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Abstract

Objectives

COVID-19 and Non-Covid-19 (NC) Pneumonia encountered high CT imaging overlaps dur-

ing pandemic. The study aims to evaluate the effectiveness of image-based quantitative CT

features in discriminating COVID-19 from NC Pneumonia.

Materials and methods

145 patients with highly suspected COVID-19 were retrospectively enrolled from four cen-

ters in Sichuan Province during January 23 to March 23, 2020. 88 cases were confirmed

as COVID-19, and 57 patients were NC. The dataset was randomly divided by 3:2 into

training and testing sets. The quantitative CT radiomics features were extracted and

screened sequentially by correlation analysis, Mann-Whitney U test, the least absolute

shrinkage and selection operator (LASSO) logistic regression (LR) and backward step-

wise LR with minimum AIC methods. The selected features were used to construct the LR

model for differentiating COVID-19 from NC. Meanwhile, the differentiation performance

of traditional quantitative CT features such as lesion volume ratio, ground glass opacity

(GGO) or consolidation volume ratio were also considered and compared with Radiomics-
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based method. The receiver operating characteristic curve (ROC) analysis were con-

ducted to evaluate the predicting performance.

Results

Compared with traditional CT quantitative features, radiomics features performed best with

the highest Area Under Curve (AUC), sensitivity, specificity and accuracy in the training

(0.994, 0.942, 1.0 and 0.965) and testing sets (0.977, 0.944, 0.870, 0.915) (Delong test, P <
0.001). Among CT volume-ratio based models using lesion or GGO component ratio, the

model combining CT lesion score and component ratio performed better than others, with

the AUC, sensitivity, specificity and accuracy of 0.84, 0.692, 0.853, 0.756 in the training set

and 0.779, 0.667, 0.826, 0.729 in the testing set. The significant difference of the most

selected wavelet transformed radiomics features between COVID-19 and NC might well

reflect the CT signs.

Conclusions

The differentiation between COVID-19 and NC could be well improved by using radiomics

features, compared with traditional CT quantitative values.

Introduction

Corona Virus Disease 2019 (COVID-19) has threaten the public health. Computed tomogra-

phy (CT) is one of the most intuitive assessment tools for lung disease. During pandemic, CT

has played an active role in finding lesions, evaluating the severity and prognosis of disease

and differentiating between COVID-19 and other pneumonia. However, the current CT diag-

nosis mainly depends on the experience of clinicians according to the qualitative characteris-

tics, which may lack consistency, repeatability and operability.

The qualitative CT manifestations might be not enough for differential diagnosis among

different pneumonia with imaging overlaps. Most of Non-COVID-19 (NC) patients are diag-

nosed as community-acquired pneumonia (CAP) during pandemic [1]. CAP is the third most

common cause of death worldwide. Common pathogens of CAP are Streptococcus pneumo-

nia, Haemophilus influenza, influenza virus, RSV virus and so on. The outbreak of COVID-19

in China was at a time of high CAP incidence. At the same period in the past, influenza viruses

often spread [2]. Influenza virus and new coronavirus have similar clinical manifestations,

such as cough, fever and myalgia. Laboratory tests also present a decrease in white blood cells

and lymphocytes. In addition, there still lack of uniform CT imaging standards to distinguish

COVID-19 from NC. At present, the most common CT manifestations of COVID-19 pneu-

monia are: GGO, consolidation, mixed density and subpleural distribution. However, these

signs often appear in patients with bacterial infections or other viral infections. Previous report

have shown that the pathological features of COVID-19 greatly resemble those seen in SARS

and Middle Eastern respiratory syndrome (MERS) coronavirus infection, which makes the

identification of CAP and COVID-19 particularly difficult [3]. Although, RT-PCR testing is

the current gold standard for the diagnosis of COVID-19. In the current emergency, the low

sensitivity of RT-PCR implies that many COVID-19 patients may not be identified and may

not receive appropriate treatment in time. Previous research supports the use of chest CT for
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screening for COVD-19 for patients with clinical and epidemiologic features compatible with

COVID-19 infection particularly when RT-PCR testing is negative [4–6].

Under such circumstances, CT imaging is gradually required to transform from qualitative

to quantitative, which is to discover the invisible difference under the veil of similar CT signs

or quantify the manually interpreted CT signs. The digital medical images contain a large

amount of invisible deep information. With the rapid development of computing power and

algorithms, more and more useful quantitative imaging indicators could be derived and

applied in clinical studies. Radiomics is a method that covers a large number of quantitative

imaging features, from first-order statistical features to second or transformed higher-order

features [7]. The radiomics has been widely utilized in tumors, which can indicate genotyping,

tumor microenvironment and susceptibility [8]. Several texture-based studies in pneumonia

have also been reported including: identification of lung tissue, differentiation between differ-

ent types of pneumonia, discrimination of pneumonia and other lung diseases, and prognosis

prediction of pneumonia [9–14]. However, there is still a lack of effective quantitative features

or standard quantitative criteria for the differentiation between COVID-19 and NC but highly

suspected patients.

