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Abstract: Intestinal microorganisms impact health by maintaining gut homeostasis and shaping the
host immunity, while gut dysbiosis associates with many conditions, including autism, a complex
neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates
with symptom severity and is characterised by a reduced bacterial variability and a diminished
beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that,
in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut microbiota cross-
talk. We investigated possible interactions among intestinal microbes and between them and host
transcriptional modulators in autism. To this purpose, we analysed, by “omics” technologies, faecal
microbiome, mycobiome, and small non-coding-RNAs (particularly miRNAs and piRNAs) of children
with autism and neurotypical development. Patients displayed gut dysbiosis related to a reduction
of healthy gut micro- and mycobiota as well as up-regulated transcriptional modulators. The targets
of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation, and autism.
Furthermore, microbial families, underrepresented in patients, participate in the production of human
essential metabolites negatively influencing the health condition. Here, we propose a novel approach
to analyse faeces as a whole, and for the first time, we detected miRNAs and piRNAs in faecal
samples of patients with autism.

Keywords: autism spectrum disorders; host–gut microbiota cross-talk; gene-environment interaction;
multi-omics; microbiome; mycobiome; piRNAs; microRNAs

1. Introduction

Autism spectrum disorders (ASD) refers to a group of complex neurodevelopmental
conditions whose core symptoms are a deficit in communication and social interaction,
restricted interests, and repetitive behaviours (https://www.who.int/news-room/fact-
sheets/detail/autism-spectrum-disorders, accessed on 26 November 2021). Comorbidities,
such as mental retardation, epilepsy, anxiety, sensory, sleep, and gastrointestinal disorders,
as well as food selectivity often occur in ASD [1–3]. ASD manifests during the first years
of age, and in the last decades, its prevalence has continued to increase, reaching the
frequency of one in 54 children aged eight years in the USA in the 2016 [4]. ASD aetiology
is multifactorial and has not yet completely elucidated although the interaction between
genetic susceptibility and environmental factors is emerging as the most consistent cause of
ASD development and severity [2,5,6]. To date, hundreds of risk genes have been associated
with ASD as reported in Simons Foundation Autism Research Initiative (SFARI) database
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(https://gene.sfari.org, accessed on 2 December 2021), and gut dysbiosis is reputed as the
most impactful among environmental factors [3].

Gut microbiota assembles more than 100 trillion microorganisms that harbour over
3 million genes (the human genome consists of about 23,000 genes), producing thousands
of molecules and metabolites [7]. It includes bacteria and archaea that represents over 99%
of genes and fungi and viruses with only 0.1% of genes [8].

The most studied microorganisms are prokaryotes, while the remaining domains
are still poorly investigated. Microorganisms contribute to the digestion, synthesis, and
absorption of many nutrients and metabolites, and they compete with pathogens, main-
tain the intestinal barrier integrity, and impact cell signalling pathways [7,9]. Moreover,
a bidirectional communication system, the so-called “microbiota–gut–brain axis”, which
connects the central and the enteric nervous system by biochemical signalling, is able to
regulate cognitive skills and behaviour [10,11]. Indeed, the microbial community has a key
role in orchestrating the cross-talk via epigenetics, metabolites, hormones, and afferent
nerves [9,12,13]. This interaction exerts a profound influence on key neurodevelopmen-
tal processes, including neurogenesis, myelination, glial cell function, synaptic pruning,
and blood–brain barrier function and permeability. The gut–brain axis also modulates
neurotransmission and neuroinflammation in adults [12], and its imbalance is involved in
neuropsychiatric disorders, including ASD [14,15].

Gut dysbiosis, the imbalance in the taxonomic composition of microbiota in general,
increases intestinal permeability and inflammation, leading to abnormal molecule traffick-
ing and potential translocation of intestinal microorganisms to the bloodstream [16]. Gut
dysbiosis associates with many diseases and neurologic conditions, including ASD, and
strongly correlates with the severity of its symptoms [17,18]. Bacterial composition has
been deeply investigated in ASD, while there is a lack of mycobiome studies, leading to
a need for a consistent and complete microbial profile associated to ASD [19]. Overall, these
studies return a lower microbial diversity that, individually, represents a form of dysbiosis
since they have been associated with several conditions and aging [10,18]. In humans,
the commensal bacterial community of healthy gut includes Firmicutes (mainly including
Clostridium, Enterococcus, Lactobacillus, and Faecalibacterium genera), Bacteroidetes (including
Bacteroides and Prevotella genera), Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomi-
crobia phyla, with Firmicutes and Bacteroidetes representing 90% of gut microorganism [20].
The dominant families are Prevotella, Bacteroidaceae, and Ruminococcaceae [21]. Lower levels
of Bifidobacterium and higher levels of Lactobacillus, Clostridium, Bacteroidetes, Desulfovibrio,
Caloramator, and Sarcina were reported in ASD compared to healthy controls [22]. Chen
and colleagues confirmed a Clostridium and Bifidobacterium trend and detected a significant
decrease of Prevotella, Blautia, and Dialister [18].

Gut mycobiota, the community of commensal eukaryotes, have received much less atten-
tion than bacteria to date. Furthermore, its profiling is complicated due to a complex taxonomic
annotation of fungi [23,24]. The mycobiota interacts with commensal bacteria and the host
and maintains the homeostasis of microbiota, thus influencing gut health [25]. Moreover, the
mycobiota influence the host immunological responses, modulating the local inflammatory
system [26,27]. Infants’ gut mycobiota is dominated by Malasseziales until six months of age,
most likely acquired through lactation. Then, during weaning, it undergoes a strong change
although it maintains a low microbial complexity and diversity and becomes dominated by
Candida (particularly C. albicans), Saccharomyces (particularly S. cerevisiae), Penicillium, Aspergillus,
Cryptococcus, Malassezia (particularly M. restricta), Cladosporium, Galactomyces, Debaryomyces, and
Trichosporon [28–30]. The few studies regarding mycobiota in ASD reported an increase
of Candida genus, mainly C. Albicans, and a decrease of Aspergillus and Penicillium [31–33].
C. Albicans represents about 80% of yeast in ASD with a respective 20% of neurotypical
controls [32]. It has been demonstrated that the host shapes the gut microbial community,
releasing microRNAs (miRNAs) in the intestinal lumen [34]. Indeed, the intestinal epithelial
cells and Hopx-positive cells (quiescent stem cells) can modulate their own gut microbiota
by releasing extracellular vesicles (EVs) containing miRNAs into the gastrointestinal tract.

https://gene.sfari.org
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Interestingly, these miRNAs can enter bacteria and act at the DNA or RNA level to affect
gene expression and control the microbial growth [34]. By means of this mechanism, the
host can regulate the composition of its own microbiota that, in return, can influence host
miRNA expression via MyD88-dependent pathway [11,35,36]. Furthermore, microbiota-
derived metabolites and microbiota-derived EVs also participate in the host–microbiota
cross-talk regulating gene expression and intestinal homeostasis of the hosts [11,37,38].
The potential cross-talk between faecal microbiota and miRNA expression in pathological
conditions has been identified in inflammatory bowel disease and colorectal cancer, also un-
derlying their potential clinical relevance as biomarkers and therapeutic targets [35,39]. For
instance, miR-515-5p and miR-1226-5p induce the growth of Fusobacterium nucleatum and
E. coli, respectively [40], while commensal microbiota-induced miR-21-5p over-expression
is involved in intestinal permeability via ARF4 [40], thus representing a therapeutic target
to restore an intestinal barrier.

