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Abstract

Protein classification typically uses structural, sequence, or functional similarity. Here we 

introduce an orthogonal method that organizes proteins by ligand similarity, focusing here on the 

class A G protein-coupled receptor (GPCR) protein family. Comparing a ligand-based dendogram 

to a sequence-based one, we sought examples of GPCRs that were distantly linked by sequence 

but neighbors by ligand similarity. Experimental testing of compounds predicted to link three of 

these new pairs confirmed the predicted association, with potencies ranging from the low-

nanomolar to low-micromolar. We then identified hundreds of non-GPCRs closely related to 

GPCRs by ligand similarity, including the CXCR2 chemokine receptor to Casein kinase I, the 

cannabinoid receptors to epoxide hydrolase 2, and the α2 adrenergic receptor to phospholipase D. 

These, too, were confirmed experimentally. Ligand similarities among these targets may reflect a 

chemical integration in the time domain of molecular signaling.

Introduction

Since the molecular biology revolution, proteins have been related to each other 

bioinformatically by either sequence or structural similarities.1,2 When we seek to 

understand the ligand recognition of a protein or the specificity of a drug or a reagent, we 

typically consider those proteins that are related structurally, functionally3, or by sequence4. 

Correspondingly, methods and databases of protein families such as Pfam5 and TRIBE-

MCL6 rely on multiple sequence alignments and machine learning to classify protein 

families.

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding Authors: Brian Shoichet: shoichet@cgl.ucsf.edu, phone: 415-514-4126, fax: 415-514-4126. Bryan Roth: 
bryan_roth@med.unc.edu, phone: 919-966-7535, fax 919-843-5788.
3These authors contributed equally to this work.

Author Contributions
H.L performed the calculations. M.F.S performed experiments. B.L.R. reviewed experimental observations. H.L. and B.K.S drafted 
the manuscript. M.F.S and B.L.R extensively edited the manuscript. B.K.S. and B.L.R. were provoked by editorial comments to 
explore the chemo-evolutionary constraints and time-domain signaling implied by this work.

Competing Financial Interest
BKS declares a competing financial interest: he is the founder of SeaChange Pharmaceuticals, which uses chemoinformatics for target 
prediction. All other authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
Nat Methods. 2013 February ; 10(2): 140–146. doi:10.1038/nmeth.2324.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ligand recognition does not always respect such molecular biology metrics. For instance, 

acetylcholine and serotonin signal both through G protein-coupled receptors (GPCRs) and 

ion channels, which are unrelated by sequence or structure. Both ligands are also recognized 

by specific transporters, which are, in turn, are unrelated to GPCRs and ion channels. In 

addition, drugs like alosetron, which target the ionotropic serotonin receptors (HTR3), also 

modulate the metabotropic serotonin receptors (e.g. HTR2B, HTR4),7,8 while serotonergic 

GPCR-targeting drugs also modulate the serotonin transporter.9 Ligands that modulate bile 

acid nuclear hormone receptor (NR1H4) also modulate the G protein-coupled bile acid 

receptor (GPBAR1)10. Inhibitors of enzymes, from reverse transcriptases to kinases to 

proteases, can also modulate GPCRs and nuclear hormone receptors.9,11–13

We thus wondered how a quantitative ligand-based organization of pharmacological targets 

might differ from the more familiar sequence- and structure-based approaches. It is easy, 

after all, to build a “just-so” story with a few selected cases, such as acetylcholine and 

serotonin, but to understand whether a ligand-based relationship among targets will 

substantially differ from a sequence-based one, the two schemes must be compared globally 

and quantitatively. Since sequence and structure comparisons are restricted to targets within 

a single, evolutionarily related target family, we will focus our attention on class A 

(rhodopsin-like) GPCRs. These targets are recommended by their abundance--about 700 

genes in the human genome14— and the substantial number that have annotated ligands.

