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Abstract. In previous work we characterized a brain 
derived collapsing factor that induces the collapse of 
dorsal root ganglion growth cones in culture (Raper 
and Kapfhammer, 1990). To determine how the growth 
cone cytoskeleton is rearranged during collapse, we 
have compared the distributions of F-actin and 
microtubules in normal and partially collapsed growth 
cones. The relative concentration of F-actin as com- 
pared to all proteins can be measured in growth cones 
by ratioing the intensity of rhodamine-phalloidin 
staining of F-actin to the intensity of a general protein 
stain. The relative concentration of F-actin is de- 
creased by about one half in growth cones exposed to 
collapsing factor for five minutes, a time at which 
they are just beginning to collapse. During this period 
the relative concentration of F-actin in the leading 
edges of growth cones decreases dramatically while 
the concentration of F-actin in the centers decreases 
little. These results suggest that collapse is associ- 

ated with a net loss of F-actin at the leading edge. 
The distributions of microtubules in normal and col- 

lapsing factor treated growth cones were examined with 
antibodies to tyrosinated and detyrosinated isoforms of 
a-tubulin. The tyrosinated form is found in newly 
polymerized microtubules while the detyrosinated form 
is not. The relative proximal-distal distributions of 
these isoforms are not altered during collapse, suggest- 
ing that rates of microtubule polymerization and de- 
polymerization are not greatly affected by the presence 
of collapsing factor. An analysis of the distributions of 
microtubules before and after collapse suggests that 
microtubules are rearranged, but their polymerization 
state is unaffected during collapse. These results are 
consistent with the hypothesis that the brain derived 
collapsing factor has little effect on microtubule poly- 
merization or depolymerization. Instead it appears to 
induce a net loss of F-actin at the leading edge of the 
growth cone. 

N 
'EUI~ONAL growth cones navigate on highly repro- 

ducible and cell specific pathways. Their trajec- 
tories are controlled by cues in their local environ- 

ment, and these cues are likely to be either permissive or 
repulsive in nature. Most of the known permissive molecules 
are thought to act as adhesion molecules (e.g., Burmeister 
and Goldberg, 1988; Hammarback et al., 1988) or chemoat- 
tractants (e.g., Gundersen and Barrett, 1980; Lumsden and 
Davies, 1983), but little is known about the mechanisms 
through which repulsive molecules might function. 

We are characterizing a growth cone collapsing activity 
from chick brain that we believe may act as a repulsive guid- 
ance cue. This activity can be recovered from membrane 
preparations made from both embryonic and adult central 
nervous system tissues, but not from primary fibroblasts or 
liver cell membranes. Its effects are rapid, reversible, and in- 
dependent from the substratum on which the growth cones 
crawl. The activity is basic, trypsin sensitive, heat labile, 
binds to several lectins, and has an apparent molecular weight 
of about 100 kD (Raper and Kapfhammer, 1990; Luo, Y., 
D. Raible, and J. A. Raper, unpublished data). 

Since the brain derived collapsing factor induces a re- 
versible and dramatic alteration in structure, we hypothe- 
sized that its effects may be mediated by changes in the organ- 
ization of the cytoskeleton. Rearrangements of cytoskeletal 
components, particularly actin and microtubules, are thought 
to alter cell shape in a wide variety of systems. Actin in par- 
ticular is thought to play a key role in the process of cell mo- 
tility (review by Cooper, 1991). Actin is one of the major cyto- 
skeletal components of growth cones. Fibrillar (F) ~ actin 
extends as a meshwork throughout lamellipodia and is densely 
bundled in filopodia (Yamada et al., 1970; Spooner and Hol- 
laday, 1981; Letourneau and Ressler, 1983; Forscher and 
Smith, 1988). F-acfin is continuously polymerized and depoly- 
merized in motile cells and growth cones. It appears to be 
preferentially polymerized at their leading edges (Forscher 
and Smith, 1988; Okabe and Hirokawa, 1991; Symons and 
Mitchison, 1991), and is then translocated centripetally, or 

1. Abbreviations used in this paper: BB, blocking buffer, DRG, dorsal root 
ganglia; F, fibrillar. 
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left behind as the leading edge advances (Wang, 1985; Okabe 
and Hirokawa, 1991; Theriot and Mitchison, 1991). 

Cytochalasins, a group of plant alkaloids that inhibit actin 
polymerization, paralyze normal growth cone motility and 
inhibit axonal extension (Yarnada et al., 1970; Letourneau 
et al,, 1987). Growth cones treated with cytochalasins in vivo 
or in vitro advance extremely slowly and have abnormal mor- 
phologies that lack lamellipodia and filopodia. This suggests 
that actin polymerization is required for normal motility 
(Marsh and Letourneau, 1984; Bentley and Toroian-Raymond, 
1986). Cytochalasin B treatment of growth cones grown on 
polylysine coated coverslips can cause an F-actin free zone to 
form behind the leading edges of lamellipodia (Forscher and 
Smith, 1988). Removal of the drug causes F-actin to fill in, 
starting from the leading edge and then moving toward the 
centers of  growth cones. This study further supports the hy- 
pothesis that actin is constantly polymerized at the leading 
edges of growth cones and is then translocated towards their 
centers. It seems likely that this actin cycling could drive the 
advancement of  motile cells and growth cones (Hill and Kirsch- 
ner, 1982; Theriot et al., 1992), particularly if the F-actin 
is linked through cell surface receptors to a substratum that 
supports growth (Smith, 1988; Egelhoffand Spudich, 1991). 

Microtubules are another major cytoskeletal component of 
growth cones that may have a role in controlling their motil- 
ity. Microtubules are bundled in axons and splay out within 
the larnellipodia (e.g., Letourneau and Ressler, 1983; Gordon- 
Weeks et al., 1989). The distal tips of microtubules often reach 
the leading edges of  lamellipodia and occasionally enter tiM- 
podia (Shaw et al., 1981; Spooner and Holladay, 1981; Letour- 
neau and Ressler, 1983; Tanaka and Kirschner, 1991). Growth 
cones contain a large soluble pool of  tubulin (Gordon-Weeks 
and Lang, 1988; Gordon-Weeks et al., 1989) which can poly- 
merize and depolymerize within the growth cones (Letourneau 
and Ressler, 1984; Barnburg et al., 1986; Gordon-Weeks, 1987; 
Gordon-Weeks et al., 1989). Individual microtubules have 
been observed to rapidly lengthen or shorten in living growth 
cones, perhaps even invading some regions of  a growth cone 
in seeming preference to others (Tanaka and Kirschner, 1991). 
It has been proposed that the preferential polymerization or 
stabilization of microtubules in one region of a growth cone 
may lead to the growth cone's selective protrusion and advance- 
ment in that area (Gordon-Weeks, 1991; Sabry et al., 1991). 

