
Activated Neutrophils Are Associated with Pediatric Cerebral Malaria
Vasculopathy in Malawian Children

Catherine Manix Feintuch,a Alex Saidi,b Karl Seydel,b,c Grace Chen,d Adam Goldman-Yassen,a Neida K. Mita-Mendoza,a

Ryung S. Kim,e Paul S. Frenette,d Terrie Taylor,b,c Johanna P. Dailya,f

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USAa; Blantyre Malaria Project, University of Malawi College of
Medicine, Blantyre, Malawib; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USAc;
Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Department of Cell Biology, Albert Einstein College of Medicine, Bronx,
New York, USAd; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USAe; Division of Infectious Diseases,
Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USAf

ABSTRACT Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-
infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome;
thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we com-
pared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-
retinopathy-positive CM (Ret�CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as
malarial-retinopathy-negative CM (Ret-CM). Ret�CM was associated with upregulation of 103 gene set pathways, including
cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutro-
phil transcripts were the most highly upregulated individual transcripts in Ret�CM patients. Activated neutrophils can modu-
late diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration.
Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret�CM and Ret-CM patients. Plasma
levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in
Ret�CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely
seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a puta-
tive neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular
tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregu-
lation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor
cerebral iRBC sequestration.

IMPORTANCE There were approximately 198 million cases of malaria worldwide in 2013, with an estimated 584,000 deaths oc-
curring mostly in sub-Saharan African children. CM is a severe and rare form of Plasmodium falciparum infection and is associ-
ated with high rates of mortality and neurological morbidity, despite antimalarial treatment. A greater understanding of the
pathophysiology of CM would allow the development of adjunctive therapies to improve clinical outcomes. A hallmark of CM is
cerebral microvasculature sequestration of P. falciparum-infected red blood cells (iRBCs), which results in vasculopathy in some
patients. Our data provide a global analysis of the host pathways associated with CM and newly identify an association of acti-
vated neutrophils with brain iRBC sequestration. Products of activated neutrophils could alter endothelial cell receptors and
coagulation to facilitate iRBC adherence. Future studies can now examine the role of neutrophils in CM pathogenesis to improve
health outcomes.
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Cerebral malaria (CM) is associated with high case fatality rates,
and a third of survivors develop epilepsy or other neurological

sequelae (1, 2). Identification of novel strategies to decrease the
high rates of morbidity and mortality associated with CM (3) in
African children are needed (4, 5). CM is defined as the presence of
coma with confirmed Plasmodium falciparum infection, exclusive
of other identifiable etiologies of coma (6). Microvasculature se-
questration of late-stage P. falciparum-infected red blood cells

(iRBCs) occurs in all P. falciparum clinical syndromes; however, in
patients with CM, microvascular iRBC sequestration occurs in the
brain, as well as other vital organs (7–10). iRBC sequestration is
accompanied by endothelial cell activation, upregulation of intra-
cellular adhesion molecule 1 (ICAM-1) and other endothelial cell
receptors, alterations in endothelial cell protein C receptor
(EPCR), and deposition of platelets and fibrin in the brain micro-
vasculature during CM (11–14). This vasculopathy is associated
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with elevated inflammation, blood-brain barrier breakdown, se-
vere brain swelling, and death in some individuals (15–18). The
identification of host factors that contribute to cerebral iRBC se-
questration and vasculopathy could lead to novel therapies for
CM to improve clinical outcomes.

Cerebral sequestration of iRBCs during pediatric CM occurs in
75% of cases and can be identified clinically through a retinal
exam (19). The presence of microvasculature abnormalities in the
ocular fundus (“malarial retinopathy”) is strongly associated with
the cerebral iRBC sequestration identified at autopsy (10, 20).
Children with malarial-retinopathy-positive CM (Ret�CM) have
a higher mortality rate than children with CM without malarial
retinopathy (Ret-CM) (21, 22). Specific CM-associated parasite
proteins expressed on the iRBCs are associated with brain seques-
tration (14, 23–25). These CM-associated parasites are likely arbi-
trarily transmitted throughout the general population, yet only a
small percentage of infections in young children result in cerebral
iRBC sequestration. Therefore, we hypothesized that in addition
to infection with CM-associated parasites, specific host factors
modify the risk for iRBC sequestration in CM. To identify host
factors associated with cerebral iRBC sequestration, we compared
host whole-blood transcription profiles from Malawian children
with Ret�CM to profiles from children with Ret-CM. Our data
newly suggest that activated neutrophils play a role in Ret�CM.

RESULTS

We studied Malawian children with CM enrolled in the Blantyre
Malaria Research Project (BMP) as part of an ongoing longitudi-
nal study (2). We performed whole-blood transcriptional profil-
ing on 98 of the 205 blood samples obtained from patients at
enrollment in the study during the 2009 and 2011 malaria seasons.
There were no significant differences between patient characteris-
tics of the hybridized samples and the complete cohort (see Ta-
ble S1 in the supplemental material).

