
Weng and Liu Respiratory Research 2010, 11:80
http://respiratory-research.com/content/11/1/80

Open AccessR E V I E W
ReviewThe role of pleiotrophin and β-catenin in fetal lung 
development
Tingting Weng and Lin Liu*

Abstract
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth 
factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung 
development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung 
development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved 
in fibroblast and epithelial cell communication during fetal lung development.

1. Fetal lung development
1.1 Stages of fetal lung development
Fetal lung development is a complex biological process
which involves temporal and spatial regulation of multi-
ple factors such as growth factors, transcriptional factors,
and extracellular matrix (ECM). The development of the
intimate relationship between airways and blood vessels
is crucial for the normal lung function. Morphologically,
mouse lung development can be divided into 5 stages: (i)
Embryonic Stage (E9 to E11.5), in which lung buds origi-
nate as an outgrowth from the ventral wall of the foregut
where lobar division occurs; (ii) Pseudoglandular Stage
(E11.5 to E16.5), in which conducting epithelial tubes sur-
rounded by thick mesenchyme are formed, distinguished
by extensive airway branching; (iii) Canalicular stage
(E16.5 to E17.5), in which bronchioles are produced,
characterized by an increasing number of capillaries in
close contact with cuboidal epithelium and the beginning
of alveolar epithelium development; (iv) Saccular Stage
(E17.5 to PN5), in which alveolar ducts and air sacs are
developed; and (v) Alveolar Stage (PN5 to PN28), in
which secondary septation occurs, defined by a marked
increase of the number and size of capillaries and alveoli
[1].

Recently, a new model of lung branching programming
has been proposed, in which three branching modes gov-
ern the program of lung branching [2]. Domain branch-

ing generates daughter branches in rows along a parent
branch. Planar bifurcation forms tertiary and later-gener-
ation branches with the division of a branch tip into two.
Orthogonal bifurcation is composed of two cycles of
plannar bifurcations with a 90° rotation between the two.
These branching modes are regulated by genetically
encoded subroutines, which are controlled by a master
branch generator.

1.2 Alveolar epithelial cell differentiation
Alveolar epithelium is composed of two types of cells:
alveolar epithelial type I cells (AEC I) and alveolar epithe-
lial type II cells. In the pseudoglandular stage, columnar
epithelial cells differentiate into ciliated cells with the
expression of β-tubulin IV, [3] and shorter columnar cells
containing large intracellular glycogen pools [4]. The lat-
ter remain undifferentiated until the canalicular stage,
when some of these cells become more cuboidal AEC II
and begin to synthesize and secrete surfactant. AEC II
have less glycogen pools and are characterized by the
appearance of lamellar bodies [5]. Some AEC II can be
differentiated into AEC I.

Many transcription factors, including thyroid tran-
scription factor-1 (TTF-1), hepatocyte nuclear factor
(HNF)-3β and HNF-3/forkhead homologue-4 (HFH-4)
have indispensable roles in the proliferation and differen-
tiation of alveolar epithelial cells.

TTF-1, also known as Nkx2.1, is detected as early as E8
in mouse endodermal cells and is identified as the earliest
marker of the lung. TTF-1 regulates the expression of all
the surfactant protein genes, including SP-A, B, C and D.
Mice deficient of TTF-1 have abnormal lungs, which fail

* Correspondence: liulin@okstate.edu
1 Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of 
Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, 
USA
Full list of author information is available at the end of the article
© 2010 Weng and Liu; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20565841


Weng and Liu Respiratory Research 2010, 11:80
http://respiratory-research.com/content/11/1/80

Page 2 of 10
to express all the surfactant proteins and have signifi-
cantly reduced collagen type IV and integrins [6].

HNF-3β is highly expressed in ciliated and columnar
bronchial epithelial cells and AEC II during development.
HNF-3β induces the expression of various epithelially
restricted genes in the lung, including TTF-1 [7], SP-B [8]
and CCSP [9,10], in association with the differentiation of
lung epithelial cells such as AEC II and Clara cells.

