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The number of bacterial isolates extremely resistant 
to previously effective drugs is growing dynamically. 
Infections are increasingly being caused by pathogens 
that are not susceptible to all available antibiotics. This 
issue is particularly acute for Gram-negative bacilli, 
both the Enterobacterales strains and non-fermenting 
rods. Colistin is used as one of the last available treat-
ment options for patients with severe infections caused 
by carbapenem-resistant Gram-negative rods. Due to 
the increasing role of colistin in the treatment of human 
infections caused by multidrug-resistant (MDR) bacte-
ria, the resistance to this antibiotic ought to be moni-
tored (Prim et al. 2017; Petrosillo et al. 2019; Stefaniuk 
and Tyski 2019).

Until recently, colistin resistance was thought to 
be dependent only on mutations in the genes regulat-
ing LPS synthesis. In 2015, the plasmid-coded colistin 
resistance associated with the presence of mcr genes 
was first described (Liu et al. 2016). Since then, there 
have been many reports about plasmid resistance to 
colistin among strains isolated from human infections 

(Kluytmans 2017; Elbediwi et al. 2019). In Poland, the 
first Escherichia coli strain with the mcr-1 gene was 
described in 2016 (Izdebski et al. 2016). However, we 
do not have more information about the presence of 
mcr genes in Poland. As β-lactam antibiotics are “first-
line” drugs in the treatment of infections caused by 
Enterobacterales, the susceptibility of strains to this 
group of antimicrobial agents was tested; the most 
important resistance mechanism to this group of drugs 
is the production of β-lactamases. This study aimed to 
determine the occurrence of β-lactamases, including 
carbapenemases, in colistin-resistant Enterobacte
rales strains in Poland. Such strains are extremely 
dangerous because of treatment difficulties. Recently, 
new β-lactam/β-lactamase inhibitor combinations have 
been introduced into therapy, especially for ESBLs and 
carbapenemase-producing strains. We have also tested 
all collected strains against these new drugs as a pos-
sible alternative treatment.

The twelve hospitals located all over Poland, in the 
following voivodeships: Lesser Poland (n = 2), Lublin 
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A b s t r a c t

Sixty-five colistin-resistant Enterobacterales isolates recovered from different clinical specimens were analyzed. The strains were collected 
in 12 hospitals all over Poland within a period of nine months. Strains were analyzed for eight genes from the mcr family. The presence of 
mcr-1 gene was detected in three Escherichia coli strains. The 45/65 isolates were identified as ESBL producers. CTX-M-1-like enzymes 
were the most common ESBLs (n = 40). One E. coli and seven Klebsiella pneumoniae strains produced carbapenemases, with the NDM 
being produced by five isolates. Among all the strains tested, four and five were resistant to new drugs meropenem/vaborbactam and 
ceftazidime/avibactam, respectively. 
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(n = 1), Masovian (n = 2), Pomeranian (n = 1), Silesian 
(n = 2), Warmia-Masurian (n = 2), and West Pomera-
nian (n = 2), involved in this study were of similar sizes 
and had similar profiles, as regional, secondary-care 
medical centers, with all major types of wards. A total 
of 65 non-duplicate clinical isolates of Enterobacterales 
were recovered from inpatients with various infections 
between April 2019 and December 2019 and were 
included in this study. The strains were of the following 
species: Klebsiella pneumoniae (n = 45; 69.2%), E. coli 
(n = 15; 23.1%), Enterobacter cloacae (n = 3; 4.0%), and 
Klebsiella oxytoca (n = 2; 3.1%). All bacterial strains 
were identified to the species level in local hospital 
laboratories, and their susceptibility to antibiotics 
was determined using available methods. The strains 
were sent to the Department of Microbiology and Anti-
biotics of the National Medicines Institute (NMI) in 
Warsaw, Poland, together with basic clinical informa-
tion (the date of isolation, the species, the specimen 
type, the patient’s age and sex, and the hospitalization 
ward). The detailed analysis of patient’s demographic 
data and local antibiotics susceptibility data was per-
formed in the NMI. The strains used in the study were 
stored at –80°C. Before the investigation, strains were 
transferred onto the non-selective blood-containing 
agar (BAP; Columbia Agar with 5% Sheep Blood; Bec-
ton Dickinson, USA). All strains were re-identified by 
using ID GN cards in VITEK 2 Compact (bioMérieux, 
Marcy l’Etoile, France).

