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Abstract The cell wall, a major barrier protecting cells
from their environment, is an essential compartment of
both bacteria and archaea. It protects the organism from
internal turgor pressure and gives a defined shape to
the cell. The cell wall serves also as an anchoring
surface for various proteins and acts as an adhesion
platform for bacteriophages. The walls of bacteria and
archaea are mostly composed of murein and pseudo-
murein, respectively. Cell wall binding domains play a
crucial role in the non-covalent attachment of proteins
to cell walls. Here, we give an overview of the
similarities and differences in the biochemical and
functional properties of the two major murein and
pseudomurein cell wall binding domains, i.e., the Lysin
Motif (LysM) domain (Pfam PF01476) and the pseudomurein
binding (PMB) domain (Pfam PF09373) of bacteria and
archaea, respectively.
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Introduction

Murein and pseudomurein are the major cell wall material
of bacteria and some methanogenic archaea, respectively.
Murein, also called peptidoglycan, is composed of N-
acetylmuramic acid and N-acetyl-D-glucosamine (NAG)
linked by β(1→4) glycosidic bonds. Pseudomurein is made
up of N-acetyltalosaminuronic acid (NAT) and NAG
connected through β(1→3) glycosidic linkages (König
and Kandler 1979a, b; König et al. 1983; Leps et al.
1984; Kiener et al. 1987; Luo et al. 2001, 2002; Eichler
2003). Even though cell walls made of either murein or
pseudomurein resemble each other in their structural and
functional properties, there are some fundamental differ-
ences in their biosynthetic pathways and in cell wall
chemistry, suggesting that they may not have evolved
from a common ancestor but are rather the result of
convergent evolution. This hypothesis, proposed by
Hartmann et al. (Hartmann and König 1990; Steenbakkers
et al. 2006) two decades ago, is supported by recent genome
sequencing results and by the phylogenetic distribution of
the two types of cell wall-containing organisms. Comparison
of the biosynthetic and assembly pathways of murein and
pseudomurein did not reveal any similarities of the involved
genes until now, indicating the unique nature of the
biosynthetic enzymes present in pseudomurein-containing
organisms (Steenbakkers et al. 2006).

Moreover, the phylogenetic distribution of murein
and pseudomurein-containing organisms is quite con-
trasting, as murein is highly conserved in eubacteria,
while pseudomurein is restricted to a few methanogenic
archaeal members (Methanobacteriales and Methanopyrus)
(Steenbakkers et al. 2006).
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Most bacterial cell wall hydrolases cleave the β(1→4)
glycosidic bonds in peptidoglycan, and are ineffective
on pseudomurein-containing archaeal cell walls. Surprisingly,
no archaeal enzymes are known yet, which cleave theβ(1→3)
glycosidic bond of pseudomurein. In addition, only two
archaeal pseudomurein endoisopeptidases (Pei) have been
identified so far that cleave the peptide links that connect
adjacent pseudomurein glycan strands; they were shown to
cleave the isopeptide bond between the ε-amino group of L-
lysine and the carboxyl group of an L-alanine residue in the
peptide cross-link between two pseudomurein NAT residues
(Kiener et al. 1987; Pfister et al. 1998; Luo et al. 2001, 2002;
Steenbakkers et al. 2006; Visweswaran et al. 2010, 2011).

Most murein hydrolases as well as the two pseudomurein
endopeptidases are composed of two distinct domains, a
catalytic domain and a cell wall binding domain. The catalytic
domain possesses a glucosaminidase, muramidase, endopep-
tidase, or N-acetylmuramyl-L-alanine amidase activity. The
cell wall binding domains are crucial for the proper
functioning of both murein and pseudomurein hydrolases.
Here, we describe two important murein and pseudomurein
binding modules, namely the Lysin Motif (LysM) domain
and pseudomurein binding (PMB) domain. To date, no
reviews have been published on the PMB domains, nor on a
comparison of LysM and PMB domains. This review should
attract attention of a large group of readers working on
microbial cell walls.