HFH-4 is expressed in the epithelium during fetal lung
development, and in basal and ciliated epithelial cells in
the adult lung [11]. HFH-4 induces the expression of β-
tubulin IV in the pseudoglandular stage, and promotes
the differentiation of ciliated epithelial cells.

Other transcription factors, such as GATA-5, GATA-6,
and Fox, are also important for the differentiation of epi-
thelial cells in the lung [1]. The expression of these tran-
scription factors decreases with the progression of
development and is only restricted in subsets of Clara
cells and AEC II at the late stage of development.

1.3 Epithelial-mesenchymal interactions
The interactive signaling between epithelial and mesen-
chymal cells plays an important role in morphogenesis
and cell differentiation in the developing lung. Removing
the mesenchyme from the embryonic lung rudiment
impairs the branching morphogenesis [12]. Lung mesen-
chyme has the ability to induce branching morphogenesis
in non-lung epithelium such as the salivary gland [13]
and embryonic trachea, in which mesenchyme has been
removed [14,15]. However, non-lung mesenchyme was
only able to induce a bud in gut endoderm and these buds
had no further branching [14]. Besides its function in
determining the epithelial patterning, mesenchyme can
also dictate the differentiated phenotype of the epithe-
lium [16].

The communication between mesenchyme and epithe-
lium is mediated by many growth factors. These growth
factors are precisely regulated in a temporal and spatial
manner during fetal lung development. Fibroblast growth
factors (FGFs) and their receptors are among the best
characterized growth factors. FGF10 is located in the
mesenchyme around distal lung epithelial tips. It binds to
the FGFR2b on the epithelial cells and transmits a signal
to induce the initiation of the lung bud [17-22]. Recombi-
nant FGF10 alone can induce budding in the lung epithe-
lial explants whose mesenchyme has been removed [18].
Mice deficient of FGF10 or FGFR2b expression have
severe abnormalities in lung development [22,23]. The
expression of FGF10 and bud formation is regulated by
retinoid acid because an antagonist of retinoid acid com-
pletely prevents the formation of lung buds from foregut
explants [24]. Retinoid acid accelerates the development
of the alveolar tree and promotes the expression of sur-

factant proteins and enzymes for the synthesis of surfac-
tant lipids [25].

On the other hand, pulmonary epithelial cells also
influence the proliferation and differentiation of mesen-
chymal and vascular cells [3]. The epithelial cells secrete
vascular endothelial growth factors (VEGF), which binds
to its receptors, flk and flt, in the progenitor cells of mes-
enchyme, and at least in part, regulates pulmonary vascu-
logenesis [26]. Similarly, Platelet-Derived Growth Factor
(PDGF), which is expressed in the epithelial cells, stimu-
lates the differentiation and proliferation of myofibro-
blasts in the developing lung [27]. Sonic Hedgehog (Shh)
is a growth factor expressed in the developing epithelium,
most abundantly in terminal buds. Its receptor Patched-1
(Ptc) is located in the mesenchymal cells. The interaction
between Shh and Ptc is required for lung bud formation
[28-30]. The overexpression of Shh in AEC II with a SP-C
promoter disturbs the formation of alveoli by increasing
the proliferation of mesenchymal cells, but not epithelial
cells [28].

Other growth factors, such as transforming growth fac-
tors (TGF-β) and epidermal growth factor (EGF) are also
involved in the epithelial-mesenchymal interactions and
play essential roles in lung development [31].

2. Pleiotrophin
Pleiotrophin (PTN) is an 18 kDa heparin-binding
cytokine and shares 50% sequence homology with mid-
kine [32]. PTN has two beta-sheet domains that bind to
heparin and extracellular matrix with high affinity [33].
The amino acid sequence of PTN is highly conserved
among different organisms.