Here we ask the following questions: how different is a sequence-based organization of the 

class A GPCRs from one based on ligand similarity? Do the differences explain non-obvious 

aspects of target pharmacology and drug discovery? Can we use the ligand-based 

organization prospectively, to predict and test new associations among previously unrelated 

targets? Whereas we and others15–17 have used ligand-based metrics to predict the activities 

of individual drugs against off-targets, this is, to our knowledge, the first effort to compare 

pharmacological relationships across an entire family of targets. The associations that 

emerge are startling: some GPCRs that are distant by sequence identity become neighbors 

by ligand similarity, while others that are neighbors by sequence are pushed far apart by the 

dissimilarity of their ligand sets. The ligand-based target similarities also suggest new 

associations among receptors that are, for the first time, predicted and demonstrated to share 

ligands. Because these associations are based on ligand similarities, they may be expanded 

to explore the polypharmacology between GPCRs and non-GPCRs, which are wholly 

unrelated by sequence and structure. An emergent property of these associations is that they 

recapitulate the activities of the cognate primary messengers, which also cross major target 

boundaries. This may reflect relationships in the time domain of molecular signaling, where 

ligand chemistry, not receptor sequence, is conserved.

Results

There were 146 class A GPCRs with at least six ligands in the ChEMBL database, which 

annotates ligands to targets based on literature reports.18 On average each GPCR had 608 

ligands, with a median of 380. Whereas this list captures a minority of the roughly 700 class 

A GPCR members14, all of the major sub-families are included, such as the biogenic amine 
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receptors, the peptide-receptors, the lipid-activated GPCRs, and receptors responding to 

protein ligands.

These GPCRs were organized by sequence and by ligand similarity. To focus on the part of 

the sequence most implicated in ligand binding, we only used those residues previously 

mapped to one of 43 orthosteric sites.19 Sequence distances between any pair of targets was 

measured using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

algorithm,20 and rendered using FigTree (http://tree.bio.ed.ac.uk/software/figtree/) (Fig. 1a); 

notwithstanding the focus on sequence identity in the binding site, the relationships that 

emerge resemble those based on dendograms using full receptor sequence identity (e.g., 

http://gpcr.scripps.edu/).

To associate receptors by ligand similarity, ligands were represented by topological 

fingerprints, which are bit strings that reflect the presence or absence of chemotypes and 

their chemical environment in the ligand. The similarity of these fingerprints was compared 

for all pairs of molecules in each ligand-set for each pair of receptors, and the overall 

similarity of these sets was compared to an expected random similarity using machinery 

drawn from the sequence algorithm Basic Local Alignment Search Tool (BLAST). 

Similarly, an expectation value (E-value) can be calculated, using the Similarity Ensemble 

Approach (Methods).11,21 Ligand-based dendrograms, too, were calculated using FigTree, 

with the distance between pairs of GPCRs quantified by the cosine angle of their SEA E-

values (Fig 1b).

In the sequence-based dendrogram, the relationships among the GPCRs are as expected. The 

biogenic amine receptors, including the adrenergic, dopaminergic and serotonergic GPCRs 

largely cluster together, as do peptidic receptors such as the chemokines and melanocortins, 

as do the lipid responding GPCRs. At a finer resolution, some peculiar divergences and 

associations begin to appear. For instance, the cysteinyl leukotriene and leukotriene B4 

receptors are separated from not only the other lipid-recognizing GPCRs, but also from each 

other, even though they are a part of the same 5-lipoxygenase pathway involved in airway 

inflammation.

Compared to the sequence-based organization, the ligand-based dendrogram seems 

victimized by almost grotesque rearrangements. The muscarinic receptors shift away from 

the other biogenic amine GPCRs and toward the chemokine receptors, with which they 

share very little orthosteric site sequence identity (9–21% identity across all subtypes). 

