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MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that play important roles in various
biological processes. This study examinedmicroRNA profiles of Laodelphax striatellus using the small RNA librar-
ies derived from virus free (VF) and rice black-streaked dwarf virus (RBSDV) infected (RB) insects. A total of 59
mature miRNAs (46 miRNA families) were identified as conserved insect miRNAs in both VF and RB libraries.
Among these conserved miRNAs, 24 were derived from the two arms of 12 miRNA precursors. Nine conserved
L. striatellusmiRNAswere up-regulated and 12were down-regulated in response to RBSDV infection. In addition,
a total of 20 potential novel miRNA candidates were predicted in the VF and RB libraries. The miRNA
transcriptome profiles and the identification of L. striatellus miRNAs differentially expressed in response to
RBSDV infection will contribute to future studies to elucidate the complex miRNA-mediated regulatory network
activated by pathogen challenge in insect vectors.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

RNA interference is the most important and conserved pathway
used by eukaryotic organisms againstmicrobial invasion. In the past de-
cade, it has been discovered that virus infection results in the generation
of different small RNA (sRNA) populations, including virus derived
small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), host
microRNAs (miRNAs) etc. [1]. miRNAs are an abundant class of endoge-
nous small non-coding RNA molecules about 22 nucleotides (nt) long.
miRNAs regulate gene expression at the post-transcriptional level by
binding to target genes in a sequence specificmanner, resulting in either
translational suppression (animals) or degradation of targeted mRNAs
(plants) [2,3]. Most mature miRNAs are 20–24 nt long and are tran-
scribed from primary-miRNA molecules which contain a characteristic
stem loop structure [4]. Among the known miRNAs deposited in
miRBase (http://www.mirbase.org), some are highly conserved across
different species whereas others are species-specific [5].

Both conserved and species-specific miRNAs play important roles
in multiple types of biological functions in eukaryotic cells including
development, differentiation, metabolism, apoptosis, etc. [3,6]. In-
creasing evidence indicates that complex interactions occur between
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host/vector/pathogen encoded microRNAs and their corresponding
target genes which eventually affect pathogenesis. Host cellular
miRNA expression can be greatly influenced during viral invasion
and replication by the host antiviral response and by changes of cel-
lular environment [7–9]. Deep-sequencing technologies provide
powerful tools for researchers to investigate a quantitative and in-
depth study of miRNA transcriptomes. Expression profiles of host
miRNAs in response to various viruses, including human immunode-
ficiency virus [10], Epstein–Barr virus [11], chikungunya virus [12]
etc., contribute to a better understanding of miRNA-mediated host-
virus interactions.

The ability of arthropod vectors to transmit many plant and animal
viruses is an important factor in the epidemiology of these diseases
[13]. The small brown planthopper (Laodelphax striatellus; family
Delphacidae, order Hemiptera) is a notorious rice pest in temperate
regions mainly because it transmits two economically important rice
viruses: rice black-streaked dwarf virus (RBSDV) and rice stripe virus
(RSV) [14,15]. These viruses replicate in both rice and the planthopper
vector. We have previously described sRNA libraries derived from
L. striatellus infectedwith RSV/RBSDVor virus free (VF) and comprehen-
sively characterized the siRNAs derived from the viruses [16]. We now
report a comparison of the VF and RBSDV infected (RB) sRNA libraries
to identify conserved and novel miRNAs of L. striatellus. The profile of
differentially expressed planthoppermiRNAswas also extensively char-
acterized during virus infection.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Results and discussion

Overview of deep sequencing data in L. striatellus

The small RNA libraries derived from virus free and RBSDV infected
L. striatellus constructed in our previous work [16] were used to identify
differentially expressed miRNAs in this study. After quality control,
length filtering (16–27 nt), adaptor trimming and removal of sRNAs
that matches to known non-miRNA classes in Rfam and RepBase data-
base, the number of total clean reads was 3,379,094 and 6,654,452
with unique reads of 1,303,655 and 1,077,947 from the VF and RB librar-
ies, respectively. An overview of the deep sequencing results is present-
ed in Table 1. Different types of non-miRNA sRNAs including transfer
RNAs (tRNAs), ribosomal RNA (rRNAs), small nucleolar RNAs (snoRNAs)
and small nuclear RNAs (snRNAs) were identified based on the result of
Rfam database mapping (Fig. S1). Among these non-coding sRNAs,
tRNAs were the most abundant in the total reads, accounting for
88.54% and 96.95% in the VF and RB libraries, respectively. In the unique
reads, rRNAs were the most abundant class accounting for more than
50% in both libraries (Fig. S1).
Conserved miRNAs in L. striatellus