Peripheral blood parasitemia is associated with whole-blood
transcriptional profiles. To first discover patterns in the whole-
blood transcriptomes, we performed unsupervised hierarchical

clustering analysis of 98 samples. We identified three transcrip-
tional clusters (see Fig. S1 in the supplemental material). Most
demographic, clinical, and laboratory features, including age and
white cell subsets, were similar between the transcriptional clus-
ters (see Table S2 in the supplemental material). Histidine-rich
protein 2 (HRP2), a parasite protein that can provide an estimate
of the total body parasite biomass, was not significantly different
between clusters (26, 27). In contrast, cluster 2 was significantly
associated with high peripheral parasitemia, which represents cir-
culating early stage parasites (P � 0.005 by the Mann-Whitney U
test). Ret�CM and Ret-CM phenotypes were found in each clus-
ter, though cluster 3 was significantly enriched for Ret-CM sam-
ples (P � 0.020 by the �2 test). Because of the association of pe-
ripheral parasitemia with global transcription, we adjusted each
transcript by peripheral parasitemia to compare the transcrip-
tional profiles between Ret�CM versus Ret-CM in our primary
analysis.

We then compared the whole-blood transcriptomes from 64
Ret�CM patients and 33 Ret-CM patients. These children were
comparable in age and manifested similar elevations in tempera-
ture and respiratory and pulse rates (Table 1). The median periph-
eral blood parasitemia was similar between the two groups (P �
0.159 by the Mann-Whitney U test). HRP2 was higher in
Ret�CM patients, reflecting their large sequestered parasite bio-
mass (P � 0.0001 by the Mann-Whitney U test) (26, 27). The
Ret�CM patients had higher mortality (22% versus 6%; P � 0.08
by the �2 test), lower hematocrits (20.4% versus 25.6%; P �
0.0001 by the Mann-Whitney U test), and lower platelet counts
(50 � 103/�l versus 149 � 103/�l; P � 0.001 by the Mann-
Whitney U test) compared to Ret-CM patients. White blood cell
subsets were equivalent between Ret�CM and Ret-CM patients,
including the absolute number of neutrophils.

To identify gene pathways that differed in Ret�CM and
Ret-CM patients, we carried out Gene Set Enrichment Analysis
(GSEA) after performing linear regression analysis with gene ex-
pression as the outcome and retinopathy status as the predictor of
interest and adjusting for peripheral parasitemia for each gene.

TABLE 1 Characteristics of children with cerebral malaria by retinopathy status

Characteristic

Value for characteristic in the following patientsa:

P valueRET�CM (n � 64)
RET-CM (n �
33)

Age (mo) 50 (36–65) 58 (31–74) 0.855
Sex (% male) 47 39 0.482
Temp (°C) 39.0 (38.2–39.8) 39.1 (38.1–39.9) 0.775
Respirations (no. of breaths/min) 43 (39–52) 42 (36–52) 0.654
Pulse (no. of beats/min) 147 (133–170) 160 (145–183) 0.143
Parasitemia (no. of parasites � 103/�l) 56 (21–331) 45 (13–84) 0.159
HRP2 (ng/ml) 6,783 (2,602–9,916) 446 (207–604) �0.001
Hematocrit (%) 20.4 (17.5–23.9) 25.6 (22.6–31.7) �0.001
WBC (�103/�l)b 8.3 (6.7–14.9) 10.0 (7.3–13.4) 0.477

Neutrophils 5.2 (3.5–7.5) 5.1 (4.2–8.2) 0.557
Lymphocytes 2.4 (1.4–4.1) 2.1 (1.7–3.1) 0.770
Monocytes 0.8 (0.2–1.6) 1.1 (0.5–1.6) 0.299

Platelets (�103/�l) 50 (33–85) 149 (46–221) �0.001
Death (%) 22 6 0.080
a Patient characteristics at admission of 97 samples by retinopathy status (Ret�CM or Ret-CM). Continuous variables were compared by using the Mann-Whitney U test, and
dichotomous variables were compared by the �2 test and Fisher’s exact tests where appropriate. Values are reported as medians and interquartile ranges (25% and 75%) for
continuous variables and percentages and numbers of observations for dichotomous variables.
b WBC, white blood cells.
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We identified 103 Gene Ontology (GO) pathways that were posi-
tively associated with Ret�CM and 522 GO gene pathways posi-
tively associated with Ret-CM (P � 0.05 by the Kolmogorov-
Smirnov test and a false-discovery rate [FDR] of �0.20), which
are summarized using GO slim categories (Fig. 1; see Table S3AB
in the supplemental material for gene sets significantly enriched in
Ret�CM and Ret-CM patients).

Association of cell adhesion and extracellular matrix path-
ways with Ret�CM. Ret�CM was associated with the GO slim
category “Cell adhesion,” which included cell adhesion, homo-
philic cell adhesion, and calcium-dependent cell adhesion GO
pathways (P � 0.01 and FDR of �0.06; Fig. 1A; see Table S3A in
the supplemental material). These pathways include transcripts
encoding cell adhesion molecules and extracellular proteins, such
as multimerin 1 (MMRN1), P-selectin (SELP), CD9, �-integrins
and �-integrins, which were all higher in Ret�CM patients (P �
0.01 by Student’s t test; Table S4A).

Despite the significantly lower platelet counts in Ret�CM pa-
tients compared to Ret-CM patients, there were higher levels of
platelet-associated transcripts, such as glycoprotein Ib alpha poly-
peptide (GP1BA), glycoprotein IX (GP9), and platelet glycopro-
tein IIIa (GP1BA) (P � 0.01; see Table S4A in the supplemental
material). In addition, there was a positive association of platelet
alpha granule lumen and platelet degranulation GO pathways in
Ret�CM patients (P � 0.01 and FDR of �0.05; Table S3A). The
coagulation cascade was also positively associated with Ret�CM
by Ingenuity Pathway Analysis (IPA) pathway analysis (P � 2.6 �
10�6 by Fisher’s exact test; Fig. S2A), which is consistent with the
microvasculopathy marked by fibrin deposition seen at autopsy
and the procoagulant state reported during CM (11, 28, 29).