Equally perplexing, the β-adrenergic receptors separate from the α-adrenergic receptors and 

indeed other biogenic amine GPCRs, moving closer to the cannabinoid lipid receptors and 

melatonin receptors. Other rearrangements, though covering just as much distance, seem 

easier to reconcile with the biology they control. Thus, the cysteinyl leukotriene and 

leukotriene B4 receptors move much closer to each other than they were by sequence, and 

now cluster with other lipid GPCRs, consistent with their roles in the same leukotriene 

inflammatory pathway.

Though these rearrangements seem superficially perplexing, their basis may be grasped by 

comparing the ligands that bind to these targets. Many GPCRs that are dissimilar by 
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orthosteric site sequence bind similar ligands, to the point where exactly the same ligands 

are sometimes shared between them (Supplementary Table 1). For example, the opioid and 

somatostatin receptors shift closer to the biogenic amine receptors. Despite their sequence 

differences, these peptidic receptors often bind aminergic molecules. The SSTR5 

somatostatin 5 receptor and the HRH1 histamine H1 receptor, for instance, share only 33% 

sequence identity in their binding sites, even though their ligand sets resemble one another 

(E-value of 9.9 × 10−8; Supplementary Table 1). Indeed, the two receptors are modulated by 

several identical ligands22 (Supplementary Table 1).

Conversely, some receptors, like the muscarinic, the β-adrenergic, and the chemokine 

families, separate from apparently cognate GPCRs. Based on ligand similarity, the 

muscarinic receptors move closer to peptidic GPCRs, such as neuropeptide Y and 

chemokine receptors, and to lipid GPCRs, like sphingosine phosphate and prostaglandin 

receptors, and away from the biogenic amine receptors. Thus, whereas the CHRM1 

muscarinic acetylcholine receptor M1 and the MCHR1 Melanin-containing hormone 

receptor 1 share only 26% sequence identity in the binding site, their SEA E-value is 

8.3×10−7 and they share several sub-micromolar ligands23 (Supplementary Table 1). 

Meanwhile the muscarinics share few ligands, and little ligand-set similarity, with most 

bioaminergic receptors. The separation of the β- and α-adrenergics is explained by the 

divergence of their ligand sets. The two classes of receptors share adrenaline and 

noradrenaline as primary messengers, and have sequence identities ranging from 49% to 

63%, but once past the small catecholamines their ligands diverge: the β adrenergic ligands 

largely resemble isoproterenol, while the α adrenergic antagonists vary widely, often 

characterized by larger compounds with disparate scaffolds. Meanwhile, the chemokine 

receptors, which form an essentially contiguous family by sequence, are split into two 

groups by ligand similarity. One group, characterized by CXCR4, CCR1, CCR2, and CCR5, 

move closer to the biogenic amine receptors, while CCR3, CCR8 and CXCR3 move closer 

to the muscarinics and the neuropeptide Y receptors. For instance, though CCR5 and the 

CHRM2 muscarinic acetylcholine receptor M2 share only 16% sequence identity in the 

binding site, they share over 30 antagonists in several different ligand series (Supplementary 

Table 1).

Emboldened by these observations, we asked if the new associations predict crosstalk 

between targets not formerly known to share ligands. Many of the new neighbors in the 

ligand-based dendrogram share not even a single ligand, neither in ChEMBL nor in the 

literature, but nevertheless are highly related by the SEA E-values of their ligand lists. One 

such was the link between the OPRK κ opioid receptor and the HTR2B 5-HT2B serotonin 

receptor ligands, which resemble each other with a SEA E-value of 9.9 × 10−8 though their 

sites share only 28% sequence identity. A SEA-screen of the ZINC database24 suggested 

that compound 1 was similar to both the OPRK and HTR2B ligands. Upon in vitro testing, 

compound 1 had a Ki of 0.9 μM to HTR2B and 1.0 μM to OPRK (Fig. 2, Table 1). We note 

that after these experiments were concluded, another series of compounds were found by 

some of us, in an unrelated project, that also inhibited both targets. The chemical series that 