Agents that interfere with microtubule assembly affect 
growth cone motility and block axonal extension in culture. 
Colchicine and its analogue colcemid bind noncovalently to 
tubulin dimers, prevent assembly, and thereby create equilib- 
rium conditions favorable for the depolymerization of microtu- 
bules (review by Hamel, 1990). Both drugs halt axonal exten- 
sion (Seeds et al., 1970; Yamada et al., 1970; Daniels, 1971), 
and their primary effect has been suggested to be on growth 
cones (Bamburg et al., 1986; Keith, 1990). In contrast to 
agents that lead to microtubule depolymerization, taxol facil- 
itates polymerization by lowering tubulin's critical concentra- 
tion for polymerization (Schiff et al., 1979). Axons exposed 
to micromolar concentration of  taxol cease to elongate and 
their growth cones round-up and become immob'dized. Micro- 
tubules in these growth cones have a distinctive abnormal or- 
ganization. They are densely packed, tangled, and looped back 
upon themselves (Letourneau and Ressler, 1984; Gordon- 
Weeks et al., 1989; Mansfield and Gordon-Weeks, 1991). 

Since drugs that perturb actin and microtubule polymeriza- 

tion are known to interfere with growth cone motility, we have 
studied the effects of a brain derived collapsing factor on ac- 
tin and microtubule organization in growth cones. We found 
no evidence that the state of microtubule organization is signifi- 
cantly altered by the collapsing factor. We did find evidence, 
however, supporting the hypothesis that the collapsing factor 
ultimately induces the loss of F-actin, particularly in the lead- 
ing edges of  growth cones. Moreover, our results are consis- 
tent with the hypothesis that this loss of  F-actin leads to the 
collapse of growth cone structure. 

Materials and Methods 

Cell Culture 
Tissue culture dishes were prepared by drilling a 1-cro-wide hole in the bot- 
tom of 35-ram tissue culture dishes which were then sterilized by UV irradi- 
ation. Nitric acid-washed, silanized, and UV-sterilized coverslips (Chang et 
al., 1987) were sealed onto the bottoms of the dishes with silicon grease. 
The coverslips were soaked in a solution of 40 ~tg/ml laminin (GIBCO- 
BRL, Gaithersburg, MD) in Hank's solution for 30 min at 37°C before the 
plating of neural explants. 

The dorsal root ganglia (DRGs) from embryonic day seven chick em- 
bryos were cut into halves or quarters and then plated onto the lamiuln- 
coated coverslips. Explants were cultured for 18-28 h in F-12 medium 
(GIBCO-BRL; 320-1765 PK; supplemented with 200/~g/ml bovine pitu- 
itary extract (Tsao et al., 1982) dialyzed overnight against F-12 medium, 
14 mM NaHCO3, 2 raM ghitamine, 100 U/ml penicillin, 100 ~g/rul strep- 
tomycin, 6 mg/ml glucose, 5/~g/rul insulin, 5 ~tg transferrin, 5 ng/ml seleul- 
ous acid, 100 pM putrescine, 20 nM progesterone, and 20 ng/nd 7 S NGF. 
Cultures were maintained at 37"C and at 5% CO2. 

Videomicroscopy 
Before being moved to the heated stage of a microscope for observation, 
the culture medium was replaced by a CO2-independent medium in which 
14 mM NaCI and 20 mM Hepes at pH 7.4 were used to replace NaHCO3. 
0.5-1.0 ml of mineral oil (Signm, St. Louis, MO) that had been pre-equili- 
brated with F-12 was layered on top of the medium to prevent evaporation 
during the experiroent. Cultures were maintained at 37°C in a micro-incu- 
bator (OPMI-2, controlled by a TCq02 temperature controller; Medical 
Sys., Greenvale, NY) mounted on an inverted microscope (Axiovert 10; 
Carl Zciss, Oberkochen, Germany). Growth cones were viewed in phase 
contrast through a 40x or 63x Plan lens (Carl Zeiss). The image was fur- 
ther magnified by a 1.6x Optovar. 

Time-lapse recording was performed with a vidicon camera (C2400; 
Hamamatsu Photonics, Hamamatsu City, Japan). The image from the cam- 
era was averaged, contrast enhanced, and had a background image sub- 
tracted by an image processor (DVS-3000; Hamamatsu Photonics). The 
resulting image was recorded with an optical disc recorder (TQ-2028F; 
Panasonic) at regular time intervals (from I frame/10 see to 1 frame/60 s). 

Double Labeling,for TubuUn Isoforms and F-actin 
cultures treated with collapsing factor for varying lengths of time were fixed 
in 3 % paraformaldehyde, 0.2 % glutaraldehyde, 20 raM EGTA, 0.065 % Tri- 
ton X-100 in PBS, pH 7.3, for 10 rain at 37°C. Cultures were then incubated 
in blocking buffer (BB) (3 % BSA, 22 % polyvinyl pyrrolidone, 0.2% Triton 
X-100 in PBS) for 2 h, washed with PBS, and incubated with the YL 1/2 
mAb that recognizes tyrosinated c¢-tubulin (1:200 in BB Serotec Ltd., Ox- 
ford, England), and/or the rabbit polyclonai Sup Ghi antibody that recog- 
nizes detyrosinated a-tubulin (a kind gift from Dr. J. C. Bulinski; 1:200 in 
BB) for 2 h. Cultures were then washed in PBS and incubated with fluores- 
cein or rhodamine conjugated secondary antibody (multiple labeling grade; 
Jackson ImmunoResearch Labs., Inc., West Grove, PA 1:30 in BB), and/or 
rhodamine-pballoidin (Molecular Probes, Eugene, OR; 3.3 ~M in PBS 
containing 1% Tween 20) for 1 h. All preparations were washed in PBS and 
mounted on slides in citifluor (Citifluor Ltd., City University, London). 
Matched YL 1/2 and Sup glu images were collected as described below in 
"F-actin quantification7 The distance between the roost distally detected 
Sup ghi staining and the roost distally detected YL 1/2 staining was mea- 
sured directly off the video screen by coroparing the matched images. 
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Double Labeling with Rhodamine-Phalloidin and 
FITC or DTAF 

Cultures treated with collapsing factor for varying lengths of time were fixed 
in PBS containing 4% paraformaldehyde and 10% sucrose for one hour or 
more, rinsed in PBS containing 100 mM glycine, and incubated for 1 h with 
rhodamine-phailoidin (3.3 #M in PBS containing 1% Tween 20). A fresh 
1% solution of FITC (Signm) or DTAF (5-[4,6-Dichlorotriazin-2-yl]amino- 
fluorescein from Sigma) in DMSO was diluted l~)00-fold with vigorous 
vortexing into PBS immediately before use. Preparations were stained for 
15 rain, rinsed in PBS, and then mounted in gelvatol on slide glass. 