Recently, a study found an association between salivary miRNAs and salivary mi-
crobiota dysregulation in ASD [41], but none of the studies reported host miRNA-gut
microbiota interaction in this condition. PiRNAs are small ncRNA that epigenetically
and post-transcriptionally silence the expression of transposable elements integrated in
eukaryotic genomes [42]. At present, no piRNAs in stool samples are available either in
healthy or in pathological conditions.

In this scenario, it emerges that microbes and small non-coding RNA (sncRNA) in
faecal samples should be considered and studied as a whole to comprehend how microbial
strains interact among each other and with the host. In this pilot study, we defined, through
“omics” technologies, the faecal micro- and mycobioma profile as well as the sncRNA
profile of a small group of individuals with ASD and neurotypical controls. Our aim was
to find markers of ASD among stool microbial and transcriptional modulators for the
possible relationship between them and the host. We applied a bioinformatics approach to
correlate gut bacteria and fungi composition with host miRNAs and piRNA expression for
the first time in stool samples from patients with ASD and attempted to highlight possible
mechanisms of microbiota-host bidirectional cross-talk in ASD.

2. Materials and Methods
2.1. Subjects

A total of 12 individuals, 6 with ASD (5 males and 1 female; age 6–17) and 6 neu-
rotypical controls (Ctrl) (3 males and 3 females; age 10–20), were recruited for this study.
The diagnoses for ASD are: three, autism; one, high-functioning autism; one, autism with
echolalia and motor stereotypies; and one, Asperger syndrome with stereotypies. Diagnosis
were performed or revised according to DSM-5 [43].

2.2. Ethical Committees

The study was conducted in accordance with the Declaration of Helsinki, and approved
by the Ethics Committee of Istituto San Vincenzo (protocol code 312, 28 December 2018).
The Ethics Committee prepared the informed consent, including the instructions for sam-
ple collection; and enrolled the children. The collected informed consents were signed
by the parents and/or legal guardians since the individuals were underage. All meth-
ods were performed in accordance with relevant guidelines and regulations regarding
observational studies.

2.3. Sample Collection

Naturally evacuated stool samples were obtained from all individuals and collected
by previously instructed parents. Stools were collected in stool nucleic acid collection and
transport tubes, then returned refrigerated to the Institute for Biomedical Technologies,
CNR. Samples were stored at –80 ◦C until RNA/DNA extraction.
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2.4. DNA and SmallRNA Extraction from Stool

Total DNA was extracted from frozen stool samples (200 mg) using commercial kit
and the relative protocol for pathogen detection (QiAamp DNA stool mini kit, Qiagen
GmbH, Hilden, Germany) with minor modification, and then, pre-lysis mechanical grind-
ing was performed to increase sample homogenization, microbial lysis, and DNA extraction
strength. Zirconia beads (100 µm in diameter) were added to ASL buffer (300 mg/mL
buffer) before incubation at 95 ◦C, and three cycles per 1 min in a bead beater were per-
formed before thermal lysis. The DNA quality (280/260 ratio) was checked by NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) and quantity
measured by Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Wilmington, DE, USA).

RNA was isolated from frozen stool samples (200 mg) using the commercial kit RNeasy
Power Microbiome (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s pro-
tocol. RNA quality was assessed by Agilent RNA 6000 Nano on Agilent 2100 Bioanalyzer
system (Agilent Technologies, Santa Clara, CA, USA), and RNA concentration measured
by Qubit RNA assay (Thermo Fisher Scientific, Wilmington, DE, USA).

2.5. 16S and 18S Sequencing

The 16S and 18S rDNA, V3-V4 and NS1-NS2 regions, were amplified (primers sequence for 16S,
forward 5′-CCTACGGGNGGCWGCAG-3′ and reverse 5′-GACTACHVGGGTATCTAATCC-
3′; primers sequence for 18S, forward 5′-GTAGTCATATGCTTGTCTC-3′ and reverse 5′-
GGCTGCTGGCACCAGACTTGC-3′) from faecal DNA, and paired-end sequencing was
performed on the Illumina MiSeq Flow cell V3, 2 × 300 bp, returning an average of
0.8 million reads per sample for 16S and 28,000 reads per sample for 18S.

2.6. SmallRNA Sequencing

Small RNA-sequencing libraries were generated directly from total RNA isolated from
the stool samples and performed with the TruSeq Small RNA Library Preparation Kits
(Illumina, Inc., San Diego, CA, USA) based on the manufacturer’s protocol. Libraries were
sequenced on NextSeq 500 (Illumina, Inc., San Diego, CA, USA), 1 × 75 bp and 30 million
reads per sample.

2.7. Metataxonomic Bioinformatics Analysis

Metataxonomic analysis was performed in R (4.0.3) using Dada2 [44] pipeline us-
ing phyloseq package [45] against DADA2-formatted reference databases latest available
version (July 2021), that is, Silva v138 [46] for 16S and Silva v132 [47] for 18S. DADA2
plug-in was used to filter, trim, dereplicate, merge, remove chimaeras, and assign taxonomy
to all produced sequences to obtain the Operational Taxonomic Units (OTUs). Variance
Stabilising Transformation was applied to normalise across samples on OTUs with DESeq2
package [48] as described by McMurdie and Holmes [45]. For each sample, the number of
observed OTUs and the percentages of relative abundances of phyla, orders, classes, and
families were determined. To evaluate statistically significant differences between ASD
and controls (Ctrl) at genus level, the univariate DESeq2 method was used [45,48]. Default
Wald test was applied in DESeq2, and significance threshold was set to p-value < 0.05 for
the 16S analysis, while for the 18S analysis, all results were considered.

2.8. Small, Non-Coding RNA Data Analysis

SmallRNA reads were processed according to a custom bioinformatics pipeline that
we developed [49]. Summarising the main pipeline steps, smallRNA reads were checked
for quality control using FastQC package (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc, accessed on 22 July 2020), filtered, and then mapped against Arena-Idb [50],
a reference database representing a comprehensive and non-redundant dataset of public
ncRNA sequences and annotations, using Bowtie aligner [51], with one mismatch in the
leftmost 20 bp of the read. In order to obtain reliable read counts and to fix the problem
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of multireads [52], we used the RSEM tool [53] for accurate expression estimations of
identified ncRNAs.

An evident heterogeneity in the expressions of several individual references required
an accurate management of the expression normalization step. A reference-free clustering
of the sequences was performed with the SEED [54], an algorithm for clustering very
large NGS sets. Sequences were joined into clusters that differ by up to three mismatches
and three overhanging residues from their virtual centre. The cardinalities of the clusters
resulted to be more stable (by showing higher correlations among the samples) and were
used to compute the scaling factors of TMM normalization. Such factors were applied to
normalise the ncRNA reference expression counts. Expression data were analysed with
edgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html, accessed on
22 July 2020). EdgeR package applied Robinson and Smyth exact statistical methods for
multigroup experiments [55,56]. The Benjamini–Hochberg multiplicity correction method
was used on the p-values to control the false-discovery rate (FDR).