The Ret�CM samples demonstrated higher markers of in-
flammation, including an upregulation of GO slim categories
“Cytokine activity” and “Cytokine secretion” and higher tran-
script levels of monocyte chemotactic protein 1 (MCP-1) and
macrophage inflammatory protein 1� (MIP-1�) (P � 0.05; see
Table S4A in the supplemental material). To confirm higher in-
flammatory cytokine levels and further examine additional cyto-
kines associated with CM, we measured plasma tumor necrosis
factor alpha (TNF-�), MCP-1, and interleukin 10 (IL-10) and

found higher concentrations in Ret�CM patients compared to
Ret-CM patients (P � 0.003 by the Mann-Whitney U test; Fig. 2)
(30). In contrast, alpha interferon 2 (IFN-�2), a type I IFN, was
higher in Ret-CM patients compared to Ret�CM patients (P �
0.021). There was no difference in the levels of plasma IFN-�, IL-1
receptor alpha (IL-1Ra), IL-8, and RANTES (regulated upon ac-
tivation, normal T cell expressed and secreted) between Ret�CM
and Ret-CM groups (Fig. S3).

FIG 1 Gene Set Enrichment Analysis identifies distinct host responses in Ret�CM and Ret-CM patients. Ret�CM was associated with upregulation of 103 gene
sets, and Ret-CM was associated with upregulation of 522 gene sets (P � 0.05 and a FDR of �0.20). We used GO Slim categories to summarize the top 100 gene
sets for each group. (A) Ret�CM is associated with cell adhesion and cytokine pathways. (B) Ret-CM is associated with apoptosis and antigen processing
pathways. MHC, major histocompatibility complex; MAPK, mitogen-activated protein kinase.

FIG 2 Cytokines associated with inflammation are higher in Ret�CM pa-
tients, whereas type I interferon is higher in Ret-CM patients. Selected plasma
cytokine levels are shown using a logarithmic scale. (A-C) Higher TNF-�,
IL-10, and MCP-1 concentrations are found in Ret�CM patients than in
Ret-CM patients. (D) IFN-�2 levels in contrast are greater in plasma samples
from Ret-CM patients than in Ret�CM patients. The Mann-Whitney U test
was used for all comparisons. Each symbol represents the value for an individ-
ual patient (51 Ret�CM patients and 25 Ret-CM patients). Black bars denote
median values. Median values that are statistically significantly different by the
Mann-Whitney U test are indicated by asterisks as follows: *, P � 0.021;
**, P � 0.003.
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Extracellular matrix (ECM) pathways were upregulated in
Ret�CM patients, including the proteinaceous extracellular ma-
trix, extracellular matrix disassembly, and ECM GO pathways
(P � 0.01 and FDR of �0.05; see Table S3A in the supplemental
material). Upregulation of cell adhesion and cell matrix pathways
has many potential downstream effects, including platelet activa-
tion, upregulation of cell-surface adhesion molecules, and cyto-
kine signaling, all of which are hallmarks of Ret�CM (31). The
ECM pathways included higher levels of neutrophil transcripts
involved in ECM degradation and inflammation, such as neutro-
phil collagenase (matrix metalloproteinase 8 [MMP8]), skin-
derived peptidase inhibitor 3 (SKALP), human neutrophil elastase
(HNE), cathepsin G (CTSG), and secretory leukocyte peptidase
inhibitor (SLPI) in Ret�CM patients (P � 0.05; see Table S4A in
the supplemental material).

Neutrophil activation and dysfunction in Ret�CM patients.
Activated neutrophils can mediate changes in endothelial cell re-
ceptors and have broad effects on innate and adaptive immunity
though their role in CM has not previously been explored (32–36);
thus, we chose to further examine the role of neutrophils in
Ret�CM. We measured plasma concentrations of neutrophil pri-
mary granule proteins HNE, myeloperoxidase (MPO), and pro-
teinase 3 (PRTN3). These three proteins (HNE, MPO, and
PRTN3) were significantly higher in Ret�CM patients, support-
ing a higher neutrophil activation state in Ret�CM patients (P �
0.001, P � 0.026, and P � 0.001 by the Mann-Whitney U test,
respectively, Fig. 3A to C). There was no significant difference in
the amount of neutrophil secondary granule protein lactoferrin or
neutrophil gelatinase-associated lipocalin (Fig. 3D and E).

To examine functional neutrophil differences in Ret�CM and
Ret-CM patients, we examined the migratory capacity of neutro-
phils isolated from blood samples from patients enrolled in the

study in 2013. Neutrophils isolated from Ret�CM patients had
decreased chemotaxis toward IL-8 and N-formyl-methionyl-
leucyl-phenylalanine [fMLP] compared to neutrophils from
Ret-CM patients (P � 0.002 by the Mann-Whitney U test; Fig.
4A). Elevated levels of cell-free heme have been shown to decrease
neutrophil migratory capacity. Therefore, we examined plasma
heme levels and found significantly higher levels in the Ret�CM
patients than in Ret-CM patients (P � 0.002 by the Mann-
Whitney U test; Fig. 4B) (37).

