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Abstract: Accumulating evidence suggests that gut bacteria play a role in homeostasis of the
circulatory system in mammals. First, gut bacteria may affect the nervous control of the circulatory
system via the sensory fibres of the enteric nervous system. Second, gut bacteria-derived metabolites
may cross the gut-blood barrier and target blood vessels, the heart and other organs involved in the
regulation of the circulatory system. A number of studies have shown that hydrogen sulfide (H2S)
is an important biological mediator in the circulatory system. Thus far, research has focused on the
effects of H2S enzymatically produced by cardiovascular tissues. However, some recent evidence
indicates that H2S released in the colon may also contribute to the control of arterial blood pressure.
Incidentally, sulfate-reducing bacteria are ubiquitous in mammalian colon, and H2S is just one among
a number of molecules produced by the gut flora. Other gut bacteria-derived compounds that may
affect the circulatory system include methane, nitric oxide, carbon monoxide, trimethylamine or
indole. In this paper, we review studies that imply a role of gut microbiota and their metabolites,
such as H2S, in circulatory system homeostasis.

Keywords: microbiota; gut bacteria; hydrogen sulfide; sulfur; TMAO; indole; cardiovascular
diseases; hypertension

1. Introduction

Increasing evidence suggests that mammalian homeostasis strongly depends on a mutualistic
relationship with gut bacteria, and fecal transplantation has recently become a therapeutic option
for some intestinal, life-threatening diseases [1]. Interestingly, it has been found that metabolic and
cardiovascular diseases, including hypertension, are associated with gut microbiota dysbiosis [2–8],
and some studies suggest that fecal transplantation may also be a therapeutic target in cardiovascular
and metabolic diseases [4,9,10].

A number of studies have shown that hydrogen sulfide (H2S) and/or the products of its oxidation
regulate functions of biological systems, including the circulatory system. Thus far, research has
focused on the effects of H2S enzymatically produced by mammalian tissues. However, some recent
evidence indicates that H2S released by bacteria in the colon may also contribute to the control of
arterial blood pressure [11,12]. Incidentally, sulfate-reducing bacteria are ubiquitous in mammalian
colon, and H2S is just one among a number of molecules produced by the gut flora. In this paper, we
review studies that imply a role of gut microbiota and gut-bacteria-derived molecules, such as H2S,
in circulatory system homeostasis.
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2. Sulfur Bacteria and Life’s Origins

The evolution of Earth is defined by four eons. The Earth was formed in the Hadean eon
~4.6 billion years ago. Life on Earth evolved in the Archean eon (~3.8 billion years ago) in Ferruginous
Ocean [13,14]. After the great oxidation event in the Proterozoic eon (~2.3 billion years ago) the
concentration of oxygen in the atmosphere increased several times, reaching ~2%. Oceans remained
anoxic until the beginning of the Phanerozoic eon ~800 million years ago, when the first modern
plants appeared. Theories of life’s origins are trying to answer the question: What was the energy
source for driving metabolism in the first organisms? Several lines of evidence suggest that H2S was
a likely candidate for the first anoxic photosynthetic pathways [15–17]. The existence of sulfidogenic
organisms in the Archeon is supported by the observation of microfossils-pyrite-associated cells, which
are ~3.4 billion years old [18]. First, bacteria were likely sulfur/sulfite disproportionators and sulfite
reducers, as these sulfur forms were abundant in the ancient hydrothermal vents. After the great
oxidation event in the Proterozoic, sulfate levels in oceans increased, resulting in the domination of
sulfate-reduction metabolism [19]. With the raise in the ocean’s oxygen level in the Phanerozoic, the
sulfate-reducing bacteria (SRB) were forced to retreat to suboxic and anoxic zones of marine sediments.
However, SRB found a suitable anaerobic environment in the gut of mammals.

The modern history of H2S is mostly associated with its toxic effects. For the first time, the
toxic effects of H2S were described in 1713 by Italian physician Bernardino Ramazzini, the father of
occupational medicine. Later, H2S was used as a chemical weapon in 1916 during World War I. It was
only two decades ago, when Abe and Kimura proposed the role of H2S as an important biological
mediator [20]. Since then, studies have shown that H2S is involved in biological signaling in numerous
biological systems. Among other biological effects, H2S have been reported to exert a hypotensive,
cardioprotective and cytoprotective impact [21–26].