did so is unrelated to that described here25.
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If there have been many previous examples of ligand crosstalk between peptide and 

bioamine GPCRs, there are many fewer between peptide- and lipid-recognizing GPCRs. We 

were therefore interested to observe an association between the NPY5R neuropeptide Y 

receptor 5 and CNR2 cannabinoid receptor 2. Whereas their binding sites share only 7% 

identity, they had a SEA E-value of 1.1 × 10−9. A particular CNR2 agonist, compound 2, 

resembled NPY5R ligands and was commercially available (Table 1). Compound 2 was 

found bind to NPY5R with an IC50 of 190 nM (Ki = 8.5 nM), similar to its CNR2 potency 

(EC50 = 140 nM)26. NPY5R was also linked to the MTNR1B Melatonin receptor 1B, in yet 

another GPCR sub-clade, with a SEA E-value of 5.3 × 10−13. Here too, we found a 

particular MTNR1B agonist (EC50 = 14 μM), compound 3, that we measured to antagonize 

NPY5R with a Ki of 1.9 μM.

We next asked how many of the GPCRs were strongly related by ligand similarity to a 

sequence-unrelated target. Interrogating all of the ChEMBL ligand sets, there were 485 non-

GPCRs that resembled at least one GPCR in our dendrogram with an E-value of 1 × 10−10 

or better (lower). Similarity values ranged from this level, for the ligand sets of the EDG7 

lysophosphatidic acid GPCR and the enzyme Arachidonate 12-lipoxygenase (LOX12), to 3 

× 10−314 for the ligand sets of the NTSR1 neurotensin 1 GPCR and Sortilin (SORT). These 

non-GPCR targets covered most protein families including ion channels, enzymes, kinases, 

and glycoproteins. Indeed, there were so many non-GPCR to GPCR links that clarity only 

allowed us to show up to two for any given GPCR (Fig. 3).

Here again, many highly-related pairs shared no single ligand between them, and for a few 

we predicted and tested ligands that would bind to both targets. We started with CXCR2 and 

casein kinase 1 (KC1G1), linked by a SEA E-value of 1.3 × 10−15, and identified an 

inhibitor of the kinase that resembled the CXCR2 ligands. Compound 4 was tested and 

found to be an agonist for CXCR2 with an EC50 of 254 nM (Table 2, Fig. 4). More 

ambitiously, we searched for a compound that can inhibit a GPCR and an enzyme in the 

same pathway. One such link was between the α2 adrenergic receptors and their 

downstream phospholipase D1 and D2 (PLD1 and PLD2) enzymes27. Compound 5, a 

known phospholipase inhibitor, was tested against three α2 adrenergic receptor subtypes and 

had a Kd of 556 nM to the α2c sub-type (Table 2, Fig. 4).

Finally, we sought targets implicated not only in the same pathway, but also in a similar 

clinical indication. Among these were the cannabinoid receptors and the enzyme epoxide 

hydralase 2 (HYES), whose ligand sets have an E-value of 1.3 × 10−18. Intriguingly, both 

proteins are cardioprotectant targets and both are in the endocannabinoid pathway (epoxide 

hydrolase 2 deactivate epoxidated endocanniboids).28 We identified compound 6, an HYES 

inhibitor, as a potential CNR2 cannabinoid receptor 2 ligand. On testing, compound 6 had Ki 

values of 3.6 and 2.3 μM against CNR1 and CNR2, respectively (Table 2, Fig. 4).

