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Abstract. High mobility group box 1 (HMGB1) is an impor‑
tant downstream product of pyroptosis in macrophages, and 
it serves a vital role in numerous inflammatory diseases. 
Previous studies have reported that HMGB1 is released 
by fibroblast‑like synoviocytes  (FLSs) that are activated 
by inflammatory cytokines in knee osteoarthritis (KOA); 
however, the mechanism via which FLS promotes HMGB1 
secretion in KOA remains unknown. According to our previous 
study, pyroptosis occurs in FLSs of patients with KOA and is 
mediated by Nod‑like receptor protein (NLRP)1 or NLRP3 
inflammasomes. However, the specific relationship between 
HMGB1 secretion and FLS pyroptosis requires further inves‑
tigation. In the present study, the association between HMGB1 
secretion and FLS pyroptosis was investigated in vitro and 
in vivo. In this study, western blotting, ELISA and reverse 
transcription‑quantitative PCR were used to measure expres‑
sion levels of proteins and mRNA. Caspase‑1 activity assay 

and Hoechst 33342/PI double staining were used to observe 
the pyroptosis of FLSs. Hematoxylin and eosin staining 
was used to observe the destruction of cartilage in KOA. 
Increased expression levels of pyroptosis‑related proteins and 
HMGB1 in the synovium of rat anterior cruciate ligament 
transection‑induced KOA models were identified, and these 
changes were significantly mitigated via the intra‑articular 
injection of a caspase‑1 inhibitor. In vitro, FLSs were treated 
with lipopolysaccharide (LPS) + ATP to induce pyrop‑
tosis, and HMGB1 secretion was subsequently measured. 
LPS + ATP significantly increased the expression levels of 
pyroptosis‑related proteins and HMGB1 in FLSs, and these 
effects were significantly mitigated by small interfering RNAs 
targeting NLRP1, NLRP3, apoptosis‑associated speck‑like 
protein with a caspase‑recruitment domain or caspase‑1. 
Therefore, the present results indicated that NLRP1/NLRP3 
inflammasome‑mediated and caspase‑1‑dependent FLS 
pyroptosis increased HMGB1 secretion in KOA. These find‑
ings may provide a therapeutic strategy to decrease synovial 
inflammatory responses during KOA progression.

Introduction

Knee osteoarthritis (KOA) is a common degenerative disease 
in the orthopedic field, which has a high disability rate. With 
the increasing aging of the social population, the incidence 
of KOA has increased to 45% in the last 20 years, and the 
incidence of KOA has exceeded 80% among people >65 years 
old (1). KOA is a chronic degenerative joint disease caused by 
multifactorial etiologies involving the loss of articular cartilage, 
subchondral bone sclerosis, cyst formation, osteophyte devel‑
opment, chronic pain, stiffness and lower extremity disability, 
which significantly affect the independence and quality of life 
of patients, primarily among elderly individuals (2).

Pyroptosis is a caspase‑1‑dependent form of programmed 
cell death that substantially differs from apoptosis, and involves 
canonical and non‑canonical inflammasome activation path‑
ways (3). Nod‑like receptor protein (NLRP) inflammasomes, 
mainly the NLRP1 and NLRP3 inflammasomes, belong to a 
group of seven widely accepted inflammasome complexes: 
NLRP1, NLRP3, NLRC4, interferon γ inducible protein 
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16, pyrin, caspase‑4 and absent in melanoma 2 (4). NLRPs 
directly interact with apoptosis‑ssociated speck‑like protein 
with a caspase‑recruitment domain (ASC) to activate 
caspase‑1 (cleaved caspase‑1p10 and caspase‑1p20), which 
in turn promotes gasdermin D (GSDMD) cleavage and 
translocation (5‑7). This leads to the formation of a hole in 
the cell membrane that facilitates the release of intracellular 
inflammatory factors, such as IL‑1β and IL‑18 and ultimately 
results in cell death (8). Previous studies have reported that 
fibroblast‑like synoviocytes (FLSs) undergo lipopolysaccha‑
ride (LPS) + ATP‑induced pyroptosis in a caspase‑1‑dependent 
manner, mediated by activation of the NLRP1 and NLRP3 
inflammasomes (9,10).