ConservedmiRNAswere identified by searching for homologous se-
quences among the mature miRNAs and miRNA precursors of 31 insect
species deposited in the miRBase (Release 20.0). 273,178 and 191,184
total reads accounting for 59 mature miRNAs (46 miRNA families)
were identified as conserved insect miRNA candidates in the VF and
RB libraries of L. striatellus, respectively. A complete list of these con-
served miRNAs is provided in Supplementary File 1.

Most of the reportedmaturemiRNAs showarm selection preference,
leading to a high abundance of products from one arm and many fewer
from the other arm of the precursor [17]. In this study, 24miRNAs were
derived from the two armsof 12miRNAprecursors,whereas 16miRNAs
were only derived from the 5′ (5p) and 19miRNAs only from the 3′ (3p)
of their precursors. The complementary miRNAs (derived from both
arms of the precursor) identified in our study provide strong evidence
that these miRNAs were precisely produced from the stem-loop struc-
ture of the precursor during miRNA biosynthesis [3]. The arm domi-
nance pattern of these 24 miRNAs were further analyzed. Only one
miRNA family (lst-miR-2) was found to have similar read counts from
both arms of its precursor, whereas five miRNA families (lst-miR-9,
lst-miR-10, lst-miR-281, lst-miR-3049 and lst-let-7) were 5p arm
dominant and five miRNA families (lst-miR-8, lst-miR-71, lst-miR-210,
lst-miR-276 and lst-miR-993) were 3p arm dominant in both VF and
RB libraries (Supplementary File 1). Interestingly, 3p arm dominance
of lst-miR-1was found in the RB library, but there was no arm selection
preference for lst-miR-1 in the VF library (Supplementary File 1). How
the arm selection pattern of lst-miR-1 was affected by RBSDV infection
in L. striatellus needs further investigation.

Analysis of miRNA length shows that the conserved miRNAs of
L. striatellus were in the range between 20 and 25 nt with a peak of
22 nt (44.07%), followed by 23 and 21 nt miRNAs (Fig. 1A). The length
Table 1
Summary of small RNA sequencing.

VF library

Total (%) Unique (%

Junk reads 8061 (0.14%) 4453
Adapter & length filter 1,480,871 (26.18%) 345,355
Rfam 786,186 (13.9%) 33,999
Repeats 2943 (0.05%) 505
Clean reads 3,379,094 (59.74%) 919,490
Total reads 5,656,590 (100%) 1,303,655

VF, virus free; RB, RBSDV infected.
distribution pattern of L. striatellusmiRNAs was consistent with the ca-
nonical size ofmiRNAs produced byDicer processing and the features of
mature miRNAs [3,18]. In Drosophila, 22 nt miRNAs are produced by
Dicer-1 (DCR-1) while Dicer-2 (DCR-2) is responsible for the produc-
tion of 21 nt siRNAs [19]. Surprisingly, the length distribution analyzed
in our previous study indicated that 22 nt RBSDV siRNAs were domi-
nant in infected L. striatellus [16]. Thus, we suspected that DCR-2 in
L. striatellus may have the ability to generate both 21 nt host miRNA
and 22 nt virus-derived siRNA. Thiswill be an intriguing question for fu-
ture study. Furthermore, all of the conservedmiRNAswere ubiquitously
expressed and exhibited a wide range of abundance from 5 to over
10,000 read counts (normalized) in both libraries (Fig. 1B). The differ-
ences in abundance of miRNAs in L. striatellus may be due to the func-
tional divergence in the conserved miRNA families.