Therefore, the current study aimed to evaluate the effectiveness of radiomics-based quanti-

tative CT features in discriminating COVID-19 from highly suspected NC. Meanwhile, the dif-

ferentiation performance of traditional quantitative CT features such as lesion volume ratio,

GGO or consolidation volume ratio were also considered and compared with radiomics-based

method, which was to comprehensively assess the value of quantitative CT imaging analysis in

pneumonia diagnosis.

Methods

Patients

We have abided by ethical standards of journal and the study design was approved by institu-

tional Ethics Committee of Sichuan Academy of Medical Sciences & Sichuan Provincial Peo-

ple’s Hospital. We retrospectively enrolled 1988 fever patients from four centers of fever clinic

in Sichuan Province during the period of January 23 to March 23. 1781 patients were excluded

which showed negative lung imaging and COVID-19 nucleic acid test and without epidemic

exposure history. Data including severe CT imaging artifacts or contrast-enhanced CT images

were also excluded. Among the rest population, 207 patients had positive pulmonary manifes-

tations, of which 88 patients showed positive lung imaging with positive COVID-19 nucleic

acid test. 119 of them were suspected COVID-19 pneumonia patients, who present initially

negative COVID-19 nucleic acid test, but were identified as highly suspected who cannot be

exclude from COVID-19 (Fig 1) according to CT manifestations and consultation by multidis-

ciplinary team (MDT) (specialists from infection, radiology and respiratory department, and

finally excluded by repeated nucleic acid test.) While, 62 patients were excluded from 119 sus-

pected patients, because there was no clear microbiological evidence. Finally, 57 non-COVID-

19 patients were selected with microbiological evidence of infection including influenza A or B

virus infection, bacterial infection and mixed-type infection. The CT images, laboratory indi-

cators and clinical characteristics were recorded in Table 1.

All patients underwent non-enhanced chest spiral CT scanning. We selected the initial CT

images scanned when the patients were first admitted to the hospital. Images from all cases

were collected and analyzed by two radiologists (H. P [a thoracic radiologist with 28 years’

experience] and SK. P [a radiology attending doctor with 7 years’ experience in interpreting

chest CT images]). The results of the judgement were reached by consensus.
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CT image acquisition

All patients underwent non-enhanced chest spiral CT scanning. We selected the initial CT

images scanned when the patient admitted to the hospital. The CT scanners were as follows:

UCT528 40-row 40-slice spiral CT (United Imaging, shanghai, china), Siemens 16-row CT

(Emotion; Germany) and Siemens 64-row (SOMATOM Perspective); and the following scan-

ning parameters were used: slice thickness 1.0mm or 2mm, tube voltage 130 kVp, tube current

Fig 1. Screen flow chart.

https://doi.org/10.1371/journal.pone.0256194.g001

Table 1. Demographics of patients infected with COVID-19 and non-COVID-19 patients. Data are represented as n (%) or mean (SD).

COVID-19 NC

Training set(n = 52) Testing set(n = 36) Training set (n = 34) Testing set (n = 23)

Age 44.5(14.4) 47.9(14.5) 42.1(16.3) 42.2(16.4)

Gender/male 25(48%) 23(64%) 18(53%) 17(74%)

Symptoms

Fever 12(23%) 7(19%) 26(76%) 17(74%)

Cough 13(25%) 13(36%) 23(68%) 14(61%)

Myalgia or fatigue 11(21%) 7(19%) 7(21%) 7(30%)

Dizzy 5(10%) 2(6%) 2(6%) 3(13%)

Diarrhea 1(2%) 2(6%) 1(3%) 0

Sore Throat 1(2%) 2(6%) 5(15%) 4(17%)

Headache 0 1(3%) 3(9%) 1(4%)

Chest pain 2(4%) 0 1(3%) 0

Hospital length of stay(day) 14.4(5.3) 13.8(4.6) 6.1(4.1) 5.3(3.3)

https://doi.org/10.1371/journal.pone.0256194.t001
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30mAs or tube voltage 120 kVp, tube current was regulated by an automatic exposure control

system(80 to 300 mAs). The patient was examined in the supine position. The scan range was

from the entrance of the chest to the lower lung (costophrenic angle), continuous screening

with single breath at the end of inspiration. Images were reconstructed with a slice thickness of

1.5 mm or 1 mm and an interval of 1.5 mm or 1 mm, respectively. All images were displayed

with standard lung (width, 1200 HU; level, –600 HU) and mediastinal (width, 350 HU; level,

40 HU) window settings. All images were exported as digital imaging and communications in

medicine format for quantitative image feature extraction.

Image analysis

The workflow of imaging analysis and data processing was illustrated in Fig 2. The CT image

analysis was conducted by Lung Kit software (GE Healthcare, Version LK2.2) and the detailed

procedure was described in the Supplementary Method in S1 File. To reduce the impact of dif-

ferent scanner and scanning parameters, all the images were firstly resampled into isotropic

voxel size of 1 mm�1 mm�1 mm using trilinear interpolation. After interpolation into isotropic

voxel, the image’s intensity values were rounded to the nearest integer HU value. The low-pass

Gaussian filter with σ = 0.5 was then conducted to increase the reproducibility of the radiomics

features to be extracted [15]. Afterwards, the five anatomic lung lobes were firstly automati-

cally segmented, which was followed by automatic pneumonia lesion volume of interest

(VOI). The margin of the VOI was checked and manually adjusted by an experienced thoracic

radiologist (SK. P, a radiology attending doctor with 7 years’ experience in interpreting chest

CT images) and the obviously swollen blood vessels involved in the lesion were excluded, if

necessary. All the automatically segmented or manually adjusted VOIs were checked by a

senior radiologist (H. P [a thoracic radiologist with 28 years’ experience]) to reach consensus.

