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and reliable method for clinical investigations of longitudi-
nal movement of the arterial wall.
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1  Introduction

Tissue motion measurements using ultrasound can provide 
functional information about the tissue of interest and have 
attracted attention for various applications such as the eval-
uation of cardiac [14, 21, 22, 27, 32], vascular [4, 5, 19, 
28], and skeletal muscle [9, 18, 30] function.

One vascular application of interest is the measurement 
of the longitudinal movement of the arterial wall, i.e., the 
motion along the arteries [12, 17, 35, 36]. In large arter-
ies, the displacement is greatest in the layers closest to the 
lumen—the intima–media complex—and is of the same 
magnitude as the diameter change [13] (Fig. 1). The outer 
layer—the adventitia—shows the same basic pattern of 
movement, but the displacement is smaller, thereby dem-
onstrating the presence of previously unknown substantial 
shear strain and thus shear stress, intramurally [13, 23, 33, 
46]. Recent studies have reported that the amplitude of the 
longitudinal displacement of the arterial wall is reduced in 
patients with carotid plaques, suspected coronary artery 
disease, type 2 diabetes [38–40, 42, 45], and periodontal 
disease [47], suggesting that the longitudinal movement of 
the arterial wall might prove to be a valuable marker for 
future risk of cardiovascular disease. Furthermore, in a 
study on the porcine carotid artery, we recently reported 
that longitudinal movement and intramural shear strain 
undergo profound changes in response to the important 
endogenous hormones adrenalin and noradrenalin [2]. 

Abstract  Parabolic sub-sample interpolation for 2D block-
matching motion estimation is computationally efficient. 
However, it is well known that the parabolic interpolation 
gives a biased motion estimate for displacements greater 
than |y.2| samples (y =  0, 1, …). Grid slope sub-sample 
interpolation is less biased, but it shows large variability for 
displacements close to y.0. We therefore propose to com-
bine these sub-sample methods into one method (GS15PI) 
using a threshold to determine when to use which method. 
The proposed method was evaluated on simulated, phan-
tom, and in vivo ultrasound cine loops and was compared 
to three sub-sample interpolation methods. On average, 
GS15PI reduced the absolute sub-sample estimation errors 
in the simulated and phantom cine loops by 14, 8, and 24% 
compared to sub-sample interpolation of the image, para-
bolic sub-sample interpolation, and grid slope sub-sample 
interpolation, respectively. The limited in  vivo evaluation 
of estimations of the longitudinal movement of the com-
mon carotid artery using parabolic and grid slope sub-sam-
ple interpolation and GS15PI resulted in coefficient of vari-
ation (CV) values of 6.9, 7.5, and 6.8%, respectively. The 
proposed method is computationally efficient and has low 
bias and variance. The method is another step toward a fast 
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These findings might have important implications for vas-
cular disease both in the short- and long term and might 
constitute a link between mental stress and cardiovascular 
disease [2].

In order to calculate high-resolution motion estimates 
using block matching, three components are needed. (1) 
A search method is needed to determine which blocks the 
kernel should be compared to in order to find the most sim-
ilar block [24]. (2) A method is needed to determine simi-
larity [20] by calculating evaluation metric values between 
the kernel and the compared blocks. The value can be 
either the maximum likeness, e.g., the normalized cross-
correlation [37], or the minimum difference, e.g., the sum 
of the absolute difference [7]. (3) A sub-sample estimation 
method is needed to determine movements at sub-sample 
accuracy. The sub-sample estimation method can be one of 
the following three subgroups: (a) interpolation of the data 
points [31], (b) interpolation of evaluation metric values 
[10], or (c) analytically solving the min/max problem for 
the evaluation metric values [10]. The number of calcula-
tions needed for the three subgroups show that for the aver-
age method of each group the computational load is highest 
with (a) and lowest with (c). The motion estimations can 
be conducted with the ultrasound data in any of several 
forms, e.g., B-mode, radio-frequency, or after a Fourier 
transformation.

During the last decade, several tracking methods based 
on block matching have been developed to measure longitu-
dinal movement of the arterial wall in ultrasound cine loops 

[3, 12, 13, 15, 34, 41, 44, 45]. The most common method 
to obtain sub-sample estimations is the use of image inter-
polation. Interpolation of the image gives good sub-sample 
estimations but is very time-consuming. Albinsson et  al. 
[3] fitted three evaluation metric values with a parabolic 
function, which is a computationally efficient method to 
determine sub-sample displacements. However, it is well 
known that the parabolic function gives a biased estima-
tion for displacements greater than |y.2| samples (y = 0, 1, 
…) [8]. Another sub-sample method, grid slope interpola-
tion [16], gives fast unbiased motion estimates, but it has 
a large variability of the motion estimates for displace-
ments close to y.0 samples (see also below). Considering 
that the drawbacks of the two sub-sample methods occur 
at different sub-sample displacements, a possible solution 
is to combine the two sub-sample methods. We therefore 
propose a new method, from now on denoted GS15PI, in 
which the sub-sample displacement is first estimated with a 
parabolic function. If the absolute sub-sample estimation is 
greater than a threshold (chosen to be 0.15), the sub-sample 
estimate is recalculated by grid slope interpolation.