F-actin Quantification 
Images were acquired according to the methods of Redmond and Zigmond 
(1993). Growth cones were viewed on a standard epifluorescent microscope 
(Carl Zeiss) with a Zeiss 100× objective (1.25 ND), and a Quantex QC-100 
camera (Qnantex Corp., Sunnyvale, CA). Illumination was provided by a 
100 W mercury arc lamp. Matched rhodamine-phaUoidin and fluorescein 
images of each growth cone were digitized and corrected for both back- 
ground and shading using an Imaged processing system (Universal Image 
Corp., Media, PAL The light source intensity, gain, and black level setting 
on the Imaged system and the intensifier settings on the Qnantex camera 
were adjusted for each channel at the beginning of each experiment so that 
the maximal pixel intensities in all regions of the growth cone were within 
the dynamic range of the system. The range of absolute pixel intensities of 
both fluorophores in the cells was within the linear range of their respective 
quantum yield curves (based on plots of concentration of FITC, DTAE and 
rhodamine-phalloidin blotted onto nitrocellulose versus absolute pixel in- 
tensity). The pixel intensities in the digitized images from the rhodamine 
channel are therefore proportional to the amounts of F-actin in those loca- 
tions (Howard and Oresajo, 1985; Symons and Mitchison, 1991). The 
matching intensities of DTAF or FITC in the fluorescein channel were as- 
sumed to be proportional to the total amount of protein in the same loca- 
tions. 

The following procedure was used to obtain the average rhodamina-phai- 
loidin signal, DTAF signal, and their ratio within a growth cone. A digital 
mask corresponding to the growth cone outline was generated from the rho- 
damine image. The sum of all background corrected rhodamine intensities 
within the masked area was then determined. The sum of all background 
corrected DTAF intensities was then determined within the same masked 
area. The summed rbodamine and fluorescein intensities were then divided 
by the area of the mask to generate separate average intensity values. The 
rhodamine-phalloidin to DTAF ratio was calculated using the same summed 
intensities. 

Ratio images of the phalloidin to fluorescein signals were constructed 
from matched background subtracted rhodamine-phalloidin and IYrAF im- 
ages. Ratio images and pixel histograms of the digitized images were gen- 
erated using Imaged resident functions. 

Statistical Methods 
All statistical discriminations were made by the Wdcoxon rank test. This 
non-parametric test makes no assumptions about the statistical properties 
of the data sets. Its result is the probability that two sets of data could be 
drawn from the same population of values. Probabilities expressed in the 
Tables are for two-tailed determinations. 

Preparation of Collapsing Factor 
Collapsing factor was prepared as described previously (Raper and Kapf- 
hammer, 1990) with significant modifications. Briefly, adult chicken brain 
membranes were solubilized in PBS containing 2 % CHAPS buffered to pH 
7.4 with 10 mM Tris. The extract was cleared by centrifugation for I h at 
100,000 g and then passed through a Q-Sepbarose (Pharmacia Fine Chemi- 
cals, Piscataway, NJ) anion exchange column. The flow-through was then 
loaded onto a S-Sepharose cation exchange column and eluted with PBS 
containing 0.9 M NaCI, 0.2% CHAPS, and 10 mM Tris, pH 7.4. This gives 
an eluate 10-fold enriched for collapsing activity. This material was then 
bound to WGA and Muted with 100 mM NaC1, 20 mM NazHPO4, pH 7.2, 
1 mM EDTA, 5% glycerol, and 0.5 M N-acetyl-d-glucosamine. This gives 
an ehiate 500-fold enriched for collapsing activity. The eluate was stored 
at -70"C before use. The concentration of collapsing factor at which 90% 
of DRG growth cones collapsed was determined for each batch of enriched 
factor, and it was this concentration that was used throughout this study. 

Results 

Growth Cone Behavior during Collapse 

Growth cones from DRG explants were examined using time- 
lapse video microscopy before and during treatment with the 
brain-derived collapsing factor. Care was taken to select 
only those growth cones that were not in contact with other 
axons or growth cones. Individual growth cones were ob- 
served by video microscopy for up to 30 rain before the addi- 
tion of collapsing factor. This ensured that they were grow- 
ing in a consistent manner without spontaneous retractions. 
Before addition of the factor, growth cones generally have 
wide-spread lamellipodia and ten or more filopodia. Over a 
period of 7 rain, filopodia are observed to extend, retract, 
bend along their length, and swing freely in the medium 
(Fig. 1, A-C). The shapes of the lamellipodia change over 
time. Some lamellipodia extend and a few lamellipodia re- 
tract while the body of the growth cone advances at 50-70 
/~m/h. Within a minute after adding the collapsing factor 
to the medium, lamellar protrusion ceases (13/15 growth 
cones), and as a consequence the body of the growth cone 
ceases to advance. Filopodia stop swinging and appear to be 
immobilized on the substrate. At the same time, both lamelli- 
podia and filopodia start to retract (Fig. I, D and E). In the 
next 10-70 rain, the filopodia become shorter and fewer; the 
lamellipodia shrink back from the sides of the growth cone 
and form a phase dense stump (Fig. 1, F-H). In 8 of 15 
growth cones filmed, varicosities in filopodia were seen to 
stream back towards the center of the collapsing growth cone 
at a rate on the order of 10 #rrdmin (Fig. 2, arrowhead). Our 
impression is that varicosities are most evident when the filo- 
podia are very well attached to the substratum. Sometimes 
similar varicosities can be seen to move in a retrograde direc- 
tion in the filopodia of untreated growth cones, but we do not 
know if they are related to those we see in collapsing growth 
cones. 