Based on the information provided by the labo-
ratories, the results of antibiotic susceptibility of the 
studied bacterial strains were pre-analyzed. In the 
NMI, the colistin MIC value (mg/l) was determined 
by a reference broth microdilution method according 
to ISO 20776 (ISO 2019). Susceptibility to colistin was 
performed in triplicate for each strain, using the same 
culture to establish a pool of strains with MIC > 2 mg/l 
of colistin. E-tests with concentration gradients of 
ceftazidime, ceftazidime/avibactam, imipenem, mero-
penem, and meropenem/vaborbactam (MIC Strep; 
Liofilchem, Italy) were used for determination of their 
MICs (mg/l) in colistin-resistant Enterobacterales 
strains. Susceptibility results were interpreted accord-
ing to the guidelines of the EUCAST (EUCAST 2020a). 
The following strains: E. coli ATCC 25922, E. coli ATCC 
35218, E. coli NCTC 13846 (mcr-1), and K. pneumoniae 
ATCC 700603 were used as controls (EUCAST 2020b).

All Enterobacterales isolates were tested for ESBLs 
and carbapenemases production by phenotypic and 
genotypic methods. ESBLs were detected by the double-
disk synergy (DDS) test with disks containing amoxi-
cillin with clavulanate (20 µg and 10 µg, respectively), 
cefotaxime (30 µg), and ceftazidime (30 µg) (EUCAST 
2017). The detection of carbapenemases were assessed 
by the disk test with phenylboronic acid for KPCs, 

the synergy test with EDTA for MBLs, and disc with 
temocillin for OXA-48-like carbapenemases (Żabicka 
et al. 2015). 

Total bacterial DNA was purified with a Geno
mic DNA Prep Plus kit (A&A Biotechnology, Gdańsk, 
Poland).

The blaCTX-M-1-, blaCTX-M-2-, blaCTX-M-8- blaCTX-M-9-, 
blaCTX-M-25-, blaSHV-, blaTEM- blaKPC-, blaNDM-, blaIMP-, 
blaVIM-, blaOXA48-like genes were identified by PCR as 
described previously (Woodford et al. 2006; Empel 
et al. 2008).

All isolates were screened by PCR for the presence 
of plasmid-mediated mcr genes, including mcr-1 (Liu 
et al. 2016), mcr-2 (Xavier et al. 2016), mcr-3 (Yin et al. 
2017), mcr-4 (Rebelo et al. 2018), mcr-5 (Borowiak et al. 
2017), mcr-7 (Wang et al. 2018), mcr-8 (Yuan et al. 2019) 
and mcr-9 (Carroll et al. 2019), as previously described. 

The isolates came from patients of various ages from 
1 to 89 years; the most numerous group comprised of 
patients aged 61–80 (n = 32; 49.2%) and 31–60  years 
of age (n = 16; 24.6%). The remaining patients were 
16–30 years of age (n = 4), ≥ 81 years of age (n = 11), and 
< 3.1 years (n = 2). The most frequently represented hos-
pital wards were: Intensive Care Unit (n = 20, 30.8%), 
internal medicine (n = 14, 21.5%), pulmonary (n = 12; 
18.5%), and burn wards (n = 8; 12.3%). The remain-
ing patients were hospitalized in the following order: 
surgery (n = 3), rehabilitation (n = 3), urology (n = 1), 
and oncology (n = 1). Three patients from whom the 
tested strains were isolated were patients of the surgical 
outpatient clinics (n = 2) and one resident of the Long 
Term Care Facility with documented hospital history.

Just over 40% of all patients’ clinical specimens 
(n = 28; 43.1%) for microbiological testing came from 
the lower respiratory tract, including: bronchial lavage 
(n = 16; 24.6%), and sputum (n = 11; 16%), pleural 
fluid (n = 1), specimens from skin and soft tissue infec-
tions (n = 8, 12.3%), and urine (n = 13, 20%). Only 
16.9% (n = 11) of the Enterobacterales isolates tested 
were collected from blood; single isolates came from 
peritoneal fluid (n = 1), bile (n = 1), and rectal swabs 
(n = 3). K. pneumoniae was the dominant organism in 
lower respiratory tract infections, followed by E. coli. 
K. pneumoniae caused nearly half of the cases of urinary 
tract infections (UTIs). In seven cases, K. pneumoniae 
(10.8%) was the pathogen isolated from blood. 