The distributed lesions were considered as a whole VOI in the following analysis steps.

Following the CT value discretized with binWidth = 25HU, a total of 851 radiomics features

were then extracted from segmented VOIs by using Python package Pyradiomics v2.2 (The

formula for calculating each feature were described in the website: https://pyradiomics.

readthedocs.io/en/latest/index.html) [16]. In brief, a total of 851 extracted radiomics features

were categorized into three groups: first-order features, textural features, and transformed fea-

tures. There were 32 first-order features consisting of 18 intensity statistical features and 14

morphological features. Among 75 textural features, there were 24 Gray Level Co-occurrence

Matrix (GLCM), 16 Gray Level Run Length Matrix (GLRLM), 16 Gray Level Size Zone Matrix

(GLSZM), 14 Gray Level Dependence Matrix (GLDM) and 5 Neighboring Gray Tone

Fig 2. Workflow of CT imaging analysis.

https://doi.org/10.1371/journal.pone.0256194.g002
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Difference Matrix (NGTDM) features. For the transformed images, first-order wavelet trans-

form decomposed the VOI into 8 sub-ROIs by using either a high- or low-pass filter in three

dimensional directions, including high–high–high, high–high–low, high–low–low, high–low–

high, low–high–low, low–high–high, low–low–high, and low–low–low. The same set of texture

features (18 intensity statistical features, 24 GLCM features, 16 GLRLM, 16 GLSZM, 14

GLDM, and 5 NGTDM) were calculated based on these wavelet-transformed images and 744

wavelet features were obtained finally. These common or wavelet-transformed radiomics fea-

tures were mainly calculated as referring to the previous studies on pneumonia differentiation

[7, 8].

For lesion volume ratio analysis, the lesion volume ratio in five lung lobes was respectively

calculated automatically by LK2.2 after lesion VOI was delineated. The lesion ratio in each

lung lobe was scored from 0 to 5 which was defined according to the volume ratio involved: 0,

no lesion; 1,�5%; 2, 6%-25%; 3, 26%-49%; 4, 50%-75%; 5,>75% [17].

For lesion component analysis, the part solid component was defined as the lesion with CT

value <-200 HU while the parts with CT value >-200 HU were defined as solid component.

And the volume ratio of each kind of lesion component in the left and right lung was derived

automatically.

CT Image processing results and manually interpreted CT signs were aligned by two radiol-

ogists (H. P [a thoracic radiologist with 28 years’ experience] and SK. P [a radiology attending

doctor with 7 years’ experience in interpreting chest CT images]). The results of the judgement

were reached by consensus.

Data preprocessing, model establishment and evaluation

The radiomics feature data was firstly preprocessed by replacing missing values with median

values and z-score normalization. The dataset (n = 145; COVID-19 = 88, NC = 57) was ran-

domly stratified into training (n = 86) and testing (n = 59) set using the ratio of 3:2.

Following the CT image analysis and data preprocessing, five logistic regression models

were constructed for differentiating COVID-19 from NC. Model A was constructed by radio-

mics features; Model B was constructed by lesion volume ratio in five lung lobes; Model C was

constructed by lesion ratio score in each lung lobe derived from lesion volume ratio; Model D

was constructed by volume ratio of lesion part-solid and solid component in left and right

lungs; Model E was combined model using lesion score and component ratio. For every

model, the features were selected sequentially only in the training dataset because the distribu-

tion of test dataset was taken as unknown status.

For Model A, the radiomics features for model construction were selected by the procedure

as follows. The redundant features were firstly reduced by correlation analysis at a cut-value of

0.6. Then Mann-Whitney U test was used to eliminate features without statistical difference in

COVID-19 and NC groups. The significant level was 0.05. Next, the least absolute shrinkage

and selection operator (LASSO) logistic regression method with 10-fold cross validation was

used for further feature selection and regularization to improve the model accuracy and avoid

overfitting. The remaining features with non-zero coefficients were kept and involved into

multi-variate backward stepwise logistic regression with minimum AIC (Akaike Information

Criterion) method to establish the model. Besides, to verify the reliability of selected radiomics

features in the logistic regression model, 100-times bootstrapping and 100-fold leave-group-

out cross-validation (LGOCV) were performed.

From Model B to Model D, the features of lesion ratios or scores were sequentially selected

by Mann-Whitney U test and univariate logistic analysis. The features with statistically P<0.05

were used for respective logistic regression model construction and the model score was
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derived from Eq (1). And for combined Model E, the model score of Model C and Model E

derived from logistic regression were involved directly to construct logistic regression model.

model score ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn ð1Þ

in which β0 is the constant, βi is logistic regression coefficient and xi is the value of selected fea-

tures in the model.