A small number of filopodia are sometimes seen to extend 
during collapse at the same time as a majority of filopodia 
are immobilized or retracting (Fig. 3). In 5 of 15 cases 
filmed, during the initial 7 min of collapse, a small number 
(one to three) of filopodia extended forward rapidly at 10-18 
#m/rain. This rate is comparable to the most rapidly extend- 
ing filopodia found in control growth cones. These unusual, 
rapidly extending filopodia (Fig. 3, arrowhead) are dramati- 
cally distinctive from their nearly immobile neighbors. The 
advancing filopodia stain with rhodamine-phalloidin and 
therefore contain F-actin (not shown). We have not observed 
them to stain with YL 1/2, and it therefore appears that they 
do not contain microtubules. 

Growth Cone Behavior during Cytachalasin Treatment 

The initial response of growth cones to cytochalasin B (2 
#M) is similar to their response to the collapsing factor. 
Within 1 min after the addition ofcytochalasin, lamellipodia 
stop protruding, and filopodia are immobilized. Both filopo- 
dia and lamellipodia retract (Fig. 4). As a result, lamellipo- 
dia become smaller, and filopodia become shorter and fewer 
(compare Fig. 4, E and G). Filopodial varicosities can be 
seen to be transported centripetally. Although collapse in- 
duced by cytochalasin is nearly indistinguishable from that 
induced by the collapsing factor, we noticed one difference. 
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Figure 1. Time-lapse video images of a DRG growth cone before and after the addition of 500-fold-enriched collapsing factor. The time 
each frame was taken is indicated in the lower fight hand comer of each panel. Negative numbers are minutes before the addition of collaps- 
ing factor (A-C) and positive numbers are minutes after addition (D-H). Bar, 20 ttm. 

There is a slow (8-12/~m/h) advancement of the growth cone 
tip during prolonged exposure to cytochalasin B (Marsh and 
Letourneau, 1984; Bentley and Toroian-Raymond, 1986) that 
is never seen with collapsing factor. 

Distribution of  F-actin and Microtubules 
during Collapse 

The distributions of F-actin and microtubules were examined 

Figure 2. Retrograde translocation of a filopodial varicosity after 
a 5-rain exposure to 10-fold-ertriched collapsing factor. The arrow 
indicates the moving varicosity in each frame. Time in seconds rel- 
ative to the first frame is indicated in the lower fight hand comer 
of each panel. Bar, 8 #m. 

before and after treatment with collapsing factor. Growth 
cones were treated with collapsing factor for 0, 5, and 10 min 
and then fixed and stained with rhodamine-phalloidin to 
visualize F-actin, and YL 1/2 antibody to visualize tyrosi- 
nated t~-tubulin. Fig. 5 shows a representative growth cone 
stained with phalloidin (column A) and YL I/2 (column B) 
for each time point. 

F-actin extends throughout the lamellipodia and the filo- 
podia of control growth cones (A0). In most cases, F-actin 
appears most dense near the leading edges and less dense in 
the growth cone center. Microtubnles (B0) are tightly bun- 
died within the axon and then splay out within the lamelli- 
podia. The distal-most tips of the microtuhules are found 
near the leading edges of the lameUipodia, and only occa- 
sionally enter the proximal portions of filopodia. Since most 
of the distal tips of microtuhules are near the leading edges 
of lamellipodia, it is possible to predict their approximate 
distal-most extent from phase images of normal growth 
cones. Lamellipodia shrink in size after increasingly longer 
exposures to collapsing factor. F-actin is still present through- 
out the remaining lamellipodia and the filopodia (AS, A10). 
Microtubules are found to be increasingly bundled together 
in appearance in distal regions of growth cones (B10), partic- 
ularly after 20 rain or more exposure to collapsing factor 
(not shown). The tips of microtubules then tend to end close 
to the distal most extent of the neurite. 

These time series experiments show that microtubules ex- 
tend to the leading edges and F-actin fills the outer rims of 
both control and collapsing growth cones. Unfortunately, a 
population study of growth cones exposed to collapsing fac- 
tor leaves many questions unanswered. With respect to the 
microtubules, for example, might the growth cone have col- 
lapsed as microtubules retreated, or might the collapsed 
morphology develop as a bundle of promiscuously poly- 
merizing microtubules pushes out from the front of the 
growth cone? 

To examine whether microtubules retract or advance dur- 
ing collapse, we followed the behavior of individual growth 
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Figure 3. Rapidly extending filopodium from a growth cone ex- 
posed to a 10-fold enriched collapsing factor for 2.5 min. The ar- 
row indicates the distal-most tip of the filopodium. Note that the 
other filopodia do not extend appreciably during this time period. 
The average measured rate of extension between A and C is 30 
#m/min. Time in seconds relative to the first frame is indicated in 
the lower right hand corner of each panel. Bar, 10 #m. 

cones before and during the initial stages of collapse using 
time-lapse videomicroscopy. We then fixed each growth 
cone and double-stained it for F-actin and microtubules. The 
approximate distal-most extent of the microtubules in the 
growth cones before collapse was predicted from the phase 
images (as described above). We could then compare the ab- 
solute positions of the microtubules in the same growth cone 
before and during partial collapse. 

The results from one growth cone are shown in Fig. 6. The 
phase image of a growth cone was outlined just before the 
addition of collapsing factor (Fig. 6 A, shaded) and 7 min 
after the addition of collapsing factor (Fig. 6 A, solid). The 
growth cone was then fixed and double stained for F-actin 
(Fig. 6 B, solid) and microtubules (Fig. 6 C, solid). We 
would predict that the distal-most tips of microtubules are 
near the leading edges of the lamellipodia in the uncollapsed 
growth cone. This is within 3 #m of their actual distal-most 

position after partial collapse. The average distance between 
the estimated positions of the distal-most microtubules be- 
fore collapse and their position during partial collapse in six 
growth cones ranged from an apparent withdrawal of -6/~m 
to an apparent advance of +3 #m. The average difference 
was -2 .4  ttm. These results suggest to us that microtubules 
neither polymerize nor depolymerize to any great extent dur- 
ing the early stages of collapse. 