LysM and PMB domain-containing cell wall hydrolases

LysM is the most common protein domain of peptidoglycan
hydrolases (Ruhland et al. 1993; Bateman and Bycroft
2000; Steen et al. 2005; Arrighi et al. 2006; Andre et al.
2008; Buist et al. 2008). More than 4,000 proteins in
prokaryotes and eukaryotes contain the highly conserved
LysM domain (Buist et al. 2008), which allows these
proteins to bind to the peptidoglycan layer of bacterial cell
walls in a non-covalent manner (Steen et al. 2003;
Tarahomjoo et al. 2008). LysM was first discovered as a
C-terminal motif in the lysozyme of Bacillus subtilis phage
ø29. As this motif was originally identified in bacterial
lysins, it was termed Lysin Motif (Birkeland 1994; Buist et
al. 1995, 2008; Hu et al. 2010). Subsequently, these motifs
were shown to be present in various numbers in other
murein hydrolases (Table 1, Hu et al. 2010).

Unlike bacterial cell wall hydrolases, not much is known
about the archaeal cell wall hydrolases. No enzymes are
known that cleave the glycosidic linkages of pseudomurein,
and only two endoisopeptidases have been discovered until
now, which cleave the pseudomurein peptide cross-links.
These pseudomurein endoisopeptidases (Pei), PeiW and
PeiP from the methanogenic archaeal-specific prophages

Methanothermobacter wolfeii ΨM100 and M. marburgensis
ΨM2, respectively, were shown to act as autolysins of
methanogenic archaea (Kiener et al. 1987; Stax et al. 1992;
Pfister et al. 1998; Luo et al. 2001, 2002; Steenbakkers et
al. 2006; Visweswaran et al. 2010, 2011). PeiW and PeiP
have the same molecular architecture: they each contain
four pseudomurein cell wall binding (PMB) motifs at
their N-terminus fused to a C-terminal cysteine protease
domain (Luo et al. 2002; Steenbakkers et al. 2006;
Visweswaran et al. 2010, 2011) (Table 1). The PMB
motifs in the Pei enzymes are involved in binding of the
enzymes to the cell envelope of methanogenic archaea and
thereby facilitate cell wall hydrolysis (Steenbakkers et al.
2006; Visweswaran et al. 2010, 2011).

Evolutionary conservation and molecular biology of cell
wall binding domains

LysM motifs are present in proteins of both prokaryotes
and eukaryotes, but not in those of archaea (Mulder et
al. 2006; Buist et al. 2008; Visweswaran et al. 2010).
Their amino acid sequences are highly conserved. In
contrast, the primary structure of the PMB motif is less
conserved, and the distribution of the PMB motif is much
narrower, being present only in four methanogenic
archaeal genera (Methanobrevibacter, Methanothermobacter,
Methanothermus, and Methanosphaera), two prophages
(M. wolfeii ΨM100 and M. marburgensis ΨM2) and in five
genera of bacteria (Xanthomonas, Novosphingobium, Gran-
ulibacter, Erythrobacter, and Roseovarius) (Hunter et al.
2009; http://www.ebi.ac.uk/interpro/IEntry?ac=IPR018975).
Interestingly, the first three of these bacterial genera also
possess proteins with a LysM domain in addition to proteins
carrying a PMB domain.

The LysM and PMB motifs share a number of
similarities, such as their variable pI values and the variable
number and location of the motifs in the proteins that
contain them (Buist et al. 2008). An overview of these
properties is shown in Table 2. The pI of the LysM
motif-containing proteins ranges from 4 to 12 with most
ranging between 5 and 10. A similar variability is
observed for the PMB domain-containing proteins (pI of
4 to 10). Each LysM or PMB domain can be found at the
N- or C -terminus or in the middle of the proteins. The
number of motifs varies from 1 to 6 in LysM domains and
from 1 to 4 in PMB domains. The LysM motifs in a LysM
domain are separated by amino acid linker regions
varying in length and composition and mostly consist of
serine, threonine, and aspartic acid residues (Buist et al.
2008). In plant receptor-like kinases, a conserved CxC
motif is present in the LysM linker regions of which the
function is unknown (Madsen et al. 2003; Radutoiu et al.
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2003; Arrighi et al. 2006; Mulder et al. 2006; Radutoiu et
al. 2007; Buist et al. 2008). Similarly, intervening
sequences connecting the adjacent PMB motifs in PMB
domains also vary in length and amino acid composition
but they share no conserved residues (data not shown).
The length of the LysM and PMB motifs differs
significantly even though they perform a similar function,
i.e., non-covalent cell wall binding. The LysM domain
consists of motifs of 44 to 65 amino acid residues,
whereas the PMB domain is made up of motifs of 30 to
35 amino acid residues (Fig. 1a, b).

