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ABSTRACT

Incremental selection within a population, defined
as limited fitness changes following mutation, is an
important aspect of many evolutionary processes.
Strongly advantageous or deleterious mutations are
detected using the synonymous to non-synonymous
mutations ratio. However, there are currently no pre-
cise methods to estimate incremental selection. We
here provide for the first time such a detailed method
and show its precision in multiple cases of micro-
evolution. The proposed method is a novel mixed lin-
eage tree/sequence based method to detect within
population selection as defined by the effect of mu-
tations on the average number of offspring. Specifi-
cally, we propose to measure the log of the ratio be-
tween the number of leaves in lineage trees branches
following synonymous and non-synonymous muta-
tions. The method requires a high enough number
of sequences, and a large enough number of inde-
pendent mutations. It assumes that all mutations are
independent events. It does not require of a baseline
model and is practically not affected by sampling bi-
ases. We show the method’s wide applicability by
testing it on multiple cases of micro-evolution. We
show that it can detect genes and inter-genic regions
using the selection rate and detect selection pres-
sures in viral proteins and in the immune response
to pathogens.

INTRODUCTION

The phenotypic effect of genotypic changes and whether
these changes affect the function and the fitness of the or-
ganism remain one of the most basic questions in many bi-
ological settings. Mutations can affect the average offspring
number of an organism. An increase in the number of off-
spring is often treated as an indicator for a better fitness and
vice versa. Given an observed set of genes within a popula-
tion, a central question arising in many domains of popula-
tion dynamics is whether the observed genetic constitution
of a population can be explained by a neutral random drift,
or whether one must incorporate the effect of mutations on
the fitness to explain the observed distribution of genes in
the population.

This question is asked at the general level in evolution,
where a debate has emerged between selection-based evolu-
tion and neutral evolution (1–3). It is also often addressed
at the micro-evolution level, as happens for example in vi-
ral escape mutations to avoid immune mediated destruction
(4–6), the dynamics of specific clones in the B cell response
against pathogens (7,8) or maternal inheritance within a
population (9,10). These cases are examples of processes in-
volving rapid asexual reproduction, where constant diversi-
fication and possibly adaptation occur with a high mutation
rate.

When the effect of mutations is drastic, as is the case for
strongly deleterious or advantageous mutations, a clear ge-
netic signature of the selection can be observed in nucleotide
composition, and multiple methods have been proposed for
measuring selection in such cases. Some of these measures
rely on the ratio of synonymous (S) to non-synonymous
(NS) mutations. Specifically, a comparison of the observed
and expected NS/(NS+S) ratios is often used as a measure
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for selection. The expected ratio is calculated based on an
underlying mutation probability model (e.g. (11–13)), or on
genetic regions where no selection is assumed to occur (14).
An increased frequency of NS mutations is an indication
for positive selection and vice versa. These methods are of-
ten useful, when a good estimate of the baseline mutation
model is available. They may however lead to erroneous
conclusions when the baseline mutation model (i.e. the ex-
pected probability of each mutation type) is inaccurate, as
happens for example in immunoglobulin sequences (15).

In many cases of micro-evolution, the observed time scale
of the dynamics is limited, and the fitness (dis)advantage in-
duced by mutations may be limited. In such a case, the fix-
ation probability is low, and S to NS based methods is less
useful. A different approach proposed for detecting weak
selection is to use properties of lineage trees. Two of the
most powerful such measures proposed for the detection
of selection (16,17) are Sackin’s and Colless’s statistics (18–
21). Sackin’s index is the average root-leaf distance (over
all leaves). Colless’s index is the sum of imbalance over all
nodes, where a node’s imbalance is taken to be the differ-
ence in number of leaves between the bigger and smaller
sub-trees. These measures are tested versus a neutral model,
which is usually the Yule model, where a tree is constructed
by giving each branch the same probability to split (22).
Other statistics do not use trees but are based on the number
of segregating sites, most notably Tajima’s D (23).

These methods have two well-known limitations. They do
not distinguish between S and NS mutations and statisti-
cal power is lost. Most of these methods measure deviation
from a neutral model and cannot differ between different
types of selection, e.g. positive and negative ones.

We here offer a more direct approach to measure incre-
mental selection within species passing a continuous adap-
tation, which is directly related to a quantitative definition
of incremental selection. This new method overcomes limi-
tations of the S to NS mutation ratio and of the tree shape
based selection detection methods, by accounting for the
completing information found in each of the two, that is,
the classification into mutation types, and the imbalance be-
tween different sub-trees.

As is the case for any method, this method requires
enough observations to be valid. Specifically, the total num-
ber of independent mutations should be of the order of at
least 10–20 per genetic region of interest. In parallel, the to-
tal number of the leaves in the phylogeny constructed should
be high enough to obtain a large enough difference between
branches, which requires at least a hundred sequences. Fi-
nally the population dynamics should not be dominated by
strongly advantageous mutations that would fixate rapidly
and erase the history of all other mutations.

MATERIALS AND METHODS

Alignment and phylogenetic trees

The DNA sequences of different viruses were aligned using
TranslatorX (24), which aligns nucleotide sequences based
on their corresponding amino acid translations. Lineage
trees were then produced from the aligned sequences using
Maximum Parsimony (Phylip bioinformatics tool package-
version 3.69) (25). For the mouse data, three other tree

construction techniques: Neighbor Joining (NJ), Maximum
Likelihood (ML) and UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) were used to validate ro-
bustness to construction algorithm. For samples with over
100 sequences, a NJ algorithm was used in the same pack-
age. For each group of sequences, a genetically distant ‘out-
group’ sequence was added to position the root of the
tree, and reconstruct the ancestral sequences. To avoid am-
biguous nucleotides in internal nodes, when both child se-
quences had a gap in a certain locus, the parental nucleotide
was changed to a gap as well. If one of the child sequences
had a non-ambiguous nucleotide, the parental nucleotide
was changed accordingly.

