a non-determined state for presence or absence of CHD in Ts1Cje. References are given in the
text.
doi:10.1371/journal.pgen.1002724.g007
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transgenic mice. The overall difference in gene expression levels

between the different mouse models can be explained by gene

dosage. Our data support the hypothesis that a triplicated Hsa21

causes a 50% increase in trisomic genes expression as a primary

dosage effect [44–47]. Conti and colleagues showed that the mean

ratio between trisomic and euploid genes was 1.58 for Hsa21 genes

and close to 1 for the genes on other chromosomes [48,49].

Nevertheless we found some interesting exception: Atp6j expression

is not affected by gene copy number while Tiam1 is more sensitive

to increase copy number. In Ts65Dn heart, trisomic genes Sod1,

Atp5o, Hcls, Ripply3, Psmg1, and Sh3bgr were not affected by the

trisomy while Slc5a3 and Mrps6, back to two copies in Ts65Dn/

Ms5Yah mice, were still overexpressed.

Detailed expression analysis highlighted a list of 151 deregulated

genes that were categorized in 7 groups (Table 6, Table S1). 82 of

the 151 genes were located outside the aneuploid regions and on

diverse chromosomes. In the first group of genes, 39 genes were

up- and 3 down-regulated specifically in Ts65Dn heart (no

deregulation in Ms5Yah hearts) and their deregulation was a

consequence of trisomic genes located outside of the App-Runx1

interval. 13 genes were found on the proximal part of the Mmu17

of the Ts65Dn chromosome, 14 trisomic from the Mmu16 and 12

located elsewhere in the genome. With the second group we

identified 33 genes of which 26 from the App-Runx1 interval, that

were deregulated in both Ts65Dn and Ms5Yah and compensated

in Ts65Dn/Ms5Yah double mutant mice. Group 3 encompassed

16 genes specifically deregulated by in Ts65dn hearts while 40

genes specific of the Ms5Yah heart are found in group 4. We also

identified 3 additional groups (5, 6 and 7) containing 10, 10 and 7

genes respectively, with expression level affected by combination

of aneuploidies. For example group 5 were specific for the

Ms5Yah with similar level in the Ts65Dn/Ms5Yah mice.

Interestingly genes from the seven groups contribute to pathways

related to the observed phenotypes. 25 genes out of 151 are

associated with embryonic lethality, growth defect, and premature

death (Mouse Genome Database (MGD) November 2011, [50]).

We found 9 genes from group 1 (Dyrk1a, F5, Gabpa, Hmgn1, Pde10a,

Morc3, Slc5a3, Tfb1m and Vwf) that could be involved in the

Ts65Dn perinatal lethality and 9 from group 2 (App, Ifnar1, Itsn1,

Ltn1, N6amt1, Slc8a1/Ncx1, Synj1, Usp16 and Rcan1), for which

mutation impaired embryonic viability and growth that could

contribute to Ts65dn and to the Ms5Yah impaired viability. In

addition Amot, Ccne2, Cerk, C1qa and Fzd3 from group 4, could

contribute to growth retardation and premature death [51,52].

Other genes from groups 5 and 7 such as the Grin2b or Psmg1 can

still contribute to the perinatal lethality observed in the Ts65Dn/

Ms5Yah [53,54]. Changes in the expression of this series of genes

might explain the birth defects observed in the Ts65Dn or the

Ms5Yah mice. Only 6 genes out of 151 were found associated with

heart dysfunction. More specifically, Tfb1m (group 1) causes

abnormal heart development and physiology that could affect the

viability of the Ts65Dn/Ms5Yah mice [55]. Adam19, Slc8a1/Ncx1

and Rcan1 from group 2 are able to induce various types of heart

defects from irregular heartbeat to ASD and VSD [56–59]. In

addition Ripply3 and Ccne2 (group 4) loss-of-functions potentially

induce VSD [60,61]. All these data show that the App-Runx1

region play an important role in the heart defects and lethality

observed in Ts65Dn and suggest some pathways altered in DS

heart. Overall the analysis reveals the complexity of the phenotype

with several trisomic genes along the Hsa21 working alone or in

cooperation to contribute to the whole range of heart defects

observed DS. Whole genome expression analysis pointed at some

deregulated genes, whose contribution should be further analyzed.