The five logistic regression models were finally constructed based on the training set. And

models’ classification performances were evaluated by receiver operating characteristic (ROC)

analysis. The area under the ROC curve (AUC), accuracy, sensitivity and specificity were

derived. To internally validate the model performances in the testing set, the retained feature

names, logistic regression coefficients and the ROC cut-off value (Youden index reached the

maximum) obtained from the training set were applied in the testing set. Then the corre-

sponding performance in the test data could be calculated. In addition, the calibration curves

and decision curve analysis (DCA) curves were calculated to assess the models’ prediction per-

formance and clinical benefit.

Statistical analysis

The continuous variables or ordinal variables were compared by t-test or Mann-Whitney U
test. The distribution of different CT manifestations judged by radiologist in COVID-19 and

NC groups were compared by chi-squared test or Fisher exact test when small sample sizes

occurred. When three or more manifestation types were included and compared by chi-

squared test, the adjusted standardized residuals was calculated to characterize cell significance

and the absolute value of adjusted residual larger than 2.58 was considered to be significant

[18]. The Cramer’s V coefficients [0.1 (small); 0.3 (medium); 0.5 (large)] were used to assess

the association between the categorical variables [19]. For ROC analysis, the cut-off value in

the training set at the maximum of Youden index of each model was calculated and the sensi-

tivity, specificity, accuracy in the training and testing sets were derived at such cut-off value.

The ROC curves between different models were compared by Delong test. The reported statis-

tical significance levels were all two-sided, and the statistical significance was set at 0.05. All

these statistical analyses were conducted with SPSS Software (Version 25, IBM, Chicago, IL),

GraphPad Software (version 8, San Diego, CA) and R software (Version: 3.6.1, https://www.r-

project.org). The following R packages were mainly utilized: “glmnet” for logistic regression

including LASSO algorithm; “pROC” for ROC analyses; “rmda” for DCA analysis.

Results

Feature selection

1. Radiomics feature selection. Among 851 radiomics features, by using Spearman’s

correlation coefficient cut-value of 0.6, 47 features with low correlation were remained.

Then, 26 features which were significantly different between COVID-19 and NC groups

(P < 0.05) were retained after Mann-Whitney U test. Afterwards, through univariate logistic

regression analysis (18 features left) which was followed by 10-fold cross validation of

LASSO logistic regression algorithm, 13 features with non-zero coefficients were retained

and involved into multi-variate backward stepwise logistic regression. With minimum AIC

(Akaike Information Criterion) method, 10 features were finally selected to establish the

radiomics Model A, which included wavelet.LHL_firstorder_Skewness (wLHL_fS), wavelet.

HHL_glcm_Idn (wHHL_glcm_Idn), wavelet.LLL_glszm_SizeZoneNonUniformityNorma-

lized(wLLL_glszm_SZNUN), wavelet.LLH_glcm_InverseVariance (wLLH_IV), wavelet.
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HLH_gldm_DependenceNonUniformityNormalized (wHLH_gldm_DNUN), wavelet.

HLH_glszm_SmallAreaEmphasis(wHLH_glszm_SAE), original_shape_Flatness (ori_Flat-

ness), original_glszm_SizeZoneNonUniformity (ori_glszm_SZNU), original_firstorder_10-

Percentile(ori_f10P), wavelet.HHH_glcm_Imc1 (wHHH_glcm_Imc1). The LASSO feature

selection procedure was shown in S1(A) and S1(B) Fig in S1 File.

The statistical differences of each radiomics feature between COVID-19 and NC groups in

training and testing sets were illustrated in S2 Fig in S1 File and summarized in S1 Table in S1

File. The wavelet-HHL_glcm_Idn, wavelet-LLL_glszm_SizeZoneNonUniformityNormalized,

wavelet-LLH_glcm_InverseVariance and, wavelet-HHH_glcm_Imc1features showed signifi-

cant differences (P<0.05) between COVID-19 and NC in both of training and testing sets.

2. Lesion ratio feature selection. The lesion volume ratio, score and component features

were also selected to construct Model B to Model D. The lesion volume ratio of left and right

bottom lung lobes were selected as significant features in Model B. The lesion-volume-based

score in five lung lobes were all included in the Model C. And for Model D using component

volume ratio, the GGO volume ratios in left and right lungs were selected. The selected fea-

tures in each model and their statistical differences between COVID-19 and NC in training

and testing sets were summarized in S2 Table in S1 File. It showed that all these lesion ratio

features were significantly different (P<0.05) in COVID-19 and NC groups. The bar plot of

lesion volume ratio and component volume ratio in different lung lobes were illustrated in S3

and S4 Figs in S1 File.

Model establishment and evaluation

The logistic regression calculation formula constructing Model A to Model E were shown in

Table 2. The classification score of each model derived by weighting logistic regression coeffi-

cients onto selected features were illustrated for COVID-19 and NC, as shown in S5 Fig in S1

File. The confusion matrix and the classification score of each model were illustrated in Fig 3.

By ROC analyses, the performances of Model A to Model E were summarized in Table 3

and the ROC curves and precision-recall curves were respectively illustrated in S6 and S7 Figs

in S1 File. Among five differentiation models, the Model A using radiomics features performed

best with the highest AUC, sensitivity, specificity and accuracy in the training and testing sets.