While recombination may be important in general in
viruses (26), we have ignored its effect, and did not find ev-
idences for it in our current data set. In the mitochondrial
data set and the Ig data sets, a single lineage tree was built
for each group of sequences. The separation into regions
was performed after the construction of the lineage tree.

Selection score

Given a tree, each mutation event was assigned: (i) an NS or
a S mutation flag by its effect on the amino-acid translation
of the containing codon; (ii) the location of the mutation
(related gene where applicable, and number of nucleotides
from the beginning of the sequence, otherwise); and (iii) The
log of the ratio between the number of leaves (sequences) in
the sub-tree following the mutation branch and the number
of leaves in the sub-tree following the non-mutated branch
(see Figure 1, and Supplementary Figures S1 and S2). This
ratio is denoted the Log Offspring Number Ratio (LONR).
This log-ratio is positive if the number of final sequences
marked by the tree construction algorithm as descendants
of the mutated sequence is larger than the number of final
sequences marked as descendants of the non-mutated se-
quence, suggesting some better fitness of the mutated se-
quence, or positive selection, and negative in the opposite
case. For each area of the sequence, a t-test is performed
(unpaired, unequal variances) between the NS and S muta-
tions.

When distant alleles are combined into the same lin-
eage tree, long branches with a large number of mutations
will emerge. If the alleles have unequal sampling depth, the
LONR of mutations along these branches will deviate from
0. In order to avoid such a bias, we cut branches with length
above some threshold. In such a case, the tree is divided into
sub trees, and the LONR is computed for each subtree by
itself. LONR values are not computed from mutations in
the removed branches.

Another effect that can bias the LONR score is the ef-
fect of mutations in lower nodes on internal nodes above
them. For example, assume that internal node x branches
into sub trees X1 and X2, with X2 containing much more
leaves than X1. Let us denote the subtrees of X2 by X2a and
X2b. The large number of leaves in X2 could be the result
of a highly advantageous mutations in X2a. In order to test
for such cases, we check what would happen to the LONR
score if the number of leaves in X2a would be replaced
by the number of leaves in X2b. Specifically, we checked if
the LONR value between X1 and X2 would switch signs if
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Figure 1. The branch imbalance framework and examples. (A) Schematic view of a branch corresponding to a mutation event. Following a mutation, the
population can be expanded (or reduced), the advantage will lead to an exponentially growing difference in the number of offspring in parallel branches
descending from the same internal origin. (B) After some time, one branch will take over the entire sample, and the information carried in the ratio
between the branches will be lost. (C) LONR values histogram for one simulated sequence pool, simulated under naive multiplication from unique ancestral
sequence. While the average is not 0, there is no difference between branches following S and NS mutations. (D) Example of a tree. In the left branch a
mutation occurred from CTA to CTG, and the ratio between the mutated and un-mutated branches number of offspring is 20/10. In the right branch, a
mutation from ATA to TTA occurred, with a ratio of 30/40. In the root, a mutation from CTA to ATA occurred with a ratio of 70/30.

X2 = X2a+X2b is replaced by X2 = 2*min(X2a,X2b) (i.e.
X2a+X2a in this case). If the sign of the LONR changes
signs in such a case, we flag the LONR value of the mu-
tations between X2 and X1. We then let the user decide
whether to incorporate this mutation into the analysis.

Simulation

A sequence pool simulating neutral evolution was generated
from a random original sequence of 348 nucleotides, with a
constant multiplication rate of two offspring per organism.
Two equal size regions (174 nt. each) were defined with uni-
form mutation probabilities with average mutation rate of
1/2 and 1 mutations per generation. The population was
sampled in different sample sizes and along different gener-
ations. In each sampling, one of the eight first siblings (the
third generation) was chosen randomly, and its descendants
had a twice higher probability of being sampled, effectively
simulating sampling bias for a specific clone. The process
was repeated 1000 times. We tracked all sequences in the
simulation, and the last generation of the simulation was
sampled to produce the lineage trees, using the algorithms
mentioned above.

A second simulation framework was used to test more
complex aspects of selection. A population was initiated
with a set of sequences. Each sequence was associated with

an initial equal fitness. S mutations did not affect the fitness,
while NS mutations could multiply the fitness by a factor
lambda. This factor was not uniform along the sequence
and was larger than 1 in some positions along the sequence
and lower than 1 in other positions. The per-sequence fac-
tor was the product of the factors of all its NS mutations.
At each division cycle, each sequence produced a random
number of offspring following a Poisson distribution with
an average equal to its fitness. If following the division cy-
cle, the total number of sequences passed 10 000, random
sequences were removed to reach this number.

We used the same simulation to compare the LONR score
of real and reproduced trees. We kept the sequences of all
intermediate stages in order to reconstruct the lineage tree
in different generations. We then computed the LONR score
difference between S and NS mutations based on the real
trees and the reconstructed trees.

In order to further test our results, a coalescent simula-
tion was used. We simulated the ancestry of a sample of se-
quences following the evolution back in time of Kingman’s
coalescent. At every time step until the Time to Most Re-
cent Common Ancestor (TMRCA), every pair of sequences
in the current population has an equal chance to coalesce
into an ancestral sequences, which replaces both of them in
the population. After the ancestry tree has been generated,
we superimposed on it a mutation model––every node un-
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dergoes a single nucleotide polymorphism mutation at an
equal probability, where the mutation itself is chosen ran-
domly using either the Juke–Cantor or the Kimura muta-
tion models. The resulting sequences where then used as an
input for the LONR method. Note that the LONR analysis
used the NJ-constructed tree, and not the real tree emerging
from the coalescent.