These data were obtained from adult trisomic mice, and thus do

not give information about expression at the embryonic or

postnatal states. We believe that further molecular and electro-

physiological studies at postnatal states could thus give important

information about genes involved in early postnatal lethality and

should confirm or point to new candidate genes.

Materials and Methods

Ethics statement
Mice were handled with the agreement of the local ethical

committee and in accordance with the European Council

Guidelines for the Care and Use of Laboratory animals

(accreditation 7320). They were housed under a 12 h/12 h

light-dark cycle in TAAM-CNRS husbandry at Orléans (France)

(certificate C45-234-6) and fed on a standard rodent chow. YH, as

the principal investigator in this study, was granted the accred-

itation 45-31 and 67–369 to perform the reported experiments.

Mouse lines
Female B6EiC3Sn a/A-Ts(1716)65Dn (Ts65Dn) mice were

purchased from the Jackson Laboratory (Bar Harbor, ME). They

were mated with F1 B6C3B males, in which the B6 are C57BL/6J

mice and C3B are sighted C3H/HeH, a congenic line for the

BALB/c allele at the Pde6b gene [62], to establish a breeding

colony as described by Braudeau et al. [63]. Mice bearing the

deletion between the App and Runx1 genes were obtained by in vivo

TAMERE [64,65]. Briefly, a loxP site was introduced by

homologous recombination in embryonic stem cells at the App

locus using MICER vector [66] and the corresponding Apptm1Yah

mouse line was generated. Runx1tm1Yg mice were described

previously [67]. Mice containing the two loxP sites were mated

with the mouse line Tg(Pgk1-Cre)1Lni, expressing the Cre

recombinase under the control of the early acting phosphoglyc-

erate kinase-1 promoter [68]. Females that inherited both the Cre

transgene and the two loxP sites on the same chromosome (cis

configuration) were mated with wild-type B6 males. In oocytes of

these females, Cre expression starting at the diploid phase induces

loxP sites recombination leading to the deletion of the App-Runx1

region in females gametes and to an offspring carrying the

Del(16App-Runx1)5Yah noted here Ms5Yah, monosomic for this

region (Figure S1). All the lines were kept on an F1 B6C3B

background as described previously [20,63]. After combining the

Ms5Yah and Ts65Dn models, animals carrying both the Ts65Dn

allele and the Ms5Yah allele were referred to as Ts65Dn/Ms5Yah

and those neither trisomic nor monosomic were used as wt control

individuals.

Mouse genotyping
For identification of both Ms5Yah and Ts65Dn alleles, genomic

DNA was isolated from tail biopsies using the NaCl precipitation

technique. The Ts65Dn allele was identified using a Taqman

qPCR protocol with differential analysis of quantity between Apob

(housekeeper gene) and Mx1 (gene of interest). Apob forward

(CACGTGGGCTCCAGCATT), Apob reverse (TCACCAGT-

CATTTCTGCCTTTG), Mx1 forward (TCTCCGATTAAC-

CAGGCTAGCTAT) and Mx1 reverse (GACATAAGGTTAG-

CAGCTAAAGGATCA) primers were purchased from SIGMA-

Aldrich, and Taqman MGB probes Mx1 FAM (6-FAM-

CCTGGTCGCTGTGCA-MGB-NFQ) and Apob HEX (HEX-

CCAATGGTCGGGCAC-MGB-NFQ) from Applied Biosystem.

PCR conditions were as follows: (1) 50uC for 2 min, (2) 95uC for

10 min, (3) 95uC for 15 sec, (4) 60uC for 1 min (steps 3 and 4 were

repeated 50 times). Alternatively we used the PCR–based protocol

[20].
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The Ms5Yah allele was identified by PCR using one Fwd

primer (59-ATCCGGGAATGGTCCCTA-39) specific for the wt

allele, one Fwd primer (59-CAAGCACTGGCTATGCATGT-39)

specific for the Ms5Yah allele and a Ms5Yah/wt Rev (59-

GTTCGTTGCCTGAAGGAGAG-39) primer common to both

alleles. PCR reactions gave wt and Ms5Yah products of 482 bp

and 328 bp long respectively.