2.9. Identification of sncRNA Targets and Relative Pathways

All identified miRNA and piRNA were annotated, based on miRPathDB (https://
mpd.bioinf.uni-sb.de/, accessed on 8 November 2021) [57] and piRNAdb (https://www.
pirnadb.org/, accessed on 8 November 2021). In particular, only experimentally vali-
dated miRNA gene targets and predicted piRNA targets with the highest amount of
overlapping alignments were considered for further analysis. Common gene targets be-
tween different miRNAs and/or piRNAs belonging to different samples were studied.
Gene targets were annotated using KEGG and MSigDB-Hallmark gene sets (https://
www.gsea-msigdb.org/gsea/msigdb/, accessed on 16 November 2021) using KEGGREST
(https://bioconductor.org/packages/release/bioc/html/KEGGREST.html, accessed on
16 November 2021) and R function msigdbr (v7.4.1) (https://igordot.github.io/msigdbr/,
accessed on 16 November 2021), respectively.

3. Results
3.1. Microbiota Analysis

Intestinal microbiota composition was evaluated analysing V3–V4 regions of 16S and
NS1–NS2 regions of 18S from six ASD and six Ctrl stool samples. Overall, 9.5 million and
330,000 reads were obtained, with an average of 800,000 (±450,000) and 28,000 (±21,000)
reads per sample for 16S and 18S, respectively. Reads converged into about 3000 (±850)
and 60 (±20) OTU per sample on average for 16S and 18S, respectively.

Analysis of 16S was performed considering all ASD samples against all Ctrl samples.
As displayed in Figure 1a, no relevant differences can be evidenced between the two groups
from the alpha diversity analysis. Instead, alpha diversity analysis, in particular Shannon
and Simpson indices, of 18S samples (Figure 1b) highlight a major species diversity for
ASD samples compared to controls.

3.1.1. Bacteria Profiling: Metataxonomic Analysis

We identified Actinobacteria, Bacteroidetes, Desulfobacterota, Firmicutes, Proteobacteria, and
Verrucomicrobia phyla. In accordance with literature, we found that Bacteroides and Firmicutes
are the most represented phyla in the ASD and Ctrl faeces [7]. In detail, Bacteroides represent
42% in ASD and 14% in Ctrl, while Firmicutes are 44% in ASD and 85% in neurotypical. As
previously reported, the Bacteroidetes/Firmicutes ratio was higher in ASD samples (0.79)
than in Ctrl (0.38) [58–60].

Metataxonomic comparative analysis was performed at family/genus level. ASD sam-
ples displayed a reduced microbiota variability compared to controls. In particular, 24 families,
corresponding to 38 bacteria genera, were significantly detected in all samples; among these,
nine families are prevalent in healthy samples and five in ASD (Figure 2). Considering
differences in microbiota composition at genus level, ASD samples displayed a prevalence
of Bifidobacterium, Desulfovibrio, Coprococcus, Alistipes, and Sutterella. Instead, in neurotypical
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samples, the most commonly represented genera are Phascolarctobacterium, Akkermansia,
Barnesiella, Enterorhabdus, Lachnospiraceae_NK4A136, Ruminococcus, Prevotellaceae_UCG-001,
and Streptococcus.
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Figure 2. Venn diagrams of (a) microbiota and (b) mycobiota taxonomic analysis. In black, common
families between ASD and Ctrl samples; in red, families mainly present in Ctrls; in green, families
characterising the ASD group.

Due to high heterogeneity of the sample compositions (see Supplementary Figure S1),
we performed the metataxonomic analysis comparing each ASD sample to the whole con-
trol set (n = 6) and thus evidenced that twenty bacteria families were prevalent in the
most Ctrl samples but were not so frequent in ASD (Figure 3, Supplementary Figure S2
and Table S1). These included the previously identified Akkermansiace, Barnesiellaceae,
Eggertellaceae, and Tannerellaceae characterising Ctrl samples, while Sutterellaceae for the
ASD samples and Acidaminococaceae and Ruminococcaceae were detectable in both sample
types. Instead, several families displayed a different trend: Bacterioidaceae, Bifidobacteriaceae,
Christensellaceae, Erysipelotrichaceae Lachnospiraceae, and Streptococcaceae were shown as charac-
teristic of Ctrls, while Pasturellaceae and Prevotellaceae were detectable only in ASD. Moreover,
Coriobacteriaceae and Veillonellaceae were not previously identified as well as Lactobacillaceae
and Synergisticaceae, which were respectively under- and over- represented in ASD samples.
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Among these families, Prevotella_9 and Ruminococcus genera are mainly present in ASD
samples, while Phascolarctobacterium, Akkermansia, Bacteroides, CAG-352, and Dialister
genera were principally detectable in Ctrl samples.
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Figure 3. Bacteria (up) and fungi (down) genera relative abundance.

3.1.2. Fungi Profiling: Metataxonomic Analysis

Although the 18S analysis was performed on the Fungi kingdom, in order to reduce
the huge amount of vegetable sequence detected in these samples, low abundances can
be detected in all samples. Moreover, the mycobiome comparative analysis returned
even less variability in ASD samples. Only five fungi families can be significantly identi-
fied: Saccharomycetaceae and Debariomycetaceae in both sample types, while Aspergillaceae,
Malassenziaceae, and Cladosporaceae are detectable only in controls (Figure 2b). Although
Saccharomycetaceae was the most diffused family, it was not further classifiable at genus
level. Among ASD, the Debaryomycetace family was predominant and represented by
Candida-Lodderomyces_clade and Meyerozyma-Candida_clade. In neurotypical individuals,
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the predominant genera were Penicillium and Malassezia, belonging to Aspergillaceae and
Malasseziaceae, respectively.

The analysis performed comparing the mycobiome profile of each ASD sample to those
of the whole Ctrl group (Supplementary Table S2) returned Aspergillaceae and Malasseziaceae
as prevalent in control samples, while Debaryomycetace and Dipodascaceae were predominant
in ASD samples (Figure 3). This analysis confirms for the Debaryomycetace family Candida-
Lodderomyces_clade and Meyerozyma-Candida_clade genera and annexes Geotrichum from
Dipodascaceae characterising ASD mycobiota and Penicillium, belonging to the Aspergillaceae
family, detectable only in Ctrl samples, while Malassezia were seriously reduced in ASD samples.

3.2. sncRNA Profiling

The analysis of human sncRNAs in stool samples was performed by the bioinformatics
pipeline as described in [49]. Quality control trimming and filtering returned sample reads
in the average of 26.2 million and 15–51 base length. About 2.4 million reads per sample
(9.2%) mapped to the human genome (GRCh38), and an average of 1.2 million reads per
sample were assigned to ncRNA classes. Among these reads, 58.2% represented long
ncRNAs, and 41.8% sncRNAs. The 0.5% fraction of ncRNA reads were miRNAs, according
to previously published literature [61], and 9.6% piRNAs.