Statistical analysis

For the mitochondrial sequences, the analysis was per-
formed using a sliding window of 400 nucleotides, shifted
by steps of 20 nt. The P-values are presented for each win-
dow, along with the differences in the mean LONR values
between the NS and S mutations. In order to asses areas
where selection forces are presented for NS and S events
alike, a one sample t-test is performed on LONR values of
all mutation events (i.e. NS and S mutations). When report-
ing the final results, a FDR correction was performed to
account for the large number of windows.

For the viral sequences, a single tree was constructed for
each virus from the obtained sequences, and a two-way
ANOVA test was performed for assessing the significance of
the NS versus S grouping, the epitopes versus non-epitopes
grouping and interactions between the two.

For the transgenic mice data, trees were constructed for
different clones and LONR values were collected from all
trees, grouped by the two mouse types. Mean NS–S LONR
values are reported along with two-sample t-test P-values.

For the immunoglobulin data, the receptors where clus-
tered by isotype (IgA and IgG). Lineage trees were con-
structed and the sequences were divided to CDR and FWR
regions. Mean LONR NS–S difference was computed per
clone and per region along with two sample t-test P-values.

Viral and mitochondrial sequences

All sequences were obtained from the NCBI nucleotide
database (27). We have used sequences from Influenza A
(1000 sequences for segment 1 to segment 6), HBV (1694,
2370, 211 and 999 sequences for Core, Polymerase, Surface
and X, accordingly), HIV (179, 823, 731, 159, 757 and 150
for Env, Gag, Pol, Rev, Tat and Vpu accordingly) and HPV
(105, 89, 88, 72 and 121 for E2, E6, E7, L1 and L2, accord-
ingly). For the sake of lineage trees design (see the next sec-
tion), we have defined an outgroup for each set using ge-
netically distant homologues (e.g. Influenza B for Influenza
trees).

The human mitochondrial sequences were all of the full
genome nucleotide sequences available at the NCBI, with
a length of at least 15574 and at most 16581 nucleotides.
2689 sequences were used with hosts from multiple regions
including large cohorts from China and India.

Mouse data

The sequences from transgenic mice were obtained from
two H chain transgenic mice (28,29) that were backcrossed
with Jh KO/Balb mice (29,30) for nine or more generations.
All mice were maintained under specific pathogen-free con-
ditions and sacrificed at 6–10 week of age. Mice were im-
munized i.p. with 50�g of NP25-chicken gamma-globulin

(CGG) precipitated in alum or precipitated alum alone as
a control. B cells were sequenced from micro-dissections in
germinal centers of these mice, 16 days after the immuniza-
tion. One mice type had an initial low affinity for the anti-
gen, while the other had an initial high affinity.

Immunoglobulin sequences

Over 500 000 B cell receptors were sampled from each donor
in 12 donors, using 454 sequencing and a RACE protocol.
The details of the sequencing and the validity checks were
previously described (31). For each sequence, the most fit-
ting V, J and V-J distance was found by maximizing the rel-
ative number of non-mutations for both V and J segments.
The sequences were then clustered according to the most
fitting V and J as well as the distance between V and J,
and were truncated to 159 nucleotides from the end of the
germline V and 20 nucleotides from the beginning of the
germline J.

Defining epitope regions

Epitopes were computed using three algorithms: a pro-
teasomal cleavage algorithm (32), a transporter associated
with antigen processing (TAP) binding algorithm (33), and
the MLVO major histocompatibility complex (MHC) bind-
ing algorithm (34). We have computed epitopes for the 39
most common human leukocyte antigen (HLA) alleles and
weighted the results according to the allele frequency in
the global human population. The algorithms’ quality was
systematically validated versus epitope databases and was
found to induce low false positive (FP) and false negative
(FN) error rates. These algorithms were validated in multi-
ple previous analyses (35–42).

Each ninemer, in each aligned sequence, was scored ac-
cording to the weighted frequency of alleles to which it
binds. For longer sequences, each position in the sequence
was scored according to the maximal score given to any
ninemer containing it. For the whole aligned sequence pop-
ulation, these values were averaged on a per sequence man-
ner, resulting in an epitope score per position. The positions
that scored in the higher 15% were defined to be epitope re-
lated areas.

RESULTS

Selection

Assume a population originating from a single founder
through division, with a given ancestral sequence in the
genetic region of interest (a gene, a combination of genes
or even a part of a gene). Mutations in this region can
potentially affect the population dynamics. In such a case
we would define positive selection as an increased average
division/birth rate or a decreased average death rate follow-
ing mutations (note that these are not precisely the same
(43), but the distinction is beyond the scope of the current
analysis). Similarly, a decrease in the division rate would be
defined as negative selection. Obviously, each mutation by
itself can have a positive, null or negative effect, but the def-
inition of selection is based on the average population dy-
namics and not on the dynamics following a single muta-
tion.
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Let us follow a mutation that occurs within a popula-
tion, if this mutation raises the average number of offspring
per generation from μ to μ + �μ, then by a time propor-
tional to log(Population size)/�μ, the advantageous muta-
tion will take over the population (44), and when the pop-
ulation is compared to its latest common ancestor (LCA),
there is no direct evidence that such a mutation has occurred
(Figure 1A, B). In this case the genetic composition of the
population would be equivalent to the one expected in a
neutral model. The only difference would be the addition of
an NS mutation to the region of interest in the entire pop-
ulation. If an external reference (e.g. from the comparison
to orthologues) that can help us define the sequence seed-
ing the population is available, it can be used to infer that
selection has taken place.