High mobility group box 1 (HMGB1) was first identified as 
a nuclear protein that regulates transcription, replication and 
DNA repair (11). Extracellular HMGB1 has been identified 
as a crucial cytokine involved in the intestinal inflammatory 
response (12) and multiple inflammatory diseases, including 
osteoarthritis  (13), rheumatoid arthritis  (14), endotox‑
emia (15), epilepticus (16), stroke (17), diabetes (18), innate 
immunity, collagen disease, atherosclerosis, cancer and acute 
lung injury (19,20). HMGB1 can be secreted by FLSs after 
stimulation with inflammatory factors in KOA (21‑25), and 
HMGB1 levels in synovial tissues increase during KOA 
progression and correlate positively with KOA synovitis (26). 
HMGB1 can also stimulate chondrocytes to secrete MMPs, 
as well as promote cartilage autophagy and degeneration in 
the pathogenesis of KOA (21). Moreover, the HMGB1‑LPS 
complex is reportedly transported into macrophages via RNA 
for advanced‑glycation end products (RAGE)‑dependent 
endocytosis, and intracellular LPS activates caspase‑1 and 
leads to pyroptosis (27), indicating HMGB1 as an important 
factor in the inflammatory response in KOA. However, the 
specific mechanism via which FLSs promote HMGB1 secre‑
tion in KOA is yet to be elucidated. Notably, a previous study 
revealed that ASC‑mediated caspase‑1 activation can promote 
abnormal HMGB1 secretion during alveolar macrophage 
pyroptosis in acute lung injury (28). Therefore, the relation‑
ship between HMGB1 secretion and FLS pyroptosis in KOA 
requires further investigation.

The present study aimed to investigate the relationship 
between HMGB1 secretion and FLS pyroptosis in vivo and 
in vitro. Small interfering RNAs (siRNAs) and inhibitors were 
used to further elucidate the specific effect of FLS pyroptosis 
on HMGB1 secretion.

Materials and methods

Animals and samples. A total of 15 male Sprague‑Dawley 
(SD) rats (Animal House Grant Certificate no. 201810A001; 
Beijing Vital River Laboratory Animal Technology Co., 
Ltd.; age, 2 months; weight, 200‑300 g) were maintained in 
a specific pathogen‑free laminar‑flow housing apparatus, 
under controlled temperature (25±2˚C) and humidity (60±5%) 
conditions with a 12‑h light/dark cycle, all rats had free access 
to food and water. All animal protocols were approved by the 
Animal Care and Use Committee of the Nanjing University of 
Chinese Medicine. All experiments were conducted in accor‑
dance with the National Institutes of Health Guidelines for the 
Care and Use of Laboratory Animals (29).

The rats were randomly assigned to three groups: the 
normal group (n=5), the KOA group (n=5) and the caspase‑1 
inhibitor group (n=5). KOA was induced in the KOA and 
caspase‑1 inhibitor groups via anterior cruciate ligament 
transection (ACLT) as previously described (30). Rats were 
anesthetized with an intraperitoneal injection of 30 mg/kg 
pentobarbital sodium (3%). The joint capsule was cut along its 
medial side (normal group), or the anterior cruciate ligament 
was transected (KOA, caspase‑1 inhibitor and HMGB1 inhib‑
itor groups). The surgical results were examined via the front 
drawer test (31). Amikacin (Mutian Animal Pharmaceutical 
Co., Ltd.) was injected into the thigh of each rat at a dose of 
10 mg/kg per day for 4 days after the operation. The rats were 
placed in cages allowing free movement after the operation, 
and the joints were not fixed. From day 14, the rats in the 
caspase‑1 inhibitor group were given intra‑articular injec‑
tion of caspase‑1 inhibitor VX765 (MedChemExpress, Inc.) 
at a dose of 50 mg/kg in 50 µl sterilized physiological saline 
once a day for 2 weeks. Rats in the normal and KOA groups 
were given intra‑articular injection of 50 µl sterilized physi‑
ological saline. At day 28, all rats were sacrificed, and synovial 
tissues and cartilage were harvested. Synovial tissues were 
collected to detect protein and gene expression levels, as well 
as caspase‑1 activity. Cartilage was subjected to hematoxylin 
and eosin (H&E) staining to evaluate damage. Serum proteins 
were detected using specific ELISA kits.