Hidden Markov model (HMM) logos generated sepa-
rately for the LysM and PMB motifs show some highly
conserved amino acid residues (Fig. 1a, b). Especially, the
first 16 N-terminal and the last 10 C-terminal residues in
the LysM motifs are well-conserved, while the central
region (residues 17–34) is much less conserved, except for

the residues at positions 23, 27, and 30 (Fig. 1a, Buist et al.
2008). These conserved amino acid residues form the
hydrophobic core of the LysM motif located between the
anti-parallel β-strands and the first α-helix (Fig. 2). The
PMB motif is not very well-conserved except for a very
highly conserved proline residue at position 28 and other
hydrophobic or aromatic residues at positions 5, 20, and 31
(Fig. 1b). These conserved amino acid residues are all
hydrophobic, which suggests that, similar to the LysM
motif, they might play a role in stabilizing the hydrophobic
core of the PMB motif.

Structural aspects of the LysM and PMB domains

The structure of one LysM motif was initially solved by
NMR for the Escherichia coli membrane-bound murein

Table 1 Overview of LysM or PMB motif-containing murein and pseudomurein hydrolases

Protein Organism Number of LysM motifs Location of LysM motifs Reference

LytE Bacillus subtilis 3 N′ (Yamamoto et al. 2008)

LytF Bacillus subtilis 5 N′ (Yamamoto et al. 2008)

CwIS Bacillus subtilis 4 N′ (Yamamoto et al. 2008)

Sep Lactobacillus fermentum 1 N′ (Turner et al. 2004)

P60 Listeria monocytogenes 1 Middle (Ruhland et al. 1993)

AcmA Lactococcus lactis 3 C′ (Buist et al. 1995)

AcmD Lactococcus lactis 3 C′ (Huard et al. 2004)

AtlA Enterococcus faecalis 6 C′ (Eckert et al. 2006)

AtlB Enterococcus faecalis 2 C′ (Mesnage et al. 2008)

AtlC Enterococcus faecalis 2 C′ (Mesnage et al. 2008)

MurA Listeria monocytogenes 4 C′ (Carroll et al. 2003)

Protein Organism Number of PMB motifs Location of PMB motifs Reference

PeiP Methanothermobacter marburgensis
ΨM2

4 N′ (Steenbakkers et al. 2006;
Visweswaran et al. 2010)

PeiW Methanothermobacter wolfeii ΨM100 4 N′ (Steenbakkers et al. 2006;
Visweswaran et al. 2010, 2011)

Table 2 Molecular properties of LysM and PMB motifs

Characteristics LysM motif PMB motif

Length of motif (amino acids) 44–65 30–35

Number of motifs (range) 1–6 1–4

Location in motif-bearing proteins Variable (N′/C′/center of the protein) Variable (N′/C′/center of the protein)

Iso-electric points (pI) (range) 5–10 4–10

Nature of conserved amino acid residues Hydrophobic Hydrophobic

Evolutionary distribution Wide Narrow

Major binding substrate Murein (in bacteria) Pseudomurein (in some
methanogenic archaea)Chitin (in fungi and insects)

Secondary structure βααβ Unknown

Three-dimensional structure known Yes (Bateman and Bycroft 2000;
Bielnicki et al. 2006)

No
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lytic transglycosylase-D (MltD; protein data bank (PDB)
entry 1EOG; Bateman and Bycroft 2000). It was shown to
possess a βααβ secondary structure with the two α-helices
packing against one side of the anti-parallel β-strands
(Fig. 2) (Bateman and Bycroft 2000). The NMR structure
of the human hypothetical protein SB145 (PDB 2DJP
(unpublished)) also showed the presence of a LysM motif
with the same secondary structure. The X-ray crystal
structure of the Bacillus subtilis protein YkuD (Fig. 2)
(PDB 1Y7M) (Bielnicki et al. 2006) revealed that this

protein also has an N-terminal LysM motif, with a structure
that is in agreement with the NMR structures (Bielnicki
et al. 2006). The three-dimensional structures of these
LysM motifs also suggested the location of a potential
ligand-binding site. However, a ligand-bound structure
which could explain the substrate binding mode and
specificity and show whether any conformational changes
occur upon ligand binding is not known yet.

So far, no three-dimensional structures are available of a
PMB motif or domain. Circular dichroism (CD) spectra

Fig. 1 Hidden Markov model (HMM) showing the consensus
sequence of the LysM (Pfam database entry PF01476) and the PMB
motifs (Pfam database entry PF09373). The HMM logo pictures were
generated separately from the Pfam database for a the LysM motifs
and b the PMB motifs, using their respective Pfam accession numbers.