miRNAs with high expression levels in both VF and RB libraries are
shown and compared in Fig. 2. Among all of the conserved miRNA can-
didates, lst-miR-8-3p was the most abundant in both VF and RB librar-
ies, accounting for 26.19% and 27.29%, respectively (Fig. 2). Notably,
the three most abundantly expressed miRNAs (lst-miR-8-3p, lst-miR-
184-3p and lst-miR-281-5p) accounted for 64.82% and 64.62% of the
total numbers in the VF and RB libraries respectively (Fig. 2). miR-8
andmiR-184 have also been found to be themost abundant in other in-
sect species, such as Locusta migratoria [20], Bombyx mori [21],
Nilaparvata lugens [22], Aedes albopictus and Culex quinquefasciatus
[23], indicating their essential roles in insects. Surprisingly, miR-1,
which is commonly highly expressed in various insects and plays key
roles in muscle growth [24] and cardiogenesis [25], had less than 100
read copies in the sRNA libraries of L. striatellus (Supplementary File 1).

For a better understanding of the function and evolution ofmiRNA in
insects, it is useful to explore the conservation profile of miRNAs within
different insect species [26]. The majority of identified miRNA families
in L. striatelluswere well conserved among the reported insect miRNAs
deposited in miRBase (Supplementary File 2). Among these miRNA
families identified in L. striatellus, miR-263 was the most commonly
expressed (in 26 out of 31 insect species), whereas miR-996 was only
previously identified in Acyrthosiphon pisum (Fig. 3A and Supplementa-
ry File 2). Apis mellifera (ame) and Tribolium castaneum (tca) share 45 of
their conserved miRNAs with L. striatelluswhile L. migratoria (lmi) only
shares eight as shown in Fig. 3B.
Differentially expressed conserved miRNAs in response to RBSDV infection

Next generation sequencing provides a powerful approach to inves-
tigate pathogen related miRNA profiles and the large number of reads
can be used as a reliable source to evaluate the relative abundance of
miRNAs between different samples [27,28]. The expression levels of
the conserved miRNAs in the VF and RB libraries were compared to
identify miRNAs differentially expressed (more than 1.5-fold change)
in response to RBSDV infection. A total of 21 miRNAs were identified,
of which nine were up-regulated and 12 down-regulated in RBSDV in-
fected L. striatellus compared to virus free insects (p-value b 0.005)
(Fig. 4 and Supplementary File 3). Differentially expressed miRNAs
also showed a large variation in abundance ranging from 5 to more
RB library

) Total (%) Unique (%)

(0.34%) 7421 (0.11%) 3714 (0.34%)
(26.49%) 2,194,352 (32.98%) 308,040 (28.58%)
(2.61%) 1,914,328 (28.77%) 23,880 (2.22%)
(0.04%) 3943 (0.06%) 301 (0.03%)
(70.53%) 2,534,733 (38.09%) 742,094 (68.84%)
(100%) 6,654,452 (100%) 1,077,947 (100%)