However, in many cases, evolution occurs over an inter-
mediate period and is weak, leading to the coexistence of the
two alleles (the mutated and the un-mutated one).In such
cases, we expect the ratio between the two allele frequen-
cies to be proportional to e�μT, where T is the time from
the mutation to the sampling time (Figure 1A). For a single
mutation, it is impossible to differentiate between the effect
of selection and a non-uniform sampling where one branch
is sampled more deeply. However, if multiple mutations oc-
cur in the genetic region of interest, and if mutations in this
region increase the average number of offspring, we expect,
on average, more offspring in branches that follow a muta-
tion in this region than in branches emerging from the same
direct ancestor with no mutations, and the opposite in the
case of negative selection.

We thus propose to detect incremental selection using
this imbalance in cases where most mutations are neither
strongly deleterious nor strongly advantageous. Such cases
are far from being rare and become more and more frequent
as the depth of genetic sampling increases in many domains
(45–49).

Effect of sampling

Assume a sample from a population dynamics process, with
a ‘real lineage tree’ representing the actual division and mu-
tation process. In the real tree, the average ratio between
the number of leaves under an internal node that has a
given mutation and the parallel descendent of their com-
mon direct ancestor that does not have a mutation (i.e. its
un-mutated sibling) should be 1. The same cannot be said
of the reconstructed lineage tree based on the sampled dis-
tribution, following biases induced by the sampling or the
tree construction algorithm (Figure 1C). More specifically,
a branch with a specific mutation is one possible offspring
out of many. Thus, this specific branch may be smaller than
the parallel branch holding the other offspring. However, in
the absence of selection, the ratio between the total number
of offspring of a branch with a mutation and without one
should be similar following S and NS mutations. Thus, the
in order to estimate the presence of selection, one can simply
compare this ratio (that we denote as the branch size imbal-
ance) following S and NS mutations. NS and S mutations
are defined here relative to their direct ancestor

LONR

We define a measure of selection induced by a mutation as
the ratio of the sub tree size under a branch where the muta-
tion occurred and the sub tree size in its direct sibling where
no such mutation occurred. As mentioned above, such a
measure by itself could be biased. We thus require a base-
line to estimate the expected deviation of this ratio from one.
A simple baseline is the observed ratio in S mutations, as-
sumed not to pass selection.

To estimate selection in a genetic region, we thus compare
the distribution of these ratios (more precisely the log of the
ratios) in all S and NS mutations occurring in this region.
If the mean of these ratios following S and NS mutations
differ significantly, we argue that selection is taking place
(Figure 1D).

Specifically, for each mutation occurring in one descen-
dent of an internal node and not in the other, we compute
the sub-tree size under the descendent with a mutation and
the sub-tree under the descendent without a mutation. Po-
sitions where a mutation occurred in the two descendants
(e.g. A- > C and A- > G) are ignored. The log of the ratio
between the leaf numbers in these two sub-trees is defined as
the Log Offspring Number Ratio (LONR) of this mutation.
We then compute the LONR value for all S and NS muta-
tions in the tree, and compare the S and NS LONR distribu-
tions (Supplementary Figures S1 and S2). These mutations
are computed on the reproduced lineage tree, which may
differ from the real tree. The effect of the tree production
method will be further discussed.

The mutations of interest can be all the mutations occur-
ring in a gene, a gene combination, or even a genetic re-
gion composing a part of a gene that can be continuous or
discontinuous. Formally, we define a set of positions in a
genetic segment, and only count mutations in this region
(Supplementary Figures S1 and S2).

Note that this analysis is not sensitive to the details of the
baseline model for the probability of either S or NS muta-
tions, since their absolute number is never used in the analy-
sis. The only case where such a model would affect the cur-
rent measurement is in the extreme case that the baseline
mutation probability would induce a much higher S than
NS probability.

When one cannot separate S and NS mutations (e.g. in
non-coding regions), a different baseline is required. A sim-
ple baseline to use could be the average LONR score along
the genome of an organism, assuming that selection is lim-
ited to some regions. This is much less precise and more ar-
bitrary than comparing S and NS LONR scores. However,
it allows for a comparison of the effect of mutations in dif-
ferent parts of the genome.

Simulated data

In order to check that the LONR does not detect selection in
its absence, we simulated a Yule process, sampled the result-
ing sequences (see Materials and Methods for details), pro-
duced lineage trees and compared the LONR distribution
following S and NS mutations (Figure 2A). In the regime
of over 10–20 mutations per sequence and at least 300 se-
quences per tree, the False Positive (FP) rates (the cases
where the LONR average is significantly different following
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Figure 2. Fraction of lineage trees where selection was detected at the P =
0.05 level, as a function of the average number of mutations per sequence
and the sample size. In all cases, the false positive fraction is around 0.05
(as expected randomly), when the sample size is above 300, and when there
are at least 4–5 mutations per sequence. The results are consistent for (A)
a uniform mutation rate (along the sequence), (B) non-uniform mutation
rate, with some regions having a twice higher mutation rate, as well as when
the mutation rate is non-uniform and the sampling is non uniform (C).

S and NS mutations with p0.05) are near the expected 5%
(Figure 2A). This range of mutation and sequence numbers
is typical to most current applications of lineage trees and
phylogenetics. We here limit the analysis to this range.

We have repeated the analysis with non-uniform muta-
tion rates (position dependent mutation rates) and with
sampling biases, and obtained similar results, as long as the
S and NS mutation rates are of the same order of magnitude
(Figure 2B and C). Specifically, sampling bias was simulated
by oversampling descendants from one of the clones of the
third generation. Again, in the domain of 300 sequences
or more and an average of 10 mutations per sequence or
more, the sampling effect and the non-uniform mutation
rates along the sequence did not increase the error rate (see
Materials and Methods for mutation and sampling models).