We identified a total of 11,596 sncRNAs in stool samples, and no relevant differences
were observed between cases and controls; a mean of 1271 piRNAs (53.4%) and 444 miRNAs
(18.6%) per sample were detected. The distribution of the different classes of sncRNA did
not differ between samples of ASD patients and controls (Figure 4). The most expressed
miRNAs in both patients and controls are hsa-miR-182-5p and hsa-miR-681; hsa-miR-657
and hsa-miR-2110 are mainly present in all ASD, while hsa-miR-1203 is mainly present in
neurotypical individuals. The most represented piRNAs in all samples are hsa-piR-27489,
hsa-piR-32912, hsa-piR-32921, hsa-piR-23722, and hsa-piR-19705; in addition, piRNAs
hsa-piR-28059 is highly expressed in ASD subjects, while hsa-piR-33182 and hsa-piR-33031
are highly expressed in healthy subjects.
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Table 1. List of miRNAs, piRNAs and miRNA + piRNAs common targets. “Single-cell type specificity” was obtained by single-cell transcriptomics; “Tissue
specificity (RNA)” and “GI RNA expression” were obtained by RNA-seq; “GI protein expression” was obtained by immunocytochemistry investigations. All
these data are from ProteinAtlas (https://www.proteinatlas.org, accessed on 2 December 2021). Biological process and Molecular function data are from UniProt
(https://www.uniprot.org, accessed on 2 December 2021). SFARI score categories are reported in the following website (https://gene.sfari.org/about-gene-scoring/,
accessed on 2 December 2021). Abbreviation: GI, gastrointestinal; ASD, autism spectrum disorders.

Small ncRNAs Target
Gene

Tissue
Expression Cluster

(RNA)

Single-Cell Type Specificity
(Enhanced in)

Tissue
Specificity

(RNA)

GI RNA
Expression

(Score)

GI Protein
Expression

(Score)
Biological Process Molecular Function Autism-Related

Disorders

SFARI
(Score

Categories)

miRNA
hsa-miR-182-3p
hsa-miR-99a-5p
hsa-miR-4758-5p

CBWD1 Intestine—
Vesicular transport Nonspecific Low Low Medium-low NA ATP binding

hsa-miR-3911
hsa-miR-99a-5p
hsa-miR-595

DHCR24 Non-specific—
Unknown function

Hepatocytes, Alveolar cells
type 2, Theca cells, Alveolar
cells type 1

Adrenal
gland, liver Low NA

Cholesterol biosynthesis,
Cholesterol metabolism,
Lipid biosynthesis, Lipid
metabolism, Steroid
biosynthesis, Steroid
metabolism, Sterol
biosynthesis, Sterol
metabolism

Oxidoreductase Desmosterolosis
(OMIM 602398) [62]

hsa-miR-4674
hsa-miR-4494
hsa-miR-6841-3p
hsa-miR-99a-5p
hsa-miR-4487
hsa-miR-3613-3p

GDE1 Non-specific—
Mitochondria Syncytiotrophoblasts Low High NA Lipid metabolism Hydrolase

hsa-miR-4742-3p
hsa-miR-5689
hsa-miR-766-3p

HSBP1 Non-specific—
Mitochondria Respiratory epithelial cells Low High NA Negative regulator of the

heat shock response

Identical protein
binding;
transcription
corepressor activity

hsa-miR-182-5p
hsa-miR-96-5p
hsa-miR-99a-5p
hsa-miR-3613-3p
hsa-miR-8071

IGF1R Ciliated cells—
Cilium assembly

Oligodendrocytes, microglial
cells, excitatory neurons,
oligodendrocyte precursor
cells, inhibitory neurons

Low Medium High Host-virus interaction

Kinase, receptor,
transferase,
tyrosine-protein
kinase

hsa-miR-4712-3p
hsa-miR-1324
hsa-miR-99a-5p

MEF2D Non-specific—
Translation

Cone photoreceptor cells,
sertoli cell; cluster in intestinal
epithelial cells

Skeletal
muscle Low High

Apoptosis, differentiation,
neurogenesis,
transcription,
transcription regulation

Activator,
developmental
protein,
DNA-binding

hsa-miR-4712-3p
hsa-miR-6865-5p
hsa-miR-3911
hsa-miR-595
hsa-miR-2110
hsa-miR-144-3p
hsa-miR-3615

NACC1 Non-specific—
Unknown function Non-specific Low Medium Medium Transcription,

transcription regulation Repressor
Disease mutation,
epilepsy, mental
retardation [63]

1S

hsa-miR-4712-3p
hsa-miR-5689
hsa-miR-96-3p

OLA1 Non-specific—
Mitochondria

Non-specific; cluster in
smooth muscle cells Low Medium High ATP metabolic processes Hydrolase

https://www.proteinatlas.org
https://www.uniprot.org
https://gene.sfari.org/about-gene-scoring/
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Table 1. Cont.

Small ncRNAs Target
Gene

Tissue
Expression

Cluster (RNA)

Single-Cell Type Specificity
(Enhanced in)

Tissue
Specificity

(RNA)

GI RNA
Expression

(Score)

GI Protein
Expression

(Score)
Biological Process Molecular Function Autism-Related

Disorders

SFARI
(Score

Categories)

hsa-miR-4712-3p
hsa-miR-4742-5p
hsa-miR-99a-5p
hsa-miR-144-3p
hsa-miR-182-5p
hsa-miR-96-5p
hsa-miR-766-3p

RPL7L1 Non-specific—
Mitochondria Non-specific Low Medium NA

Blastocyst formation;
maturation of LSU-rRNA
from tricistronic rRNA
transcript (SSU-rRNA,
5.8S rRNA, LSU-rRNA)

Ribonucleoprotein,
ribosomal protein

hsa-miR-182-5p
hsa-miR-144-3p
hsa-miR-933
hsa-miR-154-5p

SMAD4 Non-specific—
Translation Granulosa cells Low Medium High Transcription,

transcription regulation DNA-binding
Myhre Syndrome
[64]: Juvenile
polyposis syndrome

2

hsa-miR-4487
hsa-miR-766-3p
hsa-miR-144-3p
hsa-miR-99a-5p

SMARCA5
Immune cells—
Transcription,
translation

Alveolar cells type 1 Low Medium High Host-virus interaction Chromatin regulator,
helicase, hydrolase

Neurodevelopmental
syndrome [65]

hsa-miR-3613-3p
hsa-miR-766-3p
hsa-miR-5689
hsa-miR-96-3p
hsa-miR-144-3p

TAF13 Non-specific—
Translation

Suprabasal keratinocytes;
cluster in macrophages Low Medium Medium Transcription,

transcription regulation DNA binding

Mental retardation,
autosomal recessive
60 (OMIM 617432),
Autosomal-Recessive
Intellectual
Disability [66]

hsa-miR-4742-5p
hsa-miR-99a-5p
hsa-miR-2113
hsa-miR-766-5p

TNRC6B

Bone marrow,
brain—smell
perception,
nucleosome

Non-specific Low Low High
RNA-mediated gene
silencing, translation
regulation

RNA-binding

Complex
neurodevelopmental
disorder involving
spoken language,
intellectual disability,
neurobehavioural
phenotype (ASD),
and epilepsy [67–69]