FLS culture and treatment. Synovial tissues removed from five 
2‑month‑old male SD rats were snipped into pieces of ~3 mm3, 
homogenized in DMEM (Gibco; Thermo Fisher Scientific, 
Inc.) and incubated for 1 h at 37˚C with 1 mg/ml type I colla‑
genase (Sigma‑Aldrich; Merck KGaA). The samples were 
filtered through a 100‑µm cell strainer. After dissociation, 
the FLSs were pelleted via centrifugation at 300 x g at ~25˚C 
for 5 min and plated in DMEM supplemented with 10% FBS 
(Gibco; Thermo Fisher Scientific, Inc.) and 1% antibiotics 
(100 U/ml penicillin and 100 µg/ml streptomycin; Invitrogen; 
Thermo Fisher Scientific, Inc.). Cells were cultured at 37˚C in 
a humidified atmosphere with 95% air and 5% CO2, and were 
identified as described in our previous studies (9,10). Primary 
FLSs from passages 3‑5 were used for subsequent experiments.

To induce pyroptosis, FLSs were stimulated with LPS 
(3 µg/ml; Sigma‑Aldrich; Merck KGaA) in DMEM for 12 h 
and then treated with ATP (Beijing Solarbio Science & 
Technology Co., Ltd.) at 37˚C (3 mM) for 4 h. For the control 
group, FLSs were treated with DMEM for 12 h and then 
treated with DMEM in combination with 0.9% saline of the 
same volume as ATP for 4 h. Compounds in the supernatant 
were detected using specific ELISA kits. FLSs were collected 
to detect protein and gene expression levels, and caspase‑1 
activity, as well as to perform immunofluorescence.

siRNA transfection. To inhibit NLRP1, NLRP3, ASC and 
caspase‑1 mRNA expression levels in FLSs, commercially 
available specific siRNAs and control siRNAs (Guangzhou 
RiboBio Co., Ltd.) were used. The core nucleotide of siRNAs 
were as follows: NLRP1 siRNA, 5'‑GGU​GGA​GCU​GCA​UCA​
CAU​ATT‑dTdT‑3' and Vehicle, 5'‑UUC​UCC​GAA​CGU​GUC​
ACG​U‑dTdT‑3'; NLRP3 siRNA, 5'‑GGA​GAG​ACC​UUU​AUG​
AGA​ATT‑dTdT‑3' and Vehicle, 5'‑UUC​UCC​GAA​CGU​GUC​
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ACG​U‑dTdT‑3'; ASC siRNA, 5'‑CTG​ATA​AAC​TCG​TCA​
GCT​A‑dTdT‑3' and Vehicle, 5'‑UUC​UCC​GAA​CGU​GUC​ACG​
U‑dTdT‑3'; and caspase‑1 siRNA, 5'‑GGG​CAA​GCC​AGA​UGU​
UUA​U‑dTdT‑3' and Vehicle, 5'‑UUC​UCC​GAA​CGU​GUC​ACG​
U‑dTdT‑3'. The vehicles are the negative control siRNAs.

FLSs were plated in 6‑well plates with the density of 
1x104/ml and transfected with siRNAs using Lipofectamine® 
2,000 (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's instructions. siRNAs were diluted in 
the transfection reagent and culture medium, and the FLSs in 
each plate were incubated with 20 pmol siRNA at 37˚C for 
6 h before the addition of LPS + ATP to induce pyroptosis. To 
assess whether siRNA transfection was successful, the verifi‑
cation experiments were conducted independently before the 
formal transfection experiments. FLSs plated in 6‑well plates 
with the density of 1x104/ml were divided into control, siRNA 
and vehicle groups.