The aim of this work was to evaluate the new sub-sam-
ple estimation method and to compare its performance to 
three sub-sample estimation methods: sub-sample interpo-
lation of the image, parabolic sub-sample interpolation, and 
grid slope sub-sample interpolation. The evaluations were 
conducted on simulated and phantom ultrasound cine loops 
consisting of both B-mode data and radio-frequency data 
using different settings for the signal-to-noise ratio, veloc-
ity, and kernel size. Also, data from an in vivo study of the 
longitudinal displacement of the common carotid artery in 
healthy humans were used to evaluate the methods.

2 � Materials and methods

Ultrasound is a modality based on reflected acoustical 
waves. The detected oscillating signals are beamformed 
and saved as radio-frequency (RF) data. A brightness mode 
(B-mode) image is created from the RF data by envelope 
detection and scan conversion. In the conversion into 
B-mode data, the RF data are normally down-sampled in 
the axial direction and displayed on a logarithmic scale. 
Thus, the two data types will typically have the same lat-
eral sample distance, whereas the RF data will have shorter 
axial sample distance. The data points in RF signals are 
typically called “samples” because they are sampled from 
the acoustical waves, and the B-mode data points are called 
“pixels” because they represent the intensity data in an 
image.

Throughout this text, the word “sample” should be read 
as “sample and/or pixel” because the effects described are 
the same for both RF and B-mode data.

Fig. 1   Longitudinal movement (solid line) of the intima–media com-
plex of the far wall and the corresponding diameter change (dashed 
line) in the common carotid artery of a 29-year-old female during 
three cardiac cycles. For longitudinal movement, a positive deflec-
tion denotes movement in the direction of blood flow. The small cir‑
cles mark the onset of an antegrade movement in early systole (AS). 
The distinct antegrade movement is followed by a distinct retrograde 
movement in systole (RS) and a second distinct antegrade movement 
in early diastole (AD)



1329Med Biol Eng Comput (2017) 55:1327–1338	

1 3

2.1 � Ultrasound cine loops

Ultrasound cine loops of three types of objects were used: a 
simulated object, a phantom object, and the far wall of the 
common carotid artery in vivo.

Ultrasound simulations were created using Field II [25, 
26] running under MATLAB R2013a (The MathWorks, 
Inc., Natick, MA, USA). The settings used in the simula-
tions are presented in Table 1. The in silico model consisted 
of a body of scatterers with random distribution and scat-
ter power that was displaced a set distance between two 
images. The cine loops were divided into three groups 

according to the direction of the displacement: horizontal, 
vertical, or diagonal (45°). The movement of the scatterers 
was (0.1; 0.3; 0.5; 0.7; 0.9; 1.2; 1.6; 2.0; 2.4; 2.8) pixels per 
image in all three groups. From each simulation, three cine 
loops were created with different levels of signal-to-noise 
ratio (SNR) by adding white noise to the RF data: no noise, 
SNR 21 dB, and SNR 16 dB. The RF data were down-sam-
pled by a factor of 16 in the vertical direction during the 
scan conversion into B-mode data. The settings allowed a 
pixel density in the B-mode images of 8.1 pixel/mm axially 
and 4.1 pixel/mm laterally. Motion estimations were con-
ducted using both the RF data and the B-mode data.

Phantom data were collected using both a research ultra-
sound machine, an Ultrasound Advanced Open Platform 
(ULAOP) [43] (University of Florence, Italy) equipped 
with a 4- to 13-MHz linear transducer (LA523, Esaote SpA, 
Florence, Italy), and a commercial ultrasound machine, a 
Philips EPIQ 7 equipped with a 3- to 12-MHz linear trans-
ducer (Philips Medical Systems, Bothell, WA, USA). Both 
B-mode data and RF data (down-sampled by a factor of 8 
during the scan conversion) were available from ULAOP. 
The pixel density in the B-mode images was 8.1  pixels/
mm axially and 4.1 pixels/mm laterally (the same as the in 
silico data). Only B-mode data in the DICOM format were 
available from the Philips EPIQ 7. The pixel density was 
21.5  pixels/mm both axially and laterally. Settings were 
chosen to obtain a frame rate close to 50 Hz using the high-
est line density, and persistence was turned off in order to 
avoid averaging between images. The phantom (a sponge) 
was moved in a water bath at velocities in the range of 
2–15  mm/s in steps of 1  mm/s both purely laterally and 
diagonally within the scan-plane. B-mode data from in sil-
ico and phantom measurements are shown in Fig. 2.