2

hsa-miR-4742-3p
hsa-miR-1324
hsa-miR-5689
hsa-miR-6865-3p

UHMK1
Non-specific—
Unknown
function

Non-specific Low Medium-
high NA Neuron projection

development

Kinase,
RNA-binding,
serine/threonine-
protein kinase,
transferase

Schizophrenia [70,71]

hsa-miR-3613-3p
hsa-miR-766-3p
hsa-miR-3615 WDR12 Non-specific—

Mitochondria
Non-specific; cluster in
Smooth muscle cells Low Medium-

high
Medium-
high

Ribosome biogenesis,
rRNA processing

Ribonucleoprotein
complex binding

hsa-miR-3613-3p
hsa-miR-99a-3p
hsa-miR-6939-5p
hsa-miR-4758-3p
hsa-miR-766-5p

WIPF2 Bone marrow—
Differentiation

Non-specific; cluster in
intestinal epithelial cells Low High High Actin filament-based

movement Actin-binding

hsa-miR-766-3p
hsa-miR-3615
hsa-miR-4712-5p
hsa-miR-595

ZNF682 Skin—Unknown
function Oligodendrocytes Low Medium-

low NA Transcription,
transcription regulation DNA-binding
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Table 1. Cont.

Small ncRNAs Target
Gene

Tissue
Expression Cluster

(RNA)

Single-Cell Type Specificity
(Enhanced in)

Tissue
Specificity

(RNA)

GI RNA
Expression

(Score)

GI Protein
Expression

(Score)
Biological Process Molecular Function Autism-Related

Disorders

SFARI
(Score

Categories)

hsa-miR-96-3p
hsa-miR-5689
hsa-miR-2110
hsa-miR-6760-5p

ZNF703 Striated muscle—
Muscle contraction Syncytiotrophoblasts Skeletal

muscle Medium-low Medium Transcription,
transcription regulation Repressor

piRNA hsa-piR-16407
hsa-piR-18524 CFLAR Lung—

Lung homeostasis
Langerhans cells, urothelial
cells; cluster in macrophages Low Low High Apoptosis,

host-virus interaction

Cysteine-type
endopeptidase
activity involved in
apoptotic
signalling pathway

hsa-piR-21363 GOLGA6L2 Testis—Meiosis Early spermatids Testis NA NA NA NA

hsa-piR-21363 SLC2A4 Striated muscle—
Muscle contraction Cardiomyocytes

Heart
muscle,
skeletal
muscle

Low NA Transcription,
transcription regulation DNA-binding

mirRNA/
piRNA

hsa-miR-708-3p
hsa-miR-766-3p
hsa-piR-9505

N4BP1 Skin—
Epithelial junctions

Alveolar cells type 1,
glandular and luminal cells,
cluster in endometrium

Low Medium High Immunity, innate
immunity

Hydrolase, nuclease,
RNA-binding

hsa-miR-766-5p
hsa-piR-21363 SLC2A4 Striated muscle—

Muscle contraction Cardiomyocytes

Heart
muscle,
skeletal
muscle

Low NA Transcription,
transcription regulation DNA-binding

hsa-miR-5689
hsa-piR-2001 SLC12A6

Immune
cells—Transcription,
Translation

Cone photoreceptor cells, rod
photoreceptor cells; cluster in
B-cells

Low Low Medium
Ion transport, potassium
transport,
symport, transport

potassium:chloride
symporter activity

Andermann
syndrome
(OMIM #218000)

hsa-miR-144-3p
hsa-piR-13910 TTN Striated muscle—

Muscle contraction Cardiomyocytes
Skeletal
muscle,
tongue

Very low NA

Cardiac muscle tissue
morphogenesis, skeletal
muscle thin
filament assembly

Calmodulin-binding,
Kinase,
serine/threonine-
protein kinase,
transferase

3S

hsa-miR-3911
hsa-miR-4487
hsa-piR-433

ZNF33A
Non-specific—
Transport
via ER

Non-specific Low Medium Low Transcription,
transcription regulation DNA-binding
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As for the metataxonomic analysis, the sncRNA analysis was also performed compar-
ing each ASD sample to the whole controls collection (n = 6) (Supplementary Table S3).
A total of 42 miRNAs were up-regulated in three out of six ASD samples although none
resulted common to all the three samples. Target gene analysis of the dysregulated miRNAs
identified 18 target genes common to three ASD stool samples (Table 1). The differential
expression analysis conducted on piRNAs returned no down-regulated piRNAs and a total
of 84 up-regulated piRNAs in four out of six patients with ASD. Among these, only hsa-
piR-21363 was common to two patients, while three target genes (CFLAR, GOLGA6L2, and
SLC2A4) were common to four patients. Moreover, considering both miRNA and piRNA
gene targets, five genes that resulted common in more than two samples (N4BP1, SLC2A4,
SLC12A6, TTN, and ZNF33A) were identified. Table 1 summarises the 26 target genes of
identified transcriptional modulators, considering the tissue expression, protein annotation,
related disease, and SFARI score for proteins mutated in ASD.

The miRNA and piRNA target genes common to at least three samples were annotated
with KEGG database and MSigDB-Hallmark gene sets. Results are displayed in Figure 5,
grouped by pathway (a) or Hallmark gene set (b). This analysis returns pathways or
biological processes involving one or more target genes. These are related to cell–cell
junction, bacterial invasion, inflammation, and metabolite signalling and are pathways
linked to autism.
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Figure 5. Functional annotation of miRNA and piRNA target genes from KEGG (a) and MSigDB-
Hallmark (b).

3.3. Case Study: Analysis of Siblings

Within the analysed stool samples, four were obtained from two couples of siblings:
couple #1 (male–male), one subject with ASD and the other neurotypical control, and
couple #2, a male with ASD and a neurotypical female. We separately analysed the data
from these samples to highlight differences of gut microbial community and sncRNAs
between patient and control with common genetic background and similar diet.

The microbiota composition of the two couples of siblings was compared; abundance
fractions are reported in Figure 6. Couple #1 displays a similar microbiota composition,
and the only relevant differences concern the Bacteroidaceae and the Rumicococcaceae family
(Figure 6a), which, respectively, increased and reduced in the ASD individual, in contrast to
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Debaryomycetaceae (Figure 6c), which was noticeable only in the ASD sibling mycobiota to
the detriment of Saccharomycetaceae. A different composition was identified in the couple #2,
with the ASD sibling displaying increased Akkermansiaceae, Bacetroidaceae, Lachnospiraceae,
and Muriobaculaceae, while Rikenellaceae and Veillonellaceae were decreased in the ASD
individual (Figure 6b). The mycobiota composition displays a relevant increase in Debary-
omycetaceae and Malasseziaceae in ASD to the detriment of Saccharomycetaceae (Figure 6d).
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Figure 6. Microorganism composition of the couples of siblings. Microbiota composition, expressed
as abundance fractions, in couple #1 (a) and in couple #2 (b); Mycobiota in (c) for couple #1 and in
(d) couple #2. Families are red squared if increased in ASD sample and black squared if decreased.