Fig. 1. Length and abundance distribution of identified conserved miRNAs in L. striatellus. (A) Length distribution of conserved miRNAs in L. striatellus. (B) Abundance distribution of con-
served miRNAs in L. striatellus (normalized reads). VF: virus free; RB: RBSDV infected.
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than 10,000 (Supplementary File 3).MostmiRNA expression differences
were in the range from 1.5 to 2 fold. Only three up-regulated (lst-miR-
317-3p, lst-miR-1-3p and lst-miR-307-3p) and four down-regulated
miRNAs (lst-miR-1-5p, lst-miR-927-5p, lst-miR-932-5p and lst-miR-
10-5p) showed differences of greater than 2 fold in response to RBSDV
infection (Fig. 4). Significant down-regulation of lst-miR-932-5p was
also reported for Aedes aegypti after nine days exposure to Dengue
virus type 2 [29], indicating its potential role in response to virus infec-
tion. When the shrimp Marsupenaeus japonicus was challenged by a
DNA virus, white spot syndrome virus, the expression level of miR-
317was significantly up-regulated [30], which is also similar to the pat-
tern in our studies with L. striatellus and RBSDV. In contrast, miR-927
was significantly over-expressed upon chikungunya virus infection in
A. albopictus [12], whereas lst-miR-927-5p was down-regulated in our
study. This might be because the up-regulated miR-927 in A. albopictus
was from the 3′ arm of the precursor or perhaps because of the com-
plexity of different vector-virus systems. Interestingly, opposite regula-
tion patterns were observed for subset members of miR-1. miR-1-5p
was down-regulated in the RBSDV infected L. striatellus sRNA library
Fig. 2. The most abundant conserved miRNAs (normalized reads N 4000) identified in
L. striatellus. The left panel represents relative expression levels between VF (black) and
RB (gray) libraries. The right panel shows miRNA abundance between VF (black) and RB
(gray) libraries with normalized reads. VF: virus free; RB: RBSDV infected.
while miR-1-3p was up-regulated. miR-1 is one of the most conserved
miRNAs highly expressed in metazoa and plays important roles in mus-
cle development and heart function regulation in insects [31,32]. To our
knowledge, this is the first report that miR-1 expression levels are af-
fected by pathogen infection in insects. Future investigation is required
to explore the importance of these differentially expressed miRNAs in
the host antiviral response.

To validate the reliability of this differential expression of conserved
miRNAs of L. striatellus in response to RBSDV infection, qRT-PCR was
employed to examine three randomly-selected up-regulated (lst-miR-
2765-5p, lst-miR-87-3p and lst-miR-1-3p) and four down-regulated
mature miRNAs (lst-miR-750-3p, lst-miR-927-5p, lst-miR-124-3p and
lst-miR-133-3p) (Fig. 4). The results with all seven selected miRNAs
were consistent with the high-throughput sequencing as expected
(Fig. 5) but the fold changes of some miRNAs (such as lst-miR-87-3p,
lst-miR-1-3p, lst-miR-750-3p and lst-miR-927-5p) were obviously
higher in qRT-PCR than from the sequencing (Fig. 5 and Supplementary
File 3). This may be due to different accumulation levels of the virus in
the particular insects selected for the samples.

Novel miRNA candidates predicted in L. striatellus

Since the full genome of L. striatellus is unavailable, it is difficult to
predict potentially novel miRNAs. In our analysis, the transcriptome of
L. striatellus and all the ESTs of Delphacidae available in NCBI were
used as a genome reference for the prediction of novel miRNA candi-
dates in L. striatellus. A total of 20 novelmiRNA candidateswere predict-
ed based on the criteria for miRNA identification [33] (Supplementary
File 4). These novel miRNA candidates were given names in the form
‘lst-miRn + number’, e.g., lst-miRn3 means ‘L. striatellus miRNA novel
number 3’. The negative folding free energy for the predicted novel
miRNAs precursor in L. striatellus ranging from −72.7 kcal/mol to
−19 kcal/mol with an average value of−32.86 kcal/mol, which is sim-
ilar to that of Drosophila melanogaster (−32 kcal/mol) described previ-
ously [34]. The typical secondary structures of the predicted novel
miRNA precursors were predicted by RNAfold and all of the precursors
have the intramolecular capacity to fold into hairpin structures (Fig. 6).

In previous studies, the predicted novel miRNAs are usually
expressed at a very low level compared to the conserved miRNAs. One
possible reason for this phenomenon is that conserved miRNAs play
key roles in various biological processes, such as metabolism, organ dif-
ferentiation, development etc., and so are commonly expressed at a high
level compared to non-conserved ones [35,36]. Most of the novel
miRNAs we predicted in L. striatellus had less than six copies except for
lst-miRn3 and lst-miRn20, which is much lower than that of conserved
ones (Supplementary Files 1 and 4). In addition, several novel miRNAs
were only present in the VF library (lst-miRn2, lst-miRn4, lst-miRn8,
lst-miRn9, lst-miRn11, lst-miRn13, lst-miRn14, lst-miRn18 and lst-
miRn19) or RB library (lst-miRn16) with extremely low copy numbers
(one or two) (Supplementary File 4). Numerous previous studies