Table 1   Settings in Field II for the in silico cine loops

Width of element 0.215 mm

Height of element 6 mm

Distance between elements 0.030 mm

Number of elements in transmit/
receive

64

Focus on transmission (fixed focal 
point)

40 mm

Focus on receiving Dynamic focusing

Elevational focus (acoustic lens) 18 mm

Center frequency 6 MHz

Simulated transducer LA523 (Esaote SpA, Florence, 
Italy)

Speed of sound 1540 m/s

Sampling rate 100 MHz

Number of scan lines 128

Size of phantom 
(width × height × depth)

40 × 50 × 10 mm3

Number of scatterers 20,000

Fig. 2   B-mode images from the 
three ultrasound sources: a in 
silico, b ULAOP, and c Philips 
EPIQ 7. The images each depict 
an area of 20 × 15 mm2
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The right common carotid artery of 40 healthy volun-
teers (aged 20–69 years) was examined after at least 10 min 
of rest in a supine position using a Philips IU 22 equipped 
with a 5- to 12-MHz linear array transducer (Philips Medi-
cal Systems, Bothell, WA, USA). All volunteers gave 
informed consent according to the Helsinki Declaration, 
and the study was approved by the Ethics Committee of 
Lund University. Two cine loops were acquired for each 
volunteer. Settings were chosen to obtain a frame rate close 
to 50  Hz using the highest line density, and persistence 
was turned off in order to avoid averaging between images. 
DICOM data were exported for off-line motion estimations 
of the far wall of the common carotid artery. The pixel den-
sity was 21.5 pixels/mm both axially and laterally.

2.2 � Methods for motion estimation

A tracking scheme for 2D motion estimation was imple-
mented using a full-search method and the sum of the abso-
lute difference as the evaluation metric. The sub-sample 
positions were determined using four different methods: (1) 
interpolation of the image data values using cubical splines 
(CUBIC), (2) parabolic interpolation (PI), (3) modified grid 
slope interpolation (GSmod), and (4) the proposed method 
(GS15PI).

2.2.1 � Search method

The full-search method searched for the best matching 
block among all possible blocks within a region of inter-
est using the sum of the absolute difference [7] as the 
evaluation metric. In the B-mode, the size of the region of 
interest was the size of the kernel + 10 samples both axi-
ally and laterally. In the RF data, the size of the region of 
interest was the size of the kernel + 10 samples laterally, 
while it was (the size of the kernel +  10) ×  16 samples 
axially. The kernel sizes used in silico and in the phantom 
measurements were 0.9 ×  0.7  mm2, 1.8 ×  1.7  mm2, and 
2.8 × 2.7 mm2 (Table 2). The kernel sizes for the in vivo 

motion estimations were visually optimized for each volun-
teer. The chosen size was used in the two cine loops and for 
all sub-sample methods.

2.2.2 � Sub‑sample estimation methods

CUBIC was used to interpolate the ultrasound data 128 
times both axially and laterally using cubical splines [29]. 
Only the data in the square of the current image centered 
on the position of the center of the block with the best simi-
larity to the kernel were interpolated. The size of the square 
was two samples larger than the kernel both axially and lat-
erally. The kernel was not interpolated but was compared to 
an equal number of interpolated samples obtained at every 
128th sample of the interpolated segment. A full search was 
conducted in the entire interpolated square in order to find 
the best match at sub-sample resolution.

PI was used to estimate the sub-sample position by fit-
ting a one-dimensional second-degree polynomial to three 
adjacent evaluation metric values [10] where the center 
value corresponded to the center position of the block with 
the best similarity to the kernel. The polynomial was fitted 
separately laterally and axially. The analytical solution of 
the polynomial gave the sub-sample estimation as:

where α2 (center), α1, and α3 (on each side of center) 
denote evaluation metric values and ∆x denotes the sub-
sample part of the movement.