By comparing the results obtained within each couple of siblings, we identified up-
regulated and down-regulated miRNAs and piRNAs by statistical analyses and defined as
statistically significant those ncRNA with log2 fold change ≤ −1 or ≥ 1 and p-value < 0.05
(Fisher’s test) (Supplementary Table S4). A total of 750 miRNAs were identified in couple #1,
and among these, 93 have a significantly differential expression. Among these, 60 miRNAs
were detected in both individuals of couple #1, 32 were up-regulated, and 28 down-
regulated in ASD sample. Moreover, 15 miRNAs were detected only in the ASD subject
and 18 only in the healthy sibling. The top three down-regulated miRNAs in ASD sample
are hsa-mir-937, hsa-mir-3197, and hsa-mir-103a-1, while those up-regulated are hsa-mir-
4700, hsa-miR-657, and hsa-mir-2110. A total of 2177 piRNAs were identified in stool
samples from couple #1, and 329 were significantly dysregulated. Among these, 112 are
up-regulated and 52 down-regulated and present in both subjects belonging to couple
#1, whereas 109 are present only in the stool sample from the ASD subject and 56 in
sample from the healthy sibling (for details, see Table 2). The top three down-regulated
piRNAs in ASD are hsa-piR-6691, hsa-piR-6693, and hsa-piR-29205, while hsa-piR-28269,
hsa-piR-32987, and hsa-piR-28059 are significantly up-regulated.

In couple #2, we identified 581 miRNAs and 1912 piRNAs. There are 51 significantly
differentially expressed miRNAs common to both samples, 11 up-regulated and 40 down-
regulated in the ASD sample. Moreover, 19 miRNAs were identified only in the ASD sample
and 23 only in the control sibling. In couple #2, 222 piRNAs significantly differentially
expressed and common to both samples were identified. Among these, 66 were up- and
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256 down-regulated in ASD sample, 33 detected only in ASD, and 85 only in sample from
the neurotypical sister.

Table 2. MiRNAs and piRNAs count in the couples of siblings. Within the parentheses are signifi-
cantly different data (Fisher tests, p < 0.05); Ctrl, control.

Common to ASD and Ctrl Only in

Total Significantly
Up-Regulated

Significantly
Down-

Regulated
ASD Ctrl

miRNA Couple #1 207 (60) 32 28 226 (15) 317 (18)
Couple #2 152 (51) 11 40 245 (19) 184 (23)

piRNA Couple #1 380 (164) 112 52 787 (109) 1010 (56)
Couple #2 509 (222) 66 156 757 (33) 617 (85)

The comparison between couple #1 and #2 reveals that there are three common miR-
NAs down-regulated in samples from ASD, namely hsa-miR-10b-5p, hsa-miR-22-3p, and
hsa-miR-192-5p, and four up-regulated, namely hsa-miR-6760-5p, hsa-mir-6766, hsa-mir-
6839, and hsa-mir-3976. The common dysregulated piRNAs are 44, down-regulated 13,
and up-regulated 31 (for details see Table 3).

Table 3. MiRNAs and piRNAs common to the couples #1 and #2. log2FC, log2 fold change; ASD,
subject with ASD; Ctrl, neurotypical subject; Fisher_p, Fisher’s test p-value.

Couple #1 Couple #2
Gene Name ASD Ctrl log2FC Fisher_p ASD Ctrl log2FC Fisher_p

hsa-miR-10b-5p 27.1 79.7 −1.52 2.9 × 10−7 0.0 29.7 −4.94 2.0 × 10−9

hsa-mir-192 33.2 94.1 −1.48 5.7 × 10−8 0.3 8.0 −2.77 7.8 × 10−3

hsa-miR-22-3p 11.3 28.7 −1.26 6.4 × 10−3 0.0 7.2 −3.04 1.6 × 10−2

hsa-miR-192-5p 90.8 185.4 −1.02 1.6 × 10−8 0.0 20.8 −4.45 9.5 × 10−7

hsa-miR-6760-5p 7.9 0.9 2.22 3.9 × 10−2 11.4 0.0 3.63 9.8 × 10−4

hsa-miR-6766 23.6 1.8 3.14 1.0 × 10−5 27.0 0.0 4.81 1.5 × 10−8

hsa-miR-6839 7.9 0.0 3.15 7.8 × 10−3 113.3 0.0 6.84 0.0 × 100

hsa-miR-3976 14.8 0.0 3.99 6.1 × 10−5 36.1 14.4 1.27 2.6 × 10−3

hsa-piR-28021 0.0 429.1 −8.75 0.0 × 100 0.3 57.7 −5.47 0.0 × 100

hsa-piR-8876 0.0 46.6 −5.57 0.0 × 100 0.0 9.6 −3.41 2.0 × 10−3

hsa-piR-12132 0.0 43.9 −5.49 0.0 × 100 14.3 804.0 −5.72 0.0 × 100

hsa-piR-32989 0.0 9.9 −3.44 2.0 × 10−3 2.3 37.7 −3.56 1.0 × 10−9

hsa-piR-5819 0.0 7.2 −3.03 1.6 × 10−2 0.7 8.8 −2.57 2.1 × 10−2

hsa-piR-14261 612.0 3592.7 −2.55 0.0 × 100 9.1 20.8 −1.11 4.3 × 10−2

hsa-piR-33186 4681.1 23,105.1 −2.30 0.0 × 100 0.0 5260.6 −12.36 0.0 × 100

hsa-piR-33033 6091.9 20,508.4 −1.75 0.0 × 100 2.9 1094.1 −8.12 0.0 × 100

hsa-piR-5751 291.6 907.4 −1.63 0.0 × 100 0.0 32.1 −5.05 0.0 × 100

hsa-piR-8213 11.3 28.7 −1.26 6.4 × 10−3 1.0 8.0 −2.19 3.9 × 10−2

hsa-piR-32837 413.8 944.1 −1.19 0.0 × 100 1.6 74.5 −4.85 0.0 × 100

hsa-piR-32914 413.8 944.1 −1.19 0.0 × 100 1.6 74.5 −4.85 0.0 × 100

hsa-piR-28066 1331.4 2873.5 −1.11 0.0 × 100 1.0 40.9 −4.41 0.0 × 100

hsa-piR-31090 39.3 18.8 1.02 1.2 × 10−2 38.4 16.8 1.14 6.4 × 10−3

hsa-piR-32953 534.3 253.5 1.07 0.0 × 100 588.9 8.0 6.03 0.0 × 100

hsa-piR-26659 267.1 121.8 1.13 0.0 × 100 608.1 283.0 1.10 0.0 × 100

hsa-piR-21363 433.9 137.0 1.66 0.0 × 100 2058.3 484.9 2.08 0.0 × 100

hsa-piR-31508 18.3 4.5 1.82 4.3 × 10−3 35.2 2.4 3.41 1.0 × 10−8

hsa-piR-16407 14.0 1.8 2.42 4.2 × 10−3 230.8 10.4 4.34 0.0 × 100

hsa-piR-2750 280.2 45.7 2.59 0.0 × 100 121.4 16.8 2.78 0.0 × 100

hsa-piR-30491 68.1 8.1 2.93 0.0 × 100 157.9 55.3 1.50 0.0 × 100

hsa-piR-22093 7.0 0.0 3.00 1.6 × 10−2 24.7 3.2 2.61 2.7 × 10−5
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Table 3. Cont.