Activated neutrophils can mediate changes in microvascular
endothelial cells at the site of sequestration through soluble factors
and/or direct contact. Therefore, to determine whether neutro-
phils were present at the site of the infected endothelial tissue, we
examined formalin-fixed, paraffin-embedded brain sections from
Ret�CM and Ret-CM patients (four sections from Ret�CM pa-
tients and five sections from Ret-CM patients) for the presence of
neutrophils. In hematoxylin-and-eosin (H&E)-stained sections,
we found only low levels of intravascular neutrophils in all of the
Ret�CM sections and in four out of the five Ret-CM sections
(Table 2). The Ret�CM sections had more endothelial cells that
appeared to be reactive, and some sections also had acute vascular
necrosis with hemorrhage and edema and fibrin thrombi com-
pared to Ret-CM sections, which is consistent with previous au-
topsy studies (11). We then examined the tissue for the presence of
neutrophil extracellular traps (NETS), which are released by acti-
vated neutrophils and are composed of granular proteins, his-
tones, and DNA (38). To detect NETS, we carried out confocal
microscopy on the brain sections using antibodies to neutrophil
elastase and citrullinated histone H3 and DNA staining and found
no evidence of NETS (data not shown).

In view of the association of neutrophil biology with Ret�CM,
we examined the Duffy null polymorphism which is associated

FIG 3 Plasma neutrophil primary granule protein concentrations are significantly higher in Ret�CM patients than in Ret-CM patients. Plasma levels of
neutrophil primary granule proteins are shown using a logarithmic scale. (A) Human neutrophil elastase, (B) myeloperoxidase (MPO), and (C) proteinase 3
(PRTN3) are significantly higher in Ret�CM patients than in Ret-CM patients. No significant difference in neutrophil secondary granule protein (D) lactoferrin
or (E) neutrophil gelatinase-associated lipocalin was found. Each symbol represents the value for an individual patient (51 Ret�CM patients and 25 Ret-CM
patients). The Mann-Whitney U test was used for all comparisons. Black bars denote median values. Median values that are statistically significantly different by
the Mann-Whitney U test are indicated by asterisks as follows: *, P � 0.010; **, P � 0.001; ***, P � 0.0001.
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with low circulating neutrophil numbers commonly found in in-
dividuals with African ancestry (39). This benign ethnic neutro-
penia results in a state of persistently fewer absolute neutrophils
compared to individuals of European descent. We determined
whether allelic differences existed in samples from 15 Ret�CM
patients (8 of these patients died)and 7 Ret-CM samples. All sam-
ples were homozygous for the Duffy null polymorphism.

Association of Toll-like receptor signaling in Ret-CM pa-
tients. We then examined the transcriptional pathways and tran-
scripts associated with Ret-CM. Ret-CM was associated with stress
response GO slim categories such as “Apoptosis,” “Response to
abiotic stimuli,” “Endosomal formation” and “Stress-activated
MAPK (mitogen-activated protein kinase) cascade” (Fig. 1B). The
GO slim category “Immune response,” which is associated with
Ret-CM, included the Toll-like receptor 1 (TLR1), the TLR4 sig-
naling pathways, the myeloid differentiation factor 88 (MyD88)-
dependent Toll-like receptor signaling pathways, and the Toll/
IL-1R domain-containing adaptor-inducing beta interferon
(TRIF)-dependent Toll-like receptor signaling pathway (P �
0.001 and a FDR of �0.001; see Table S3B in the supplemental
material). Details of the upregulated transcripts within the TLR
signaling pathway are shown in the IPA pathway analysis (P �
4.2 � 10�3 by Fisher’s exact text; see Fig. S2B in the supplemental
material). Ret-CM was also associated with other stress response

pathways, including upregulation of DNA repair, proteosome
complex, and ubiquitin protein ligase activity (P � 0.001 and a
FDR of �0.001; Table S3B).

The heme biosynthetic process pathway was associated with
Ret-CM. GATA-1, a transcription factor necessary for erythroid
development that regulates fetal and adult hemoglobin produc-
tion under both neonatal development and anemia (40), was also
upregulated in Ret-CM patients (see Table S4B in the supplemen-
tal material). We found higher gamma globin transcript levels, a
component of fetal hemoglobin, in Ret-CM patients and con-
firmed the higher levels by quantitative reverse transcription-PCR
(qRT-PCR) (P � 0.013 by the Mann-Whitney U test; see Fig. S4 in
the supplemental material). The sickle cell allele is associated with
increased gamma globin; however, none of the samples (n � 73)
tested from Ret�CM and Ret-CM patients were carriers of the
sickle cell allele (41, 42).

DISCUSSION

CM is a potentially devastating complication of P. falciparum in-
fection. A greater understanding of the molecular mechanisms
leading to cerebral iRBC sequestration and vasculopathy may lead
to the development of adjunctive therapies to improve clinical
outcomes. We compared whole-blood transcriptional profiles
and plasma protein levels in children with Ret�CM and Ret-CM

FIG 4 Ret�CM samples demonstrate impaired neutrophil chemotaxis and higher plasma heme compared to Ret-CM samples. (A) Fold change in neutrophil
chemotaxis to fMLP or IL-8 compared to medium alone was compared for samples from Ret�CM (n � 21) and Ret-CM (n � 7) patients. Neutrophils from
Ret�CM patients showed decreased chemotaxis toward IL-8 and fMLP compared to neutrophils from Ret-CM patients. (B) Plasma heme, an inhibitor of
neutrophil chemotaxis, was higher in Ret�CM patients (n � 56) than in Ret-CM patients (n � 29). Bars represents median values. Median values that are
statistically significantly different by the Mann-Whitney U test are indicated by asterisks as follows: *, P � 0.005; **, P � 0.002.