Resistance to colistin was demonstrated in all 65 iso-
lates. The MIC values of colistin in resistant strains 
ranged from 4 mg/l to > 64 mg/l. For PCR, positive 
results were achieved only with primers specific to 
the mcr-1 gene variant in three E. coli strains. One was 
simultaneously resistant to imipenem (MIC = 12 mg/l) 
and intermediate to meropenem (MIC = 4 mg/l). It was 
also resistant to ceftazidime/avibactam with an MIC 
of 32 mg/l, but sensitive to meropenem/avibactam 
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(MIC = 2 mg/l). Twelve isolates from all 65  strains 
showed elevated MIC values of imipenem and/or 
meropenem from 2 mg/l to ≥ 256 mg/l: E. coli (n = 2), 
E. cloacae (n = 1), and K. pneumoniae (n = 9). Four of 
these strains were resistant to meropenem/vaborbac-
tam, and five to ceftazidime/avibactam. Detailed results 
of susceptibility testing are presented in Table I.

In Kazmierczak and co-researcher’s study (2018) 
the most common ESBL genes in Polish isolates was 
CTX-M-15 (80% of 185 ESBL-positive isolates). 
Authors also observed high percentages of MDR Polish 
strains (21%); 29.2% of them were ceftazidime-resistant 
and 0.8% meropenem non-susceptible, but only one 
isolate produced carbapenemase and it belonged to 
carbapenemase subtype VIM-1. A higher percentage 
of Enterobacterales strains resistant to ceftazidime 
(56.9%) and non-susceptible to meropenem (16.9%) 
was observed in our study. 

Forty-five of the colistin-resistant isolates (69.2%) 
were identified as ESBL producers by the DDS test. 
The ESBL-positive strains belonged to three species 
including E. cloacae complex (n = 2, 4.4%), E. coli (n = 6, 
13.3%), and K. pneumoniae (n = 37, 82.2%). Thirty-
eight ESBL-positive isolates (84.4%) carried only one 
β-lactamase gene. The remaining seven strains pos-
sessed 2–4 bla genes. Forty-one ESBL-positive isolates 
(91.1% from 45 isolates) carried blaCTX-M-1-like genes; 
the most frequent organism was K. pneumoniae 
(n = 34), from which 64.7% of isolates demonstrated 
a colistin MIC > 64 mg/l. The blaCTX-M-9-like genes were 
detected only in two K. pneumoniae. Five isolates car-
ried blaSHV-like, and 10 carried blaTEM-like genes.

One E. coli and seven K. pneumoniae colistin-
resistant isolates produced carbapenemases. Carbape
nemase-encoding genes were detected as follows: blaKPC 
in one K. pneumoniae, blaNDM in five K. pneumoniae, 

	 4	 11	 0	 0	 11	 9	 2	 9	 0	 2	 9	 1	 1	 10	 1
	 8	 4	 0	 4	 0	 4	 0	 4	 0	 0	 4	 0	 0	 4	 0

K. pneumoniae	 16	 2	 0	 0	 2	 1	 0	 2	 0	 0	 2	 0	 0	 2	 0
(n = 45; 69.2%)	 32	 1	 0	 1	 0	 1	 1	 1	 0	 0	 1	 0	 0	 1	 0
	 64	 1	 0	 1	 0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
	 > 64	 26	 0	 14	 12	 24	 2	 19	 1	 6	 19	 2	 5	 23	 3
	 4	 4	 0	 2	 2	 4	 0	 4	 0	 0	 4	 0	 0	 4	 0
	 8	 5	 0	 3	 2	 5	 0	 5	 0	 0	 5	 0	 0	 5	 0

E. coli	 16	 3	 1	 0	 3	 3	 0	 3	 0	 0	 3	 0	 0	 3	 0
(n = 15; 23.1%)	 32	 1	 1	 0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 1	 0
	 64	 1	 1	 0	 1	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
	 > 64	 1	 0	 0	 1	 1	 0	 0	 1	 0	 0	 1	 0	 1	 0
	 4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 8	 1	 0	 0	 1	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0

E. cloacae complex	 16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
(n = 3; 4.6%)	 32	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 64	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 > 64	 2	 0	 1	 1	 2	 0	 0	 1	 1	 1	 1	 1	 2	 0
	 4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0

K. oxytoca	 16	 1	 0	 1	 0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
(n = 2; 3.1%)	 32	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 64	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 > 64	 1	 0	 1	 0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
Total		  65	 3	 28	 37	 59	 6	 52	 3	 10	 53	 5	 7	 61	 4

Table I
Susceptibility of colistin-resistant Enterobacterales strains (n = 65) to ceftazidime, ceftazidime/avibactam, imipenem, meropenem,

and meropenem/vaborbactam.