The AUC, sensitivity, specificity and accuracy were 0.994 (0.984–1.0), 0.942 (0.8375–0.9862),

1.0 (0.8793–1.0) and 0.965 (0.8982–0.9923) in the training set, while the corresponding values

in the testing set were 0.977(0.947–1), 0.944 (0.8091–0.9941), 0.870 (0.6703–0.9631), 0.915

(0.8125–0.9673), respectively.

In addition, as shown in S7 Fig in S1 File, all the model performance indicated by preci-

sion-recall curves shared the same tendency as the ROC analysis. The radiomics model (Model

A) performed better than other image-derived models both in the training and test group,

which was followed by combined model (Model E). It indicated the robustness of the radio-

mics model. Moreover, 100-times bootstrapping and 100-fold leave-group-out cross-valida-

tion (LGOCV) were also used to verify the reliability of the selected radiomics features and the

regression model (detail in Supplementary Method in S1 File). Except for wavelet. LHL_first-

order_Skewness, all other features appeared more than 50 times during multiple splits into

training and testing set as shown in S3 and S4 Tables in S1 File. The estimation of model over-

optimism by using 100-times bootstrapping and 100-fold LGOCV method was summarized in

S5 Table in S1 File. The appearing frequency of each selected radiomics feature and optimism-

corrected AUC (bootstrap: 0.9; LGOCV: 0.898) represent an acceptable reliability of the fea-

ture and the predictive capability of constructed radiomics model.
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For CT volume-ratio based models, the Model E which combining lesion score and

component ratio performed better than others, with the AUC, sensitivity, specificity and

accuracy of 0.84, 0.692, 0.853, 0.756 in the training set and 0.779, 0.667, 0.826, 0.729 in the

testing set. It could be observed that the scored lesion volume ratio could enhance the dif-

ferentiation performance than lesion volume ratio in its absolute value. Meanwhile, by

Table 2. The coefficient of each feature in different logistic regression models.

Model Aa

variables Coef.

intercept 6.8715

wavelet-LHL_firstorder_Skewness -3.1308

wavelet-HHL_glcm_Idn 9.1974

wavelet-LLL_glszm_SizeZoneNonUniformityNormalized -3.6223

wavelet-LLH_glcm_InverseVariance -4.8207

wavelet-HLH_gldm_DependenceNonUniformityNormalized -3.7400

wavelet-HHH_glcm_MCC 0.6721

wavelet-HLH_glszm_SmallAreaEmphasis 4.7616

original_shape_Flatness -4.8054

original_shape_MajorAxisLength -0.3870

original_glszm_SizeZoneNonUniformity 4.9277

original_firstorder_10Percentile -4.0563

wavelet-HHH_glcm_Imc1 -11.1807

wavelet-HHH_glszm_GrayLevelNonUniformityNormalized 1.7932

Model B

variables Coef.

intercept -0.5569

Volume ratio of bottom-right lung lobe 0.0700

Volume ratio of bottom-left lung lobe 0.0586

Model C

variables Coef.

intercept -2.5602

Middle-right lung lobe 0.3299

Upper-left lung lobe -0.2769

Upper-right lung lobe 0.2282

Bottom-right lung lobe 1.1397

Bottom-left lung lobe 0.8675

Model D

variables Coef.

intercept -0.1688

Left_GGO 0.0693

Right_GGO 0.0644

Model E

variables Coef.

intercept 0.2100

CT lesion score (Model C score) 1.3920

Component score (Model D score) -1.0101

a: Model A: radiomics model; Model B: lesion volume ratio model; Model C: lesion score model; Model D: lesion component ratio model; Model E: combined model of

lesion score and lesion component ratio.

https://doi.org/10.1371/journal.pone.0256194.t002
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further combining the ratio score and component ratio features, the model performance

could be further enhanced.

After the Delong test, the statistical differences in ROC of each model were summarized in

S6 Table in S1 File. It can be seen that the imaging radiomics Model A is statistically different

from all other models (P<0.05). While the best volume-ratio-based Model E (combined

model) only showed statistically differences compared with Model B and Model D in the train-

ing sets. And there was no significant difference between Model C (lesion score) and com-

bined Model E.

The analysis of the calibration curve showed that the radiomics Model A (C-index: 0.994 in

the training group; 0.977 in the testing group) and combined Model E(C-index: 0.840 in the

Fig 3. The confusion matrix and the logistic model score of each model in differentiating non-Covid-19 (NC) and

Covid-19 groups. (A, B) Training and testing sets of Model A: radiomics model; (C, D) Training and testing sets of

Model B: lesion volume ratio model; (E, F) Training and testing sets of Model C: lesion score model; (G, H) Training

and testing sets of Model D: lesion component ratio model; (I, J) Training and testing sets of Model E: combination

model using lesion score and component ratio.

https://doi.org/10.1371/journal.pone.0256194.g003

Table 3. The performance of each classification model in the training and testing sets.