The X-axis indicates the relative entropy, and the contribution of each
amino acid residue is shown on the Y-axis. Numbers on the X-axis
indicate the position of the amino acid residue in the total length of the
motif. The size of the amino acid residues on Y-axis is directly
proportional to their conservation in the consensus sequence
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indicate a typical α-helical spectrum for the PMB domain
of the M. thermautotrophicus surface (S)-layer protein
MTH719, which contains three C-terminal PMB motifs
(Visweswaran et al. unpublished results).

Domain stability

The LysM domain from the fern Pteris ryukyuensis
chitinase A, which contains two LysM motifs, was
thermally stable up to 90°C, whereas a single motif is
denatured at a thermal transition value (Tm) of 96.5°C
(Ohnuma et al. 2008). This high-temperature stability of the
LysM domain is due to the presence of four cysteine
residues in each motif that form two disulfide bonds
(Ohnuma et al. 2008), as shown by differential scanning
calorimetry (DSC) experiments: in the presence of reducing
agents the Tm of the LysM domain with two motifs
decreased from 90°C to 77.4°C for β-mercaptoethanol
and to 68.4°C for tris(2-carboxyethyl)phosphine (Ohnuma
et al. 2008). The thermal stability of the LysM domain was

slightly increased upon binding to NAG units (Ohnuma
et al. 2008). Thermal denaturation of the LysM domain is
irreversible due to aggregation at temperatures above the
Tm (Ohnuma et al. 2008).

DSC experiments with the PMB domain of the M.
thermautotrophicus S-layer protein MTH719 revealed that
the domain was stable at temperatures up to 76°C
(Visweswaran et al. unpublished results). There is only
one cysteine residue in this domain and the observed high
Tm is thus not the result of stabilization by intramolecular
disulfide bonds. The PMB domain also forms aggregates
after complete thermal denaturation, a process that is
irreversible. As attempts to refold the aggregated domain
were not successful, its folding and un-folding kinetics are
unknown. Irreversible chemical denaturation of the PMB
domain with guanidinium hydrochloride was reached at
a concentration of 3.8 M guanidinium hydrochloride
(Visweswaran et al. 2011).

Specificity of substrate binding

The LysM domain specifically binds to the NAG moiety
of murein in a non-covalent but unknown manner
(Ohnuma et al. 2008). LysM domains from plant origin
are also capable of binding to chitin, a polymer of NAG
(Ohnuma et al. 2008; Petutschnig et al. 2010). A fusion
protein generated by combining the LysM domain of the
Lactococcus lactis AcmA protein with the PMB domain
of the M. thermautotrophicus MTH719 protein bound to
murein, pseudomurein, and chitin, and it was shown that
the binding of the fusion protein to chitin was caused by
the LysM domain (Visweswaran et al., submitted).

The PMB domain of PeiW specifically binds to the
pseudomurein layer in the cell envelopes of methanogenic
archaea (Steenbakkers et al. 2006; Visweswaran et al. 2010,
2011). The PMB domain of the (S)-layer protein MTH719
not only binds to the pseudomurein-containing archaeal cell
envelope but also to the cell wall components of lysed
bacterial cells (Visweswaran et al. 2011). The latter
property suggests that the PMB domain recognizes free
NAG, the moiety that murein and pseudomurein have in
common. However, there is no experimental evidence as
yet to underpin this assumption.

An optimal number of motifs are required for proper
cell wall-binding of the LysM and PMB domains

AcmA, a well-characterized autolysin from L. lactis,
contains three LysM motifs in its C-terminal LysM domain
and an N-terminal glucosaminidase domain (Buist et al.
1995; Steen et al. 2005). Motif deletion and addition studies

Fig. 2 Crystal structure of the LysM motif of YkuD from B. subtilis.
The figure was generated using PyMOL (The PyMOL Molecular
Graphics System, Version 1.2r3pre, Schrödinger, LLC) and PDB entry
1Y7M (Bielnicki et al. 2006). The hydrophobic core formed by the
conserved hydrophobic amino acid residues is labeled with side
chains. The anti-parallel β-strands and α- helices are colored yellow
and red, respectively. The loops are represented in green
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revealed that AcmA requires three LysM motifs for optimal
functioning (Steen et al. 2005). AcmA devoid of LysM
motifs or with only one motif did not bind to its substrate,
whereas constructs with two and four motifs did bind, but
to a lesser extent than the native protein with three motifs
(Steen et al. 2005).