We avoid a major sampling bias by averaging over muta-
tion events and not over sequences. Suppose for example,
we would analyze a clone that led to two populations, one
much more sampled than the other. This would affect a sin-
gle internal node (probably the root), but the imbalance in
all the other nodes would be unaffected. Within this internal
node, the effect of over-sampling would be similar in S and
NS mutations. Sub-sampling would have a significant effect
only through the combined second-order effect of the sub-
sampling in one node combined with the difference in the S
and NS mutation frequencies. This effect is of no practical
importance in all the examples studied here and probably in
most realistic situations.

Effect of contrasting selection in different regions and of dif-
ferent alleles

The model underlying the analysis above is based on the
assumption that NS mutations in some regions increase the
fitness of the organism, while NS mutations in other regions
decrease the fitness of the organism. The fitness of the or-
ganism is defined as the expected number of offspring per
reproduction/division cycle. In order to test that the score
above can detect selection in such a model, we simulated se-
quences that produce a random number of new offspring
at each generation, with a constant mutation rate. Follow-
ing each NS mutation, the expected number of offspring in-
creases or decreases based on the region where the mutation
occurred. We simulated multiple scenarios with combina-
tion of strong/weak positive and negative selection (either
multiplying or dividing the affinity by 1.5/3). In all simula-
tions, we defined in each genetic regions negative and posi-
tive selection and computed the LONR in each region. In all
cases studied, no selection was detected by the LONR score
in regions where no selection was simulated (Specifically 5%
of tests showed selection at the 0.05 confidence level in re-
gions where no selection was simulated). In regions where
positive or negative selection was simulated, selection was
detected in around 50% of the cases (Figure 3A and B). The
presence of negative selection in one region did not affect
the detection of positive selection in other regions and vice
versa.

An alternative simulation framework is to combine a co-
alescent with a mutation model. We have further checked
that the LONR method does not detect selection in its ab-
sence using such a model (Supplementary Figure S3 upper
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Figure 3. Average LONR score per region. Positive selection was simulated in the first 20 amino acids (60 nt), and negative selection was simulated for the
last 20 AA in positions 121–140. In between, 100 AA were not subject to selection. We produced samples from the dynamics, and computed the average
difference between the LONR score of S and NS mutations. In the left plots, Each color represent a different realization of the simulation, and each bar
represents mutations occurring in a 20 AA sliding window. The x-axis is the center of each sliding window and the y-axis is the cumulative difference
between the LONR of S and NS mutations over all realizations. The first and last columns represent regions inducing positive/negative selection. The
second and one before last regions are mixed (half a window with selection and half without selection). All other windows do not contain positions
affected by selection. The upper plots are initialized with a single sequence, while the two lower ones are initialized with two different alleles, one starting
with a population twice larger than the other. The distance between the two initial alleles was 58 mutations (over 140*3 = 420 nt). The right wing plots
represent the histograms of the values presented in the left plots, where positive selection are the two leftmost sliding windows, negative selection are the
two rightmost sliding windows, and all other windows are defined to be no-selection.

plot). As was the case for the forward simulation, no selec-
tion was detected by the LONR in the neutral model. We
have repeated the analysis with non-uniform sampling by
sampling only half the leaves in some of the branches. Again
no selection was detected in the neutral model (Supplemen-
tary Figure S3 lower plot).

Mitochondrial sequences

A typical case where the number of generations is low and
the mutation rate is high is maternal inheritance in the hu-
man mitochondrial genome. We sampled 3,106 sequences
from published mitochondrial genomes that passed our
quality validation checks (see Materials and Methods). We
computed the average LONR value over all positions using
a sliding window of 400 nucleotides and 95% overlap be-
tween windows (i.e. each window starts 20 nt. after the pre-
vious window). Not all the mitochondrial genome is coding.
We have thus first tested the distribution of the LONR score

for all mutations. This distribution is non-uniform with very
large peaks (Figure 4A). As mentioned above, a baseline is
required for the estimate of the significance of the results.
We have used zero as a baseline, and estimated the signif-
icance of the LONR score using a one sample t-test with
FDR correction (Figure 4B). The observed peaks overlap
with the known mitochondrial genes as well as an rRNA
region in positions 1671–3229 (Figure 4A and B). In other
words, the LONR delineates important regions in the mito-
chondrial genomes, where mutations have an important ef-
fect, with no a-priori knowledge. Specifically, the strongest
positive selection force is in the area between 1671 and 3229
nucleotides, which codes for the 16S ribosomal RNA that
has been suggested to undergo strong adaptive selection for
mutations affecting stem-loop secondary structure of the ri-
bosome (50).

In order to estimate selection within genes, we used the
more robust comparison between S and NS LONR scores.
The significance was estimated using a two sample t-test and
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Figure 4. Mutation and selection pressure in full mitochondrial genomes. In all subplots the gray rectangles represent the Mitochondrial proteins. (A)
Mean LONR values. The dashed red line is the LONR using all mutations with no base line. The dark line is the LONR when S to NS mutations are
compared. (B) The –log(P-value) of one-sample t-test for divergence from the overall mean, and (dashed red line) and –log(P-value) of two-sample t-test
for difference between NS and S mutation events (solid black line) as presented in the upper subplot. The dotted line refers to the Bonferroni correction
threshold. The data were processed using sliding-window scheme with bin size of 400 nucleotides and 95% overlap. The gray rectangles represent again the
mitochondrial genes. One can clearly see that the bands of selection follow closely the positions of some of the genes. The selection bands are narrower
than the genes, following the effect of the sliding window. (C)The Tajima’s D index and the NS/(NS+S)-NS0/(NS0+S0) index. The two indices do not
detect selection in the ribosomal RNA and are not sensitive to the precise positions of genes for most genes.