Distribution of Microtubule Isoforms during Collapse 

To assay for the effect of collapsing factor on the dynamics 
of microtubule assembly, the distributions of tyrosinated and 
detyrosinated forms of microtubules in control and treated 
growth cones were examined. The ot-tubulin in recently 
polymerized microtubules is tyrosinated (Kumar and Flavin, 
1981; Thompson, 1982; Gordon-Weeks and Lang, 1988). As 
the growth cone moves on, the tyrosinated ot-tubulin in newly 
polymerized microtubules is gradually converted to the de- 
tyrosinated form (Lim et al., 1989; Robson and Burgoyne, 
1989; Arregui et al., 1991; Mansfield and Gordon-Weeks, 
1991). It is therefore possible to determine where the most 
recently polymerized microtubules are by comparing the 
distributions of the tyrosinated and detyrosinated forms. If 
the collapsing factor stimulates the polymerization of micro- 
tubules, the proportion of tyrosinated as compared to de- 
tyrosinated microtubules should increase in affected growth 
cones. The distance between the distal tips of microtubules 
containing only tyrosinated t~-tubulin and those containing 
tyrosinated ot-tubulin and detyrosinated oL-tubulin should in- 
crease. Similarly, if the collapsing factor inhibits the poly- 
merization of microtubules, the proportion of tyrosinated 
microtubules in affected growth cones should decrease. Then 
the distance between the distal tips of microtubules contain- 
ing only tyrosinated a-tubulin and those containing detyros- 
inated ot-tubulin should decrease. 

Growth cones were double labeled with YL 1/2 antibody 
to visualize tyrosinated o~-tubulin and the Sup glu antibody 
to visualize detyrosinated ct-tubulin. Fig. 7 shows the stain- 
ing patterns for YL 1/2 (Fig. 7 A) and Sup glu (Fig. 7 B) in 
a control growth cone, and YL 1/2 (Fig. 7 C) and Sup glu 
(Fig. 7 D) in a growth cone exposed to collapsing factor for 
5 min. As expected, in control growth cones, the microtu- 
bules in lamellipodia contain tyrosinated ct-tubulin, while 
the bundled microtubules in the axon shaft contain both 
tyrosinated and detyrosinated ot-tubulin (Fig. 7, A and B). 
The same pattern is evident in growth cones treated with col- 
lapsing factor for 5 min (Fig. 7, C and D). Similar staining 
patterns have been observed in growth cones treated with 
collapsing factor for even longer periods of time (10 and 30 
min, not shown). In one experiment we measured the dis- 
tance between the distal most tips of tyrosinated microtu- 
bules as visualized with the YL 1/2 antibody, and the distal- 
most tips of detyrosinated microtubules as visualized with 
Sup glu antibody (Table I). The average distances between 
the two isoform distributions were not significantly affected 
by treatment with collapsing factor for either 5 or 30 min. 
These results suggest that the rates of net tubulin polymeriza- 
tion are not significantly affected by the collapsing factor. 

Changes in Relative F-actin Concentration 
during Collapse 
We then examined the distribution of F-actin in growth cones 
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Hgure 4. Time-lapse video images of a growth cone before and after addition of 2 ~M cytochalasin B. Although the growth cone collapses 
in the presence of cytochalasin B, it continues to advance very slowly. The time each frame was taken is indicated in the lower right hand 
comer of each panel. Negative numbers are minutes before the addition of cytochalasin (A-C) and positive numbers are minutes after 
addition (D-H). Bar, 20 ~m. 

before and during collapse. We measured the proportion of 
total protein comprised by F-actin in control as compared to 
partially collapsed growth cones. This was accomplished by 
ratioing the fluorescence intensity of rhodamine-phalloidin 
to the fluorescence intensity of a general protein marker (ei- 
ther DTAF or FITC). Higher ratios of phalloidin to DTAF 
indicate higher proportions of F-actin to all proteins. We 
have therefore called this proportion the "relative concentra- 
tion ~ of F-actin. 

We examined the average relative concentrations of F-actin 
in control growth cones and growth cones treated with col- 
lapsing factor for 5 rain. The average rhodamine-phalloidin 
intensities corresponding to F-actin increased only slightly 
in collapsing growth cones, while the average DTAF inten- 
sifies corresponding to general protein increased by a factor 
of more than twofold (Table II). This implies that as growth 
cones collapse: their spread area decreases, the thickness of 
the remaining portion therefore increases, and the F-actin 
content in the remaining portion is nearly unchanged. The 
result is a decrease in the proportion of F-actin as compared 
to all proteins in collapsing growth cones. This result is con- 
sistent with a loss of F-actin in the growth cone as a whole 
during the early stages of collapse. 

We next examined the spatial distributions of F-actin con- 
centrations in control and collapsing growth cones. The stain- 
ing patterns of rhodamine-phalloidin, DTAF, and the ratio 
images of rhodamine to DTAF are shown in Fig. 8 for both 
a control growth cone and a growth cone treated with col- 
lapsing factor for 5 rain. The bar on the bottom gives a cali- 
bration for the pseudocolor representation. Warm colors 
represent higher relative concentrations of F-actin. The con- 
trol growth cone has relatively higher rhodamine intensities 
in fllopodia and near the leading edges of lamellipodia as 
compared to the growth cone center. DTAF intensities are 
relatively low in filopodia and the leading edges of lamelli- 
podia, and higher in the center of the growth cone. The ratio 
image therefore shows a high relative concentration of F-actin 

in filopodia and the leading edges of lamellipodia, and low 
concentrations in the center of the growth cone. In contrast, 
the growth cone treated with collapsing factor for 5 rain has 
significantly lower relative concentrations of F-actin at the 
growth cone's periphery compared to controls, while the 
center is less affected. 

Fig. 9 shows the intensity profiles for each image in Fig. 
8. The profiles correspond to lines that run from the center 
to the leading edges between the indicated crosses. In the 
control growth cone, the rhodamine fluorescence intensity in 
the leading edge is about three times as high as in the center 
of the growth cone. The FITC fluorescence intensity in the 
leading edge is half that in the center of the growth cone. The 
ratio shows the F-actin concentration in the leading edge is 
about six times that in the center. In the growth cone treated 
with collapsing factor, the difference between relative F-actin 
concentrations at the edge and the center is significantly 
reduced. 

