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EDITORIAL

Nanosecond Pulsed Electric Fields: A New Stimulus
to Activate Intracellular Signaling

Stephen J. Beebe and Karl H. Schoenbach

Frank Reidy Research Center for Bioelectrics, Eastern Virginia Medical School and Old Dominion University, Norfolk, VA 23510, USA

When new technologies are introduced into the sci-
entific community, controversy is expected and both ex-
citement and disappointment enrich the lives of those
who initiate the new ideas. It becomes the mission of
the “inventors” to embrace the burden of proof to estab-
lish their ideas and convince the skeptics and disbeliev-
ers who will undoubtedly temper their enthusiasm and
test their patience. While open mindedness is generally a
scientific motto, those who review patents, manuscripts,
and grants do not always readily practice it, even when
the evidence is convincingly presented; old ideas and
concepts often die hard. So it has been and still is in
many instances as engineers, physicists, biologists, and
physicians pursue innovative ideas and novel technolo-
gies.

So what is “Bioelectrics”? It is the application of ultra-
short pulsed electric fields to biological cells, tissues, and
organs. More specifically, it is the analysis of how these bi-
ological systems respond to high electric fields (10–100 s
of kV/cm) when applied with nanosecond (1–300) dura-
tions. Compressing electrical energy by means of pulsed
power techniques allows the generation of ultrashort (bil-
lionth of a second) electrical pulses [1]. Because the pulses
are so short the energy density is quite low and there-
fore nonthermal. However, the power is extremely high
generating billions of watts. This can be compared to a
coal power plant, which generates less than billion watts,
but does it continuously. For example, for a 10 ns, 40 kV,
10Ω pulse generator, the power provided by the pulse is
160 MW, however, the energy is only 1.6 J. Depositing this
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energy into one milliliter of water causes an increase in
temperature by just one third of one degree Celsius. We
have referred to these pulses as ultrashort, high-voltage
pulsed electric fields or nanosecond pulsed electric fields
(nsPEFs). These conditions are most certainly unique and
do not exist in nature. Thus, this provides an opportu-
nity to determine how cells respond to stimuli that they
have not evolved to recognize. Undoubtedly, cells respond
to nsPEFs in diverse and cell-type-specific ways. This sug-
gests that nsPEFs represent a distinctive, non-ligand stim-
ulus that can disclose basic cell-type-specific differences
for responses to the external environment and can also
be investigated for potential therapeutic and/or diagnostic
applications. A patent has been issued and several provi-
sional patents have been filed for devices and applications
of nsPEFs to cells and tissues for a wide range of applica-
tions.

The use of electric fields on biological systems is
not new, but it has been a common misconception that
nsPEFs are also not new. A method called electropora-
tion has been used for decades to introduce drugs and/or
DNA into cells for basic science or for therapeutic pur-
poses. These electric fields charge the plasma membrane
causing the temporary formation of “pores” or breach-
ing of plasma membrane integrity that allows the en-
try of “foreign” molecules into the cell interior. However,
compared to nsPEFs classical plasma membrane elec-
troporation pulses are relatively long (microseconds to
milliseconds) and with lower electric fields (≤1 kV/cm).
Thus, nsPEFs can be orders of magnitude shorter in du-
ration and higher in electric field. For example, during a
1ms electroporation pulse light travels 982,000 feet (186
miles). During a 10 ns pulse, light travels about 10 feet.
Nevertheless, because nsPEF applications are an extension
of classical plasma membrane electroporation, the effects
of nsPEFs are often confused with effects of electropora-
tion on the plasma membrane.

Not so! Especially as the pulse duration is decreased
below the charging time of the plasma membrane. The
exclamation point serves a special note that cell response
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phenomena have now significantly changed as the rise-
time and the pulse duration are below times required to
fully charge the plasma membrane. As opposed to re-
sponses to classical plasma membrane electroporation,
nsPEF affect intracellular structures (membranes) and
functions (cell signaling), which may or may not involve
measurable responses from the outer plasma membrane.
This primarily depends on the pulse duration, pulse rise
time, and electric field. nsPEFs enter new biological and
cellular vistas with dimensions, dynamics, and kinetics fo-
cused more on intracellular mechanisms [2, 3]. Neverthe-
less, nsPEFs have effects on the plasma membrane that are
direct electric field, nonbiological effects, as well as sec-
ondary biological effects. While biological effects on the
plasma membrane, such as phosphatidylserine (PS) ex-
ternalization associated with apoptosis are readily mea-
sured, they can be confused with PS externalization result-
ing from direct electric field effects. Direct electric field
effects on plasma membrane integrity are often harder to
determine because they occur at levels that are often be-
low the level of detection by fluorophores and/or molec-
ular probes are too large for small pores, referred to as
nanopores, which are believed to be present with nsPEFs.
Such nanopores and nanochannels for phosphatidylser-
ine externalization are predicted based on modeling and
simulation studies [4]. What effects nsPEFs might have on
proteins and ion channels are not yet investigated. How
diminishing effects on plasma membrane structures and
functions interface with increasing effects on intracellular
structures and functions as the pulse duration decreases
remain the basis for continued research in bioelectrics.