Gross morphology and histology
Breeding cages were checked twice every day and dead pups

were removed, fixed in 4% paraformaldehyde in phosphate-

buffered saline (PBS) for 24 hours and rinsed in PBS. Micro-

dissections were realized to assess cardiovascular malformations

using a Leica MZFL-III dissecting microscope equipped with a

Leica DC200 digital camera. Aortic arches were then removed

and hearts embedded in paraffin using a Leica TP 1020 tissue

processor. Serial sections between 5 mm and 8 mm were fixed on

Stick-On coated slides (LABOnord). Slides were dewaxed in

xylene, rehydrated and stained in hematoxylin and 0.2% eosin.

Images were captured using a Leica M420 brightfield macroscope

equipped with a Photometrics Cool Snap digital camera.

Electrocardiogram recording and analysis
Electrocardiogram (ECG) was recorded under urethane anes-

thesia (1.33 g/kg i.p.; Sigma) as previously described [41]. Adult

mice (4 to 9 months old) were placed in a supine position in a

Faraday cage. Ambient air was maintained at 25–26uC, close to

the neutral temperature. Three leads consisting of 50 mm thin Ag-

AgCl wires were placed subcutaneously in the forelegs and the left

hind leg. Four precordial derivations were obtained by placing two

leads on the sternal plate at its end (xiphoid cartilage, Vs), and

midway at the junction with the fourth rib pair (Vms) and the two

other leads on right (V1) and left (V4) sides of the sternum forming

a square with Vs and Vms. V1 and V4 aproximatively mimicked

human V1 and V4 leads. A tiny incision of the epidermis was

necessary to ensure a good electrical contact. Each derivation

recording was amplified (103) with a 1–500 Hz bandwidth

(IsoDAM8 amplifiers; WPI, Aston, UK) and continuously

monitored on a Gould oscilloscope (20 MHz, type 1421).

Acquisition was routinely performed at 2 kHz (IOX software v.

1.582; EMKA Technologies, Paris, France). R, S, and RS wave

amplitudes and heart rate (HR) were averaged and monitored on

line every 10 s. After 1 h of control recording, the 6 peripheral and

4 precordial leads were recorded at 5 kHz for one minute each.

HR mode was obtained from HR averaging over 10 s. Off-line

analysis of ECG was performed with ECG-auto software (v. 1.5.11

EMKA Technologies). The ECG wave analysis used ECG

libraries made up from original tracings. Measurements were

performed every 20 sec, and reported values are the average of

five measurements made on individual wave complexes taken over

the first seconds of each interval. As the mouse ECG displayed no

real electrical zero, this was taken as the average of five

consecutive points taken between the end of P wave and the

beginning of Q (or R) wave (from time 15 ms before Q/R wave

beginning) as in infants. We followed Liu et al. to label the second

wave adjoining the QRS complex as a J wave [69]. The delayed T

wave was constantly identified on the Vms lead that was used for

QT measurement. Corrected QT for RR interval changes (QTc)

was calculated as previously described: QTc = QT/(RR/100)1/2.

Electrical axis was determined from the algebraic sum of the QRS

amplitude in aVF and DI. Flecainide (Sigma; 20 mg/kg) was

prepared in distilled water and injected intraperitoneally.

[Results] are given as mean values 6 standard error of the

mean (sem). Statistical tests were performed with Sigma Stat

software (Systat Software). We used the Student’s t-test and

ANOVA followed by the Student-Newman-Keuls (SNK) multiple-

comparison tests. Proportions were analyzed with the Fisher exact

test. Significance was set at P,0.05.

Total RNA extraction
For Affymetrix arrays and qPCR validation, hearts were

isolated from Ts65Dn, Ms5Yah, Ts65Dn/Ms5Yah and wt control

mice (N = 5 per group) at 5 months of age and flash frozen. For

cardiac connexins and sodium channels expression, hearts were

isolated from 7 Ts65Dn and 5 wt adult mice at 4 months of age,

and ventricles were separated from atria and flash frozen. Total

RNA was prepared using Trizol (Invitrogen) according to the

manufacturer’s instructions. Samples quality was checked using an

Agilent 2100 Bioanalyzer (Agilent Technologies).