In each of four independent experiments, matched rhoda- 
mine-phalloidin and DTAF (or FITC) images were collected 
for 15-20 control growth cones and the same number of 
growth cones exposed to collapsing factor for 5 min (see 
Table liD. Ratio images were computed for each growth cone 
and then analyzed. In one analysis, the apparent relative con- 
centration of F-actin at each pixel value was tabulated and 
used to generate a curve for each growth cone. Each curve 
in Fig. 10 (.4 and B) represents the proportion of a growth 
cone's area indicated on the y-axis that has F-actin concentra- 
tions lower than the indicated amount on the x-axis. Curves 
shifted to the right contain higher actin concentrations and 
curves shifted to the left have lower concentrations. Although 
there is considerable variability from growth cone to growth 
cone, the curves for the collapsing factor treated growth 
cones are dearly shifted towards lower relative F-actin con- 
centrations (Fig. 10 B) as compared to the control curves 
(Fig. 10 A). Fig. 10 C shows the proportion of growth cone 
areas that have the indicated F-actin concentrations for all the 
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Figure 6. Tracings of time-lapse video images of a single growth 
cone before the addition of collapsing factor (A, grey) and 7 min 
after the addition of 10-fold enriched collapsing factor (A, solid). 
The growth cone was fixed just after the last image in A and double 
labeled with rhodamine-phalloidin to visualize F-actin (B, solid) 
and YL 1/2 antibody to visualize microtubules (C, solid). The fluo- 
rescent images are superimposed on the untreated phase image for 
reference. 

growth cones. The 90 ~ percentile values are consistently 
reduced to 60-70 % of their control values by treatment with 
collapsing factor, a very significant decrease. A significant 
decrease is also observed in the median F-actin concentra- 
tions of  treated growth cones. The 10 • percentile values are 
reduced by collapse factor treatment by a small or possibly 
insignificant degree. These results indicate that the relative 
F-actin concentrations are greatly reduced in the growth 
cone periphery during collapse without there being a com- 
pensatory rise in F-actin concentrations in the growth cone 
center. 

Figure 5. Distribution of F-actin and microtubules in control and 
collapsing factor-treated growth cones. Growth cones were treated 
with 500-fold-enriched collapsing factor. Growth cones represen- 
tative of those found at 0, 5, and 10 min after the addition of collaps- 
ing factor are shown. Cultures were double labeled with rhoda- 
mine-phalloidin to visualize F-actin (AO, 5, and 10) and YL 1/2 
antibody to visualize microtubules (BO, 5, and 10). An arrow in A5 
indicates a microtubule entering a filopodium. Bar, 10/~m. 

growth cones in the control and treated conditions for the 
same experiment. The control values range from low to 
high relative F-actin concentrations, while the values for the 
treated growth cones range from low to moderate concen- 
trations. 

Table III summarizes the changes in relative F-actin con- 
centrations observed in collapsing as compared to control 
growth cones in four experiments. For each experiment the 
average reduction in F-actin concentration is indicated for 
those regions of  the growth cone that contain the lowest 
(10 ~ percentile), the median (50 ~ percentile), and highest 
(90 ~ percentile) concentrations of F-actin. The 10 ~ percen- 
tile values correspond to low F-actin concentrations that are 
representative of  the center of  the growth cones, while the 
90 ~ percentile values correspond to high F-actin concentra- 
tions that are representative of  the peripheral regions of  the 

Figure 7. Distributions ofmicrotubule isoforms in growth cones be- 
fore and after treatment with collapsing factor. Growth cones were 
double labeled with YL 1/2 to visualize tyrosinated microtubules, 
and Sup Glu to visualize detyrosinated microtubules. (A) Tyrosi- 
hated microtubules and (B) detyrosinated microtubules in an un- 
treated growth cone. (C) Tyrosinated microtubules and (D) 
detyrosinated microtubules in a growth cone treated with 10- 
fold-enriched factor for 5 min. Bar, 10 #m. 
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Table L Distance between Tips of Tyrosinated and 
Detyrosinated Microtubules in Control and Collapsing 
Factor-treated Growth Cones 

Treatment time Distance 5: SEM 

(min) (n) ~m) 

0 115 5.4 5 :0 .2  
79 4.4 5 :0 .2  

5 116 4,5 5 :0 .2  
21 5.1 5 :0 .4  

30 124 5.9 5: 0.3 
44 4.1 + 0 . 5  

The distance between the distal tips of microtubules containing only tyrosinated 
c~-tubulin and those containing tyrosinated ~-tubulin and detyrosinated ~x-tubu- 
lin in collapsing factor treated growth cones. Growth cones treated for 0, 5, 
and 30 rain with collapsing factor were double labeled with the YL 1/2 anti- 
body to visualize tyrosinated microtubules and the Sup glu antibody to visual- 
ize detyrosinated microtubules. The distances between the distal-most extents 
of the two isoforms were measured as described in Materials and Methods. 
Each line repesents the data from a separa~ culture. If the two values for each 
time point are consolidated together, there is no statistically significant differ- 
ence between untreated and treated growth cones according to the nonparamet- 
tic Wilcoxon rank test. 

Discussion 

Normal growth cone motility requires that there be a balance 
between the polymerization and depolymerization of both 
F-actin and microtubules. If this balance is disturbed then 
normal growth cone structure is altered and extension can 
fail. Previous studies have shown that the inhibition of actin 
polymerization, excessive microtubule polymerization, or 
microtubule depolymerization can all inhibit growth cone 
extension (Yamada et al., 1970; Letourneau and Ressler, 
1984; Letourneau et al., 1987; Gordon-Weeks et al., 1989; 
Keith, 1990). Growth cone collapse that is induced by our 
brain derived collapsing factor could theoretically work 
through any one of these mechanisms. Alternatively, it could 
be caused by the translocation of F-actin or microtubules 
towards the growth cone center. Our results indicate that the 
presence of collapsing factor is associated with a net loss of 
F-actin. We hypothesize that the collapse of growth cone 
structure is caused by this loss of F-actin. 