Fig. 3. Conservation profiles of conserved miRNAs in L. striatellus. (A) Number of insect species identified to have each of the conserved miRNA families identified in L. striatellus.
(B) Number of conserved miRNA families in L. striatellus also present in various other insect species. ame: Apis mellifera; tca: Tribolium castaneum; bmo: Bombyx mori; aae: Aedes aegypti;
mse:Manduca sexta; api: Acyrthosiphon pisum; hme: Heliconius melpomene; aga: Anopheles gambiae; cqu: Culex quinquefasciatus; nvi: Nasonia vitripennis; dme: Drosophila melanogaster;
dan: Drosophila ananassae; dgr: Drosophila grimshawi; dpe: Drosophila persimilis; dwi: Drosophila willistoni; dmo: Drosophila mojavensis; der: Drosophila erecta; dps: Drosophila
pseudoobscura; ngi: Nasonia giraulti; dvi: Drosophila virilis; dsi: Drosophila simulans; dya: Drosophila yakuba; nlo: Nasonia longicornis; dse: Drosophila sechellia; lmi: Locusta migratoria.
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indicate that non-conserved miRNAs are usually expressed in
development-specific or stress related patterns [21,22,37,38]. The two
small RNA libraries constructed in this study were both derived from
the adult stage of L. striatellus, so the low abundance of novel miRNAs
may be due to their restricted expression and specific roles in adult
L. striatellus. In addition, lst-miRn16, which is only expressed in the RB li-
brary, may have a specific function related to RBSDV infection. Further
investigation is needed to determine if these novel miRNAs are
expressed at a higher level in other developmental stage of L. striatellus
or are regulated by various other stresses.
Fig. 4. Differentially expressed (p-value b 0.005) conserved miRNAs of L. striatellus in re-
sponse to RBSDV infection. Bars beneath axis x represent down-regulated miRNAs; bars
on the upper of axis x represent up-regulated miRNAs.
Confirmation of conserved and novel miRNAs in L. striatellus

In order to verify the identified conserved miRNAs and predicted
novel miRNAs, RT-PCR validation was performed for four randomly se-
lected conserved and four novel miRNAs of L. striatellus. All the selected
miRNAs could be amplified and the PCR products were further
Fig. 5. qRT-PCR validation of 3 up-regulated and 4 down-regulated conserved miRNAs in
response to RBSDV infection. The relative quantification of expression was calculated
using the 2−ΔΔCT method. The relative expression levels are presented as the 2−ΔΔCT

means ± SE.



Fig. 6. Putative folding structure of predictednovelmiRNAprecursors in L. striatellus. The circles indicate RNA nucleotides and the lines between the circles are bonds that form the primary
and secondary structures. The black line beside each structure delimits the mature predicted novel miRNA sequence. VF: Predicted novel miRNA only present in the VF library; RB: Pre-
dicted novel miRNA only present in the RB library; VF + RB: Predicted novel miRNA present in both VF and RB libraries.
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confirmed by sequencing (Fig. S2), indicating the high accuracy and ef-
ficiency of deep sequencing for miRNA discovery, especially for miRNAs
with extremely low expression levels that cannot be detected by tradi-
tional methods.

In conclusion, virus free and RBSDV infected small RNA libraries of
L. striatellus were comprehensively investigated and compared for
miRNA analysis in the present study. A number of conserved and poten-
tial novel miRNA candidates were predicted which will greatly contrib-
ute to a better understanding of miRNA mediated post transcriptional
gene expression in L. striatellus. Furthermore, several differentially
expressed conserved miRNAs were identified (nine up-regulated and
12 down-regulated) that may play important roles in the response of
L. striatellus to RBSDV infection. Further experimental investigations
are needed to study the function of these differentially expressed
miRNAs in the antiviral strategy of L. striatellus.
Materials and methods

Insect and virus

A population of virus free insects wasmaintained on susceptible rice
(cv. Wuyujing No. 3) at 26 ± 1 °C, with a photoperiod of 16 h light:8 h
darkness and 70 ± 10% relative humidity. RBSDV infected rice plants
(provided by Shandong Academy of Agricultural Sciences, China) were
used as virus source for inoculation. Virus acquisition, collection of
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virus free and RBSDV infected insects and total RNA extraction were
performed as described in the previous study [16].