Western blot analysis. Synovial tissues from individual rats 
were homogenized and lysed in RIPA lysis buffer (Beyotime 
Institute of Biotechnology). FLSs in different groups were 
also lysed in RIPA lysis buffer. Lysates were collected and 
centrifuged at 4˚C at 12,000  x  g for 10  min, and protein 
concentrations were quantified with a BCA protein assay kit 
(Beyotime Institute of Biotechnology). Individual samples 
(20 µg/lane) were separated via 10% SDS‑PAGE and were 
transferred onto PVDF membranes (Beyotime Institute of 
Biotechnology). The membranes were blocked with 5% BSA 
(Beyotime Institute of Biotechnology) at 25˚C for 2 h and then 
incubated overnight at 4˚C with primary antibodies against the 
following proteins: Caspase‑1p10 (1:1,000; cat. no. sc‑56036; 
Santa Cruz Biotechnology, Inc.), NLRP3 (1:500; cat. 
no. ab214185; Abcam), NLRP1 (1:1,000; cat. no. sc‑166368; 
Santa Cruz Biotechnology, Inc.), pro‑IL‑1β (1:2,000; cat. 
no.  ab9722; Abcam), IL‑1β (1:1,000; cat. no.  ab9722; 
Abcam), GSDMD‑C (1:500; cat. no. sc‑393581; Santa Cruz 
Biotechnology, Inc.), HMGB1 (1:5,000; cat. no.  ab79823; 
Abcam) and β‑actin (1:2,000; cat. no. 60008‑1‑Ig; ProteinTech 
Group, Inc.). The membranes were then incubated with horse‑
radish peroxidase‑conjugated Affinipure goat anti‑rabbit IgG 
(H+L) (1:20,000; cat. no. SA00001‑2; ProteinTech Group, Inc.) 
for 2 h at room temperature. The bands were visualized using 
an enhanced chemiluminescent (Thermo Fisher Scientific, 
Inc.) method, and the grayscale values of the protein bands 
(average gray value) were quantified with Photoshop CS5 
(Adobe Systems, Inc.) using β‑actin as an internal reference: 
Target protein gray value/internal reference gray value.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
Total RNA was extracted from synovial tissues and FLSs 
using an RNA‑Quick Purification kit (ES Science Biotech 
Co., Ltd.; www.esunbio.com). RNA concentration and 
purity were measured with a spectrophotometer, and the 
target 260 nm/280 nm ratio was between 1.8 and 2.0. RT 
was performed using a HiScriptQ RT SuperMix kit (cat. 
no. R222‑01; Vazyme Biotech Co., Ltd.) according to the 
manufacturer's instructions (stage 1, 1 rep, 50˚C, 15 min; stage 
2, 1 rep, ‑80˚C, 5 sec). RNA expression was measured with a 
ChamQ SYBR qPCR Master Mix kit (cat. no. Q331; Vazyme 
Biotech Co., Ltd.) and an ABI 7500 real‑time PCR system 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's instructions (stage 1, 1 rep, 95˚C, 30 sec; 
stage 2, 40 reps, 95˚C, 10 sec, 60˚C, 30 sec; and stage 3, 1 rep, 
95˚C, 15 sec, 60˚C, 60 sec, 95˚C, 15 sec). GAPDH was used as 
an internal reference. All the primer sequences are provided 
in Table I. All reactions were performed in triplicate, and the 
results were analyzed using the 2‑ΔΔCq method (32). The experi‑
ment was repeated ≥3 times.

Caspase‑1 activity assay. To investigate pyroptosis, caspase‑1 
activity in individual samples was determined based on 
p‑nitroaniline (pNA) production using a colorimetric assay kit 
(cat. no. C1101; Beyotime Institute of Biotechnology). Briefly, 
after detecting the caspase‑1 protein concentration in indi‑
vidual cellular and synovial tissue samples, the samples were 
diluted to 1‑3 mg/ml. Triplicate aliquots of each sample (10 µl) 
were incubated with 10 µl Ac‑YVAD‑pNA (2 mM) in 96‑well 
microplates at 37˚C for 100 min, and caspase‑1 activity in indi‑
vidual wells was measured based on the absorbance at 405 nm 
using a Multimode plate reader (PerkinElmer, Inc.).

Hoechst 33342/PI double staining. Hoechst 33342/PI double 
staining was used for morphological analysis. FLSs were 
plated in replicates at 1x106 cells per well in 6‑well plates. The 
cells were collected via centrifugation at 300 x g for 5 min 
~25˚C, suspended in cell staining buffer, incubated with 5 µl 
Hoechst 33342 and 5 µl PI solution (cat. no. CA1120; Beijing 
Solarbio Science & Technology Co., Ltd.) at 4˚C for 30 min 
and observed under a fluorescence microscope (magnification, 
x200; Leica Microsystems GmbH).

ELISA. HMGB1 and IL‑1β levels in serum and culture super‑
natants were assessed using specific ELISA kits (HMGB1. cat. 
no. F15640; IL‑1β. cat. no. F15810; Westang Biotechnology 
Co., Ltd.) according to the manufacturer's instructions. The 

Table I. Upstream primers and downstream primers for HMGB1 and GAPDH.