Couple #1 Couple #2
Gene Name ASD Ctrl log2FC Fisher_p ASD Ctrl log2FC Fisher_p

hsa-piR-18568 7.0 0.0 3.00 1.6 × 10−2 13.0 0.8 2.96 1.8 × 10−3

hsa-piR-21890 7.9 0.0 3.15 7.8 × 10−3 27.0 4.0 2.48 3.4 × 10−5

hsa-piR-13475 18.3 0.9 3.35 7.6 × 10−5 39.4 12.0 1.63 2.0 × 10−4

hsa-piR-8932 66.3 5.4 3.40 0.0 × 100 86.6 40.1 1.09 3.7 × 10−5

hsa-piR-26586 9.6 0.0 3.41 2.0 × 10−3 10.1 0.0 3.47 2.0 × 10−3

hsa-piR-12718 9.6 0.0 3.41 2.0 × 10−3 232.1 46.5 2.30 0.0 × 100

hsa-piR-33000 9.6 0.0 3.41 2.0 × 10−3 560.5 68.1 3.02 0.0 × 100

hsa-piR-30677 11.3 0.0 3.63 9.8 × 10−4 75.2 6.4 3.36 0.0 × 100

hsa-piR-33037 14.8 0.0 3.99 6.1 × 10−5 16.6 4.0 1.81 7.2 × 10−3

hsa-piR-24148 18.3 0.0 4.27 7.6 × 10−6 44.3 0.0 5.50 0.0 × 100

hsa-piR-3308 18.3 0.0 4.27 7.6 × 10−6 21.2 4.0 2.15 9.1 × 10−4

hsa-piR-2934 73.3 2.7 4.33 0.0 × 100 197.9 56.1 1.80 0.0 × 100

hsa-piR-33019 20.1 0.0 4.40 1.9 × 10−6 392.3 0.0 8.62 0.0 × 100

hsa-piR-3864 60.2 1.8 4.46 0.0 × 100 99.3 4.0 4.32 0.0 × 100

hsa-piR-25822 22.7 0.0 4.57 2.4 × 10−7 108.7 28.1 1.92 0.0 × 100

hsa-piR-11291 46.3 0.9 4.64 0.0 × 100 123.0 45.7 1.41 3.0 × 10−9

hsa-piR-4194 48.9 0.9 4.72 0.0 × 100 59.9 24.8 1.24 1.9 × 10−4

hsa-piR-9502 26.2 0.0 4.77 3.0 × 10−8 22.5 0.0 4.55 4.8 × 10−7

hsa-piR-8096 27.9 0.0 4.86 7.0 × 10−9 83.0 11.2 2.78 0.0 × 100

hsa-piR-30323 634.7 19.7 4.94 0.0 × 100 595.1 8.0 6.05 0.0 × 100

hsa-piR-32334 34.0 0.0 5.13 0.0 × 100 15.6 0.0 4.06 3.1 × 10−5

hsa-piR-892 151.9 0.0 7.26 0.0 × 100 18.6 3.2 2.22 8.5 × 10−4

4. Discussion

The role of gut microbial composition and interactions among the microbial strains
as well as the bidirectional communication between the host and gut microbiota are con-
tinuously emerging in health and disease [13]. Faeces contain much information useful to
shed the light on gut microorganisms and the molecular trafficking involved in the host–
microbiota cross-talk. For these reasons, faeces samples should be analysed as a whole, at
the microbial and molecular level. Nevertheless, most studies about gut microbiota only
refer to the prokaryotic component, and the role of eukaryotes and host–microbiota commu-
nication is poorly investigated. Thanks to the progress achieved in present years regarding
the high-throughput sequencing technologies and in the computational analysis, due to the
data generated by these technologies, we produced the eukaryotic and prokaryotic profile
as well as the host transcriptional modulator profile (miRNAs and piRNAs) gathered in
the faeces collected from a small group of children with ASD or neurotypical development.

Considering bacterial composition, we found a dysbiosis consisting of lower alpha
diversity in ASD stools. This is in line with the literature that associates this index with the
severity of social impairment, while it is independent of IQ [10,18]. We found that Firmicutes
and Bacteroidetes were the most abundant phyla in both ASD and Ctrl faeces samples, and
the Bacteroidetes/Firmicutes ratio was higher in ASD samples than in Ctrl, mainly due to
decrease of Firmicutes. The imbalance in this ratio is still known in literature [72]; however,
some evidence sustains that the Bacteroidetes/Firmicutes ratio was higher in ASD samples
than in Ctrl [59,60], while other studies claim otherwise [33,73]. Due to this inconsistency,
the role of Bacteroidetes/Firmicutes remains controversial.

At the genera taxonomic level, the Acidaminococcus enrichment and Dialister depletion
that we observed in ASD is in line with previous articles [33,74]. Instead, Prevotella_9 and the
overall increase in the Prevotella family is arguably reported in ASD children [74,75]. Moreover,
an increase in Ruminococcus and Streptococcus and a decrease in Agathobacter were previously
associated to ASD [59,76] and negatively associated with sleep and language disorders [77].
In line with our results, the presence of Alistipes in ASD, or more generally in patients with
neurodevelopmental disorders, has also been discussed [31,33,78]; Alistipes probably has a role
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in decreasing serotonin availability, destabilising the gut–brain axis. Finally, literature reports
Christensenellaceae as signature of a healthy gut [79,80]. Furthermore, Akkermansia is related to
a healthy gut, and it is thought to have anti-obesity and anti-diabetic effects [81,82]; this family
promotes gut barrier integrity, modulates immune response, and inhibits inflammation and
syntrophy with other microbiota species [83]. Akkermansia is evidenced as mucolytic bacteria,
and its lower abundance (or absence) in ASD supports the hypothesis of possible mucus
barrier in children with autism [60,84]. Besides, short chain fatty acid (SCFA) produced by
several bacteria families are involved in the release of mucus, with the exception for succinate
not consumed by Phascolarctobacterium [85] in ASD cohort children. Bacteria families in-
volved in SCFA production were prevalently identified in controls, namely Akkermansia [86]
Phascolarctobacterium, Lachnospiraceae, and Agathobacter, a producer of butyrate and benefi-
cial SCFA [77,87–89]. However, recent evidence suggests an involvement of acetate and
propionate in various disorders, including obesity [90]. Overall, SCFAs play a modulatory
role in the microbiota–gut–brain axis, mediating behaviour and intestinal physiology [91].
In particular, butyrate, the levels of which are known to decreased in ASD [92], has multiple
effects on the gut–brain axis, anti-inflammatory, blood-brain barrier, and gut-permeability
regulators [93] and on healthy gut physiology, preventing pathogen invasion, modulating
the immune system, and reducing cancer progression [94].