PTN was first identified as a growth factor in the
bovine uterus [33] and as a neurite outgrowth promoting
factor in the neonatal rat brain [34]. In comparison with
midkine, which is regulated by retinoid acid [35], PTN
does not respond to retinoid acid but can be up-regulated
by PDGF in primary hepatic stellate cells [36]. The
mRNA expression of PTN is significantly up-regulated in
some organs in midkine deficient mice, suggesting that
PTN and midkine have functional redundancy [37]. In
fact, PTN and midkine do share multiple functions. They
both regulate the neurite outgrowth, modulate cancer
development, enhance cell proliferation and migration,
inhibit apoptosis, and have important roles in epithelial-
mesenchymal interactions during organogenesis [38,39].

2.1 The expression of Pleiotrophin
PTN is expressed in a temporal and cell type-specific
manner in order to precisely restrict its functional activi-
ties at the right time and at the right site. During mouse
embryogenesis, PTN is highly expressed in the central
and peripheral nervous systems, in organs undergoing
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branching morphogenesis including the salivary glands,
lung and kidney, digestive and skeletal systems, sense
organs and facial processes, and limbs [40]. The expres-
sion of PTN is detected as early as embryonic day 9 and
peaks in the late stage of embryogenesis (shortly after
birth) [41,42]. PTN is mainly located in the basement
membrane of the developing epithelium and in mesen-
chymal tissues undergoing remodeling, suggesting that it
may play an important role in mesenchymal-epithelial
interactions. In the adult stage, PTN expression is mainly
restricted to the central nervous system [41,43].

2.2 Functions of PTN
PTN is highly expressed in fetal bone cartilage and impli-
cated in bone formation and remodeling [44]. During the
early stages of osteogenic differentiation, PTN is synthe-
sized by osteocytes and located at sites where new bones
are formed [44,45]. Exogenous PTN, but not midkine,
promotes the chondrogenesis in micromass culture of
chicken limb bud mesenchymal cells [46]. As a growth
factor that stimulates the proliferation and differentiation
of osteoblastic MC3T3-EL cells, PTN promotes the bone
morphogenetic protein (BMP)-induced osteogenesis at a
high concentration and has an opposite effect at a low
concentration [47,48]. Targeted overexpression of PTN in
mice promotes bone growth and maturation during the
early stages of bone development. However, the effect is
diminished with advanced age and the generated bones
are more brittle compared to the wild type [48].

Kidney development involves repeated branching mor-
phogenesis and prominent interactions between mesen-
chyme and epithelium. In the embryonic kidney, PTN is
present in the basement membrane surrounding the
developing ureteric bud. Recombinant human PTN
increases the branching morphogenesis of the cultured
uteric bud, in the presence of glial cell-derived neutro-
phoic factor (GDNF) [49]. In the absence of GDNF, PTN
still has the ability to induce the branching morphogene-
sis of uteric cells [49]. These studies suggest that PTN is
one of the key modulators of branching morphogenesis in
the kidney.

PTN is up-regulated in the injured rat brain cells [50].
After ischemia exposure, much higher PTN levels have
been observed in macrophages, endothelial cells and
astrocytes in the mouse brain, especially in the area with
high neovasculogenesis activity. This result indicates that
PTN participates in neurovascular formation during
development. PTN up-regulation is also observed in the
dermis after an incisional wound in the rat skin [51].
Additionally, local delivery of PTN in dog fibrin glue after
angioplasty injury, significantly increases the rates of re-
endothelialization. This effect is mainly due to the stimu-
lation of endothelial cell angiogenesis, and the promotion

of smooth muscle cell proliferation [52]. All of these stud-
ies suggest that PTN plays a role in injury repair.

PTN levels are also much lower in adult tissues than
these in fetal tissues. However, PTN is overexpressed in a
number of cancers, such as human breast cancer [53-55],
melanocytic tumors [56,57], and glioblastoma [58-61]. As
a heparin-binding cytokine, PTN acts as a growth factor
to promote cell growth in cells transformed by the v-sis
oncogene [33]. The function of PTN in tumor angiogene-
sis has been addressed to some extent. SW-13 cells trans-
formed by the ectopic expression of PTN exhibit a much
higher growth rate and a higher density of microvessels
[62]. The nude mice injected with PTN-transformed NIH
3T3 cells have a higher degree of tumor angiogenesis [63].
This effect could be blocked by a dominant negative PTN
[64]. PTN also increases the endothelial cell proliferation
and tube formation [50]. These studies strongly suggest
that PTN is an angogenic factor during tumor formation
and a potential target for cancer therapy. PTN also func-
tions as a mitogen for endothelial cells [50,51], epithelial
cells and different fibroblast cell lines [33]. The function
of PTN can be extended to other aspects, such as regulat-
ing the long-term potentiation by controlling the neurite
cell outgrowth [65].