Gene	 Primer	 Sequences (5'→3')

HMGB1	 Forward	C TGCCTTCTCTTGTGACAAAGTGGAC
	R everse	ACA TACTCAGCACCAGCATCACC
GAPDH	 Forward	CC TCCTTCGGCCTTCTTCTTGTTC
	R everse	 TCATCCGCAGCAGTGTTGTTCC

HMGB1, high mobility group box 1.
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blood (~6 ml per rat) was collected from the abdominal aorta 
of rats and the serum sample was collected via centrifuga‑
tion at 1,000 x g for 15 min at 4˚C. Experimental and control 
samples were tested simultaneously in triplicate.

Histopathological analysis. Tissue was collected from rats 
and fixed with 4% paraformaldehyde at 25˚C for 72 h, soaked 
in 15% EDTA at 25˚C for 12 weeks for decalcification, then 
tissue was dehydrated in alcohol for 2 h. The dehydrated tissue 
was treated with xylene solution for dehydration and then was 
paraffin‑embedded. Paraffin‑embedded tissue was cut into 

sections (thickness, 5 µm). Then, paraffin‑embedded sections 
were treated with xylene solution for 30 min for dewaxing. 
Tissue sections were treated with gradient concentration of 
ethanol (100, 90, 80, 70 and 65%; 2 min per concentration) 
for rehydration. The sections were then stained in hematoxylin 
solution at 25˚C for 3‑5 min and rinsed with running water for 
30 sec, then stained sections were divided with hydrochloric 
acid for 30 sec and rinsed again with running water for 15 min. 
Stained sections were stained in eosin solution at 25˚C for 
2‑3 min after dehydration in alcohol with the concentration 
of 70 and 90% for 10 min. Then, the stained sections were 

Figure 1. Anterior cruciate ligament resection‑induced pyroptosis increases HMGB1 secretion. (A) Western blotting results of the (B) relative expression levels 
of pyroptosis‑related proteins and HMGB1. (C) Casp‑1 activity in synovial tissues. Levels of (D) HMGB1 and (E) IL‑1β in serum. (F) Hematoxylin and eosin 
staining for cartilage tissue (magnification, x200) with (G) relative Mankin scores from five rats. Data are presented as the mean ± SD of each group (n=3 per 
group) from three separate experiments. **P<0.01 vs. control group; #P<0.05, ##P<0.01 vs. KOA group; NS vs. KOA group. HMGB1, high mobility group box 1; 
NLRP, Nod‑ike receptor protein; KOA, knee osteoarthritis; GSDMD, gasdermin D; casp‑1, caspase‑1; NS, not significant.
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placed into xylene solution for 20 min. Finally, an appropriate 
amount of neutral gum was added, the glass was covered and 
sealed. All the stained sections were observed under optical 
electron microscope (magnification, x200). The degree of 
KOA in individual rats was assessed by observing cartilage 
destruction using the Mankin's scoring system (0, normal; 1, 
mild; 2, moderate; 3, severe).

Statistical analysis. Each experiment was repeated three times. 
Statistical analysis was performed using GraphPad Prism 6.0 
Software (GraphPad Software, Inc.). Data are presented as 
the mean ± SD. Group comparisons were assessed with the 

one‑way ANOVA with Bonferroni's post hoc test or Student's 
t‑test, or two‑way ANOVA with Bonferroni's post hoc test for 
comparison of multiple columns. P<0.05 was considered to 
indicate a statistically significant difference.

Results

ACLT‑induced pyroptosis increases HMGB1 secretion in vivo. 
ACLT significantly increased the expression levels of pyrop‑
tosis‑associated proteins (NLRP1, NLRP3, GSDMD, IL‑1β, 
pro‑IL‑1β and caspase‑1 p10; Fig. 1A, B and D) and HMGB1 
(Fig. 1A and E) in synovial tissue and serum; however, these 

Figure 2. LPS + ATP‑induced FLS pyroptosis increases HMGB1 secretion. (A) Western blotting results of the (B) relative expression levels of pyroptosis‑related 
proteins and HMGB1. (C) Relative mRNA expression of HMGB1. (D) Casp‑1 activity in FLSs. Levels of (E) HMGB1 and (F) IL‑1β in supernatant. (G) FLS 
pyroptosis was observed via Hoechest 33342/PI double staining (magnification, x200), dead nuclei were stained pink or bright red. Data are presented as the 
mean ± SD of each group (n=3 per group) from three separate experiments. **P<0.01 vs. control group. HMGB1, high mobility group box 1; NLRP, Nod‑like 
receptor protein; KOA, knee osteoarthritis; GSDMD, gasdermin D; casp‑1, caspase‑1; LPS, lipopolysaccharide.
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effects were attenuated by a caspase‑1 inhibitor, which also 
decreased caspase‑1 activity in synovial tissue (Fig.  1C). 
It was identified that cartilage degeneration occurred in 
ACLT‑induced inflammatory arthritis and was markedly 
inhibited by the caspase‑1 inhibitor (Fig. 1F).