we have referred to the nsPEF-induced occurrence
of greater effects on intracellular membranes and lesser
effects on plasma membranes as intracellular electro-
manipulation (IEM). We used the term “manipulation”
instead of “electroporation” because it is yet to be de-
termined whether nsPEF-induced effects on intracellular
structures are similar to classical electroporation on the
plasma membrane. Since nsPEFs applications are an ex-
tension of classical plasma membrane electroporation, it
is reasonable and prudent to consider membrane charg-
ing as a mechanism for nsPEF effects. While the mem-
branes may not be fully charged for a 10 ns pulse, they are
charging during the pulse. However, as the pulse duration
decreases to and below 1 ns, charging may not be a major
factor. Here pure physics meets biology head on and new
dimensions and other mechanisms may be encountered.

This introduction to nsPEFs provides all of the su-
perlatives and fervor that could be expected from physi-
cists and biologists with a brand new toy. So what data
support the unique effects of nsPEFs on biological sys-
tems? Most of the work has been done on cells in cultures,
however an increasing number of studies are being con-
ducted on tissues, including fibrosarcoma and melanoma
tumors, and more recently on adipose tissue and skin
as an organ (see [2, 3] and references within). Cell cul-
ture models include HL-60, Jurkat, and HCT116, the
later including clones that are wildtype and null for p53.

However, a number of normal human leukocytes and a
wide range of cancer cells have been tested. Cell responses
have been measured for nsPEF effects on plasma mem-
branes (integrity, potential, and phosphatidylserine ex-
ternalization), endoplasmic reticulum (calcium mobiliza-
tion), mitochondria (respiration, cytochrome c release),
and nucleus (fluorescence changes, DNA damage, roles
for p53, and gene expression). We have also measured re-
sponses of adipose tissue, skin, and tumors. Studies with
tumor tissues have determined responses from slowed tu-
mor growth to tumor regression. These cell and tissue
responses are distinct from response to classical plasma
membrane electroporation.

A major question that remains to be fully investi-
gated is the potential for nsPEF-induced cell-specific ef-
fects. There are two generalizations for cell-type-specific
nsPEF-induced effects that have been defined. First,
nsPEF-induced cell effects are not cell size-dependent
as shown for classical plasma membrane electroporation
where larger cells are more readily affected. While a well-
controlled, extensive study has not been carried out for
in vitro cell types, nsPEFs effects on the plasma mem-
brane are more readily demonstrated in smaller cells com-
pared to larger cells. Second, for a number of cell types
tested, adherent cells have higher threshold for nsPEF-
induced effects than cells that grow in suspension. Studies
in progress are beginning to demonstrate selective effects
in adipose tissue and skin.

It appears that nsPEFs can affect cells as a double-
edged sword; that is at relatively high electric fields nsPEFs
recruit apoptosis mechanisms, but at lower electric fields
they recruit nonapoptotic signaling mechanisms [2, 3]. It
is now becoming clear that proteins that regulate apopto-
sis are also involved in regulating nonapoptotic processes.
For example, we have shown that nsPEFs can modulate
caspase activity and caspases have been shown to modu-
late apoptotic and nonapoptotic cell functions [2, 3] in-
cluding proliferation, cell cycle, differentiation, as well as
programmed cell death. So at higher electric fields nsPEFs
can induce apoptosis resulting in cell death and size re-
duction and/or ablation of tumors. This is observed as di-
rect electric field effects or biological responses to electric
fields in the absence of drugs. This is distinct from elec-
trochemotherapy where classical plasma membrane elec-
troporation allows the entry of chemotherapeutic drugs
such as bleomysin, which is toxic to the tumor.