Grid slope interpolation [16] was used to estimate the 
sub-sample position by using four evaluation metric values 
that were calculated between the kernel and four blocks. 
Two blocks were from the current image—the block with 
the best similarity to the kernel and the one with the second 
best similarity. The other two blocks originated in the pre-
vious image at the position of the blocks used for the evalu-
ation metric value in the current image. The sub-sample 
estimation was calculated by:

(1)�x =
α1 − α3

2(α1 + α3 − 2α2)

Table 2   Parameters 
investigated and their different 
settings

Parameter Setting

Image data type B-mode, RF (not Philips EPIQ 7)

Size of kernel: (B-mode in silico and ULAOP) [pixels] 7 × 3, 15 × 7, 23 × 11

(B-mode Philips EPIQ 7) [pixels] 17 × 15, 37 × 15, 57 × 55

(RF in silico) [samples] 112 × 3, 240 × 7, 368 × 11

(RF ULAOP) [samples] 56 × 3, 120 × 7, 184 × 11

Size of kernel: all cine loops (mm) 0.9 × 0.7, 1.8 × 1.7, 2.8 × 2.7

Noise—SNR 16 dB, 21 dB, no noise

Velocity—direction Vertical (not phantom), diagonal, horizontal

Velocity—in silico (pixels/frame) 0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.6, 2.0, 2.4, 2.8

Velocity—phantom (mm/s) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
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where α2 (center) and αi denote evaluation metric values in 
the current image, and α2,0 and αi,0 denote the evaluation 
metric values in the previous image. This method was, in 
the original work, evaluated on B-mode data using the sum 
of the absolute difference on horizontal motion only [16].

To expand the utility of the grid slope interpolation 
methodology, we modified it by setting the variable α2,0 to 
zero and setting the variable αi,0 to the evaluation metric 
value calculated between the best and second best match-
ing blocks in the current image. This resulted in a method 
denoted GSmod. The sub-sample distance was estimated 
separately laterally and axially.

Our proposed method, GS15PI, was developed to take 
advantage of the best characteristics of PI and GSmod. 
GS15PI first estimates a sub-sample displacement using PI. 
If the estimated absolute sub-sample displacement is larger 
than 0.15 samples, the sub-sample estimation is recalcu-
lated using GSmod and accepted without further testing. 
The threshold of 0.15 samples was chosen after an empiri-
cal study on phantom movements (unpublished data).

2.3 � Evaluation of the motion estimations

The settings that were investigated (summarized in Table 2) 
covered four sub-sample interpolation methods and five 
parameters—image data type, kernel size, noise (only for 
simulated data), direction of movement, and velocity of 
the object. In this work, two types of results were collected 
for 100 kernels for each combination of settings—the esti-
mated displacements and the total estimation time used for 
the sub-sample estimations. Using in silico data, the dif-
ferent combinations noise levels, motion directions, and 
velocities resulted in 90 cine loops. Using three kernel sizes 
on each cine loop resulted in a total of 270 parameter set-
tings to be evaluated for each combination of sub-sample 
method and image type. Using phantom data, there were 84 
parameter settings.

A motion estimation error (per image) was defined as 
the geometrical difference between the set displacement 
and the estimated displacement, except in Table  4 where 
the lateral and axial components of the estimation errors 
were calculated separately. The mean value and standard 
deviation (SD) were estimated for each setting. The calcu-
lation time for a sub-sample motion estimation was meas-
ured separately from the search method. The time measure-
ment was taken for 100 sub-sample motion estimations and 
averaged to give the mean time used for one sub-sample 
estimation.

The longitudinal movement of the common carotid 
artery in healthy humans at rest can show dramatically 

(2)
�x = 0.5

(

1−
α2 − αi

α2,0 − αi,0

)

different multi-phasic patterns, even in subjects of simi-
lar age and gender [1, 13, 44]. An antegrade longitudinal 
movement in early systole is followed by a retrograde 
movement in systole (Fig. 1). The retrograde movement is 
the most distinct phase, present in all subjects, and is often 
the largest movement [1, 13, 44]. Therefore, we have cho-
sen to use the magnitude of the retrograde movement in 
systole when comparing the PI, GSmod, and GS15PI sub-
sample estimation methods in vivo. However, in some sub-
jects, the antegrade movement in early systole is absent or 
very small, which makes the onset of the retrograde move-
ment indistinct. In the present study, these subjects were 
excluded because the focus of this study was to evaluate 
the performance of the sub-sample estimation methods and 
not to evaluate the measurement of the phenomenon itself. 
Because the magnitude of the longitudinal displacement 
of the common carotid artery wall seems to decrease with 
distance from the heart [48], care was taken to perform the 
measurement at the same position in the two cine loops. 
The magnitude of the retrograde movement in systole was 
estimated over the course of 3–5 cardiac cycles per cine 
loop using a semiautomated method applied to the longitu-
dinal movement curve (Fig. 1). The semiautomated method 
was initiated by a click on the position of the onset of the 
antegrade movement in systole. The evaluation of the sub-
sample methods was performed by calculating the coeffi-
cient of variation (CV) [6] between the mean estimations of 
the magnitude of the retrograde movement in systole from 
two cine loops from the same volunteer.