LPS + ATP‑induced FLS pyroptosis increases HMGB1 
secretion in  vitro. LPS + ATP significantly induced FLS 
pyroptosis, which was accompanied by increased caspase‑1 
activity (Fig.  2D) and upregulated expression levels of 
pyroptosis‑related proteins (NLRP1, NLRP3, GSDMD, IL‑1β, 
pro‑IL‑1β and caspase‑1 p10; Fig. 2A, B and F). The FLSs with 
pyroptosis were stained pink (Fig. 2G). Moreover, LPS + ATP 
significantly increased HMGB1 levels (Fig. 2A-C and E).

siRNA transfection decreases mRNA expression in vitro. To 
observe whether the siRNA transfection was successful, the 
different siRNAs were used to knockdown the mRNA expres‑
sion levels of NLRP1, NLRP3, ASC and caspase‑1. The mRNA 
expression of NLRP1 was significantly lower in the siRNA 
group compared with the control group (Fig. 3A), and the 
same results were identified for the mRNA expression levels of 
NLRP3 (Fig. 3B), ASC (Fig. 3C) and caspase‑1 (Fig. 3D).

NLRP1 knockdown attenuates HMGB1 secretion in vitro. 
Our previous study revealed that NLRP1 inflammasomes are 
important in the pathogenesis of KOA as they induce FLS 
pyroptosis (9). To observe the specific effect of NLRP1 on 
HMGB1 secretion, FLSs were exposed to a NLRP1‑specific 
siRNA or the control. HMGB1 protein expression was signifi‑
cantly higher in the LPS + ATP and vehicle groups compared 
with the NLRP1 siRNA and control groups (Fig. 4A and B), 
and similar results were obtained for relative HMGB1 mRNA 

expression (Fig. 4C) and HMGB1 levels in the supernatant 
(Fig. 4D).

NLRP3 knockdown attenuates HMGB1 secretion in vitro. 
It was previously proved that NLRP3 inflammasomes are 
involved in the pathogenesis of KOA by inducing FLS 
pyroptosis  (9). Thus, NLRP3‑specific siRNA was used to 
assess the effect of NLRP3 on HMGB1 secretion. Healthy 
FLSs served as the control group. HMGB1 protein expression 
(Fig. 5A and B) was significantly higher in the LPS + ATP 
and vehicle groups compared with in the NLRP3 siRNA 
and control groups. Similar results were obtained for relative 
HMGB1 RNA expression (Fig. 5C) and HMGB1 levels in the 
supernatant (Fig. 5D).

ASC knockdown mitigates FLS pyroptosis and reduces 
HMGB1 secretion in vitro. ASC is an important component 
of inflammasomes (33). To examine whether ASC knockdown 
affects LPS  + A TP‑induced FLS pyroptosis and HMGB1 
secretion, FLSs were exposed to an ASC‑specific siRNA or 
a control. The expression levels of pyroptosis‑related proteins 
and HMGB1 (Fig. 6A and B) were significantly higher in the 
LPS + ATP and vehicle groups compared with the ASC siRNA 
and control groups, and the relative RNA expression of HMGB1 
demonstrated the same pattern (Fig. 6C). Similar results were 
obtained for HMGB1 and IL‑1β levels in the supernatant of the 
FLSs in different groups (Fig. 6D and E). Therefore, ASC may 
be important for FLS pyroptosis and HMGB1 secretion.