Table II. Comparison of F-actin Content in Control and 
Collapsing Growth Cones 

Rho-Phalloidin DTAF Ratio 

Exposure 
Control 
Treated 
Change 

Exposure 4 
Control 
Treated 
Change 

(n) 

3 
21 
17 

14.0 5 :1 .2  13.7 5 :1 .6  1.11 5:0.09 
19.1 5:3 .3  39.8 5 :4 .4  0.49 5- 0.05 

36% 191%** - 5 6 % * *  

25 14.8 5 :0 .8  5.7 + 0.4 2.79 5 :0 .18 
23 16.9 5 :0 .8  12.7 + 0.9 1.42 + 0.08 

14% 123%** - 4 9 % * *  

F-actin and general protein content in normal and collapsing growth cones. 
Shown are the average intensities of the rhodamine-phalloidin signals, the 
DTAF signals, and the ratios of the phalloidin to DTAF signals for groups of 
control growth cones and growth cones treated for 5 rain with collapsing fac- 
tor. As described in the text, the ratio of phalloidin to DTAF is interpreted as 
a measurement of the relative F-actin concentration. The concentration of 
F-actin is seen to decrease during collapse. All units are arbitrary but are con- 
sistent within each experiment. Changes marked ** are statistically significant 
to the P < 0.01 level as determined by the nonparametric Wilcoxon rank test. 

Our results are not consistent with a model that depends 
on changes in microtubule polymerization or depolymeriza- 
tion as a basis for factor induced growth cone collapse. If the 
collapsing factor causes microtubules to polymerize promis- 
cuously, then we would expect to find looped microtubules 
in collapsing growth cones analogous to those seen after rni- 
cromolar taxol treatment, or an unusually large accumulation 
of tyrosinated microtubules in collapsing growth cones as the 
o~-tubulin pool is polymerized (Letourneau and Ressler, 
1984; Gordon-Weeks et al., 1989; Mansfield and Gordon- 
Weeks, 1991). We might also have expected the leading edge 
of the growth cone to lunge forward as excess microtubules 
are generated. We did not observe any disorganization of mi- 
crotubule structure during the early stages of collapse when 
individual microtubules can be visualized at the light level. 
Microtubules were straight and their tips were clearly visible, 
in contrast to the densely packed, long, tangled, and looped 
appearance of microtubules in taxol treated growth cones 
(Letourneau and Ressler, 1984; Mansfield and Gordon-Weeks, 
1991). The relative distributions of newly polymerized tyros- 
inated a-tubulin and the less recently polymerized detyros- 
inated isoform resembled control distributions even in fully 
collapsed growth cones. We observed no lunge forward of 
microtubules in collapsing growth cones or of the collapsing 
growth cones themselves. It is therefore unlikely that over- 
polymerization of microtubules is the cause of factor induced 
collapse. 

Similarly, it is unlikely that abnormal depolymerization of 
microtubules is the cause of factor induced growth cone col- 
lapse. If the collapsing factor causes microtubules to depoly- 
merize, then we would have expected the distal-most tips 
of microtubules to retreat backwards during collapse. We 
might also have expected a comparative decrease in the 
amount of tyrosinated microtubules as polymerization was 
inhibited. We did not detect a reproducible retreat of micro- 
tubules during collapse. The distal-most tips of microtubules 
in collapsing growth cones are very near their predicted posi- 
tions before collapse. The relative distributions of newly poly- 
merized tyrosinated tubulin and the detyrosinated isoform 
associated with older microtubules resembled control distri- 
butions. These results argue against a factor induced depoly- 
merization of microtubules. 

These results suggest to us that the rearrangement of micro- 
tubules in collapsing growth cones may be passive in nature. 
We speculate that microtubules are squeezed into the midline 
of the growth cone as it shrinks during collapse. However, 
we can not rule out the possibility that an active process, per- 
haps the cross-linking of microtubules, may cause their ap- 
parent bundling. Our failure to detect any advancement of 
growth cones treated with collapsing factor, in contrast to 
their very slow advancement in the presence of cytochalasin 
B, suggests that the loss of F-actin alone can not explain all 
of the effects of the collapsing factor. Exposure to collapsing 
factor may have additional effects on growth cones that ex- 
plain their failure to advance, for example, axonal transport 
may be inhibited or microtubules may be cross linked or 
capped. 

There are at least two different ways in which actin reor- 
ganization might drive growth cone collapse. Actin might 
simply depolymerize, leaving the cell membrane unsupported 
and unable to hold its normal shape. Alternatively, the same 
shape change might occur if actin remains polymerized but 
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Figure 8. The spatial distributions of F-actin in normal and 500-fold-enriched collapsing factor treated growth cones. Growth cones were 
fixed and double labeled with rhodamine-phalloidin and DTAE The ratios of the rhodamine and DTAF images were then constructed 
to visualize the spatial distributions of high and low F-actin concentrations in a control growth cone (A) and a growth cone treated for 
5 rain with 500-fold-enriched collapsing factor (B). (A/and B1) Rhodamine-phalloidin staining; (A2 and B2) DTAF staining; (A3 and 
B3) ratio image of rhodamine-phalloidin to DTAE A color key for the ratios of rhodamine to DTAF is shown below. Bar, 20 #m. 
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Figure 9. F-actin concentrations in the leading edges and centers 
of control growth cones (,41-3) and growth cones treated with col- 
lapsing factor for 5 rain (B1-3). Intensity profiles were generated 
for each image in Fig. 8 from the crosses in the center of each 
growth cone to the crosses at the distal edges indicated in A1 and 
BI. (A/and B1 ) Rhodamine-phalloidin; (,42 and B2) DTAF; (,43 
and B3) Ratio of rhodamine-phalloidin to DTAF. The scales in A1 
and A2 represent the relative pixel intensities, and in A3 the ratio 
values. 

is translocated into a condensed ball in the center of the 
growth cone. Translocation might be the result of cortical 
contraction of actin fibrils or the overstimulation of the nor- 
mal process that causes F-actin to translocate towards the 
center of the growth cone. If the collapsing factor causes a 
net loss of F-actin, then the concentration of F-actin inside 
a collapsing growth cone should be lower than normal. If the 

Table IlL Summary of  Changes in F-actin Concentration 
after a 5-min Exposure to Collapsing Factor 

N~,/N,xp 10 ~ percentile 50 ~ percentile 90 ~ percentile 

Exposure 
1 15/21 - 2 3 % *  -36%** -40%** 
2 20/13 - 2 0 %  -28%** -31%** 
3 19/18 - 12% -40%** -45%** 
4 24/20 - 5 %  - 1 7 %  -41%** 

Summary of F-actin concentration changes after a 5-rain exposure to collapsing 
factor. The median concentrations of F-actin (50th percentile) for each growth 
cone were averaged within the control group and then compared to the average 
for the experimental group exposed to collapsing factor for 5 min. Similarly, 
the averages for the 10th and 90th percentiles were compared as well. The 
change in relative F-actin concentration is expressed as a percentage of the con- 
trol value. Changes marked * and ** are statistically significant to the P < .01 
and the P < .001 levels, respectively, as determined by the nonparametric Wil- 
coxon rank test. 

factor induces F-actin translocation, then F-actin will be re- 
distributed but its overall concentration within the growth 
cone should remain unchanged. 