TABLE 2 Brain microvasculature histopathology findings by retinopathy statusa

Histopathological feature

Score for histopathological feature in the following patientsb:

RET�CM patients RET-CM patients

P1 P2 P3 P4 P5 P6 P7 P8 P9

Malaria pigment, intravascular P P P P 0 0 0 0 0
Intravascular neutrophils 2 2 1 1 1–2 1–2 1 1 0
Vascular necrosis and hemorrhage, acute 0 3 2 2 0 0 0 0 0
Fibrin thrombi, acute 0 2 2 2 0 0 0 0 0
Endothelial cell hypertrophy (reactive) 2 3 3 3 2 1 1 1 1–2
White matter rarefaction (edema) 0 1 1 2 1 1 1 0 1
a Neutrophils were rarely found in Ret�CM and Ret-CM brain histopathology microvasculature. All Ret�CM brain sections had malaria pigment within the cerebral vasculature.
The vasculature in Ret�CM patients was more congested than in Ret-CM patients and typically had more endothelial cells that appeared to be reactive. Three of the four Ret�CM
patients had acute vascular necrosis with hemorrhage and edema, as well as widespread vascular fibrin thrombi.
b The scores for four Ret�CM patients (patients 1 to 4 [P1 to P4]) and five Ret-CM patients (patients 5 to 9 [P5 to P9]) are indicated as follows: P, present; 0, no finding; 1,
minimal; 2, mild; 3, moderate; 4, marked; 5, severe.

Activated Neutrophils in Pediatric Cerebral Malaria

January/February 2016 Volume 7 Issue 1 e01300-15 ® mbio.asm.org 5

mbio.asm.org


and identified higher levels of activated neutrophils and inflam-
mation and upregulation of ECM and coagulation pathways in
Ret�CM patients. In contrast, the Ret-CM patients demonstrated
lower concentrations of inflammatory cytokines and higher
IFN-�2 levels and upregulation of alternative stress response
pathways and TLR pathways. We speculate that multiple dysregu-
lated pathways and higher levels of activated neutrophils and in-
flammation mediate critical changes in endothelial cells and plate-
lets and/or coagulation to favor cerebral sequestration.

We employed whole-blood transcriptional profiling to obtain
a comprehensive analysis of host physiology during CM by reti-
nopathy status. This approach has provided insights into various
infectious and vascular disease mechanisms (43–46). We first
evaluated the transcriptional profiles by unsupervised clustering
and identified three transcriptional clusters that did not fully seg-
regate by retinopathy status. Cluster 2 was associated with high
peripheral parasitemia, lactate levels, respiratory rates, and mor-
tality. This constellation of clinical features has been identified in
previous studies (47). Our association of a distinct transcriptional
pattern with these clinical features may further suggest a patho-
physiologic subtype of CM. The peripheral parasite load contri-
bution to transcriptional variation was also observed in a mild
malaria blood transcriptome study in Benin children, which sug-
gests that the peripheral parasite load plays a dominant role on
host responses irrespective of the severity of disease (48). HRP2
levels were not associated with the clusters. This suggests that the
circulating parasites have an important effect on host blood tran-
scriptional responses, perhaps due to rupture and release of par-
asite antigens.

Our Ret�CM cohort had features known to be associated with
cerebral iRBC sequestration, including lower platelet counts and
hematocrits and higher HRP2 levels and mortality compared to
Ret-CM patients (21, 27). The Ret�CM and Ret-CM cohorts had
similar peripheral blood parasitemias, suggesting that the devel-
opment of vasculopathy is unrelated to control of peripheral par-
asitemia. This is consistent with other studies in regions where
malaria is endemic where the severity of malaria is not associated
with peripheral blood parasitemia (49).

The samples from Ret�CM patients were associated with al-
terations in ECM, dysregulation of the coagulation pathway, and
heightened inflammatory responses, which are consistent with
prior studies of CM (11, 50–53). Furthermore, we now demon-
strate that these changes are associated with Ret�CM compared
to Ret-CM. We also identified upregulation of platelet transcripts
and platelet degranulation pathways in Ret�CM. Platelets are
found in the microvasculature at autopsy in pediatric CM pa-
tients, and iRBCs can adhere to platelet/endothelial cell adhesion
molecules PECAM-1/CD31, suggesting that platelets can facilitate
cerebral iRBC sequestration (17, 54, 55). However, platelets have
also been found to have antimalarial activity (3, 56). The harmful
or protective role of platelets in Ret�CM remains to be deter-
mined. Overall, prior autopsy studies demonstrating fibrin
thrombi and changes in microvascular endothelial cells reflect the
pathways we found associated with Ret�CM (11).