3 � Results

Using the combined in silico and phantom data, the mean 
estimation errors were smaller using GS15PI as compared 
to the other sub-sample methods. GS15PI on average 
reduced the estimation errors by 14% compared to CUBIC, 
by 8% compared to PI, and by 24% compared to GSmod. 
GS15PI also reduced the standard deviations by 12% com-
pared to CUBIC, by 28% compared to PI, and by 2% com-
pared to GSmod. However, there was a large variation in 
the results depending on the image source and data type in 
which the motion estimations were conducted (Table 3). In 
Table 3, the motion estimation errors were calculated using 
all kernel sizes, motion directions, speeds, and noise levels 
(where applicable).

The drawbacks of PI (bias in the motion estimations 
greater than |y.2|) and GSmod (variation in the motion esti-
mations close to y.0) were clearly decreased for GS15PI. 
Figure  3 shows an example of the lateral component of 
the estimation errors using the following settings: in silico 
B-mode data, horizontal movement, SNR 21 dB, and a ker-
nel size of 1.8 ×  1.7  mm2. The bias of PI is visible as a 
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deviation of the median error of each velocity from zero 
(Fig. 3a). The variation of GSmod is seen as the height of 
the box for y.0 (Fig. 3b). It can also be seen that GSmod 
had a small linear bias, which is consistent with the result 
presented by Geiman et al. [16] for the level of SNR in the 
image data. In Fig.  3c, the improvements in GS15PI can 
be seen as smaller variation at y.0 and median errors closer 
to zero. However, there are outliers at y.2, y.3, y.7, and y.8 
(Fig. 3c).

The motion estimation errors were analyzed accord-
ing to axial and lateral estimation errors (Table 4), motion 
direction (vertical, horizontal, and diagonal) (Table 5), ker-
nel size (Table 6), and noise level (Table 7). As expected, 
axial errors were smaller than lateral errors, smaller errors 
were obtained using vertical motion direction than horizon-
tal or diagonal motion directions, and better motion estima-
tions were obtained by larger kernels and less noise. Also 
as expected, motion estimation using RF data gave smaller 
errors than using B-mode data, although there were excep-
tions for the small and medium-sized kernels using data 
from ULAOP (Table 6). The best results for all sub-sample 
methods over all image types were obtained using DICOM 
data from the commercial state-of-the-art Philips EPIQ 
7 machine. One exception to the expected results was the 
larger motion estimation errors using CUBIC on RF data 
compared to the estimation errors using GS15PI (Tables 3, 
4, 5, 6, 7). There was no dependence between the motion 
estimation errors and the magnitude of the movement. Fig-
ure 4 shows an example of estimated accumulated displace-
ments using the four sub-sample interpolation methods in a 
phantom at three different velocities and diagonal motion 
direction using the Philips EPIQ 7.    

When using in silico data, the mean estimation time was 
longest for CUBIC followed by GSmod, GS15PI, and PI 
(Fig. 5). That CUBIC had a more than 27 times longer esti-
mation time than the other methods was expected. When 
CUBIC was excluded, the sub-sample estimation time was 
about 1.1 times longer using RF data compared to using 
B-mode data.

The CV values and kernel sizes in  vivo were calcu-
lated for 21 volunteers (aged 22–67 years) who had a dis-
tinct onset of retrograde movement in systole (Fig.  1). 
The used kernel sizes were in the range of 7 × 13 pixels 
to 11 × 29 pixels (which is equivalent to 0.29 × 0.55 mm2 
to 0.46 × 1.22 mm2) with a mean kernel size of 7.1 × 25 
pixels (0.30 × 1.05 mm2). The CV values for the in vivo 
motion estimations of the retrograde movement in systole 
using PI, GSmod, and GS15PI were 6.9, 7.5, and 6.8%, 
respectively. Figure 6 shows in vivo estimations of the lon-
gitudinal movement of the common carotid artery wall in 
one volunteer using the three sub-sample methods.

4 � Discussion

We have presented a new ultrasound sub-sample motion 
estimation method, GS15PI, in which the best character-
istics of two published methods, parabolic interpolation 
and grid slope interpolation, are combined to reduce their 
respective drawbacks of biased and noisy motion estima-
tions (Fig. 3). The performance of GS15PI was evaluated 
on in silico, phantom, and in  vivo cine loops. The new 

Table 3   Mean estimation errors and corresponding standard devia-
tion (SD) in µm for sub-sample estimation using in silico and phan-
tom cine loops

The mean values were calculated over all settings for each data 
type and sub-sample method. The results are presented according 
to image data type (B-mode or RF data) and sub-sample estimation 
method (CUBIC—image interpolation, PI—parabolic interpolation, 
GSmod—modified grid slope interpolation, and GS15PI—our pro-
posed method)