2.3 PTN regulatory pathways
PTN signals through three cell surface receptors, synde-
can-3, anaplastic lymphoma kinase (ALK), and protein
tyrosine phosphatase receptor (RPTPβ/ζ).

Syndecan-3 belongs to the syndecan family and is a
transmembrane protein. Its extracellular domain contains
3 glycosaminoglycan attachment sites [66]. The binding
of PTN with syndecan-3 induces neurite outgrowth of
embryonic neurons [67]. Heparitinase, which cleaves the
heparin sulfate chain and disrupts the binding of PTN,
inhibits PTN-induced neurite outgrowth. Anti-synde-
can-3 antibodies have a similar effect. Additionally, the
overexpression of syndecan-3 in N18 neuroblastoma cells
significantly increases the PTN-induced neurite out-
growth. The PTN/syndecan-3 pathway is possibly medi-
ated by the c-Src, which binds to the intracellular domain
of syndecan-3 and subsequently alters the activity of cort-
actin [68].

ALK is a receptor tyrosine kinase highly expressed in
the developing nervous systems and in some tumor cells
[69,70]. It shows a similar expression pattern as PTN in
different cell lines [71]. Upon the binding with PTN, ALK
phosphorylates Ras protein or Akt, and thus activates the
Ras-MAPK or the PI3K-Akt signaling pathway. This
sequentially stimulates cell proliferation and mitogenesis,
and inhibits apoptosis [58,71]. However, a recent study
has shown that ALK does not directly bind with PTN, but
is one of the substrates of RPTPβ/ζ [72].
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RPTPβ/ζ is a transmembrane tyrosine phosphatase,
which is composed of a cytosoplasmic portion that car-
ries protein tyrosine phosphatase activity, a transmem-
brane region, and an extracellular domain containing
chondroitin sulfate for ligand binding [73]. The extracel-
lular part of RPTPβ/ζ also possesses a carbonic anhy-
drase-like domain, a fibronectin III-like domain, and a
glycine-serine rich domain [73]. These domains interact
with the adhesion molecules and mediate the cell-cell
adhesions.

PTN is identified as the first natural ligand for the
transmembrane tyrosine phosphatase receptor. It binds
to the chondroitin sulfate portion of RPTPβ/ζ with high
affinity [74]. In U373-MG glioblastoma cells, the binding
of PTN with RPTPβ/ζ inactivates the receptor, and thus
significantly increases the tyrosine phosphorylation of β-
catenin [75,76]. Phosphorylated β-catenin rapidly disso-
ciates from E-cadherin and accumulates in the cyto-
plasm. The disassociation of β-catenin from E-cadherin
disrupts the cell-cell adhesion and possibly promotes cell
migration. Another downstream target of the PTN/
RPTPβ/ζ is β-adducin [77,78]. Recently, the Src family
member, Fyn has been identified as an additional sub-
strate of the PTN/RPTPβ/ζ signaling pathway [79].

RPTPβ/ζ is broadly expressed in almost all of the
human breast cancer cells lines, and it plays an important
role in the adhesion and migration of tumor cells [80].
Since the PTN pathway through ALK is also mediated
through RPTPβ/ζ, the signal through RPTPβ/ζ may be
the main regulatory pathway for PTN to regulate cell
growth, proliferation, migration, and mesenchymal-epi-
thelial transition [76].