At lower electric fields and shorter pulse durations,
nsPEF recruit cell signaling mechanisms that induce cal-
cium mobilization and modulate calcium-mediated func-
tions [2, 3] such as platelet activation and aggregation,
which is important for blood clotting. Activation of hu-
man platelets, Jurkat cells, and HL-60 cells mimic re-
sponses to hormones that act through G-protein-coupled,
plasma membrane receptors that involve IP3 receptors in
the endoplasmic reticulum. Furthermore, abrupt calcium
mobilization has been shown to immobilize human neu-
trophils, presumably due to interruption of signals that
direct specialized and specific mobilization in response to
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chemotactic signals. The mechanism(s) for these calcium
mobilization responses remain to be determined. Never-
theless, since calcium is an ubiquitous second messenger
signal, nsPEF-induced calcium modulation could have a
wide range of applications.

We hypothesized that if nsPEFs affected the nuclear
membrane, plasmids and transfected genes may enter the
nucleus more readily and gene transcription may be en-
hanced. We demonstrated that when a green fluorescent
protein (GFP) expression plasmid was transfected into
cells with a classical plasma membrane electroporation
pulse and then followed by a nonapoptotic nsPEF in a
low-conductivity media, the level of expression and the
number of cells expressing GFP were increased signifi-
cantly [2, 3]. The mechanism(s) for this result is not yet
clear, but nsPEF-induced effects on the nucleus and DNA
have been reported. While some studies suggest that di-
rect electric field effects damage DNA, other studies indi-
cate effect at the nucleus, some of which are reversible and
nonlethal. Other studies indicate that nsPEF affect expres-
sion of endogenous genes. It remains to be determined if
effects on transcription are due to actions on the nuclear
membrane, gene transcription mechanisms, or both.

While these observations are exciting, only a few
groups have carried out experiments with nsPEFs, but the
numbers are growing. This is because generating pulses
with such short durations, rapid rise times, and high
electric fields is not a common skill. Funding from the
Department of Defense through the Air Force Office of
Scientific Research by a Multi-University Research Ini-
tiative has enhanced the growing number of studies us-
ing this new technology. These include investigators at
Old Dominion University, Norfolk, where the technol-
ogy originated and the MURI is administrated; Eastern
Virginia Medical School, Norfolk; Harvard/MIT, Cam-
bridge; Washington University, St Louis; University of
Texas Health Science Center, San Antonio; Wisconsin
University, Madison; Purdue University, Calumet; and
Northwestern University, Evanston. A group at Univer-
sity of Southern California with Martin Gundersen and
Tom Vernier, also funded by AFOSR, has also been pro-
ductive with this technology. Furthermore, two Centers
of Excellence Programs have been funded in Japan to in-
clude investigations of nsPEF effects on biological cells.
In addition, groups in England, France, and Germany
have begun to establish programs related to bioelectrics
research, seeking help from the Center of Bioelectrics in
Norfolk. Furthermore, all of the funded groups are train-
ing students, some of whom will continue studies in bio-
electrics. Moreover, an undergraduate/graduate course in
Bioelectrics is now offered at Old Dominion University
and a wider range of bioelectrics-related courses may
be offered in the future. Thus, it is likely that as work
continues in this field, it will expand to other groups
with other methodologies and expertise, and enhance our
understanding of mechanisms that cells use to respond to
unique nsPEF stimuli.

So!! Where do we go from here? Our initial strate-
gies were to do preliminary studies to investigate a num-
ber of hypotheses based on understandings from classi-
cal plasma membrane electroporation. This approach re-
vealed that a number of projects were worthy of pursuit
based on peer-review publications and a wealth of un-
published data. However, a “rich kid in the candy store”
strategy will not be successful. First, we are not rich. This
technology requires a funding stream that is not easily ac-
quired, especially with a new technology that must build a
respected foundation in the peer-review processes. Thus,
personnel and resources are limited. Second, acquisition
of funding from national foundations such as the NIH,
among others, requires focus in areas that are well defined,
supported by unshakable preliminary data, and assured
of success. Some funding may be available from venture
capitol groups and startup companies, but the risk/benefit
ratio must be favorable and this is not immediate with a
new technology. Therefore, we have developed a strategy
that is based on available funds, resources, and person-
nel to carry forth a series of studies that will provide for
the future of bioelectrics. Bioelectrics research will remain
stimulating because there is plenty of intracellular terri-
tory to explore.

Stephen J. Beebe

Karl H. Schoenbach
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