CAZ – ceftazidime, CAZ/AVB – ceftazidime/avibactam, IPM – imipenem, MEM – meropenem, MEM/VB – meropenem/vaborbactam, 
S – sensitive, I – intermediate, R –resistant

Strains (n; %)
Colistin MEM/VBMEMIPMCAZ/AVBCAZ

S R S R S RMIC (mg/l)

mcr-1

Value Numer of isolates

S I RS I R
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and blaOXA-48-like in one E. coli (the carbapenem-resistant 
isolate with mcr-1 gene) and one K. pneumoniae. Five 
strains carrying bla genes and producing carbapen-
emases showed MIC > 64 mg/l of colistin, which indi-
cated their clinical significance.

The results of the detection of selected β-lactamases 
are shown in Table II.

The growing resistance of bacteria to antibiotics is 
a  challenge for 21st-century medicine. Carbapenems 
were considered so-called “last resort” agents in the 
treatment of serious infections, especially in hospitali
zed patients. The spread of carbapenem-resistant Gram- 
negative rods isolated from outpatients turned out to 
be a challenge for treating infections (Grundmann et al. 
2010; Parisi et al. 2015). The expansion of strains pro-
ducing carbapenemases has been observed for sev-
eral years worldwide, including in Poland (Baraniak 
et al. 2016). Numerous reports have indicated the 
disturbing phenomenon of large-scale spreading of 
Enterobacterales strains producing New Delhi metallo-
β-carbapenemase, and to a lesser extent producing 
Klebsiella pneumoniae carbapenemase, or OXA-48-car-
bapenemases and VIM-carbapenemases. Most of the 
carbapenemases producing strains are multi-drug-
resistant (MDR) strains, which significantly limit the 
therapeutic possibilities of life-threatening infections. 
Due to the frequent lack of therapeutic options for 
carbapenem-resistant strains infections, colistin is con-
sidered one of the few or sometimes only therapeutic 
options (Li et al. 2006; Nation and Li 2009; Lim et al. 
2010; Sandri et al. 2013; Vicari et al. 2013). The coexist-
ence of colistin resistance along with the production of 
carbapenemases in multi-drug resistant isolates poses 

a real threat in the use of carbapenems and colistin to 
fight infections (Lomonaco et al. 2018; Lee et al. 2019). 

Colistin is characterized by high activity against 
Gram-negative rods, despite numerous reports of 
increasing bacterial resistance to this drug (Petrosillo 
et al. 2019), most of which are chromosomally coded. 
The spread of plasmid-encoded resistance to colistin, 
related to the presence of mcr genes, is alarming, espe-
cially since it concerns to a large extent strains with 
“a  low level of resistance to colistin” (with a colistin 
minimum inhibitory concentration (MIC) range of 
2–8 mg/l). The repeatedly described diagnostic problems 
encountered in determining the MIC values of colistin 
are largely responsible for the lack of knowledge about 
the presence of such isolates (Stefaniuk and Tyski 2019). 
However, numerous reports indicate the universality of 
such strains (Bardet and Rolain 2018; Jayol et al. 2018), 
including in Poland, where for the first time E. coli strain 
was identified as possessing the mcr-1 gene in 2016 
(Izdebski et al. 2016). In Poland, little is known about the 
scale of the resistance of Gram-negative rods to colistin. 
Thus, an attempt was made to assess the degree of resist-
ance to other antimicrobial agents of colistin-resistant 
strains isolated from serious life-threatening infections 
in patients treated in hospitals throughout Poland. 

The project achieved the collection of colistin-
resistant Enterobacterales rods over three quarters of 
2019. Within the total number of collected strains, iso-
lates with the mcr-1 gene constituted only 4.2%. Prim 
and co-researchers (2017) showed that the mcr-1 gene 
in clinical isolates is still rare in Europe. Our study may 
indicate that the colistin resistance of Polish Entero-
bacterales isolates is mainly chromosomally encoded. 