2.4 PTN knockout mice
Two research groups have generated PTN knockout mice
to investigate the functions of PTN. PTN deficient mice
are anatomically normal. However, these mice exhibit
enhanced hippocampal long-term potentiation [65].
Deficiency of PTN results in an increased proliferation
rate of neuronal stem cells in the adult mouse cerebral
cortex [81]. This is consistent with the observation that
exogenous PTN reduces the neuronal stem cell prolifera-
tion through inhibiting the expression of FGF-2 and pro-
motes cell differentiation [81].

The few abnormalities shown by the PTN knockout
mice seem to be inconsistent with the crucial roles of
PTN in the proliferation, differentiation and migration of
various cells. This may be partially due to the functional
redundancy between PTN and midkine. Lack of PTN
expression might somehow be compensated by midkine.
To address this issue, one group has produced PTN and
midkine double knockout mice. These mice show a
reduced expression of beta-tectorin and have serious
auditory deficits [82]. Additionally, they exhibit signifi-
cantly reduced reproduction abilities [83].

Transgenic mice overexpressing PTN show abnormali-
ties in brain and bone formation and remodeling. PTN
overexpressing mice are morphologically normal, but
have attenuated hippocampal long term potential [84].
Specifically overexpressing PTN in osteoclasts under the
control of human osteocalcin promoter increases bone
mass in female mice, but not in male mice [85,86]. These
mice also have advanced bone growth during the early
developing stage, damaged fracture healing, and delayed
callus formation [48].

2.5 PTN and fetal lung development
There are relatively less reports on the PTN functions in
the lung. Earlier studies have shown that PTN is
expressed in the fetal lungs and some lung cancer cells
[40,42]. PTN expression in the lung appears to be inde-
pendent of midkine expression [37]. During our efforts in
gene expression profiling of lung development, we have
identified 583 differentially expressed genes, which can
be classified into seven clusters [87]. Most of the genes in
cluster 5 are related to cell differentiation and develop-
ment and are highly expressed in the late stages of fetal
lung development. PTN is one of the genes in this cluster.
PTN is mainly localized in the mesenchymal cells sur-
rounding the developing epithelia and is enriched in
fibroblasts [87,88]. Consistent with its role in vasculogen-
esis and tumor agogenesis [89], PTN expression is also
observed in endothelial cells in the developing lung. In
contrast, the PTN receptor RPTPβ/ζ, is expressed in the
airway epithelial cells at the late stages of fetal lung devel-
opment. This suggests that PTN may mediate mesenchy-
mal-epithelial interactions.

PTN has multiple functions in fetal lung development.
At the early stage of development, PTN is essential for
branching morphogenesis [88]. The silencing of PTN in
fetal lung organ culture results in the reduction of termi-
nal bud counts, but has no effects on the sizes of terminal
or inside buds. At the late stages of fetal lung develop-
ment, PTN stimulates the proliferation of fetal alveolar
epithelial type II cells. However, it arrests the trans-differ-
entiation of fetal alveolar epithelial cell type II cells to
type I cells [88]. Furthermore, the addition of PTN also
accelerates wound healing of the injured fetal type II cell
monolayers [88]. This effect is mediated through PTN
secreted by fibroblasts since a similar result is observed in
the co-culture of fetal type II cell monolayers with fibro-
blasts. Anti-PTN antibodies can block the effect caused
by fibroblasts.

In fetal type II cells, PTN exerts its effects via cross-talk
with Wnt/β-catenin signaling [88]. This is supported by
the following evidence: (i) Stimulation of fetal type II cells
with PTN increases tyrosine phosphorylation of β-
catenin; (ii) PTN causes β-catenin nuclear translocation;
and (iii) PTN increases LEF/TCF transcriptional activity
as determined by TOPflash reporter assay. Delta-like
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homolog (Dlk1) is a member of the Notch/Delta/Serrate
family and initiates Notch signaling. Dlk1 is negatively
regulated by PTN signaling, which requires the co-activa-
tion of the Wnt pathway [88]. CHIP analysis reveals that
Dlk1 is a direct target of the LEF/TCF transcription fac-
tor [88]. These observations suggest that PTN acts via
Wnt/β-catenin and Notch pathways.