Discussion

Relationships among targets are typically visualized by sequence-based family trees, and it 

is common to infer from these trees both on- and off-target pharmacology29. A key 

observation from this study is that when GPCRs are compared by ligand similarity, the 
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arborization of the family tree changes dramatically. Targets that are neighbors by sequence 

are separated, while targets that are distant by sequence become neighbors. This is reflected 

in targets that unexpectedly respond to the same drugs and reagents, and can predict 

sequence-distant neighbors that will share ligands where none were previously known. The 

predicted and confirmed cross-activity of ligands against the κ opioid and serotonin 

receptors, the cannabinoid and neuropeptide Y receptors, and the neuropeptide Y and 

melatonin receptors, is doubly unexpected. These pairs of targets not only share little residue 

identity in their orthosteric sites, from 7% to 28%, but they cross target boundaries among 

the GPCRs: from peptide to biogenic amine, lipid to peptide, and peptide to neutral small 

molecule. More startling still is the observation that many non-GPCRs strongly resemble 

GPCRs by ligand similarity (Fig. 3, Table 2). Whereas some of this undoubtedly reflects the 

conservatism of medicinal chemistry, it is impossible to look at the penumbra of non-

GPCRs that are strongly associated with GPCRs (Fig. 3) without wondering whether a more 

basic principle might be at work.

As sequence similarities reflect the action of evolution on proteins, the ligand-based 

dendograms may reflect the chemical pressures against which the receptors have evolved. 

Many primary signaling molecules themselves target receptors unrelated by sequence or 

structure. For instance, serotonin modulates both the HTR3 receptor, an ion channel, and the 

HTR1-2,4-7receptors, which are GPCRs. Acetylcholine targets the nicotinic receptors (ion 

channels) and the muscarinic receptors (GPCRs). Glutamate and GABA similarly both 

signal ionotropically and metabatropically. Leukotriene B4 activates GPCRs and the nuclear 

hormone PPARs. Estrogen binds to not only its eponymous nuclear hormone receptor but 

also to GPR30 (Supplementary Table 2).30

The promiscuity of primary signaling molecules reflects two constraints in biological 

signaling. First, cells respond to signals in multiple time domains: the millisecond, the 

second to minute, and the hour-to-day. To achieve this temporal resolution, they will often 

use ion channels, GPCRs, and nuclear hormone receptors, respectively. Second, these 

responses are evoked by a small repertoire of chemical messengers; once the machinery to 

synthesize, degrade, and regulate molecules like serotonin, acetylcholine, and estrogen is 

created, it is costly to change and becomes fixed.31 On the other hand, it is relatively easy 

for evolution to repurpose an ion channel to recognize serotonin or acetylcholine, or a GPCR 

to recognize glutamate. Thus, the ability of receptors across major sequence and fold 

boundaries to recognize related ligands, which is captured in the ligand-based dendograms, 

may reflect a core chemo-evolutionary constraint in molecular signaling. If true, then probe 

and drug polypharmacology is neither epiphenomenal nor capricious, but reflects the 

evolution of signaling relationships in the time domain. Pragmatically, the associations 

among unrelated targets, revealed in the ligand-based dendograms, may suggest joint targets 

for a single molecule. Known examples are drugs that bind to both ionotropic and 

metabatropic serotonin receptors, like alosetron, or that bind to both muscarinic receptors 

and acetylcholinesterase, like flaxedil (Fig. 3). Meanwhile, the discovery that compound 6 
modulates both cannabinoid GPCRs and epoxide hydrolase 2 is consistent with a role for 

this enzyme in the degradation pathway of the endocannabinoids, potentially arresting their 

signaling.28
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Several weaknesses in this approach merit airing. Most prominently, a ligand-based view 

remains inference-based: targets for which no ligands are known are invisible to it, and even 

when ligands are known they can never be known perfectly, unlike the protein sequence. 

Mechanically, SEA remains imperfect, here, as previously,7,12,32 the method had a 50% 

false-positive rate, with six of twelve predictions falsified by experiment (Supplementary 

Table 3). Pharmacologically, finding a ligand to modulate a GPCR and an enzyme in vitro 

does not guarantee intracellular enzyme inhibition in vivo, though GPCR activity of an 

enzyme inhibitor may be more likely. Also, we do not currently distinguish among agonists 

and antagonists, nor even between allosteric and orthosteric ligands; the conflation of these 

for a single receptor weakens the signal on which SEA operates. Meanwhile, in some 

protein families, such as the kinases, ligand-based and sequence-based dendrograms may 

resemble each other more closely than do the GPCRs, since the binding site environments 

are more similar and the proteins bind a single or closely related native ligand.