an FDR correction (51) was applied. In most genes, the dif-
ference from the baseline is significant (P < 0.001) (dark full
and dashed lines in Figure 4). Among the 13 coding regions,
there are some prominent areas such as CytB, ND4 where
positive selection takes place, and ND2 and COX3 that un-
dergoes negative selection. In the ribosomal RNA, we do
not compute an NS to S difference, since we cannot clearly
define NS and S mutations. Applying either Tajima’s D in-
dex or an S to NS measure on the same sequences does not
clearly provide a distinction between genes, and does not de-
tect the Ribosomal RNA (Figure 4C). Moreover, Tajima’s
D and NS fraction detect selection in much less genes.

Specifically, previous measures of selection in mitochon-
drial genes, using either S to NS mutation ratio (52), relative
selective constraint (52,53) or neutrality index (54) are in
good agreement with our results, but each of those only pro-
duce a sub-set of the results obtained by the LONR. Mea-
sures for selection on CytB and Cox3 were consistent with
our observation: CytB was consistently found to undergo
positive selection (52,53,55). Similarly, COX3 was shown
to have relatively low S/NS ratio and high neutrality in-
dex (52–55) suggesting a negative selection on this gene. For
most genes where we did not discover selection, no strin-
gent selection was reported in the literature. Similarly, as
described by (50), mutations are systematically positively
selected in the ribosomal RNA. Note that the LONR can

provide a very clear estimate of the strength of selection in
this region, and it is much stronger than in regular genes.

Still, limited differences exist between some published re-
sults and the LONR measure. Mainly that ND4 is claimed
to undergo negative selection, and ND2 to undergo posi-
tive selection in contrast with our study. ATP6 is reported
to pass selection, which is not detected by the in LONR
measurement. The source of the difference is probably that
we measure relative selection within a population, while
NS/S measures are affected by genes and alleles common to
the entire population. In other words, traditional measure-
ments estimate whether mutations increase the probability
of a cell with a sequence carrying this mutation of being
observed, while we measure whether mutations increase the
growth rate a sub-population carrying it.

Viral sequences

Another interesting case of population dynamics with a
high mutation rate, and an expected strong selection is the
escape of viruses from detection by the immune system
through mutations in their epitopes. RNA Viruses accumu-
late mutations at a rate of approximately one mutation per
division per genome. We analyzed 21 viral proteins from
four organisms (see Materials and Methods), and computed
for each protein the difference between the S and NS LONR
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Figure 5. Difference between LONR score for NS and S mutations inside
(Ep) and outside (NE) T cell epitopes. Only cases with a t-test P-value <

0.05 are drawn. All values are given in Table 1. The positive values represent
positive selection, and negative values represent negative selection. Positive
selection is observed in proteins known to avoid recognition by the immune
system.

distributions (Table 1, Figure 5). Proteins were divided into
CD8+ T cell epitope and non-epitope regions (see Materials
and Methods for a detailed explanation of epitope descrip-
tion).

A strong and significant negative selection was observed
in multiple proteins, in both epitope and non-epitope re-
gions (Figure 5) in HIV, Flu and HBV, but not in HPV. Such
a selection is expected if viral proteins have reached an op-
timal sequence a long time ago.

In some proteins, a clear positive selection has been ob-
served in the epitopes (t-test P-value <0.001 for HIV TAT
and HIV Rev) in the two main proteins reported to mu-
tate away their epitopes (40,56–58). Note that this observed
selection represents the rapid removal of epitopes and not
the removal of epitopes that may have occurred historically,
since we only look at mutations that can be computed from
the current sequences compared with their Most Recent
Common Ancestor (MRCA). Outside T cell epitopes, a pos-
itive selection is only observed in the Influenza Hemagglu-
tinin and Neuraminidase, which are known to accumulate
mutations to avoid the detection by antibodies and B cells.
Thus, the LONR indeed detects the best known targets of
positive selection in viruses. Note that it does not detect
an advantage for escape mutations in other proteins. There,
this advantage may be too weak, or masked by a parallel
negative selection, yielding a net unobservable detection.

When using either Tajima’s D index or the NS/S mea-
sure, systematically, more positive and negative selection
are observed outside epitopes than inside epitope (t-test on
the absolute value of D or [NS/NS+S]-[NS0/NS0+S0] be-
tween epitope and non-epitope regions with P < 0.001, Sup-
plementary Figure S4). Moreover, negative selection is ob-
served in practically all viral genes, when using the NS/S
method (t-test of all viral proteins versus 0, P < 1.e-4, Sup-
plementary Figure S4). This is probably due to an inaccu-
rate baseline model.

Table 1. Mean LONR NS–S differences for multiple viral proteins, sepa-
rated into epitope (Ep) and non-epitope (NE) regions

  NE Ep 

Flu   PB2 –0.39859 0.122483

Flu     PB1 –0.27061 –1.09592

Flu     PA –0.4446 –0.46262

Flu     HA 0.292482 0.010707

Flu     NP –0.04631 0.264885

Flu     NA 0.315675 0.461664

HBV Core –0.11408 –0.18042

HBV Pol –0.12908 –0.08908

HBV Surface –0.40382 –0.82322

HBV X –0.06924 0.147685

HIV Env 0.01211 –0.10057

HIV Gag 0.029754 –0.04905

HIV Pol 0.032609 –0.08632

HIV Rev –0.22601 0.496061

HIV Tat –0.09679 0.36844

HIV Vpu –0.20211 –0.70019

HPV E2 0.004034 –0.03717

HPV E6 0.020337 –0.2272

HPV E7 –0.12331 –0.01

HPV L1 –0.09061 0.038934

HPV L2 –0.02724 –0.15036

The highlighted scores have a P-value < 0.05. As can be clearly seen, the se-
lection is negative in most proteins and most regions, as expected if viruses
have reached an optimal sequence a long time ago. However there are some
regions of positive selection, especially in regions where the immune re-
sponse drives the accumulation of escape mutations.