Table II
Presence of selected ESBLs and carbapenemases among colistin-resistant Enterobacterales strains (n = 65*).

	 4	 11	 0	 6	 1	 2	 0	 0	 2	 0
	 8	 4	 0	 4	 0	 0	 0	 0	 0	 0

K. pneumoniae	 16	 2	 0	 0	 0	 1	 0	 0	 0	 0
(n = 45; 69.2%)	 32	 1	 0	 1	 0	 0	 0	 0	 0	 0
	 64	 1	 0	 1	 0	 0	 0	 0	 0	 0
	 > 64	 26	 0	 22	 1	 3	 4	 1	 3	 1
	 4	 4	 0	 1	 0	 1	 0	 0	 0	 0

E. coli	 8	 5	 0	 3	 0	 0	 0	 0	 0	 0
(n = 15; 23.1%)	 16	 3	 1	 1	 0	 1	 1	 0	 0	 1
	 64	 1	 1	 0	 0	 1	 0	 0	 0	 0

E. cloacae complex 	 8	 1	 0	 1	 0	 0	 0	 0	 0	 0
(n = 3; 4.6%)	 > 64	 2	 0	 1	 0	 1	 0	 0	 0	 0
Total		  61	 3	 41	 2	 10	 5	 1	 5	 2

Strains (n; %)

Colistin Types of ESBLs Types of carbapenemases

MIC (mg/l) mcr-1 CTX-M-1 CTX-M-9 TEM SHV KPC NDM OXA-48

Value Number of isolates

* – in two E. coli and two K. oxytoca strains (3.1%) resistant to colistin, the β-lactamases were not detected
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Further research is required to confirm this assump-
tion. It is noteworthy that the colistin-resistant Kleb-
siella strains constitute as much as 47/65 (69.2%) of 
isolates studied in this project, while E. coli represented 
only 15/65 (23.1%). In our study the mcr-1 genes were 
detected only in three E. coli strains; two of these strains 
produced ESBL and were susceptible to the new drugs 
meropenem/vaborbactam and ceftazidime/avibactam, 
while the third was resistant to carbapenems (produced 
OXA-48-like carbapenemase) and resistant to ceftazi-
dime with avibactam. Kazmierczak and co-researchers 
(2018) showed the activity of ceftazidime/avibactam 
and other agents against Enterobacteriaceae collected 
in 18 European countries from 2012 to 2015. The tested 
isolates also came from Poland; colistin-resistant Entero
bacterales isolates accounted for 1.8% of all Polish iso-
lates (Kazmierczak et al. 2018). Ceftazidime/avibactam 
was the most active agent from all tested antimicrobial 
agents. From all colistin-resistant isolates in this study, 
98.2% were susceptible to ceftazidime with avibactam. 

Globally, the mcr-gene family is widely dissemi-
nated among Enterobacterales, mainly in E. coli and 
K. pneumoniae isolated from human infections (Jeannot 
et al. 2017). Our study suggests that mcr-1 is currently 
more common in E. coli strains than in K. pneumoniae 
in Poland. Some authors also report that the MICs of 
colistin for E. coli carrying the mcr-1 gene are lower 
than the MICs of colistin for K. pneumoniae (MICs 
4–16 mg/l vs. 4–64 mg/l) (Walkty et al. 2016). In our 
study, MICs of colistin for E. coli with the mcr-1 gene 
were higher than indicated by Walkty et al. (2016), 
ranging from 16 to > 64 mg/l.

This is the first report on the occurrence of β-lac- 
tamases in colistin-resistant Enterobacterales strains in 
Poland. These data broaden the knowledge of the mech-
anism of resistance to colistin among Enterobacterales 
causing human infections in Poland. Demographic data 
of patients, from whom the strains resistant to colistin 
were isolated, indicate that the problem of this resist-
ance cannot be limited to a selected group of patients. 
The small number of colistin-resistant isolates (n = 65) 
obtained from hospitals that participated in the pilot 
study may indicate that the problem of colistin resist-
ance among Enterobacterales strains is low. However, 
due to the described issues of the infection therapy, 
this problem requires further research and analysis. In 
the future, the authors plan to compare the antibiotics 
susceptibility of Enterobacterales isolates resistant to 
colistin and other multidrug-resistant Enterobacterales 
species susceptible to colistin.
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