Image source Data type Sub-sample method

CUBIC PI GSmod GS15PI

Philips EPIQ 7 B-mode 11 (8.9) 13 (20) 13 (8.1) 11 (8.5)

ULAOP B-mode 85 (200) 95 (200) 90 (200) 92 (200)

RF 78 (190) 77 (200) 67 (200) 72 (200)

In silico B-mode 41 (140) 49 (140) 69 (140) 48 (140)

RF 32 (32) 20 (21) 28 (24) 18 (21)

(a)

(b)

(c)

Fig. 3   Boxplot of the lateral motion estimation errors for a parabolic 
interpolation, b modified grid slope interpolation, and c our pro-
posed method in relation to the set sub-sample movement. A total of 
100 kernels were used for each velocity. The settings were in silico, 
B-mode data, horizontal movement, SNR 21  dB, and a kernel size 
of 1.8 × 1.7 mm2. From left to right, the velocities are 0.1, 1.2, 0.3, 
2.4, 0.5, 1.6, 0.7, 2.8, 0.9, and 2.0 pixels/image. The boxes indicate 
the lower and upper quartiles and the median. Outliers are indicated 
as crosses. Bias for each velocity can be seen as a deviation of the 
median from zero, and variation can be seen by the height of a box. 
Please note that 0.2 pixels ≈ 49 µm
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method performed well on both B-mode data and RF data, 
and the results were at the same level or better for both the 
magnitude of the motion estimation errors and the estima-
tion time compared to image interpolation and parabolic 
and grid slope interpolation.

In general, our proposed method showed good stabil-
ity in its motion estimations. Although the method did not 
always have the lowest motion estimation errors, the con-
sistently low motion estimation errors resulted in an over-
all improvement compared to the motion estimation errors 
of the other sub-sample methods using in silico and phan-
tom cine loops. A decrease in the standard deviation was 
also noted. This reliability in the motion estimations was 
also shown in the in  vivo study. However, the outliers of 

the motion estimation errors at y.2, y.3, y.7, and y.8 shown 
in Fig. 3c indicate that the tuning of the method might not 
be optimal. GS15PI uses a threshold level of 0.15 samples 
to determine whether to use parabolic interpolation or grid 
slope interpolation, and a somewhat lower threshold level 
might have decreased the motion estimation error and vari-
ance at y.2, y.3, y.7, and y.8. Considering that the threshold 
was determined using phantom cine loops different from 
those used in this study (unpublished data), it is possible 
that the optimal threshold is dependent on some parameter 
in the cine loops. The implemented threshold was an on/off 
fixed-value version, and an adaptive version should also be 
considered in future work.

Table 4   Mean estimation errors 
and corresponding standard 
deviation (SD) values in µm 
separated according to their 
axial and lateral components 
using in silico and phantom cine 
loops

The mean values were calculated over all settings. The results are presented according to image data type 
(B-mode or RF) and sub-sample estimation method (CUBIC—image interpolation, PI—parabolic interpo-
lation, GSmod—modified grid slope interpolation, and GS15PI—our proposed method)

Image source Data type Error component Sub-sample method

CUBIC PI GSmod GS15PI

Philips EPIQ 7 B-mode Axial −0.20 (6.0) 0.34 (5.5) −1.6 (8.1) 0.26 (6.0)

Lateral 3.5 (12) −1.1 (23) 2.0 (13) 2.1 (12)

ULAOP B-mode Axial 4.3 (99) 4.8 (100) 3.7 (100) 4.8 (100)

Lateral 0.56 (200) 0.60 (200) −0.79 (200) 0.88 (200)

RF Axial 3.0 (95) 6.7 (95) 6.3 (95) 6.4 (95)

Lateral −9.4 (180) −8.7 (190) −11 (190) −8.7 (190)

In silico B-mode Axial 15 (62) 19 (62) 24 (62) 17 (62)

Lateral 35 (130) 41 (130) 60 (130) 41 (130)

RF Axial 2.1 (1.8) 0.84 (1.4) 1.3 (1.5) 0.91 (1.4)

Lateral 32 (33) 20 (21) 28 (24) 17 (21)

Table 5   Mean estimation errors 
and corresponding standard 
deviation (SD) values in µm 
separated according to motion 
direction using in silico and 
phantom cine loops

The results are presented according to image data type (B-mode or RF) and sub-sample estimation method 
(CUBIC—image interpolation, PI—parabolic interpolation, GSmod—modified grid slope interpolation, 
and GS15PI—our proposed method). The kernel size was 1.8 × 1.7 mm2, and for the in silico data, the 
SNR was 21 dB. Motion direction: V—vertical, D—diagonal, and H—horizontal

Image source Data type Motion direction Sub-sample method

CUBIC PI GSmod GS15PI

Philips EPIQ 7 B-mode H 4.9 (2.2) 5.5 (4.4) 6.3 (2.0) 4.3 (2.6)