Similarly, the MTH719 S-layer protein contains a PMB
domain with three motifs at its C-terminus. C-terminally
GFP-tagged motif deletion constructs with two and one
motif failed to bind to pseudomurein-containing archaeal
cells, whereas the native GFP-tagged protein with three
motifs did bind (Visweswaran et al. 2011). Also in the case
of the pseudomurein hydrolases, PeiW and PeiP removal of
the PMB domain resulted in loss of binding of the enzymes
to M. thermautotrophicus cells (Visweswaran et al. 2010,
2011). In both cases, apparently, the native LysM and the
PMB domains are equipped with an optimal number of
motifs to perform their cell wall binding function.

Factors affecting the binding of LysM and PMB
domains to cell walls

The binding of the LysM (Hu et al. 2010) and PMB
(Visweswaran et al. 2011) domains to their respective
substrates is mainly dependent on the pH and the salt
concentration. The domains are capable of binding to their
substrates at a pH close to their pI value. The binding of the
LysM domain of the N-acetylmuramidase AcmD from L.
lactis takes place at pH 4.0, which is close to its calculated
pI of 4.3 (ExPASy) and no binding is observed at other pH
conditions (pH 6.0 and 8.0) (Visweswaran et al. unpub-
lished results).

Similarly, the PMB domain of the S-layer protein
MTH719 from M. thermautotrophicus shows maximum
binding to pseudomurein-containing Methanobacterium sp.
cells at pH 9.0, which is close to pI of the PMB domain (pI
10.6) (Visweswaran et al. 2011). Together these results
show that positive charges play a key role in favoring the
binding of the LysM and PMB domains to their respective
substrates (Huard et al. 2004; Visweswaran et al. 2011).

Similarly, pH also plays a crucial role in the optimal
functioning of the LysM domain-containing proteins. Huard
et al. (2004) have shown that the LysM domain-containing
N-acetylmuramidase AcmD is catalytically active only at
pH 4.0, which is close to the pI value of the enzyme (4.3).
A similar study was performed on the endolysin Ly5C from
the Lactobacillus fermentum temperate bacteriophage
φPYB5, an enzyme that possesses a C-terminal LysM
domain of three motifs and an active site domain at the N-
terminus (Hu et al. 2010). The enzyme showed a twofold
increase in binding to substrate at pH 11, which is close to
the pI value of the enzyme (pI 9.0), compared to lower pHs.

These results suggest that pH plays a vital role in binding of
LysM domain-containing proteins to their substrates.

The effect of salt concentration on substrate binding has
been examined for the LysM domain of Ly5C. NaCl at a
concentration of 0.5 M significantly enhanced the binding
of Ly5C to host cells by increasing the ionic interactions
between them (Hu et al. 2010). Also, the carbon source
present in the growth medium influenced the binding of the
LysM domain-containing autolysin AcmA from L. lactis.
Lactococcal cells grown on galactose bound less AcmA
than cells grown on glucose, because of differences in the
cell wall composition caused by the growth on galactose
(Steen et al. 2008).

Possible perspectives for research and application

The LysM domains of bacterial cell wall hydrolases help in
binding of the enzymes to their substrate peptidoglycan and
thereby facilitate cell wall hydrolysis. LysM domains of the
plant NFR1 and NFR5 receptors are involved in bacterial
Nod-factor signal recognition between leguminous plants
and their symbiotic hosts (Madsen et al. 2003; Mulder et al.
2006; Radutoiu et al. 2003, 2007). The LysM domain is
currently being developed as an anchor to display heterol-
ogous proteins and peptides on the surface of lactic acid
bacteria, among others for the development of oral vaccines
(Bosma et al. 2006; Okano et al. 2008). Similarly, the PMB
domain could be used as an anchor for surface display of
heterologous proteins and peptides on methanogenic archaea.
Since the PMB domains specifically bind to pseudomurein-
containing methanogens, these domains could also be used as
biomarkers to identify the industrially important methanogens
and distinguish them from other organisms.

To obtain a detailed three-dimensional structure of a
complete LysM or PMB domain would be an interesting
target for future research as it would help to understand
how the domains interact with their substrates. Of course, to
have a deep molecular understanding of the non-covalent
interactions between the domains and their substrates, or
even a crystal structure of the substrate-bound domains,
would then be the next challenge.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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