The research on the regulatory role of H2S in the circulatory system thus far has focused mainly
on the effects of H2S produced by enzymes in the heart, kidneys, vasculature or the brain, while the
hemodynamic effect of the gut-bacteria-derived H2S has not been evaluated. The biological action of
H2S produced by the gut microbiota was examined only locally in the gastrointestinal tract [27].

3. Gut Bacteria in Mammals: Commensal or Mutualistic Relationship

The mammalian gut is colonized early after birth by bacteria and fungi. The composition of
the gut microflora is age, diet and geography dependent [28,29]. Furthermore, the mode of delivery
and postnatal feeding shape the microbiota composition, with enriched microflora in vaginal-birth
and breastfed babies compared to cesarean-birth and formula-fed babies [30,31]. It is estimated that
approximately 1014 microbes colonize the healthy mammalian gut. Several bacterial phyla are present
in the gut, including Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia and
Fusobacteria [32].

Gut microbiota plays an important role in the gut motility regulation, dietary fiber and polyphenol
digestion, bile acid and steroid transformation, and xenobiotic degradation. Furthermore, it produces
a number of various metabolites, such as vitamin K, a key factor in blood clotting. Short-chain fatty
acids (acetic, propionic and butyric acid) are formed from undigested carbohydrates complexes as
a result of bacterial fermentation carried out by Lactobacillus and Bifidobacterium. The fatty acids serve
as an energy source for colonic intestinal cells and suppress the growth of pathogens by reducing the
gut pH [7]. In addition, toxic metabolites (bacteriocins, ammonia, indoles, and phenols) are produced
by the gut microbiota inhibiting the colonization of intestines by pathogens. Sulfate and CO2 reduction
in the gut results in the formation of H2S or methane, respectively. Physiological and/or pathological
effects of those gut-derived gaseous metabolites remain unclear. However, it was proposed that altered
metabolism of gut-derived metabolites may play a role in the pathogenesis of several diseases [33–36].
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3.1. Gut Bacteria and the Circulatory System

Gut bacteria may affect the regulation of the circulatory system via at least two pathways.
First, gut bacteria and/or their metabolites may stimulate the enteric nervous system. The latter
communicates with the brain via afferent sensory fibers. Such a signal may affect the activity of
the brain centers involved in the circulatory system control [37]. This pattern of gut-brain axis
communication has been previously described for cytokines [38].

Second, gut bacteria and their metabolites may enter the circulation and affect the function of
organs and tissues that play a major role in circulatory system homeostasis. The access of gut-derived
molecules to the bloodstream is guarded by the gut-blood barrier (GBB), a complex multilayer system
which prevents the free passage of compounds between the gut lumen and circulation [39].

3.2. The Gut-Blood Barrier

The GBB enables the absorption of nutrients from intestines, and at the same time restricts the
passage of pathogens and toxins to the blood [39]. The proper functioning of the GBB may be altered in
various diseases [40]. An easier access of gut-derived molecules to the circulation may affect the course
of underlying disease and may have a deleterious effect on the entire organism. The integrity and
proper functioning of the GBB are preserved by physical and immunological components. The physical
barrier is represented by a single layer of epithelial cells which regulate paracellular diffusion and
control water and ion absorption. This layer is formed mostly by enterocytes, goblet cells (producing
an amorphous polymer-like mucus covering the epithelial cell surface), and immune active Paneth
cells. The inner layer of the mucus prevents the adhesion of pathogens to epithelial cells, while the
outer layer forms an environment for the commensal bacteria. Interestingly, it has been found that
commensal microbiota enhance the integrity of the GBB [2,7]. An immune defense against pathogens,
but not against commensal bacteria, is controlled by the system of gut-associated lymphoid tissue.