In addition to the characterization of multiple pathways asso-
ciated with Ret�CM, our novel finding is that higher levels of
activated neutrophils are associated with cerebral iRBC sequestra-
tion and vasculopathy in Ret�CM patients. We focused on neu-
trophil biology, as activated neutrophils can mediate changes in
endothelial cell receptors, platelets, and the coagulation cascade,

which may be relevant to CM iRBC sequestration and pathology.
There is scant information on the role of neutrophils in severe
malaria. Prior studies have found an association of elevated serum
lipocalin and HNE concentrations in severe malaria compared to
mild malaria (57). Neutrophil elastase was 2.9-fold higher in
plasma samples from Ret�CM patients, and it can mediate endo-
thelial cell disruption and damage (32–34). Neutrophils produce
superoxide anions in response to P. falciparum, which can de-
crease vascular integrity and endothelial cell function, upregulate
endothelial cell receptors to facilitate iRBC sequestration, and en-
hance platelet activation (58–60). Inhibition of neutrophil-
derived reactive oxygen species by superoxide dismutase or inhi-
bition of neutrophil elastase with ONO-5046 Na could be
examined to determine whether this inhibits iRBC sequestration
to endothelial cells (61).

Plasma PRTN3, a neutrophil product, was fivefold higher in
Ret�CM patients, and it cleaves surface EPCR (35). PRTN3 could
account for the reduced detection of EPCR and increased cerebro-
spinal fluid (CSF) soluble EPCR (sEPCR) reported in CM patients
and contribute to the procoagulant state in Ret�CM patients (24,
51). It is unknown whether neutrophils are an essential compo-
nent in the development of Ret�CM. Neutrophil depletion stud-
ies in the animal model of malaria have shown protection against
experimental cerebral malaria (ECM), though the interpretation
of these data may be limited due to the concomitant potential
depletion of non-neutrophil cell types (62–64). Studies on how
activated neutrophils alter endothelial cells and may enhance
iRBC sequestration are under way.

Our study, like others, found neutrophils in the brain micro-
vasculature only rarely, and furthermore, we did not detect any
NETS (11). The paucity of neutrophils at the site of malaria infec-
tion could be due to their generalized chemotactic dysfunction to
both IL-8 and fMLP. The chemotactic dysfunction may result
from the elevation in heme, which was greater in Ret�CM pa-
tients; however, the factors that mediate neutrophil recruitment
into the microvasculature are complex (37, 65). Neutrophil che-
motactic dysfunction has been previously reported in malaria, and
neutrophils exposed to iRBC microparticles have been shown to
migrate more slowly (66, 67). Neutrophil dysfunction has also
been reported in sepsis and has been linked to inducible nitric
oxide synthase, which can inhibit neutrophil migration (68, 69).
Postmortem analysis cannot completely exclude the possibility
that neutrophils are present locally in the microvasculature in vivo
due to their short cellular life spans, and interestingly, neutrophil
recruitment in the microvasculature has been detected in the Plas-
modium berghei ANKA ECM model during intravital microscopy
(70).

Why neutrophil activation and dysfunction are more elevated
in children with Ret�CM is unclear. Children with Ret�CM had
higher levels of TNF-�, a known inducer of neutrophil activation
(36). Differences in TNF-� promoter polymorphisms or other
host mutations mediating inflammatory responses could be driv-
ing the higher neutrophil activation state in Ret�CM patients
(71–73). We examined only a limited number of host polymor-
phisms that are associated with reductions in risk of severe ma-
laria; none of our patients with CM had �-thalassemia or the sickle
cell trait, which is prevalent in the general population in Malawi
(74, 75). All of the patients in our cohort had the Duffy null poly-
morphism, which is associated with benign ethnic neutropenia.
Why this allele is enriched in individuals with African ancestry is
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unknown, and it is intriguing to consider whether P. falciparum
played a role in its selection (39). The examination of other host
mutations that control neutrophil activation or other aspects of
neutrophil biology, such as the single-nucleotide polymorphisms
in neutrophil-derived �-defensin and neutrophil elastase, could
be examined (76, 77).

The Ret-CM patients provide a valid comparison group, be-
cause they also have severe illness and were infected with P. falci-
parum. These children also manifested an encephalopathy with
similar clinical and laboratory features, but they lacked cerebral
iRBC sequestration, and this is reflected in the lower levels of
HRP2 (27). Ret-CM patients had lower levels of inflammatory
cytokines and displayed a very distinct set of host transcriptional
responses. They exhibited higher induction of TLR pathways
which has been shown in other studies of malaria (78, 79). We also
found that a subset of patients with Ret-CM had higher levels of
fetal hemoglobin transcripts. iRBCs with fetal hemoglobin exhibit
decreased adherence to endothelial cells ex vivo, and further stud-
ies are needed to determine whether iRBCs from Ret-CM patients
have higher fetal hemoglobin protein and are less adherent to
endothelial cells (80).

Ret-CM was associated with higher concentrations of plasma
type I IFN. The type I IFN pathway appears to play an important
role in the host response to malaria, as mutations in the type I IFN
receptor gene are associated with protection to severe malaria, and
type I interferons may modulate changes in the endothelium to
protect against iRBC sequestration (81, 82). In the ECM model,
mice treated with type I interferons have enhanced survival, re-
duced ICAM-1 expression in brain endothelial cells, and reduc-
tion in serum TNF-� concentrations (83, 84). The pathways asso-
ciated with Ret-CM may provide insights into host protective
mechanisms against brain sequestration in CM. Specific parasite
var genes are also associated with brain sequestration (85). Thus,
targeted host response studies combined with parasite var gene
analysis could identify novel mechanisms of protection from ce-
rebral iRBC sequestration.