Whole-genome expression arrays
Biotinylated cDNAs were prepared from total RNAs and

hybridized onto GeneChip Mouse GENE 1.0ST arrays (Affyme-

trix). Chips were washed and scanned on the Affymetrix Complete

GeneChip instrument system generating digitized image data files.

Raw data was processed with the Robust Multiarray Average

(RMA) algorithm developed by Irizarry et al. [70] and values log

transformed using Partek (Partek Inc.) and GeneSpring (Agilent

Technologies) software. Statistical analysis was performed using

GeneSpring (one way ANOVA) and the 213 genes with a p-value

P,0.1 were selected for clustering analysis. Hierarchical clustering

was carried out with Cluster3.0 software using Euclidian distances

to calculate the distances between the genes and between the

samples. Calculated distances were then clustered by complete

linkage clustering. Post-Hoc analysis using GeneSpring gave a list

of statistically deregulated genes. Known mammalian phenotypes

database (Mouse Genome informatics, Jackson Laboratory) and

functional annotation clustering using Database for Annotation,

Visualization and Integrated Discovery (DAVID) bioinformatics

were performed to estimate the potential impact of deregulated

genes in transgenic mice. This latter tool mainly provides typical

batch annotation and gene-GO term enrichment analysis to

highlight the most relevant Gene Ontology (GO) terms associated

with a given genes list [71,72]. The microarray data were

submitted to the Array Express Home under the accession number

E-MEXP-3355.

qPCR analysis
After DNase treatment with TurboDNA-free (Applied Biosys-

tems), 1 mg of total RNA was converted to cDNA using

Superscript III (Invitrogen) primed with poly d(T) and random

hexamers. Ppia, Gnas, Hprt1, and Pgk1 were selected as reference

genes for normalization for both Affymetrix array validation and

cardiac connexins and sodium channels gene expression experi-

ments. Primers and Taqman probes were designed using Primer3

software (Table S2). Taqman 59FAM-39BHQ1 probes were

purchased from Eurogentec (Angers, FR). All reactions used

FastBlue qPCR Mastermix from Eurogentec (Angers, FR). All

PCRs were performed in triplicate and ran in a Mastercycler

epRealplex (Eppendorf) with the following conditions : 50uC for

2 min, 95uC for 5 min and 40 cycles of 95uC 15 s/60uC for

1 min. Raw Cycle threshold (Ct) were obtained using Realplex

software (Eppendorf). Values with a deviation over 0.3 Ct with

respect to the median were considered outliers and excluded.

Selection of normalization genes and normalization factor were

determined using GeNorm software [73]. To assess the difference

in gene expression between Ts65Dn and wt samples we performed

Student t-test. Significance was set at P,0.05.

Heart Diseases Associated with Gene Dosage

PLoS Genetics | www.plosgenetics.org 15 May 2012 | Volume 8 | Issue 5 | e1002724



Supporting Information

Figure S1 Ms5Yah mouse model creation and validation. App-

Runx1 region (A) on Mmu16 was targeted for in vivo Cre/loxP

recombination by inserting a loxP site on App locus in Runx1tm1Yg

(B). Recombination using Tg(Pgk1-cre)1Lni led to deletion of the

floxed fragment creating Ms5Yah mouse model. Chimeras and

monosomic mice were distinguished using Southern Blot

genotyping (C) and the deletion was confirmed by CGH arrays

(D).

(TIF)

Table S1 List of deregulated genes in Affymetrix hybridization

arrays. This list was obtained by using ANOVA with Bonferroni

correction and fixing a threshold of P,0.1. Genes in pink. orange

and blue are genes located respectively within the centromere-

Pde10a region on Mmu17. the Mrpl39-Runx1 and Runx1-Zfp295

region on Mmu16 trisomic in Ts65Dn mice. We calculated the

mean, the standard error to the mean for the expression ratio and

the Student-t-test comparing mutant versus wt and annotated with

* if P,0.05. ** if P,0.01 and *** if P,0.001. Overexpressed

genes with an expression ratio.1.2 are underlined in red whereas

down-regulated gene with a ratio,0.8 are in green. Normal

expression ration between 0.8 and 1.2 are underlined in grey.

(PDF)

Table S2 Sequences and Tm of primers and Taqman probes

used for qPCR analyses. Genes in bold were used as housekeepers.

(PDF)
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