Recent studies have pointed to a link between gut microbiota dysbiosis, altered levels of
gut-derived metabolites, the GBB dysfunction (GBB leaking), and pathophysiology of various
diseases [3–5,7,8,10,35,41–44]. For example, several papers examined the function of the GBB in
heart failure (HF), reporting alternations in the GBB permeability and morphology, a reduction in
gut blood flow, an increased colonization with specific anaerobes, and higher endotoxin levels in HF
patients [45–47]. The intestinal blood flow reduction and collagen accumulation were found in patients
with advanced HF complicated by cachexia [45,48]. Higher blood endotoxin and cytokine levels
were found in edematous HF patients, suggesting that edematous gut wall and epithelial dysfunction
resulted in the passage of inflammatory factors into the circulation [46,49].

3.3. Gut Bacteria in Cardiovascular and Metabolic Diseases

Recently, the restoration of altered gut microbiota by diet, probiotics, prebiotics or by
fecal transplantation has been proposed as a potential therapeutic tool in the treatment of
cardiovascular-related problems [4,9,10]. This notion is based on the fact that accumulating evidence
shows an association between gut bacteria dysbiosis and cardiovascular and metabolic diseases.
For instance, the development of hypertension was recently linked to gut dysbiosis and altered levels
of gut-derived metabolites [3]. Yang et al. compared the gut microbiota of normotensive Wistar Kyoto
rats and spontaneously hypertensive rats (SHR), and found that SHR rats showed a decreased microbial
diversity and lower colonization level of Actinobacteria. Furthermore, the Firmicute-Bacteroidetes (F/B)
ratio, a marker of gut dysbiosis, have been found to be increased in SHR and in rats with angiotensin
II-induced hypertension [50]. In a rat model of obstructive sleep apnea, a high-fat diet resulted in
development of hypertension and in a lower butyrate production by gut microbiota. An increase in
arterial blood pressure was also observed after transplantation of cecal content from hypertensive
obstructive sleep apnea rats into normotensive controls [51]. Mell et al. analyzed differences in
bacterial phyla of Dahl salt-sensitive rats that develop hypertension if fed a high-salt diet (S) and
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Dahl salt-resistant rats that do not develop hypertension when fed a high-salt diet (R). The S rats
showed increased colonization levels of S24-7 family of Bacteriodetes phyla and Veillonellaceae family of
Firmicutes phyla in comparison to the R rats. After intestinal decontamination with antibiotics, the cecal
content was transplanted from the S rats to the R rats, and the other way around. Both strains were
maintained on a high-salt diet. Surprisingly, the S rats given the R rat microbiota further exacerbated
hypertension. This was accompanied by a lower level of fecal bacteria of the Veillonellaceae family,
increased plasma acetate and heptanoate levels, and a shorter lifespan [5].

It has been well established that there is a strong correlation between high cardiovascular risk,
diabetes mellitus and metabolic syndrome. Several lines of evidence suggest that disturbances in
gut microbiota composition are also present in metabolic diseases. For example, gut dysbiosis and
altered mucosal immunity were found in diabetic patients [8,52]. Children with type 1 diabetes (T1D)
showed decreased colonization levels of butyrate-producing bacteria and a negative correlation of
the F/B ratio with the glucose level [52]. A metagenome-wide association study of gut microbiota in
type 2 diabetes showed gut dysbiosis accompanied by an increase in membrane transport of sugars
and branched-chain amino acid, increased methane metabolism, xenobiotic degradation, and sulfate
reduction. By contrast, a decrease in the level of bacterial chemotaxis, flagellar assembly, butyrate
biosynthesis and metabolism of cofactors and vitamins was found [8]. Studies in animals showed that
gut colonization in early life plays an important role in the regulation of fat deposition and development
of metabolic syndrome [53]. Furthermore, it was reported that the F/B ratio positively correlates with
body weight and is significantly increased in obese people and mice [54–56]. On the other hand, some
studies found no difference or a decreased F/B ratio in obese patients compared to lean controls [57–59].
Further evidence is needed to clarify these discrepancies. The role of gut microbiota in the development
of obesity was studied in germ-free mice. Despite a high-fat, sugar-rich diet, germ-free mice remained
lean [60]. Additionally, fecal transplantation from controls to germ-free mice resulted in a 60% increase
in body fat and insulin resistance within two weeks [61]. Toll-like receptor 5 (TLR5) expressed by the
gut mucosa was suggested to play a role in metabolic syndrome. TLR5-deficient mice showed many
features of metabolic syndrome together with gut dysbiosis. Furthermore, transplantation of cecal
content from TLR5-deficient mice into wild-type germ-free mice resulted in development of metabolic
syndrome [62].