Pre-processing of sequencing data

The VF library (NCBI Sequence Read Archive database accession
number: SRX255768) and RB library (NCBI Sequence Read Archive da-
tabase accession number: SRX255770) of L. striatellus constructed in
our previous report were used in this study [16]. Low quality sequences
(such as A, C, G or T ≥ 80%; Ns≥ 3; A, C only or G, T only) were filtered
from the two libraries and the adapter sequence (5′-TGGAATTCTCGGGT
GCCAAGG-3′) was removed using FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/). Clipped high quality sequences were clustered
into unique reads and sRNAs with a length of 16–27 nt were identified.
The clean sRNA reads were then mapped to Rfam (release 11.0, http://
rfam.janelia.org/) and RepBase database (http://www.girinst.org/
repbase/) to remove non-coding RNAs (rRNA, tRNA, snoRNA, snRNA)
and repetitive RNAs.

Identification of conserved and novel miRNAs

The pre-processed sRNA sequences were further analyzed to identi-
fy conserved and novel miRNAs using a proprietary software package,
ACGT101-miR v4.2 (LC Sciences, Huston, USA). Mature miRNA and
pre-miRNA sequences of all insects deposited in miRBase (release 20,
http://www.mirbase.org/) [5] were used as a miRNA reference. Se-
quences with perfect matches or one mismatch to known insect
miRNAs were considered to be conserved miRNAs. miRNAs with low
copy reads (fewer than five) were removed during the analysis.

Since the genome sequence of L. striatellus is not available yet, the
transcriptome of L. striatellus (NCBI Sequence Read Archive database ac-
cession number: SRX016334) together with 138,858 expressed se-
quence tags (ESTs) of Delphacidae obtained from NCBI were used as a
genome reference. For identification of potentially novel miRNAs in
L. striatellus, sequences unmapped to insect miRNAs of selected species
in miRBase were used as query andmapped to combined EST reference
sequences. Based on themapping results, novel miRNAswere predicted
if the extended sequences of themapped small RNA positions were cal-
culated to form typical hairpin structures and their propertieswere con-
sistent with the criteria for miRNA identification [33]. The RNAfold
webserverwas used to predict the stem-loop structure of novelmiRNAs
(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) with default parame-
ters [39].

Analysis of differential expressed miRNAs

To facilitate comparison of miRNAs in L. striatellus differentially
expressed between the VF and RB libraries, read counts from each li-
brary were scaled to ‘reads per million’ (rpm) based on the total small
RNA read numbers of the corresponding library. A chi-square test
using a p-value of b0.01 was used to identify statistically significant dif-
ferences between the VF and RB libraries.

miRNA expression profiles by stem-loop quantitative real-time reverse
transcription PCR (qRT-PCR)

qRT-PCR was used to confirm the expression profiles of selected
miRNAs. A total of 1 μg purified total RNAof L. striatellus (RBSDV-infected
and virus free) was used for reverse transcription using an oligo (dT)
primer. The stem-loop RT-PCR method was used for validation of differ-
entially expressedmiRNAs using anABI 7500Real-TimePCR system [40].
The 18S rRNA gene served as an internal control and the 2−△△Ct method
was used to evaluate relative expression. The primers used for qRT-PCR
are listed in Supplementary File 5. The experiment was done using
three independent biological replicates.
Confirmation of conserved and novel miRNAs by RT-PCR and sequencing

Total RNA from virus free L. striatellus was extracted for confirma-
tion. The stem-loop RT-PCR method was used to confirm conserved
miRNAs that is same as described for miRNA expression profiles confir-
mation. PCRproductswere analyzedwith 3% agarose gels and the target
bandswere then purified and ligated to PMD18-T vector for sequencing
by Invitrogen. RT-PCRwas used to amplify precursors of predicted novel
miRNAs from L. striatellus. Primers were designed based on the miRNA
precursor sequences (Supplementary File 5). Target bands of the PCR
product were sequenced using the same method as described for con-
served miRNAs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.08.010.
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