3. Wnt signaling pathway
Wnt is a family of growth factors, which play important
roles cell fate determination during lung development.
Wnt has at least 19 isoforms, which bind to frizzleds and
trigger three intracellular signaling pathways: the canoni-
cal Wnt/β-catenin signaling pathway, the non-canonical
Wnt/Ca2+ pathway, and the WNT/Planar Cell Polarity
(PCP) pathway. The most important pathway of Wnt sig-
naling is the canonical signaling pathway through β-
catenin. The binding of Wnt to frizzleds inhibits the
activity of glycogen synthase kinase 3β (GSK-3β) and thus
stabilizes β-catenin in the cytoplasm. β-catenin accumu-
lates in the cytoplasm and translocates into the nucleus,
where it binds to TCF/LEF transcription factors to stimu-
late the transcription of its downstream genes, such as N-
myc, bone morphogenetic protein 4 (Bmp4), and FGF, etc
[90].

3.1 Wnt and β-catenin expression during fetal lung 
development
The expression of Wnts and β-catenin are precisely regu-
lated during fetal lung development. In situ hybridization
reveals that Wnt2 is highly expressed in the fetal lung,
and its expression is restricted to mesenchymal cells [91].
In E12.5 to E16.5 mouse lung, Wnt11 expression is
observed in epithelial and mesenchymal cells [92], while
Wnt7b is only localized in distal and proximal bronchial
epithelial cells [93]. Wnt5a expression is barely detectable
in a E12 mouse lung, and reaches a high level in E16 in
both epithelial and mesenchymal cells. In E18, Wnt5a is
mainly localized in airway epithelial cells [94]. Wnt3a
expression is expressed in AEC II and some ciliated air-
way epithelial cells in the adult human lung [95].

β-catenin is expressed in the airway and alveolar epi-
thelial cells during fetal lung development. β-cateinin
nuclear expression is especially high in pre-alveolar acini
budding from respiratory airways [96]. From E14.5 to
E17.5, cytoplasmic and nuclear expression of β-catenin is
also found in the primordial and alveolar epithelial cells,
and adjacent mesenchymal cells, indicating that the β-
catenin signaling may be activated in these cells [96]. The
cytoplasmic and nuclear β-catenin level decreases in the
mesenchyme after E13.5 [97]. TCF and LEF have a very
similar expression pattern as β-catenin during fetal lung
development [97]. TCF1 proteins are present in both epi-
thelial and surrounding mesenchymal cells from E10.5 to

E17.5. LEF1 protein expression is high in adjacent mesen-
chyme but low in proximal epithelium. TCF3 and TCF4
proteins are nearly expressed in all kinds of cells, includ-
ing proximal and distal epithelial cells, and mesenchymal
cells from E11.5 to E17.5 [97].

The mesenchymal localization of Wnt ligands and epi-
thelial localization of β-catenin suggest the possible role
of Wnt signaling in epithelial-mesenchymal interactions,
which are crucial for normal lung morphogenesis,
growth, and cell fate determination. Since β-catenin
nuclear localization is mainly observed in developing epi-
thelial cells, Wnt canonical signaling may mediate the
epithelial proliferation or differentiation.

3.2 Wnt signaling in lung morphogenesis
Recently, the transgenic and knockout mice studies have
revealed important roles of Wnt signaling in lung mor-
phogenesis. Wnt5a conditional knockout is fatal and
results in abnormal distal lung morphogenesis, which is
characterized by the hypercellular and thicker intersaccu-
lar walls [94]. However, Wnt5a knockout does not affect
the vascular distribution and maturation.

Wnt2/2b signaling is essential to specify the lung pro-
genitors in the foregut endoderm [98]. Loss of Wnt2
results in dilated endothelial vasculature, decreased cell
proliferation, and down-regulation of the genes crucial
for normal lung development. Mouse double deficiency
of Wnt2 and Wnt2b exhibits an underdeveloped lung
which shows no trachea budding at E9.5, lacks the
expression of TTF-1 (a transcription factor crucial for
epithelial cell differentiation), and P63 (an esophagus epi-
thelial marker) [98].