Training set Testing set

Model Cut-value AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

Model A: radiomics model >0.66 0.994 0.942 1.0 0.965 0.977 0.944 0.870 0.915

(0.984–1.0) (0.8375–

0.9862)

(0.8793–1.0) (0.8982–

0.9923)

(0.947–1) (0.8091–

0.9941)

(0.6703–

0.9631)

(0.8125–

0.9673)

of Model B: lesion volume

ratio model

>-0.0532 0.739(0.635–

0.844)

0.788 0.588 0.709 0.738 0.722 0.652 0.694

(0.6580–

0.8792)

(0.4220–

0.7366)

(0.6056–

0.7951)

(0.603–

0.873)

(0.5586–

0.8430)

(0.4478–

0.8130)

(0.5680–

0.7980)

Model C: lesion score model >0.7429 0.82(0.733–

0.908)

0.635 0.823 0.674 0.772 0.694 0.826 0.712

(0.4984–

0.7523)

(0.6611–

0.9203)

(0.6056–

0.7951)

(0.638–

0.905)

(0.5303–

0.8211)

(0.6226–

0.9363)

(0.6211–

0.8404)

Model D: lesion component

ratio model

>0.3553 0.682(0.566–

0.798)

0.538 0.882 0.674 0.681 0.639 0.826 0.712

(0.4050–

0.6666)

(0.7278–

0.9593)

(0.5695–

0.7644)

(0.535–

0.828)

(0.4752–

0.7758)

(0.6226–

0.9363)

(0.5855–

0.8123)

Model E: combination model >0.9339 0.84(0.754–

0.925)

0.692 0.853 0.756 0.779 0.667 0.826 0.729

(0.5566–

0.8015)

(0.6939–

0.9403)

(0.6547–

0.8350)

(0.652–

0.906)

(0.5026–

0.7986)

(0.6226–

0.9363)

(0.6032–

0.8265)

https://doi.org/10.1371/journal.pone.0256194.t003
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training group; 0.779 in the testing group) had good predictive performance in the training

and testing group (S8 Fig in S1 File). The decision curve analysis also indicated that the use of

radiomics model A to differentiate COVID-19 from NC might achieve more net benefit

(>0.85) than using the full regimen treatment or no treatment for patients in the threshold

range of 0.2–0.8, which possess a higher clinical application value (Fig 4).

The statistics of CT manifestation and signs distributions in COVID-19

and NC

In order to find the association between the CT manifestations or signs and different pneumo-

nia types, the distribution of CT manifestations and signs were compared using chi-squared or

Fisher‘s exact test, including lesion distribution, GGO involvement pattern, lobe predomina-

tion, lesion contour, bronchial wall thickening, air bronchogram, tree in bud sign, interlobular

septal thickening, Intralobular septal_thickening, pleura effusion, and lesion attenuation.

The counts and percentage of individual CT sign in each group were summarized in S7

Table in S1 File. In the training set, the lesion distribution, GGO involvement pattern, lesion

contour, bronchial wall thickening, air bronchogram and tree in bud sign showed significant

differences (P< 0.05) between COVID-19 and NC patients. While in the testing group, the

significant differences existed in lesion distribution, GGO involvement pattern, lobe predomi-

nation, bronchial wall thickening, tree in bud sign and intralobular septal thickening. Consid-

ering the same significant CT sign which simultaneously existed in training and testing set, it

could be found from the Cramer’s V value that lesion distribution (Cramers’ V in training and

testing: 0.792, 0.596), bronchial wall thickening(Cramers’ V in training and testing: 0.591,

0.414), tree in bud sign (Cramers’ V in training and testing:0.487, 0.788) and GGO involve-

ment pattern (Cramers’ V in training and testing: 0.371, 0.686) showed association with

Fig 4. The decision curves of different models. The y-axis represents the net benefit. The y-axis represents the net

benefit. Model A: red; Model B: blue; Model C: green; Model D: purple; Model E: orange. The solid grey line represents

the hypothesis that all patients suffered from COVID-19 (ALL). The solid black line represents the hypothesis that no

patient receives treatment (NONE). At any given threshold, the highest curve (radiomics Model A) is the optimal

decision-making strategy to maximize net benefits compared to other models.

https://doi.org/10.1371/journal.pone.0256194.g004

PLOS ONE Quantitative CT features to differentiate COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0256194 January 13, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0256194.g004
https://doi.org/10.1371/journal.pone.0256194


different pneumonia of COVID-19 and NC. It seems that the bronchial wall thickening and

tree in bud sign happened in NC more frequently, compared with that of COVID-19 patients.

In addition, from the aspect of adjusted residuals, the lesion central distribution more likely

happened in NC patients while lesion peripheral distribution was more frequent in COVID-19

patients. Meanwhile, GGO involvement pattern of Patchy GGO appeared more frequently in

COVID-19 patients while GGO involvement of Cluster-like GGO was more frequent in NC

patients.

Discussion

For CT signs, both influenza and COVID-19 presented GGO or GGO with consolidation.