Caspase‑1 knockdown decreases HMGB1 secretion in vivo. 
To further verify the correlation between FLS pyroptosis 
and HMGB1 secretion, caspase‑1‑specific siRNA was used 
to inhibit FLS pyroptosis, and untreated FLSs served as the 

Figure 3. siRNA transfection decreases mRNA expression. Relative mRNA expression levels of (A) NLRP1, (B) NLRP3, (C) ASC and (D) caspase‑1. Data 
are presented as the mean ± SD of each group (n=3 per group) from three separate experiments. *P<0.05 vs. control group and vehicle group; NS vs. control 
group. NLRP, Nod‑like receptor protein; siRNA, small interfering RNA; ASC, apoptosis‑associated speck‑like protein with a caspase‑recruitment domain.
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control group. HMGB1 protein expression was significantly 
increased in the LPS + ATP and vehicle groups compared 
with the caspase‑1 siRNA and control groups (Fig. 7A and B). 
Moreover, similar results were obtained for relative HMGB1 
RNA expression (Fig.  7C) and HMGB1 levels in the 
supernatant (Fig. 7D).

Discussion

Synovitis is common in KOA, and most patients with KOA 
with obvious clinical symptoms have synovitis  (34,35). 
Inflammatory reactions in synovial tissues are accompanied 
by congestion, edema, the accumulation of inflammatory 

Figure 4. Knockdown of NLRP1 by a specific siRNA mitigates HMGB1 secretion. (A) Western blotting results of the (B) relative protein expression of 
HMGB1. (C) Transcription level of HMGB1. (D) Levels of HMGB1 in supernatant. Data are presented as the mean ± SD of each group (n=3 per group) from 
three separate experiments. **P<0.01 vs. control group; ##P<0.01 vs. LPS + ATP group. HMGB1, high mobility group box 1; NLRP, Nod‑like receptor protein; 
siRNA, small interfering RNA; LPS, lipopolysaccharide.

Figure 5. Knockdown of NLRP3 by specific siRNA mitigates HMGB1 expression. (A) Western blotting results of the (B) relative protein expression of 
HMGB1. (C) Relative mRNA expression of HMGB1. (D) Levels of HMGB1 in supernatant. Data are presented as the mean ± SD of each group (n=3 per group) 
from three separate experiments. **P<0.01 vs. control group; #P<0.05 and ##P<0.01 vs. LPS + ATP group. HMGB1, high mobility group box 1; NLRP, Nod‑like 
receptor protein; siRNA, small interfering RNA; LPS, lipopolysaccharide.
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mediators and the secretion of various types of proteases, 
ultimately resulting in abnormal cartilage metabolism (36,37). 
FLSs are important factors in KOA inflammation and joint 
destruction during the pathological progression of KOA, 
primarily by secreting a wide range of proinflammatory 
mediators, such as IL‑1β, IL‑18, TNF‑α and MMPs (38).

HMGB1 has been reported to serve a proinflammatory role 
in KOA (23,26), and HMGB1 levels in synovial fluid are closely 
associated with the severity of KOA (39). On the one hand, 
as an important proinflammatory factor in KOA, HMGB1 is 
responsible for promoting cartilage degradation and inducing 
synovitis by binding to RAGE, Toll‑like receptor 4 and other 
receptor (40). On the other hand, HMGB1 in complex with LPS 
or IL‑1 enhances the production of proinflammatory cytokines 
in OA FLSs (41). These findings indicate that HMGB1 is an 
important factor in KOA pathogenesis and that HMGB1 

levels are highly associated with synovitis in KOA. While 
the specific mechanism of HMGB1 production in KOA is 
unknown, HMGB1 is found to be secreted by FLSs stimulated 
with inflammatory factors in KOA (42,43). Moreover, whether 
HMGB1 release is involved in FLS pyroptosis in KOA is yet 
to be fully elucidated. Therefore, the present study investigated 
the specific association between HMGB1 secretion and FLS 
pyroptosis.

NLRP1 and NLRP3 expression levels are signifi‑
cantly higher in patients with KOA (44). The NLRP1 and 
NLRP3 inflammasomes are key regulators in the innate 
immune system that promote the release of downstream 
caspase‑1‑dependent proinflammatory cytokines, such as 
IL‑1β and IL‑18 (45), suggesting that these inflammasomes are 
important mediators of FLS pyroptosis. Furthermore, inflam‑
masomes mediate pyroptosis by activating caspase‑1 (46). In 