These cautions should not obscure the central observation from this study: a systematic and 

comprehensive ligand-based receptor organization differs startlingly from the more familiar 

sequence-based view. If this approach is weakened by ligand-based inference, it is also true 

that at least one other chemoinformatic approach, using only partially overlapping ligands 

and GPCRs, results in a dendogram with receptor associations and disassociations that 

resemble those observed here29. Pragmatically, ligand-based organizations of receptors offer 

a guide to the off-targets of tool and therapeutic molecules that is orthogonal to, but 

sometimes as illuminating as, the sequence-based view. More broadly, the association of 

485 non-GPCRs with GPCRs by ligand similarity suggests a model for polypharmacology 

that reflects to the roles of primary messengers in cellular signaling. A virtue of this model is 

that it leads naturally to testable hypotheses, articulated through the very molecules that are 

the basis of the ligand-based organization. Some of these are suggested by the dendrograms 

investigated here (Fig. 3).

Online Methods

Sequences and structural alignment

The initial transmembrane sequence alignments were downloaded and filtered for human 

sequences only. The 43 binding site residues described by Gloriam DE et. al.19 were then 

extracted for all human sequences, maintaining the sequence alignments.

Annotated ligands

The ligands and affinity data were downloaded from ChEMBL (version 7) and filtered by 

their binding affinity values to create sets of ligands for targets if their IC50, Kd, Ki or EC50 

were 10μM or less. Ligands were also filtered by molecular weight (under 700), nitrogen 

count (fewer than eight) and oxygen count (fewer than eight) to remove large molecules and 

peptides. The ChEMBL database does not explicitly differentiate between agonists and 

antagonists for its ligands and here we combine both into the same ligand-set for each GPCR 

without differentiating their functional activity. 146 human GPCR sets and 2090 non-GPCR 

protein sets were assembled that each contained at least five annotated ligands and were 

used to compare using SEA.
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Protein similarity calculations

Binding site sequence alignments were used to calculate relative distances between all 146 

GPCRs that had ligand sets associated with them. The Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) algorithm was used in MEGA 3.133 to produce the pairwise 

distance matrix between all GPCRs. Similarities ranged from just 5% to 88% identity in the 

binding sites with an average of 23%.

The ligand sets were also used to calculate relative distances between all 146 GPCRs by 

using SEA11 to obtain E-values between each GPCR. Each ligand was broken down into 

molecular fingerprints; here Extended Connectivity Fingerprints (ECFPs) 34 were used. 

Briefly, ECFPs are circular topological fingerprints that represent molecular structures by 

small atom neighborhoods or substructures, along with their physical chemical properties. 

The similarity between any pair of bit strings (molecules) is quantified by the bits they share 

in common divided by the total number of bits, via the Tanimoto coefficient (Tc)35. The 

sum of all Tc values over a certain cutoff between all the molecules in the two target-ligand 

sets is then calculated and compared to what we would expect for two sets of ligands, of the 

same set size, randomly drawn from ChEMBL. The ratio of the observed sum of Tc values 

to that expected at random is divided by the standard deviation of the random similarity to 

give a Z-score; when plotted against an extreme value distribution, this gives an expectation 

value (E-value). The E-values were then logged and used to calculate the pairwise cosine 

angle. The cosine angle was used as the distance metric, since E-values are not necessarily 

completely correlative with similarity, rather we use them as more of a binary measure with 

E-values less (better) than 1×10−5 as significant and anything greater (worse) taken as 

insignificant. Therefore, using the cosine angle, the magnitude of the E-value is not over-

weighed such that E-values of 1×10−300 and 1×10−20 are treated about the same since they 

are both significant E-values. Similarity between GPCRs and non-GPCRs were calculated in 

the same way, using the annotated ligand sets as surrogates for the protein to calculate SEA 

E-values. The two lowest E-values between each GPCR and the non-GPCRs were retained.