And multifocal lesions, GGO, and consolidation are the common CT findings of viral pneu-

monia [20–22]. Nevertheless, there are some differences in the CT manifestations between

COVID-19 and influenza virus pneumonia. COVID-19 presented a high frequency of clear

lesion margin and shrinking contour compared with influenza pneumonia. In the aspect of

clinicopathological findings, COVID-19 histological examination showed bilateral diffuse

alveolar damage with cellular fibromyxoid, desquamation of pneumocytes and hyaline mem-

brane, and pulmonary edema with hyaline membrane formation, suggestive of early-phase

ARDS formation. The clinicopathological features of influenza pneumonia findings were

bronchiolitis with hemorrhage and necrotic debris, diffuse alveolar damage and alveolar hem-

orrhage. In addition, organizing pneumonia with prominent fibrin exudation and pulmonary

edema were also observed. Irregularly fragmented hyaline membranes were seen at the alveo-

lar orifice. The similar pathological features of COVID-19 as those in SARS and MERS also

complicate the discrimination between COVID-19 and NC.

The selected subjects of this study are the patients who were difficult to diagnose after the

consultation of MDT in each hospital. For these highly suspected patients, our study found

that using the AUC of the ROC curve as the evaluation criterion, the radiomics model using

quantitative imaging features has a higher diagnostic efficacy (AUC = 0.994 (0.984–1.0)), while

the other four models based on traditional quantitative CT features were slightly lower. Addi-

tionally, among all the models based on lesion or component volume ratio, the diagnostic

efficiency of the single-factor model was not as good as the combined model. These results

indicated that quantitative imaging analysis could obtain more comprehensive disease imaging

information, which includes first-order, second-order and transformed higher-order imaging

information. While this imaging information cannot be found by traditional manual

interpretation.

Radiomics has played an active role in tumor researches. Recently, it was also adopted in

studies discriminating pneumonia and other lung diseases. T. Zhang et al. [12] selected four

independent prediction features (2 wavelet transform first-order energy features; 1 texture

feature and 1 shape feature) for differentiation between focal tissue pneumonia (FOP) and

peripheral lung adenocarcinoma (LA). A good model effect was obtained: AUC (0.956), accu-

racy (87.6%), sensitivity (85.3%) and specificity (89.7%). For the differentiation between pneu-

monia and tumors, lymphocyte recruitment or tumor cell proliferation may lead to a higher

degree of image discrimination, so the use of lower-order radiomics features may produce bet-

ter discrimination [12, 23]. However, the identification of different types of pneumonia may

require more advanced quantitative radiomics features due to the higher degree of imaging

overlap. Sang Ok Park et al. [10] defined the texture of normal tissues, ground glass density

shadow tissue, mesh tissue, honeycomb tissue and emphysema or solid tissue, and applied the

volume proportion of each texture to achieve a model with 82% accuracy distinguishing com-

mon interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP). In addition
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to the classification of the same type of pneumonia, CT features were also used to distinguish

between different types of pneumonia. For example, Bei Wang et al. [11] used radiomics to dis-

tinguish between children’s pulmonary tuberculosis and community-acquired pneumonia,

hoping to help overcome the difficulty of sampling children’s tuberculosis and imaging over-

laps. Five radiomics features (GLCM or GLRLM texture features: 4; first-order statistical fea-

ture: 1) in the lung solid part and 6 features (shape feature: 4; GLRLM texture feature: 1; first-

order statistical feature: 1) in lymph nodes were screened out, respectively. Compared with the

diagnosis performance of senior radiologists (AUC: 0.791), the model combining radiomics

and clinical features could well improve the diagnostic performance with AUC of 0.971. These

studies indicated the active role of the imaging textures in pneumonia differentiation.

In our study, the wavelet-HHL_glcm_Idn, wavelet-LLL_glszm_SizeZoneNonUniformity-

Normalized, wavelet-LLH_glcm_InverseVariance and wavelet-HHH_glcm_Imc1 features

showed significant differences (P<0.05) between COVID-19 and NC in both of training and

testing sets. The selected features with statistical differences mainly focused in the texture fea-

tures with wavelet transform. And these features also shared relatively higher absolute value

for their logistic regression coefficients. For example, the wavelet-HHH_glcm_Imc1, wavelet-

HHL_glcm_Idn and wavelet-LLH_glcm_InverseVariance have regression coefficients as

-13.961, 9.42 and -6.056. In addition, the 100-times bootstrapping and LGOCV also indicated

that these features showed their importance or higher appearing frequency (greater than 60/

100, especially 93/100 and 82/100 for wavelet-HHH_glcm_Imc1 and wavelet-LLH_glcm_In-

verseVariance respectively) during the multiple split of dataset into training and testing set.

However, compared with texture features, the first-order statistical features’ contribution was

weaker. For example, for the first-order features of original_firstorder_10Percentile and wave-

let.LHL_firstorder_Skewness, their appearing frequency or the weight in the logistic regression

were less.