Mouse immunoglobulin

Probably the most classical real time evolution with a high
mutation rate and growth of clones is the affinity matura-
tion process of B cells in germinal centers. In this process,
an initial B cell grows into a clone and during its growth
hyper-mutations occur in the B cell receptor at an approxi-
mate rate of one mutation per division (59), with an extreme
division rate (43). They thus fit precisely the LONR frame-
work. We have studied two transgenic mice strains (Lyle and
Meg), with pre-defined B cell receptors: one starting with
a high affinity receptor to the experimental antigen tested,
and one with a low affinity. In order to induce a potent im-
mune response, the low affinity mouse strain must accumu-
late a large number of specific mutations to obtain a high
enough affinity receptor (28). The mouse strain with an ini-



e46 Nucleic Acids Research, 2016, Vol. 44, No. 5 PAGE 10 OF 13

tially high affinity can form clones even with the receptor
it has, and it is thus intuitively not under a very stringent
selection.

Indeed, the initially low affinity mice show a large dif-
ference between S and NS mutation LONR scores, with a
clear positive selection, while the high affinity mice do not
show such a difference (Table 2). Note that in principle these
mice could also have a negative selection, where mutations
in average reduce the fitness of the cells. However, we do
not observe such a selection in these mice strains. Table 2
contains a methodological comparison that will be further
explained.

Human immunoglobulin

A more interesting case is the full B cell repertoire of a hu-
man host. In such a repertoire, two opposite types of selec-
tion operate: (i) mutations can ruin the functionality of the
receptor and decrease its survival probability, and (ii) mu-
tations can increase the affinity to the antigen and lead to
a higher division rate. The Complementarity Determining
Region (CDR) of the B cell receptor determines its inter-
action with the antigen, and mutations there have a higher
probability to increase the affinity than mutations in the
framework (FWR) region (8,60). However, the net selection
effect in each of these regions still remains unclear. Beyond
the effect of somatic hyper-mutation, B cells are affected by
isotype switches from naı̈ve IgM to memory IgM, and from
there to memory IgG and IgA. The memory (IgM, IgG and
IgA) isotypes occur at the advanced stages of the immune
response and thus lineage trees based on such receptors are
expected to represent the full evolution following selection.

We have used high-throughput sequencing to sequence
over 500 000 B cell receptor samples from each donor, in 12
donors. We built lineage trees from the sequences (see (31)
for details of sequences, and production of lineage trees),
and measured the LONR distribution in all IgA and IgG
sequences trees and compared the LONR distribution in
NS and S mutations. At the first stage, we only analyzed
trees with significantly different NS and S LONR averages
(unpaired two-sided t-tests, P < 0.01), and analyzed two re-
gions of the B cell receptor where the junctional diversity
had no effect on the construction of the lineage trees: FWR3
and CDR2 (61). The results are quite striking. As expected
in both IgG and IgA memory cells, the positive selection is
much stronger for the CDR region than for the framework
(Figure 6). However, even the FWR region passes a posi-
tive selection during the immune response. Such a positive
selection in the FWR region suggests that the large clones
(i.e. clones that were selected to grow more than others), are
actually affected by structural changes in the FWR region.
This selection may represent the need for structural changes
in the immunoglobulin structure to reach a very high affin-
ity.

Interestingly, when analyzing all trees (over 30 000 lin-
eage trees), the reported negative selection in the FWR re-
gion (15) appears in the IgA isotypes (Figure 6). This leads
to the interesting conclusion that selection may be affecting
differently the main part of the distribution and its extrem-
ities. In the main part of the distribution, NS mutations in
the CDR are selected, since they improve the affinity, and

Figure 6. Mean LONR values for immunoglobulin sequence pools. Mean
LONR values for memory IgM, IgA and IgG sequence pools, where the
values are averaged over (i) all trees in which difference between overall NS
and S LONR values was found to be significant (t-test, P < 0.01) and (ii)
all trees.

NS mutations in the FWR are selected against since they
ruin the structure of the antibody (62). In the extreme cases,
the NS mutations in the FWR are also selected, since some
of these mutations can actually improve the affinity and en-
large the resulting clones. A much more detailed analysis of
this specific data set can be found in (63). The Ig analysis
is a classic example of the simultaneous positive and neg-
ative selection in different regions of the same gene and of
the possibility of detecting such selection using the LONR.

Effect of tree building algorithm

Constructed lineage trees are only estimates of the real lin-
eage, and their precise shape may be sensitive to the al-
gorithm used to build them and to the baseline mutation
model. We have tested whether the methodology used to
build the trees affects the LONR scores. We have con-
structed the lineage trees from the two mouse strains dis-
cussed previously using four methods: Maximum Likeli-
hood, Maximum Parsimony, Neighbour Joining and UP-
GMA. All algorithms were applied using the Phylip tool-
box (25). In all methods, except for UPGMA, the LONR
results were qualitatively similar (Table 2), with the max-
imal difference between S and NS mutations being in the
MP algorithm. The most significant results were obtained
using MP and ML (Lyle results in Table 2). UPGMA is a
highly simplistic algorithm and should not be used to detect
fine details of tree shapes.