4. Gut Bacteria-Derived Molecules and the Circulatory System

Mammalian gut microbiota is a source of a wide range of metabolites. Gut bacteria metabolize
carbohydrates, proteins, fat and many other compounds that enter the intestines with food and
from hepato-enteric circulation. This includes short-chain fatty acids, alcohols, aldehydes, amines,
aromatic derivatives of amino acids (phenols, cresols, indoles), as well as gases, such as H2S, methane,
NO and CO. Physiological and pathological roles of the gut-derived metabolites are the topic of several
reviews [2,33,34,42,63,64]. Here we will focus on the gut-derived molecules that may be involved in
the regulation of the circulatory system and in the etiology of cardiovascular diseases.

4.1. Hydrogen Sulfide

4.1.1. Gut Bacteria and Hydrogen Sulfide

SRB are ubiquitous members of mammalian colon [65]. The dominant genera are Desulfovibrio
(D. piger, D. desulfuricans), Desulfobacter, Desulfobulbus and Desulfotomaculu [19]. Two substrates are
essential for SRB to produce H2S, i.e., a sulfate and an electron donor for the sulfate reduction.
Sulfate-rich diet results in increased growth of D. piger and increased H2S production in the
colon of humans and mice [66,67]. D. piger may also utilize sulfated glycans. Since SRB are
nonsaccharolytic, they co-colonize Bacteroides thetaiotaomicron which liberate sulfate from sulfomucin
and mucopolysacharides via sulfatases [66,68]. The presence of D. piger positively correlates with the
level of the Actinobacterium, Collinsella aerofaciens. It is hypothesized that SRB promote the C. aerofaciens
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sugar fermentation by removing the products (H2, lactate, formate), which serve as electron donors for
the sulfate reduction [66].

SRB represent a nonenzymatic source of H2S in the mammals gut. The second source is enzymatic
generation performed by either gut bacteria or colonic tissues. Several anaerobic bacterial strains
(Escherichia coli, Salmonella enterica, Clostridia and Enterobacter aerogenes) convert cysteine to H2S,
pyruvate and ammonia by cysteine desulfhydrase [69,70]. In addition, gut bacteria may produce H2S
by sulfite reduction. Sulfite reductase is present in many species such as E. coli, Salmonella, Enterobacter,
Klebsiella, Bacillus, Staphylococcus, Corynebacterium, and Rhodococcus [71]. The generation or utilization
of H2S in reactions catalyzed by sulfite reductase is dependent on redox potential [72]. Finally,
mammalian tissues can synthesize H2S from L-cysteine and L-homocysteine in reactions catalyzed
by cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE) and 3-mercaptopyruvate
sulfurtransferase (3-MST). CSE and CBS were reported to be present in the gastrointestinal tract of
rodents and humans [73–76], while the CSE seems to be a major source of the gut H2S generation [77].

The total sulfide concentration in the luminal content of the large intestine has been reported to be
in the range of 0.2–3.4 mmol/L in humans [78], rats [79] and mice [80]. It needs to be stressed that the
feces of humans and rodents have a large binding capacity, and less than 8% of total sulfide was found
to be in a free form [79,81]. Interestingly, colonic epithelial cells are more efficient in converting sulfide
into thiosulfate than other tissues [82]. In the study of Levitt et al., the analysis of cecal venous blood
after intracecal infusion of radioactive H2S in rats revealed that all absorbed H2S had been oxidized to
thiosulfate [83].