D 5.6 (3.0) 6.4 (4.2) 6.8 (3.1) 6.2 (3.2)

ULAOP B-mode H 13 (8.3) 19 (7.3) 18 (9.3) 16 (8.0)

D 25 (23) 32 (19) 25 (31) 29 (21)

RF H 18 (12) 14 (5.0) 9.3 (5.7) 11 (4.6)

D 36 (60) 39 (54) 32 (64) 36 (56)

In silico B-mode H 2.8 (2.0) 6.0 (2.9) 10 (2.7) 4.9 (2.6)

V 4.5 (3.4) 6.4 (2.8) 23 (3.5) 6.5 (4.7)

D 6.2 (4.1) 9.3 (4.7) 11 (4.7) 8.6 (4.5)

RF H 12 (9.0) 11 (5.7) 6.8 (5.6) 9.3 (6.1)

V 5.9 (7.6) 2.5 (1.8) 11 (1.8) 2.5 (1.8)

D 11 (8.4) 5.1 (2.7) 5.4 (2.0) 3.5 (2.1)
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The results were mostly as expected when analyzing the 
effects of the different parameters (Tables 4, 5, 6, 7). In line 
with other studies, the motion estimation errors decreased 
when the information in the kernel increased with ker-
nel size. It is also known that less noise results in smaller 
motion estimation errors due to decreased rates of change 
in the speckle pattern. Different rates of change in the 
speckle pattern are also the likely cause for the differences 
in motion estimation errors between the three motion direc-
tions. A dependency between the actual distance between 
the sampled data and the size of the motion estimation 

errors was observed, i.e., a longer distance between sam-
ples resulted in larger motion estimation errors. No depend-
ency between the velocity and the motion estimation errors 
was seen. This might be due to the limited change in the 
speckle pattern because we had relatively short move-
ments per frame, and our intention was to have in-plane 
movements.

The motion estimation errors using CUBIC on RF data 
were larger than expected when compared to the other sub-
sample methods (Tables  3, 4, 5, 6, 7). Because CUBIC 
performed well using B-mode data, the possibility of an 
implementation error was unlikely. In order to reduce the 
computation time during sub-sample estimation, we did not 
interpolate the kernel. This could be a possible explana-
tion for the increase in these motion estimation errors, and 
further studies are needed to determine whether this is the 
case.

A limitation in this study was the absence of tests con-
cerning strain and shearing in the simulations and in the 
phantom cine loops. Thus, how these motions affect the 
motion estimation errors of GS15PI compared to the other 
methods can only be speculated. However, the motion esti-
mation errors using the in vivo cine loops, which incorpo-
rate a low level of strain in the investigated area, indicate 
that GS15PI has some robustness to strain. Further stud-
ies are needed to evaluate the influence of higher levels of 
strain and shearing when using GS15PI. Another limitation 
in our in  vivo evaluation was the exclusion of CUBIC in 
the motion estimations.

Table 7   Mean errors and corresponding standard deviation (SD) val-
ues in µm separated according to noise level using in silico cine loops

The results are presented according to image data type (B-mode or 
RF) and sub-sample estimation method (CUBIC—image interpola-
tion, PI—parabolic interpolation, GSmod—modified grid slope inter-
polation, and GS15PI—our proposed method). The motion direction 
was diagonal, and the kernel size was 1.8 × 1.7 mm2

Image type Noise level Sub-sample method

CUBIC PI GSmod GS15PI

B-mode SNR 16 dB 9.3 (6.7) 12 (6.1) 16 (6.8) 11 (6.6)

SNR 21 dB 6.2 (4.1) 9.3 (4.7) 11 (4.7) 8.6 (4.5)

No noise 5.6 (3.7) 9.1 (4.4) 7.6 (4.2) 7.9 (4.0)

RF SNR 16 dB 12 (9.0) 4.8 (2.8) 9.6 (2.7) 4.8 (2.6)

SNR 21 dB 11 (8.4) 5.1 (2.7) 5.4 (2.0) 3.5 (2.1)

No noise 10 (8.3) 5.3 (2.6) 3.6 (1.6) 3.3 (1.9)

Table 6   Mean estimation errors 
and corresponding standard 
deviation (SD) values in µm 
separated according to kernel 
size using in silico and phantom 
cine loops

The results are presented according to image data type (B-mode or RF) and sub-sample estimation method 
(CUBIC—image interpolation, PI—parabolic interpolation, GSmod—modified grid slope interpolation, 
and GS15PI—our proposed method). The motion direction was diagonal, and for the in silico data, the 
SNR was 21 dB