The lungs from Wnt7blacZ mice, which replace the exon
1 with lacZ, exhibit a smaller and collapsed appearance
and fail to inflate properly. These mice die shortly after
birth [99]. Another defect in the Wnt7b knockout lung is
hypoplasia, which is shown by extremely thinner distal
mesenchyme. Additionally, smooth muscle α-actin (α-
SMA) expression is abnormal in Wnt7b knockout mice.
Since smooth muscle cells are differentiated from mesen-
chymal cells, these studies indicate that Wnt7b affects
lung morphogenesis possibly through the regulation of
mesenchymal cells.

Deletion of β-catenin in the embryonic mesenchyme
leads to shortened trachea, decreased branching, and
reduced peripheral mesenchyme [100]. However, the
sub-epithelial mesenchyme is not affected. On the other
hand, deletion of β-catenin in epithelial cells using SP-C
promoter impairs lung morphogenesis, arrests the differ-
entiation of alveolar epithelial cells, and leaves the lung
containing mainly conducting airways [101]. Consis-
tently, hyperactivating β-catenin in epithelial cells of the
developing lung causes enlarged air space, atypical
expression of alveolar type II cells, and goblet cell hyper-
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plasia. And this effect is possibly through the down-regu-
lation of Foxa2 expression in the epithelium [102].
However, further work is required to elucidate the molec-
ular mechanism of this process.

3.3 Wnt signaling in cell differentiation and proliferation
The action of Wnt signaling on the lung morphology is
mainly achieved by the regulation of proliferation, differ-
entiation, and apoptosis of the lung cells. The regulation
of lung cell proliferation by Wnt signaling is well coupled
with cell differentiation. The signals that increase the
proliferation of progenitor cells normally arrest the dif-
ferentiation of these cells.

Wnt is important for the cell proliferation and differen-
tiation during fetal lung development, although how Wnt
proteins regulate the lung development is still not clear.
Wnt7b promoter is regulated by TTF-1 [93], a known
transcription factor regulating epithelial cell differentia-
tion in the developing lung. This finding suggests a possi-
ble molecular mechanism of TTF-1 in regulating the lung
epithelial differentiation.

Wnt7blacZ mice do not show abnormal differentiation of
some epithelial cells including Clara cells, and alveolar
type II cells. However, alveolar type I cell differentiation is
delayed in Wnt7blacZ mice, suggesting that Wnt7b may be
important for late epithelial cell differentiation. Wnt7b
knockout significantly reduces the proliferation of mes-
enchymal cells on E12.5 but not on E14.5. However, the
proliferation of epithelial cells is not affected [99]. The
results indicate that Wnt7b is a regulator for mesenchy-
mal cell proliferation in the early developing lung. In
addition, apoptosis increases significantly in the vascular
smooth muscle and epithelium following Wnt7b depriva-
tion. However, another Wnt7b knockout mouse,
Wnt7bD3, in which exon 3 is deleted, shows decreased
proliferation of both epithelial and mesenchymal cells
without perturbing cell differentiation and lung pattern-
ing [103]. Interestingly, the development of smooth mus-
cle in these mice is normal. These results are
controversial with other findings that Wnt7b/β-catenin

Figure 1 PTN, Wnt and Dlk1 control alveolar cell proliferation and differentiation in synchrony.
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signaling is necessary for the smooth muscle cell develop-
ment [104,105].

Hyperactivation of β-catenin specifically in lung endo-
derm leads to the increased amplification of distal lung
progenitor cells and the shortage of fully differentiated
lung cell types [106]. Activation of β-catenin signaling
only in epithelial cells causes ectopic differentiation of
AEC II [102]. Additionally, conditional knockout β-
catenin in mesenchyme increases the proliferation and
Fgf10 expression in parabronchial smooth muscle cells
(PSMC). However, the differentiation of this group of
cells is not affected [100]. All these results indicate that β-
catenin signaling is essential for normal epithelial differ-
entiation.