The proportion of H2S synthesis derived from bacteria and colonic tissue was examined by
Flannigan et al. [84]. They have found that fecal samples of germ-free mice contained half of H2S in
comparison to feces of controls. Furthermore, it was shown that the absence of vitamin B6, a CSE and
CBS cofactor, in the diet resulted in a 50% reduction of fecal H2S. The deficiency of vitamin B6 in the
diet significantly reduced fecal H2S levels, likely due to the inhibition of enzymatic H2S synthesis in
colonic tissues. Interestingly, after six weeks of a vitamin B6-deficient diet, the fecal H2S levels returned
to the same levels as in controls. This suggests that the H2S generation in the gut of germ-free mice
was shifted towards nonenzymatic pathways by increasing the SRB activity [84].

Shen et al. showed that germ-free mice exhibited decreased levels of free H2S in inferior vena
cava blood plasma and in gastrointestinal tissues, and reduced bound sulfane sulfur levels in plasma,
adipose tissue and lung tissue. Furthermore, the activity of CSE was significantly lower, whereas
the level of L-cysteine, a substrate for H2S synthesis, was markedly elevated in gastrointestinal and
extraintestinal tissues (aorta, liver, and kidney) of germ-free mice compared to control mice [12].

In our studies, rats treated with neomycin (an antibiotic that does not cross the GBB and is used
for intestinal decontamination in liver failure patients to reduce microbiota-produced NH3) exhibited
significantly decreased levels of thiosulfate and sulfane sulfur, products of H2S oxidation, in portal
vein blood plasma but not in peripheral blood plasma [11]. Furthermore, we found that intracolonic
administration of Na2S (a H2S donor) increases portal blood levels of thiosulfate and sulfane sulfur,
while no such significant effect was observed in peripheral blood. These findings imply that the liver
may buffer the thiosulfate and sulfane sulfur pools in the organism, and suggest that systemic effects of
colon-derived H2S and/or its derivatives may be in part due to some liver-dependent mechanisms [11].

Several studies investigated the effect of intestinal H2S on gut functions. On the one hand,
it has been suggested that high colonic H2S levels may be responsible for colonic inflammation and
cancer [73,85]. On the other hand, recent studies suggest that colonic epithelial cells are well-adapted
to the H2S-rich environment, and that H2S plays a beneficial role in the protection of the GBB [27,86,87].
First, it has been proposed that H2S may serve as an energy source for colonic epithelial cells, since the
oxidation of gut H2S results in ATP formation [87]. Second, Motta et al. reported that H2S promotes
colonic mucus production and integrity of microbiota biofilms [86]. Third, gut dysbiosis induced by
chronic administration of nonsteroidal anti-inflammatory drugs was reversed by exogenous H2S [88].
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4.1.2. Hydrogen Sulfide in the Circulatory System

Many studies describe the effects of H2S in the circulatory system, which have been thoroughly
reviewed elsewhere [89–93]. In short, H2S is synthetized in various tissues involved in circulatory
system homeostasis, including the heart, blood vessels, kidneys and the brain, by CSE and CBS.
Depending on the methods employed, the estimated concentration of H2S in the blood and other
tissues has been reported to be within the range of 30 and 200 µmol/L [93]. However, recent studies
suggest that physiological concentration of H2S in cardiovascular tissues is in nanomolar range [94],
in contrast to millimolar concentrations in the intestines [78–80]. Administration of H2S donors
produces a decrease in arterial blood pressure, which appears to depend mostly on vasodilation, but
the effect may be dose- and species-specific [11,26,89–95]. The mechanisms behind the H2S-mediated
vasodilation are not clear. One of the postulated theories is an opening of ATP-sensitive potassium
channels [89]. In addition to its hemodynamic effects, H2S has been shown to produce cardioprotective,
proangiogenic and cytoprotective effects, and disturbances in H2S homeostasis have been suggested to
be involved in the etiology of cardiovascular and metabolic diseases [90,91,95–97], (Figure 1). Therefore,
it is not surprising that H2S donors have attracted a great deal of attention as potential drugs. Although
H2S-based balneotherapy has been practiced for centuries, there is still no solid evidence to support
the use of H2S donors in clinical practice. At present, experimental and clinical studies are being
performed to evaluate the therapeutic potential of several H2S donors, in particular in cardiovascular
and gastrointestinal diseases [97].
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Figure 1. Major cardiovascular effects of hydrogen sulfide donors (H2S, ref.: [11,25,26,89–93,95,97]).