Image source Data type Kernel size (mm2) Sub-sample method

CUBIC PI GSmod GS15PI

Philips EPIQ 7 B-mode 0.9 × 0.8 4.2 (2.4) 5.0 (3.5) 5.0 (2.5) 4.6 (2.6)

1.8 × 1.7 3.7 (2.0) 4.3 (2.8) 4.6 (2.0) 4.1 (2.2)

2.8 × 2.7 3.6 (2.0) 4.1 (2.6) 4.5 (1.9) 4.1 (2.1)

ULAOP B-mode 0.9 × 0.8 74 (85) 75 (85) 76 (87) 75 (85)

1.8 × 1.7 16 (15) 21 (13) 17 (21) 20 (14)

2.8 × 2.7 12 (9.4) 18 (4.2) 10 (8.4) 16 (5.0)

RF 0.9 × 0.8 83 (100) 81 (100) 82 (110) 81 (110)

1.8 × 1.7 24 (40) 26 (36) 21 (42) 24 (37)

2.8 × 2.7 12 (8.6) 16 (2.6) 10 (5.7) 13 (4.0)

In silico B-mode 0.9 × 0.8 43 (67) 45 (65) 46 (68) 44 (67)

1.8 × 1.7 6.2 (4.1) 9.3 (4.7) 11 (4.7) 8.6 (4.5)

2.8 × 2.7 4.1 (2.6) 7.4 (3.1) 9.9 (2.3) 6.7 (2.2)

RF 0.9 × 0.8 14 (11) 7.8 (5.4) 7.8 (5.2) 6.6 (5.2)

1.8 × 1.7 11 (8.4) 5.1 (2.7) 5.4 (2.0) 3.5 (2.1)

2.8 × 2.7 8.5 (6.8) 4.4 (1.7) 5.1 (1.3) 2.8 (1.3)
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As expected, the computation time for CUBIC was 
much longer than the other sub-sample methods (approxi-
mately 27 times longer) because CUBIC involves many 
more calculations. This large difference has to be consid-
ered when the differences in the motion estimations are 
small. Please note that the difference in the computation 
time between the GS15PI and PI or GSmod methods was 
on the order of 1/10 of a millisecond.

The purpose of the in  vivo study in this work was to 
compare GS15PI to parabolic and grid slope interpolation 
of in vivo data. Therefore, we wanted a dataset in which the 
effect of the sub-sample method was dominant and thus we 
wanted to minimize other sources of error such as the time 
for the onset of the movement. Therefore, we restricted 
the comparison to volunteers with a distinct retrograde 
movement. The in vivo results in this study show promis-
ing results with CV values of 7%; however, comparisons 
with other studies should be made with care. The selection 
of the volunteers in the present study improves our results 

Fig. 4   Example of motion estimations in a phantom. The black lines 
indicate the set accumulated displacement for the diagonal motions at 
3, 8, and 13 mm/s. The panels in the two rows show the accumulated 

axial and lateral motion estimations of nine kernels using CUBIC—
image interpolation, PI—parabolic interpolation, GSmod—modified 
grid slope interpolation, and GS15PI—our proposed method

Fig. 5   Mean time to perform one estimation using the evaluated sub-
sample methods on in silico cine loops for B-mode and RF data. The 
estimation times are presented according to image data type (B-mode 
and RF) and sub-sample estimation method (CUBIC—image inter-
polation, PI—parabolic interpolation, GSmod—modified grid slope 
interpolation, and GS15PI—our proposed method)
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compared to other studies, and the improved image quality 
of modern ultrasound machines likely has an influence on 
the motion estimations. Previously presented CV values of 
measurements of the retrograde longitudinal movement of 
the common carotid artery are 12.5% [11], 16% [44], and 
13% [3]. Zahnd et al. [45] reported a CV value of 20% for 
the total longitudinal movement during a cardiac cycle.

The proposed sub-sample interpolation method, 
GS15PI, has only been evaluated on the longitudinal wall 
movement of the common carotid artery in vivo. However, 
the proposed method has potential to be used in all appli-
cations where block matching is used. Further studies are 
needed to evaluate this.

5 � Conclusion

The proposed sub-sample method GS15PI, in which the 
best aspects of parabolic interpolation and grid slope inter-
polation are combined, was found to have promising perfor-
mance when compared to three other sub-sample methods 
with in silico and phantom cine loops of both ultrasound 
B-mode data and RF data. Compared to parabolic and grid 
slope interpolation, the proposed method also performed 
well when estimating the longitudinal movement in the 
common carotid artery in  vivo. The proposed method is 

computationally efficient compared to image interpolation 
and has low bias compared to parabolic interpolation and 
low variance at y.0 compared to grid slope interpolation. 
The method is another step toward fast and reliable clini-
cal investigations of longitudinal movement of the arterial 
wall.
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