An estimate of the amount of F-actin inside the growth 
cone as compared to all proteins was provided by comparing 
the fluorescent signal generated by rhodamine-phalloidin to 
that of DTAF or FITC. Rhodamine-phalloidin binds F-actin 
in a stoichiometric fashion and is commonly used to quantify 
F-actin (Howard and Oresajo, 1985; Cano et al., 1991; Sy- 
mons and Mitehison, 1991). The non-specific protein stains 
DTAF or FITC served as standards (Crissman and Stein- 
kamp, 1974; Crissman et al., 1985) to which the phalloidin 
signal could be compared. We presumed that their signals 
are proportional to all proteins in the growth cone. A high 
ratio of phalloidin as compared to a general protein stain 
would indicate a higher proportion, and therefore a higher 
relative concentration of F-actin present. 

A normal, motile growth cone has a high relative concen- 
tration of F-actin within its lameUipodia and filopodia, and 
a lower relative concentration in its center. A growth cone 
treated with collapsing factor, even for a relatively short 
time, has a lower total concentration of F-actin. The appar- 
ent loss of F-actin is most dramatic in the periphery, and no 
region of the growth cone shows any compensating increase 
in F-actin. These results suggest there is a net loss of F-actin 
during collapse, rather than a rear-ward translocation into 
the growth cone center or global contraction of F-actin 
throughout the growth cone. 

Does this net loss of F-actin cause growth cone collapse 
or is it merely associated with collapse? Supporting the hy- 
pothesis that it actually causes collapse is the observation 
that cytochalasin B, a drug known to block actin polymer- 
ization, also induces growth cone collapse. Cytochalasin is 
generally thought to cause net actin depolymerization by 
capping the ends of actin filaments (review by Cooper, 1987; 
but see Sampath and Pollard, 1991). Both collapsing factor 
and cytochalasin treatment immobilize filopodia and cause 
retraction of lamellipodia and filopodia. This similarity in 
growth cone response raises the possibility that factor in- 
duced collapse involves the net inhibition of actin polymer- 
ization, and loss of polymerized actin causes collapse. 

The mechanism by which F-actin is lost during factor 
mediated collapse is unknown. Since the loss of F-actin is 
most dramatic in the lamellipodia and filopodia, and since 
the effects of collapsing factor are similar to that of cyto- 
chalasin, it is possible that this loss results from a failure to 
replace F-actin at the leading edge during normal actin re- 
cycling. This could occur if the collapsing activity induced 
the blockade of actin nucleation sites, the sequesterization of 
actin monomers, or a modification of actin that interferes 
with polymerization. However, we cannot rule out the possi- 
bility that actin polymerizes normally in collapsing growth 
cones but is depolymerized at an accelerated rate. This could 
occur if the collapsing activity induced a filament severing 
and capping activity or a modification of actin that facilitates 
depolymerization. 

The treatment of growth cones with an ionophore that in- 
creases intracellular Ca 2+ concentrations has been shown to 
cause growth cone collapse, perhaps by destabilizing the ac- 
tin meshwork (Lankford and Letourneau, 1989). However, 
growth cone collapse induced by the brain derived collaps- 
ing factor is unlikely to be mediated by Ca 2+ because there 

The Journal of Cell Biology, Volume 121, 1993 876 



A 
1 . 0  

0.8 

0.6 

0.4 

0min  
O ~ 0.2 

0.0 
3 

3 

C ctin] 

llllLu 
0 , 0  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 1 2 3 

[F-actin] 

is no detectable change in internal-free calcium in growth 
cones during collapse (Ivins et al., 1991). 

We were surprised to find a small number of  filopodia in 
collapsing growth cones that advance at high rates while the 
lamellipodia and most other filopodia are slowly retracting. 
These rapidly extending filopodia contain F-actin as judged 
by rhodamine-phalloidin staining. They presumably repre- 
sent discrete locations with active actin nucleation sites that 
have access to monomeric actin even during collapse. If  one 
assumes that actin monomer is freely diffusible, then this 
would tend to argue against the sequesterization or modi- 
fication of  actin as the mechanism responsible for the loss 
of  F-actin during collapse. 

Actin polymerization correlates temporally and spatially 
with lamellar protrusion in motile cells (Omann et al., 1987; 
Devreotes and Zigmond, 1988; Stossel, 1989; Cooper, 1991) 
and has been hypothesized to drive membrane advancement 
(Hill and Kirschner, 1982; Theriot et al., 1992). Our results 
suggest that a glycoprotein found in normal brains can induce 
a net depolymerization of  actin in growth cones. In conse- 
quence, protrusion of the leading edge fails and the normal 
motile structure collapses. What is the normal function of  the 
collapsing protein in the nervous system? We believe that 
it may act as a guidance cue that controls the direction of 
growth cone extension. In this light an important question 
is whether this depolymerization effect can be localized to 
a subregion of  a growth cone when the collapsing signal is 
applied locally. I f  so, it would suggest an effective method 
of  growth cone steering in which actin would depolymerize 
on one side of  a growth cone while the opposite, unaffected 
side would continue advancing. Advance on the unaffected 
side might even accelerate if additional actin monomer were 
made available by depolymerization on the affected side. 
This kind of a push-pull mechanism has many attractive fea- 
tures for growth cone guidance. 
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Figure 10. F-actin concentrations in control growth cones and 
growth cones exposed to 500-fold-enriched collapsing factor for 
5 min. For the control group (n = 14), the percentage of each 
growth cone area that has an apparent F-aetin concentration less 
than the indicated value is plotted (A). The same plot is shown for 
the experimental group (n = 19) in B. In these plots, curves shifted 
to the left represent lower overall F-actin concentrations, and curves 
shifted to the right represent higher overall F-actin concentrations. 
(C) The proportion of control growth cone areas at given F-actin 
concentrations (m) and those of treated growth cones at given con- 
centrations (m) for the same data set. Again, distributions shifted 
to the left indicate lower F-actin concentrations, curves shifted to 
the right represent higher F-actin concentrations. The apparent 
F-actin concentration is expressed in arbitrary linear units. 
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