It needs to be noted that biological effects of H2S may depend on its interaction with NO,
and formation of new molecules, such as S-nitrosothiols. Interactions of NO and H2S have been
elegantly reviewed elsewhere [89]. Furthermore, H2S is rapidly oxidized into thiosulfates and other
products [11,79,81–83]. It is likely that both H2S and products of its oxidation contribute to the
regulation of the circulatory system.

4.1.3. Cardiovascular Effects of the Gut-Derived Hydrogen Sulfide

The studies on the role of H2S in the circulatory system have thus far focused on the effects of
H2S produced enzymatically by various tissues. Strikingly, although colon microbiota represents the
greatest source of H2S in the body, the effects of colon-derived H2S on the circulatory system have not
been studied. In our laboratory, we examined the effects of increased availability of H2S in the colon on
rat hemodynamics. Intracolonic administration of Na2S (a H2S donor) exerted a potent, long-lasting
hypotensive effect which persisted several times longer than previously reported after parenteral
infusions (>90 min). Interestingly, hypertensive rats showed a more pronounced decrease in arterial
blood pressure than normotensive rats. Besides, rats treated with neomycin showed significantly
decreased levels of thiosulfate and sulfane sulfur, and a tendency for greater hypotensive response to
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Na2S. These data suggest that the gut-derived H2S may produce systemic effects, and that changes
in colonic H2S homeostasis may be associated with hypertension. In our study, the hypotensive
effect was most probably due to peripheral vasodilation and a decrease in heart rate. In contrast,
local changes in intestinal blood flow were not a likely cause of the H2S-dependent hypotension.
The hemodynamic effects of intracolonic H2S donor were accompanied by increases in portal but not
peripheral blood levels of H2S oxidation products [11]. Therefore, it seems that the systemic effects of
the gut H2S were produced by either some liver-dependent mechanisms or by the effects of colonic
H2S on the enteric nervous system (Figure 2). All in all, our findings support previous evidence on
the hypotensive effect of H2S and/or its derivatives, and at the same time provide new data implying
a role of gut-bacteria-derived H2S in blood pressure control.
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Figure 2. Postulated pathways of cardiovascular actions of gut-bacteria-derived hydrogen sulfide and
its derivatives (H2S). (A) H2S crosses the gut-blood barrier (GBB), bypasses the liver (rectal plexuses),
and targets the heart and blood vessels; (B) H2S crosses the GBB and affects liver functions associated
with the circulatory system homeostasis; (C) H2S stimulates sensory fibers of the enteric nervous system
that project to the brain centers controlling the circulatory system via the autonomic nervous system.

4.2. Nitric Oxide

Nitric oxide (NO) is one of the most studied biological transmitters. It plays a significant role
in numerous biological systems, including the circulatory system. Intriguingly, as mentioned above,
some evidence suggests that NO interacts with H2S, and that this interaction may determine the final
biological effects of both gaseous transmitters [89,98,99].

Several pathways of NO formation in the mammalian gastrointestinal tract have been proposed.
The first is the nitrate-nitrite-NO pathway. Nitrate is reduced by commensal mouth bacteria to
nitrite [100], which is further reduced by gut bacteria, either by nonenzymatic acidic reduction [101] or
by nitrite reductases [102]. Finally, gut mucosa express NO synthase which synthetize NO’s converting
of L-arginine to L-citrullin [103]. It has also been found that the probiotic strains Lactobacillus and
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Bifidobacterium play a role in the intestinal production of NO by decreasing gut pH which increases
nonenzymatic nitrite reduction [104]. In contrast, Desulfovibrio vulgaris convert NO to nitrates [105].