In order to further validate the effect of tree building, we
performed simulations where the real tree is known, and
computed the LONR on the real tree, instead of the recon-
structed tree. We then computed the correlation between
the average LONR results in each region using the recon-
structed tree and the real trees (r > 0.9 (Supplementary Fig-
ure S5)).
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Table 2. Mean LONR NS–S differences and two-sample t-test values for the two mouse types, calculated using four tree construction algorithms

NS–S LONR Difference P-value

Lyle Meg Lyle Meg

Maximum parsimony 0.6243 0.1926 0.0095 0.2766
Maximum likelihood 0.7475 0.1895 0.0141 0.4502
Neighbor joining 0.5174 0.1945 0.1113 0.5154
UPGMA − 0.3524 − 0.0267 0.2813 0.9294

The results are similar for most algorithms, except for the UPGMA, which is quite simplistic and often contains unrealistic assumptions, such as a uniform
molecular clock.

Possible confounding effects

When multiple alleles are present in the population, and are
integrated into a common lineage tree, the difference be-
tween the alleles could be interpreted as selection. A similar
effect can occur when a selective sweep occurred in a part of
the population, and a large number of mutations are fixated
in a sub-population. In principle, this should not affect the
LONR, since the selective sweep or the difference between
alleles should have a similar effect on S and NS mutations.

Still, we validated that the LONR does not detect a differ-
ence between alleles as selection. We simulated populations
with two different alleles, where one allele was started with
a population twice larger than the other. We then tested for
the selection in the mixed population. The results were sim-
ilar to the results with a single founder allele (Figure 3C
and D). We then tested whether removing long branches
(branches with more than K mutations) from the analy-
sis would improve the precision of the method. We found
no difference between the results with and without long
branches, and no selection was observed in regions where
selection was not simulated. Thus, the presence of alleles
or selective sweeps does not affect our score, and removing
long branches (i.e. separating the two alleles) does not im-
prove the score. Still, we leave that as an option for the user.

Another important source of error could be the effect of
future mutations on earlier branches. If a mutation drasti-
cally increases the fitness of an organism, all mutations oc-
curring on the pathway to the current mutation could be
marked as positively selected. Note that this should not in
principle affect the LONR based test, since as mentioned
above, S and NS mutations would be affected in a similar
way. Still, we tested whether the high LONR score in muta-
tions occurring in a given node is only determined by mu-
tations occurring in a given sub-branch. We flagged as ten-
tative mutations in which the LONR is drastically affected
by one sub-branch, and tested the selection with and with-
out flagged mutations, and the results were similar (data not
shown).

DISCUSSION

The detection of selection is a crucial issue in population bi-
ology, evolution theory and ecology. It also has important
clinical implications. While multiple sequence based meth-
ods have been proposed to detect selection (15,64–69), most
of them are focused on strongly advantageous or deleterious
mutations. We have here proposed a method best adapted to
the detection of slightly advantageous or deleterious muta-
tions in micro-evolution.

The basic concept behind the here reported LONR mea-
sure is to test for the systematic increase of the population
size following non-synonymous mutations in a given region.
An advantage of the LONR is that each mutation is counted
once independently of the total number of sequences that
end up containing this mutation. Thus, it is practically un-
affected by sampling biases or by the expansion of specific
sub-populations.

While multiple tree shape based methods were developed
(18–21), these methods often cannot detect the direction of
selection, and cannot detect which region in the sequence
is selected. Moreover, many of these tree shapes are sensi-
tive to sampling effects making them impractical to use in
realistic situations (70).

We have here proposed a new method that can clearly
detect positive and negative selection or their combination,
based on the effect each mutation has on the number of off-
spring in the tree under the branch where the mutation has
occurred. This method can only be applied where the muta-
tion rate is high enough, and the selection is weak enough
for alleles with disadvantageous mutations to exist in the
population. Specifically, the mutation rate multiplied by the
fixation time of mutations should be much larger than one.
The code and a short manual are supplied in the Supple-
mentary Materials.

Such a range exists for example in the population dynam-
ics of mitochondria within host species, in viral dynamics
and in the affinity maturation process in germinal centers.
We have here studied all these cases and have shown that in-
deed selection can be detected in all cases studied. Other ap-
plications of this method can be the evolution of the Y chro-
mosome and the changes in Short Tandem Repeats (STR)
frequencies in it or the evolution of bacteria in an infection
in the population.

This method is precise in the domain of a large number
of mutations per sequence (>10) and large samples (>300).
In this domain, the method proved to have many important
applications, such as the detection of selection in genes (and
actually the direct detection of genes), the detection of viral
proteins passing positive and negative selection and under-
standing the selection process in a B cell immune response.
We have shown that while the ribosomal RNA has a very
strong positive selection, some genes pass positive selection,
and others negative selection. In B cells, we have shown that
while CDR mutations are always positively selected, FWR
mutations are selected against in the majority of the popula-
tions, but actually strongly positively selected in the extreme
cases.
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The comparison between S and NS mutations is only
the most basic distinction between different types of muta-
tions. Other possibilities exist, especially change/no-change
of some amino-acid property, such as size or hydropho-
bicity. Such methods would test for selection for specific
changes and not selection for mutation in general. In other
words, the proposed methodology can be used to estimate
whether changes in a given property increase or decrease the
number of offspring, compared with a change not altering
this properties. In other words, different definition of the
mutations of interest and the baseline can be defined, and
used to detect selection for other features.

The main limitation of the current score is that it is blind
to strong selection. Once a mutation is fixed in (or com-
pletely removed from) the population, we will not observe
the polymorphism at this site that allows us to compare the
branch sizes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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