Wnt5a normally activates a non-canonical pathway and
inhibits the canonical β-catenin signaling [107]. Condi-
tional knockout of Wnt5a caused a significant increase in
lung cell proliferation without interfering with cell differ-
entiation [94]. However, Wnt5a could also induce a
canonical β-catenin signaling in Usual Interstitial Pneu-
monia (UIP) lung fibroblast and promotes the fibroblast
proliferation [108].

3.4 Wnt signaling and lung diseases
In addition to its role in lung development and morpho-
genesis, Wnt signaling pathways are also linked to the
pathogenesis of several lung diseases. The dysregulation
of Wnt signaling in adult lung causes lung cancer, fibrosis,
and inflammation [109]. Hyperactivation of β-catenin,
caused by mutations of β-catenin, APC, and axin in lung
epithelium induces lung tumors [102]. β-catenin is over-
expressed and activated in many lung cancer cells. Wnt/
β-catenin could become targets for a novel therapeutic
strategy for lung cancers.

Fibrosis is a crucial process during tissue repair after an
injury. Wnt signaling is activated in the lungs of the
patients with idiopathic pulmonary fibrosis [95] and ani-
mals with bleomycin-induced pulmonary fibrosis [110].
Hyperactivation of Wnt signaling pathway is suggested as
one of the main reasons which causes abnormal fibro-
blast proliferation and excess extracellular matrix deposi-
tion during pulmonary fibrosis. Additionally, Wnt
signaling also induces the overexpression of fibrosis regu-
lators such as metalloproteinase and matrilysin [109].

Bronchopulmonary dysplasia (BPD) is a chronic lung
disease in infants. BPD is characterized by lung injury
resulting from mechanical ventilation and oxygen expo-
sure, or from defects in lung development. Wnt signaling
is activated during hyperoxia-induced neonatal rat lung
injury, suggesting its role in BPD [111].

4. Summary
Defects in pulmonary development normally lead to
numerous lung diseases. PTN is a growth factor differen-

tially expressed during fetal lung development. Wnt/β-
catenin pathway is involved in epithelial-mesenchymal
interactions during lung development. PTN and Wnt sig-
naling pathways are partially overlapped and linked to
Notch pathway via Dlk1. Although several signaling path-
ways have been identified to regulate normal lung devel-
opment, less is known about the cross-talking among
these signaling pathways. Several downstream genes of
the Wnt signaling have been identified including Dlk1,
TTF-1, BMP4, c-myc, and Axin II. How these genes are
properly turned on/off to regulate lung development is
not fully understood. The elucidation of roles of PTN and
Wnt signaling in fetal lung development and its regula-
tory pathway may offer opportunities in the development
of new therapeutic strategies and drugs to resolve the dis-
orders associated with fetal lung development.

Finally, we propose the following model for PTN signal-
ing and its cross-talk with Wnt signaling (Fig. 1). (A) PTN
is secreted by fibroblasts and binds to the receptor pro-
tein tyrosine phosphatase β/ζ (RPTP β/ζ). This action
inactivates RPTP β/ζ, which results in an increase of the
phosphorylation of β-catenin on its tyrosine residues
(Tyr-Pi) and the release of β-catenin from cadherins. (B)
In the absence of Wnt ligands, β-catenin is marked for
destruction by proteasomal degradation via its serine/
threonine phosphorylation (Ser/Thr-Pi) by glycogen syn-
thase kinase 3β (GSK-3β). The activation of Wnt signal-
ing leads to a decrease in Ser/Thr-Pi, preventing the
degradation of β-catenin. (C) The binding of nuclear β-
catenin with T cell factor/lymphoid enhancer factor
(TCF/LEF) transcription factors depresses Dlk1, resulting
in the inactivation of Notch signaling in a neighboring
cell (either an undifferentiated columnar cell or a type I
cell). The future directions (dashed lines) include: which
Wnt(s) secreted by fibroblasts and/or type II cells acti-
vates the Wnt pathway? What are other target genes of
TCF/LEF (either depressed or activated)? What signaling
does Dlk1 initiate? Further investigations will answer
these questions in the near future.
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