Figure 6. Knockdown of ASC by specific siRNA mitigates fibroblast‑like synoviocyte pyroptosis and decreases HMGB1 secretion. (A) Western blotting results 
of the (B) relative expression levels of pyroptosis‑related proteins and HMGB1. (C) HMGB1 gene expression. Levels of (D) HMGB1 and (E) IL‑1β in cell 
supernatant. Data are presented as the mean ± SD of each group (n=3 per group) from three separate experiments. *P<0.05, **P<0.01 vs. control group; #P<0.05, 
##P<0.01 vs. LPS + ATP group. HMGB1, high mobility group box 1; siRNA, small interfering RNA; LPS, lipopolysaccharide; ASC, apoptosis‑associated 
speck‑like protein with a caspase‑recruitment domain; GSDMD, gasdermin D; casp‑1, caspase‑1.
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the present study, in vivo experiments in a rat ACLT‑induced 
KOA model were conducted, and increased levels of HMGB1 
and pyroptosis‑related proteins were found in synovial tissues, 
which were significantly decreased by treatment with a 
caspase‑1 inhibitor. Therefore, it was suggested that there was 
an association between HMGB1 secretion and pyroptosis in 
synovial tissue. To further demonstrate the association between 
HMGB1 secretion and pyroptosis, LPS + ATP was used to 
induce FLS pyroptosis in vitro. Increased caspase‑1 activity 

and pyroptosis‑related protein expression levels indicated FLS 
pyroptosis. It was also identified that HMGB1 secretion by 
FLSs was mediated via NLRP1 and NLRP3 inflammasomes 
and caspase‑1 activity. Knockdown of NLRP1, NLRP3 or 
caspase‑1 attenuated HMGB1 secretion by FLSs, suggesting 
that FLS pyroptosis may be responsible for HMGB1 secretion 
by FLSs in KOA.

ASC is important for the formation of the NLRP3 and 
NLRP1 inflammasomes in inflammatory diseases  (47), 
suggesting that ASC is an important component of pyrop‑
tosis. A previous study reported that transfection of alveolar 
macrophages with ASC‑specific siRNA decreased ASC 
expression and mitigated pyroptosis (28). In the present study, 
it was demonstrated that ASC was an important factor in 
FLS pyroptosis, as transfection with ASC‑specific siRNA not 
only inhibited caspase‑1‑dependent FLS pyroptosis, but also 
decreased HMGB1 secretion. The aforementioned experi‑
mental results indicated that HMGB1 production was closely 
associated with caspase‑1‑dependent FLS pyroptosis induced 
by NLRP1 and NLRP3 inflammasomes and ASC expres‑
sion. Hence, it was considered that HMGB1 secretion may 
be closely associated with the function of activated caspase‑1 
(Fig. 8). HMGB1 has been reported to increase IL‑1β produc‑
tion via the NLRP3 inflammasome in vascular and liver 
injury (48,49), suggesting that HMGB1 may be a pyroptosis 
induction factor, but it remains unknown whether HMGB1 has 
the same function in KOA. The present results indicated that 
pyroptosis was an important factor in HMGB1 secretion, but 
the specific effect of HMGB1 on pyroptosis in synovial cells 
requires further investigation.

In conclusion, the present findings provide a novel insight 
into the role of HMGB1 secretion in KOA pathogenesis. The 
current in vivo and in vitro experiments demonstrated that 
NLRP1 and NLRP3 inflammasome‑mediated FLS pyroptosis 

Figure 7. Knockdown of caspase‑1 by specific siRNA mitigates HMGB1 secretion. (A) Western blotting results of the (B) relative protein expression of 
HMGB1. (C) Gene expression of HMGB1. (D) Levels of HMGB1 in the cell supernatant. Data are presented as the mean ± SD of each group (n=3 per group) 
from three separate experiments. **P<0.01 vs. control group; ##P<0.01 vs. LPS + ATP group. HMGB1, High Mobility Group Box 1; siRNA, small interfering 
RNA; LPS, lipopolysaccharide; ASC, apoptosis‑associated speck‑like protein with a caspase‑recruitment domain; casp‑1, caspase‑1.

Figure 8. Pyroptosis enhances HMGB1 secretion in FLSs. Present 
results suggested that HMGB1 secretion was closely associated with 
the inflammasome‑mediated and caspase‑1‑dependent FLS pyroptosis. 
ASC, apoptosis‑associated speck‑like protein with a caspase‑recruitment 
domain; NLRP, Nod‑like receptor protein; FLS, fibroblast‑like synoviocyte; 
LPS, lipopolysaccharide; HMGB1, high mobility group box 1.
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enhanced HMGB1 secretion. Thus, decreasing FLS pyrop‑
tosis by inhibiting the activation of the NLRP1 and NLRP3 
inflammasomes and caspase‑1 may be an effective strategy for 
treating KOA.
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