The role of NO in physiology and pathology of the gastrointestinal system [106–109] and the
cardiovascular system [110–114] was reviewed elsewhere. However, the role of the gut-derived
NO in the circulatory system homeostasis remains obscure. Similar to H2S, the circulatory effects
of NO were mostly evaluated in the context of its enzymatic production by various tissues.
However, Briskey et al. proposed a role of nitrification/denitrification pathway in the regulation
of mammalian homeostasis [115]. Dependent on the redox state, E. coli and Lactobacillus plantarum
reduce nitrites to ammonia (denitrification) [116] or ammonia is oxidized by Nitrosomonas back to
nitrite (nitrification) [117]. Dysregulation of this pathway can lead to pathological accumulation
of gut-derived ammonia or nitrite, gut dysbiosis and related cardiovascular problems [118–120].
A limitation of this hypothesis is that the presence of ammonia-oxidizing bacteria and archaea is
described only in soil, water and plants [121].

4.3. Carbon Monoxide

A number of studies have shown the importance of the roles played by carbon monoxide (CO) in
the circulatory system. Similar to NO and H2S, CO has been found to exert vasorelaxant and cardiac
protection effects [122,123]. CO is produced in a reaction catalyzed by the enzyme heme oxygenase
(HO). Inducible HO (HO-1) and constitutive HO (HO-2) are mostly recognized for endogenous CO
production in mammalian tissues. In the gastrointestinal system CO may be produced by gut mucosa
which expresses HO-1. Furthermore, Onyiah et al. reported that also gut microbiota (E. coli) express
HO homologs [124] and induce colonic expression of HO-1 in mice [125]. The possible effects of
gut-derived CO on systemic circulation remain to be elucidated.

4.4. Methane

The mammalian gut is colonized by methanogenic archeaea: Methanobacteriales, Methanococcales,
Methanomicrobiales, Methanosarcinales, Methanopyrales, Methanocellales, Methanomassiliicoccales [2].
In human gut, the dominant methanogen is Methaninobrevibacter smithii. According to substrate
utilization, there are three types of methanogens [126]: (i) The most common are hydrogenotrophs,
which use H2 or formate as an electron donor for CO2 reduction [127]; (ii) Methylotrophs
convert methylated compounds (methanol, methylamines and methyl-sulfides) by substrate-specific
methyltransferases into methane [128]; and (iii) Acetotrophs produce methane utilizing acetate [129].
Methane may also be produced by certain Clostiridium and Bacteroides species [130].

Interestingly, sulfate reduction and methanogenesis compete for the mutual substrate, which is H2.
The methanogenesis/sulfate reduction ratio is dependent on substrate availability, thermodynamics
and pH. In human colon, the ratio is in the favor of methanogenesis, due to neutral pH of stool
and low sulfate levels in diet. However, in certain conditions, such as high availability of sulfate
substrates in a diet (bread, beer, wine) and hypochlorhydria, sulfate reduction may become the major
process [131,132].

The physiological levels of methane in the mammalian organism have not yet been determined [133].
Breath tests show that 30%–60% of healthy individuals produce gaseous methane [134–136]. As in
the case of the gut-derived H2S, methane metabolism was mostly studied in association with
gastrointestinal problems, such as constipation, diarrhea and irritable bowel syndrome [64,137–142].

Some studies suggest that altered methane metabolism may also play a role in cardiovascular and
metabolic diseases. Methanogen growth was positively correlated with the development of obesity and
diabetes [8,143,144]. Furthermore, it has been found that exogenous methane may reduce oxidative
and nitrosative stress in animal model of ischemia-reperfusion injury [63].
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4.5. Trimethylamine

The production and utilization of methylamines, in particular trimethylamines, by gut bacteria has
recently attracted a lot of attention. This is because several clinical studies showed a positive correlation
between elevated plasma levels of trimethylamine N-oxide (TMAO) and an increased risk for adverse
cardiovascular events. Methylamines are bacterial products of dietary choline and carnitine [42]. Several
bacterial species were reported to participate in intestinal metabolism of methylamines including:
Anaerococcus hydrogenalis, Clostridium asparagiforme, Clostridium hathewayi, Clostridium sporogenes,
Escherichia fergusonii, Proteus penneri, Providencia rettgeri and Edwardsiella tarda [145]. The blood
concentration of TMAO was reported to be in the range of 0.5–5 µmol/L in healthy individuals
and rodents [42].