The first-order features can be used to describe some pathological features. For example,

relative to normal lung parenchyma, alveolar damage and abnormal transparency caused by

emphysema can be well reflected by the significantly reduced average attenuation. And the

tissue of idiopathic pulmonary fibrosis can also be reflected by the decreased peak sharpness

of intensity distribution curve [11]. Skewness, kurtosis, and entropy have also been used to

differentiate lung malignancy [24]. However, first-order statistical features cannot describe

the spatial relationship between voxel features. Therefore, in order to explore the heteroge-

neous distribution of different tissues spatially and their correlations, it is necessary to intro-

duce second-order texture features or filtered conversion to highlight or emphasize texture

features in certain frequency domains. We found that among the selected radiomics features,

the gray level co-occurrence matrix feature extracted from wavelet-transformed image-

wavelet-LLH_glcm_InverseVariance describes the local flatness or fluctuation of intensity,

and its relatively lower value in COVID-19 indicated that the local inhomogeneity in the

COVID-19 lesion was slightly higher than that of NC. However, from the overall texture of

the lesion or the textures extracted from different wavelet-filtering channel, the lesion texture

manifestation might be different. Wavelet-LLL_glszm_SizeZoneNonUniformityNormalized,

wavelet-HHH_glcm_Imc1 and wavelet-HHL_glcm_Idn, respectively described intensity

homogeneity among zone size volumes, mutual-information-based intensity dependence

which is a measure of texture complexity and normalized inverse difference which measures

intensity homogeneity. Compared with NC lesions, the relatively lower value of wavelet-

LLL_glszm_SizeZoneNonUniformityNormalized, wavelet-HHH_glcm_Imc1 and higher

value of wavelet-HHL_glcm_Idn, in COVID-19 patients indicated the more homogeneous

texture property in the image of these wavelet transformation channels. Although it still

need detailed biological or physiological explanations for these texture manifestations, they
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might be potential to reflect the CT signs of COVID-19 and NC from a quantitative perspec-

tive. For example, the more frequent central distribution, Cluster-like GGO or tree in bud

sign in NC patients may be related to its higher texture unevenness. Therefore, the use of

quantitative features might help distinguish the signs of different pneumonia in more detail,

which can obtain the higher discrimination efficiency and quantify the manually interpreted

CT signs. It could be suspected that the significance of the quantitative CT features might

increase with the imaging overlap between different type of pneumonia, especially when it is

not enough to distinguish by the CT manifestations.

Although the model using quantitative CT imaging features presented better performance,

the misjudgments still existed which resulted in the imbalance of sensitivity and specificity. It

also suggested that the representative quantitative imaging features should be considered from

the perspective of individualization, and extracted from standardized big data. In addition,

with assistance of artificial intelligence, specific clinical work still requires clinicians to make

comprehensive judgments on patients based on their own experience and other auxiliary

examinations.

In this study, automatic lesion extraction and manual modification were used to ensure

the consistency and repeatability to a certain extent. On such basis, quantitative parameter

extraction was carried out, including the volume ratio of the lesion in the lung lobe, the vol-

ume ratio of the density component and the quantitative radiomics features. We found that

compared to common quantitative parameters, such as volume ratio and density component

ratio, the model established by using radiomics can distinguish NC and COVID-19 more

accurately, which also means that it is necessary for CT images interpretation transform

from qualitative to quantitative. Although based on WHO guidelines, the diagnosis of

COVID-19 is referred to comprehensive judgments such as epidemiology, clinical manifes-

tations, nucleic acid testing, and imaging, and the imaging alone cannot be used to diagnose.

Such CT radiomics model might be potential to provide additional information indicating

the risk of COVID-19 especially when the nucleic acid testing was negative and the CT man-

ifestation was overlapped with other pneumonia. In the current study, it took about 2 min

30 s per patient for delineation of pneumonia lesion VOI, 44s per patient to extract 851

radiomics features from each pneumonia VOI and less than 10s to output the risk probabil-

ity being COVID-19 based on the model (the computer processor: Intel(R) Xeon (R) E-

2276M CPU@2.8GHz). Therefore, if the model was validated as reliable as possible, the clin-

ical practice could be imagined. Once the radiologist gets the patient’s CT images and input

it into auto-processing platform, the risk probability for the patient could be outputted

within 3 min 30s. If the imaging model is highly indicative of the risk of COVID-19, repeat-

ing the nucleic acid test multiple times is recommended. Moreover, different for image-

based deep learning algorithm, the calculated and saved radiomics features could help fur-

ther correlated with or explain the biological or pathological manifestations in a describable

and mathematical manner. The limitations of this study are as follows. Firstly, the data of

patients with COVID-19 pneumonia came from four medical centers in Sichuan Province.

Some scan parameters are inconsistent, and the enrolled sample size for the current imaging

study was not so large. And such small sample size was not supportive to further discrimi-

nate different infections with different microbiological evidence. Secondly, our patients

were mainly mild in symptom, with very a few serious patients. Thirdly, our model is not

applicable to COVID-19 patients with negative chest CT imaging. Meanwhile, the method

of automatically delineating the lesions and manually modifying the boundary was used. In

order to make the quantitative CT indicators more standard, the unified definition of lesion

boundaries is required to make through big data and multi-center standards. In addition,

although quantitative imaging features can improve the identification ability of the model,
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we still need to study the pathophysiological changes represented by these selected imaging

features in detail.

Conclusion

The quantitative CT imaging features are helpful to improve the diagnosis efficiency of sus-

pected COVID-19 patients during the epidemic. The differentiation between COVID-19 and

NC could be well improved by using radiomics features, compared with traditional CT quanti-

tative values such as lesion volume ratio or component density ratio.
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