A limitation of this study is that we examined the patients after
their illness was under way, which restricts our ability to identify
the pathological processes that mediate cerebral iRBC sequestra-
tion. Differences in the number of episodes of malaria prior to
their presentation with CM could underlie the variation in host
responses in Ret�CM and Ret-CM patients, and this information
is unknown in our cohort (49, 86). Longitudinal studies of im-
mune responses and clinical presentation in infant cohorts could
characterize the effect of the timing and number of infections on
the development of protective host responses in CM-related vas-
culopathy.

In conclusion, we have identified host response pathways and
heightened neutrophil activation in Ret�CM patients compared
to Ret-CM patients. A threshold of heightened neutrophil activa-
tion may trigger downstream events to alter endothelial cell recep-
tors and coagulation to facilitate cerebral iRBC sequestration
(Fig. 5). In contrast, children without vasculopathy have very dis-
tinct host responses which may be protective from cerebral iRBC
sequestration. Further studies on the role of activated neutrophils
in vasculopathy and the potentially protective host responses in
Ret-CM children are needed to identify rational targets for ad-
junctive therapy.

MATERIALS AND METHODS
Patient population. This study was conducted in Malawian children be-
tween the ages of 6 months and 12 years with P. falciparum infection and
a Blantyre coma score of �3 enrolled in the Blantyre Malaria Research
Project (BMP) as part of an ongoing longitudinal study of CM (2). Upon
enrollment in the study, a whole-blood sample aliquot was collected for
this substudy, and a fundoscopic exam was performed to determine the
presence of malarial retinopathy (Ret�CM) or absence of malarial reti-
nopathy (Ret-CM) (87). Children were excluded if they had a positive
blood or CSF bacterial culture. Clinical characteristics and laboratory data
were extracted from the study database. During the 2009 transmission
season, 122 patients with CM were enrolled into the BMP. High-quality
RNA from 63 samples was isolated for hybridization and included 38
randomly selected Ret�CM samples and 24 randomly selected Ret-CM
samples. In addition, we collected 83 samples in 2011 and hybridized 26
randomly selected Ret�CM samples and all 9 Ret-CM samples. A total of
98 samples were used for unsupervised hierarchical clustering. One sam-
ple did not have a confirmed retinopathy status and was not included in
the Ret�CM and Ret-CM comparisons. For the neutrophil chemotaxis
experiments, neutrophils were isolated from patients and analyzed on the
day of collection during the 2013 transmission season. Institutional re-
view board (IRB) approvals were obtained from the Albert Einstein Col-
lege of Medicine and Michigan State University and from the University
of Malawi College of Medicine Research and Ethics Committee.

RNA sample collection and microarray data analysis. For whole-
blood transcriptional analysis, 3 ml of whole blood in EDTA was added to
Tri Reagent BD (Molecular Research Center) and frozen at �80°C. The
RNA was isolated as previously described and hybridized to Affymetrix
GeneChip standard 1.0 ST arrays (Affymetrix) (44).

Expression profiles were generated using the robust multi-array aver-
age (RMA) algorithm implemented by GenePattern (88). The data were
normalized using quantile normalization and background corrected. We
collapsed the 32,322 probes to 24,891 genes and removed unannotated
genes. Unsupervised hierarchical clustering analysis was performed in
dChip on 2,000 transcripts with the highest coefficient of variation. To
determine which genes and gene sets associated with Ret�CM and Ret-
CM, we used the full 24,891-gene list and performed linear regression
analysis with gene expression as the outcome and retinopathy status as a
predictor of interest and adjusted for peripheral parasitemia.

Differential gene expression between Ret�CM and Ret-CM samples
was determined by calculating the P value by Student’s t test and the fold
change between samples by using R. We identified significantly differen-
tially expressed genes with a P value less than 0.05. For pathway analysis,
we employed Gene Set Enrichment Analysis (GSEA) (89, 90), the online
CateGOrizer tool (91), and Ingenuity Pathway Analysis (IPA) (Qiagen,
Redwood City, CA). For GSEA, we used an FDR of �0.20 to report a large
number of pathways associated with each clinical phenotype and discuss
pathways with a FDR of �0.06. For the GO slim analysis, we used the top
100 GO gene sets significantly enriched in either Ret�CM or Ret-CM
identified by GSEA and summarized the result with the CateGOrizer on-
line tool.

Plasma protein measurement. Plasma samples were obtained by cen-
trifugation of whole-blood samples collected in EDTA and stored at
�80°C on the day of collection. Plasma protein levels were assessed by
Luminex using the human sepsis magnetic bead panel 3 (lactoferrin, li-
pocalin-2/neutrophil gelatinase-associated lipocalin [NGAL], and neu-
trophil elastase-2/ELA2), the human cardiovascular disease (CVD) panel
2 (MPO, P-selectin, soluble ICAM-1 [sICAM-1], soluble vascular cell
adhesion molecule 1 [sVCAM-1]) and the human cytokine panel (IFN-
�2, IFN-�, IL-1�, IL-1�, IL-1Ra, IL-8, IL-10, IL12p40, MCP-1, MIP-1�,
RANTES, TNF-�, and vascular endothelial growth factor [VEGF]) ac-
cording to the manufacturer’s instructions (Millipore). Luminex panels
were read on a Magpix multiplex reader (Luminex). Cell-free plasma
heme levels were measured by using an enzyme-linked immunosorbent
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assay (ELISA) kit from Cayman Chemical. Plasma PRTN3 was measured
by using an ELISA kit from R&D Systems.