Some studies suggest that TMAO may be a causative link between the diet, gut bacteria
and cardiovascular diseases. For example, it has been found that TMAO augments heart failure
in mice, plays a role in the development of atherosclerosis by modulating cholesterol and sterol
metabolism [146], and prolongs the hypertensive effect of angiotensin II [147], a key hormone in
circulatory system homeostasis. On the other hand, it has been reported that vascular injury and
oxidative stress were reduced after L-carnitine rich diet, which resulted in elevated TMA and TMAO
plasma levels [148]. In addition, an increase in TMAO blood level in rats from 0.6 to 60 µmol/L
for two weeks did not produce any apparent toxic effect [147]. Finally, it is worth noting that high
concentrations of TMAO (100 µmol/L and higher) are found in saltwater fish, the consumption of
which has been considered to have a beneficial effect on the circulatory system [42]. Further studies
are needed to assess the physiological and pathological importance of TMAO in humans.

4.6. Indole

Various bacteria, more than 85 species, can metabolize trypthophane and form indole.
For example, the conversion of tryptophan into indole, pyruvate and ammonia is catalyzed by
tryptophanase in E. coli [149]. Indole was detected in mammalian feces [150–152], and gut bacteria
produce indole presumably by enzymes homologous to tryptophanases [33]. In the gut, indole is either
oxidized by bacterial oxygenases or by cytochrome P450 to form indoxyl, which is further sulfonated
in the liver to indoxyl sulfate (IS) and excreted with urine [149].

Indole production was studied mostly in association with the regulation of bacterial physiology.
It was reported that indole regulates spore formation, drug resistance, virulence, plasmid stability,
and biofilm formation in several bacteria [149,153]. The role of indole in the regulation of mammalian
homeostasis remains unclear. Cardiorenal syndrome, a combination of cardiovascular and kidney
disorders, chronic kidney failure, and vascular remodeling have been found to be positively
associated with increased concentration of circulating IS [154–157]. Furthermore, IS blood level
may serve as a predictor of cardiovascular events and mortality in chronic kidney patients [155,156].
Some experimental studies in rats suggest that a decrease in IS level inhibits the progression of
cardiomyopathy and chronic kidney failure [158–160]. Other studies imply that indole may protect the
GBB integrity [161] and have anti-inflammatory properties [161,162].

4.7. Ammonia

A great pool of ammonia (NH3) is formed in the mammalian gut by several bacterial species and
gastrointestinal tissues [36]. In fact, the degradation of urea by gut microbiota ureases (~7 g/day) is
the source of around 50% of total NH3 in the body [163]. The NH3 production rate in the human gut
is 4–10 g/day [36]. Unbound NH3 is either excreted with feces (~5–25 µg/g) [34] or retransformed
into amino acids by gut microbiota, or absorbed through the GBB. The plasmatic concentration of free
NH3 in healthy individuals is ~35 µmol/L [36]. Circulating NH3 can be either converted into urea or
glutamine in the liver or excreted with urine (2–3 mg/day) [163].
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Liver disorders associated with hyperammonemia and related neurotoxic effects are well
described, and patients with liver failure are often treated with antibiotics, such as neomycin,
to decontaminate the intestines and decrease bacterial production of NH3. Interestingly, there is
some evidence that NH3 may affect the control of the circulatory system. For example, a positive
inotropic effect of NH3 on isolated rat hearts was reported [164]. Moreover, it has been found that NH3

inhalation in healthy adults results in cerebrovascular vasodilatation without affecting the arterial
blood pressure [165]. Finally, patients with HF show increased plasma levels of NH3 [119,120].

5. Conclusions

Several lines of evidence suggest that gut bacteria may affect the functioning of the circulatory
system. Trimethylamine N-oxide (TMAO), a gut-bacteria-derived molecule, has recently emerged
as a new diagnostic marker of increased cardiovascular risk, and gut dysbiosis has been found in
cardiovascular and metabolic diseases. Sulfate-reducing bacteria are abundant in the mammalian
colon, producing significant amounts of sulfur compounds, including H2S. Despite a large number
of studies on H2S in the circulatory system, there is scant data on the effects of gut-derived sulfur
compounds. Further research on gut sulfate-reducing bacteria and their products is needed as they
may become a therapeutic target in cardiovascular diseases.
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