Dendrograms

Using the similarity distance matrices of the binding site sequences and ligand sets, 

dendrograms were constructed using FigTree. The distance matrices were inputted in 

Newick format and a radial tree format was used for the layout. The spread was increased to 

better distinguish the proteins that are highly similar to each other. Nodes were further 

expanded out in Adobe Illustrator for legibility and color coded based on the chemistry of 

their endogenous ligands, e.g. peptide, bioamine, lipid, and so forth. The two non-GPCRs 

with the lowest E-value was drawn on using Adobe Illustrator and linked to their respective 

GPCRs. The non-GPCRs in bold and italicized represent those non-GPCRs that have a 

known shared ligand with the GPCR.

Radioligand competition binding assays

Standard techniques were used 36 at the NIMH Psychoactive Drug Screening Program.
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CXCR2 β-Arrestin Recruitment Tango Assay

Recruitment of β-arrestin to agonist-stimulated CXCR2 receptors was performed using a 

previously described “Tango”-type assay. 37 Briefly, HTLA cells stably expressing β-

arrestin-TEV protease and a tetracycline transactivator-driven luciferase were plated in 10-

cm dishes in DMEM containing 10% FBS and transientlytransfected (via calcium 

phosphate) with 10 μg of a CXCR2-V2-TCS-tTA construct. The next day, cells were plated 

in white, clear-bottom, 384-well plates (Greiner; 15,000 cells/well, 50 μL/well) in DMEM 

containing 1% dialyzed FBS and incubated overnight at 37°C. The following day, cells were 

challenged with 10 μL/well of reference agonist or CXCR2 test ligand (CXCL6 and 

CXCL8) at evenly distributed concentrations that ranged from 6 pM to 60 μM prepared in 

HBSS, 20 mM Hepes, pH 7.4, and 6% DMSO (final ligand concentrations are 1 pM to 10 

μM, final DMSO concentration is 1%). After 18 h, the medium was removed and replaced 

with 1× BriteGlo reagent (Promega), and luminescence per well was read using a TriLux 

plate reader (1 s/well). Data were normalized to vehicle (0%) and reference compound 

(100%) controls and regressed using the sigmoidal dose-response function built into 

GraphPad Prism 5.0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dendrograms of human GPCRs with annotated ligands from ChEMBL. Organization based 

on (a) sequence similarity in the binding site and (b) ligand set similarity based on SEA E-

values. Color coding is based on chemistry of their endogenous ligands (i.e. Bioamines 

(blue), melatonins (gold), lipids (green), peptides (black), purinergics (dark blue), 

adenosines (light blue), orphans (red).).
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Figure 2. 
Dose-response curves of new GPCR cross-activities. (a–e) Radioligand competition binding 

assay: compound 1 at HTR2B (a) and OPRK (b), compound 2 at NPY5R (c), compound 3 
at MTR1B (d) and NPY5R (e). Data represent mean values ± s.e.m, performed on triplicate 

experiments.
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Figure 3. 
Non-GPCRs (orange) highly-related to particular GPCRs by ligand similarity (color code is 

as in Figure 1). Bolded targets have known ligands that bind to both the GPCR and non-

GPCR target. Links that share known messengers are labeled in black in parenthesis.
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Figure 4. 
Dose-response curves of new GPCR cross-activities with non-GPCRs. Testing new GPCR 

cross-activities with non-GPCRs. β-Arrestin Recruitment Tango Assay: compound 4 at 

CXCR2 (a), competition binding assay: compound 5 at α2c Adrenergic receptor (b), 

compound 6 at CNR1 (c) and CNR2 (d). Data represent mean values ± s.e.m, performed on 

triplicate experiments.
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