Neutrophil chemotaxis assay. Whole blood was collected in heparin
tubes. Neutrophils were enriched by gradient centrifugation over Ficoll-
Paqueplus (GE Healthcare) within 6 h of blood collection. Red blood cells
were lysed with ACK (ammonium-chloride-potassium) lysis buffer, and
the remaining neutrophils were washed with Hanks balanced salt solution
(HBSS) supplemented with 0.05% heat-inactivated fetal bovine serum
(FBS), and resuspended at a concentration of 107 cells/ml in RPMI 1640
supplemented with 10% FBS.

Neutrophil chemotaxis was assessed using a 48-well chemotaxis
chamber (NeuroProbe). RPMI 1640, fMLP (100 nM), or IL-8 (100 ng/ml)
was loaded into the bottom of the chamber, a polycarbonate filter with
5-�m pores was laid down, and 105 neutrophils in 50 �l of RPMI 1640 was
loaded into the top of the chamber. After 1 h of incubation at 37°C, the
filter was removed, fixed, and stained. Densitometry analysis was per-
formed to determine the relative amount of neutrophil chemotaxis across
the membrane toward the bottom chamber.

Fetal hemoglobin and sickle cell assessment. �-Globin and �-globin
transcripts were quantified by qRT-PCR using methods previously de-
scribed (92). The sickle cell trait was identified by restriction fragment
length polymorphism (RFLP) using BsuI36 restriction enzyme (NEB) on
qRT-PCR products. Genomic DNA (gDNA) from a patient homozygous
for the sickle cell trait was used as a positive control.

Duffy null polymorphism assessment. DNA was extracted from
dried blood spots using a DNeasy blood and tissue kit (Qiagen). The Duffy
null polymorphism was genotyped using the TaqMan single-nucleotide
polymorphism (SNP) genotyping assay and the 7300 fast system (Applied
Biosystems).

Histology. To examine for the presence of tissue neutrophils or
NETS, we examined four histological sections from the brains of
Ret�CM patients and five histological sections from the brains of
Ret-CM patients obtained at autopsy. The sections were fixed in 10%
formalin and embedded in paraffin. Sections were cut and provided
unstained and stained with hematoxylin and eosin (H&E) (19). Images
were captured using an Axioskop2 microscope (Zeiss) equipped with a
40� objective and AxioCam high-resolution microscope camera
(HRc) (Zeiss).

To examine for NETS, antigen-unmasking solution (Vector Labora-
tories) was used to reveal antigens in unstained formalin-fixed paraffin-
embedded brain tissue sections. The antigen retrieval process was per-
formed according to the manufacturer’s instructions. Following antigen
retrieval, the slides were blocked and stained with anti-neutrophil elastase
(C-17; Santa Cruz Biotechnology), or rabbit citrullinated anti-histone H3
(anti-H3Cit) (citrulline 2, 8, and 17; Abcam) followed by species-specific
secondary antibodies coupled with Alexa Fluor dyes (Invitrogen). DNA
was stained using Hoechst 33342 (Sigma). Images were captured using an
Axio Examiner D1 microscope (Zeiss) equipped with a Yokogawa
CSU-X1 confocal scan head with a four-stack laser system (405-nm, 488-
nm, 561-nm, and 642-nm wavelengths) and a 40� water immersion ob-
jective. Images were obtained using Slidebook software (Intelligent Imag-
ing Innovations). Thirty random fields were imaged and analyzed. A
tonsillar abscess similarly processed and stained was used as a positive
control.

Microarray data accession number. Microarray data have been de-
posited in the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.ni-
h.gov/geo/) under accession no. GSE72058.

FIG 5 A model of cerebral iRBC sequestration in pediatric Ret�CM patients. A model for the role of activated neutrophils in the endovascular pathology of
Ret�CM is shown. Our model proposes that multiple systemic factors modulate endothelial cell biology to result in the widespread endothelial iRBC seques-
tration seen in Ret�CM patients. Our data suggest a novel role of activated neutrophils in this process, and under conditions of inflammation and coagulopathy,
the vascular endothelium is modified to facilitate iRBC adherence. Soluble neutrophil factors include the following. (1) Inflammatory cytokines and chemokines
(e.g., TNF-�, MCP-1) (93–96) that stimulate the endothelium to increase cell adhesion molecule expression (e.g., ICAM-1, VCAM-1). (2) Reactive oxygen
species (ROS) and myeloperoxidase (MPO) that impair endothelial nitric oxide (NO) bioavailability (97–99) to promote a pro-inflammatory response, increase
cell adhesion molecule expression, disrupt the endothelial blood-brain barrier, and cause endothelial cell dysfunction. (3) Proteinase 3 (PRTN3) and neutrophil
elastase (HNE) can modify the endothelial extracellular matrix (ECM) (100, 101), and PRTN3 cleaves endothelial protein C receptor (EPCR), an endothelial
cytoprotective and anti-coagulation mediator (102), promoting coagulation cascade activation, fibrin formation, and activated platelet deposition (35) on brain
vascular endothelium. (4) This systemic pro-coagulant and adhesive endothelium state leads to increased recruitment of immune host cell (e.g., monocytes,
white blood cells) recruitment and widespread iRBC sequestration in the microvasculature of the brain and other vital organs, where local and systemic
stimulation of endothelial and white blood cells causes an exacerbated host response leading to and perpetuating the vasculopathy of Ret�CM.
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