Furthermore, for the fungi kingdom, the mycobiome comparative analysis identified
only Saccharomycetaceae and Debariomycetaceae families in both ASD and Ctrl groups, while
Aspergillaceae (including Penicillium) and Malassenziaceae were found only in neurotypical
according to literature [33,95]. The Malassezia role in the healthy gut is still unclear: it
is correlated with neurological disease [96], but it represents a large amount of breast
milk mycobiota, and it is found in healthy faecal samples [97]. In ASD, instead, only
the Debaryomycetace family was predominant and consists of Candida-Lodderomyces_clade
and Meyerozyma-Candida_clade that have never been reported before in ASD or in any
other gut microbiota study. Although fungi are poorly studied, an important presence of
Candida among ASD gut prokaryotes was reported, and anti-Candida albicans IgG antibodies
were also detected in the plasma of children with ASD, making genus Candida a new
microbial risk factor for the condition [33,98]. Candida, when overgrown, produces root-like
structures that penetrate the intestinal wall, causing the leaky-gut syndrome. This allows
macromolecules, such as toxins and food antigens, to enter the bloodstream and trigger
food intolerance and allergies, as described in a subset of children with ASD [99].

We investigated sncRNA by next-generation sequencing technologies, with the ad-
vantage of looking for all sncRNA classes. Indeed, previous studies about sncRNAs in
ASD were performed by quantitative real-time PCR or arrays technologies that investi-
gate only a relatively small panel of target miRNAs. Therefore, these studies may return
a focused profile, while a complete and unbiased sncRNA view, such as that obtained by
sncRNA-seq analysis, is needed. Indeed, as emerged by our results, some sncRNAs that
we found over-expressed in ASD target genes and pathways involved in inflammation and
intestinal permeability, while others are involved in ASD. Due to the nature of investigated
samples, we are unable to define if these latter sncRNAs are limited to stool and act only at
gastrointestinal level or pass into the bloodstream and act at systemic level, too. The most
represented miRNAs in all ASD are hsa-miR-2110 and hsa-miR-657. The first one was found
in EV released from mesenchymal stem cells [100], up-regulated in serum exosome from
patients with glioblastoma [101], supporting the hypothesis that hsa-miR-2110 is released
into the lumen. The increased expression of hsa-miR-657 is associated to inflammatory
response in gestational diabetes mellitus [102]. Interestingly, maternal gestational diabetes
mellitus increases the risk factor for autism in offspring [103].

Host miRNAs are able to enter bacteria and regulate their gene expression and
growth [34]. However, our results cannot be compared to those of the literature because the
study is limited to a small number of miRNAs on Fusobacterium nucleatum and E. coli [34].

In our study, piRNAs are the most represented sncRNA. This is of particular interest
because, although the role of piRNAs is still emerging, they have never been investigated
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so far in the faeces of individuals with ASD. PiRNAs data refer mainly to germline or are
related to cancer cells [104,105] or faeces of patients with colorectal cancer [61]. They were
detected in EVs in different body fluids [106,107], so we speculate that the piRNAs we
found in stools may have been released into the gut lumen and may interact also with
micro- and mycobiota.

Considering the miRNA and piRNA target genes common to multiple samples, four
were already present in SFARI database: NACC1, SMAD4, TNRC6B, and TTN, and their
mutants are implicated in ASD and other neurodevelopmental disorders (See Table 1). Be-
sides, CNV in locus 9p24.3, overlapping CBWD1, was identified in autistic patients [108–110].
Numerous genes are also involved in mental retardation, schizophrenia, and other neu-
rodevelopmental disorders (see Table 1 for details). We suppose that the up-regulated
miRNAs and piRNAs can negatively influence the expression of these genes and therefore
dysregulate the biological pathways involved in neurodevelopment. SLC2A4 is a glucose
transporter whose impairment has again been associated with diabetes mellitus [111].
N4BP1 is a potent suppressor of cytokine production, and thus, its inhibition increases
innate immune signalling and inflammation [112]. Finally, HSBP1 and IGF1R were found
differentially expressed in autism [113–117] and, directly or indirectly, modulated by mi-
crobiota [118,119]; namely, HSBP1 is down-regulated after antibiotic administration, and
IGF-1 level is affected by gut microbiota composition.

These 26 genes belong to pathways that are, directly or indirectly, associated with
ASD [69] or its comorbidities. For instance, IGF1R, SMAD4, and WASF2 genes are in-
volved in “Adherens junction” KEGG pathway and therefore could induce an imbalance
in intestinal tight junctions. Interestingly, this pathway could also be implicated in celiac
immune response [120], a condition common in ASD. WASF2 is also involved in “bacterial
invasion of epithelial cells” and in “regulation of actin cytoskeleton” pathways, controlling
cellular actin dynamics [121]. Then again, “Adipocytokine signalling pathway” is involved
in cytokine production and inflammation as well as “TGF- β signalling”. This latter is
emerging as a key regulator of nervous system physiology also involved in nervous system
diseases and injury [122]. Moreover, pathways directly connected with ASD are: “Long
term depression” that, together with “Long-term potentiation”, are the key regulators of
long-lasting synaptic plasticity at the basis of learning and memory and whose impairment
is involved in many brain disorders, including ASD [123,124]; “Insulin signalling path-
way” promotes neuronal circuit development and maturation to an extent that, since its
safety/preliminary efficacy for the treatment of Rett syndrome has emerged, clinical trials
to ameliorate ASD symptoms are ongoing [125].

Similarly, Hallmark analysis identified “Apical surface”, “Fatty acid metabolism”, and
“IL2 STAT5 signaling” hallmarks. The first one refers to a group of proteins expressed on
the apical surface of epithelial cells, including enterocytes, that play a crucial role in cell
polarity and thus act together with tight junction proteins in maintenance of epithelial tissue
integrity [126]. Instead, the “Fatty acid metabolism” gene set includes genes known to be
affected by gut microbiota composition [127]: saturated fatty acids increase bile-tolerant
bacteria and reduce microbial diversity, while unsaturated fatty acids, such as omega-3, exert
anti-inflammatory activity that contributes to gut health. Thus, an overall diet scheduling fat
intake to alleviate gastro-intestinal disorders has been suggested [128]. Finally, IL2/STAT5
signalling pathway has a role in differentiation and homeostasis of both pro- and anti-
inflammatory T cells, determining the molecular details of immune regulation [129,130].

The limit of this study is the small size of samples; nevertheless, this is the first study
that integrates metagenomic data with small ncRNA profile to investigate the host–gut
microbiota cross-talk in ASD and that detects and analyses the piRNA profile in stools from
individuals with ASD.

5. Conclusions

Since multiple interactions occur between host and gut microorganisms as well as
among different microbial strains, faecal samples represent a source of information that
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should be studied as a whole. A complex picture emerges from this study due to the
abundance and variability of gut microbiota and to the heterogenicity of samples. Based on
our results and those of literature, we tried to find a relationship between the dysregulated
gut microbial strains and up-regulated sncRNAs in ASD. We identified novel fungi gen-
era and confirmed the bacteria dysbiosis, highlighting the possible role of dysregulated
microbiome metabolites in ASD aetiology, too. Moreover, for the first time, we profiled
miRNAs and piRNAs in ASD stool samples, which targeted pathways with roles in ASD.
Disentangling the host–microbiome cross-talk is crucial to understand the role of dysbiosis
in ASD onset and to design diagnostic tools and personalised therapeutic interventions.
Host–gut microbiota cross-talk in health and disease, mediated by small ncRNAs, needs
further insights, and omic and multi-omic data integration studies play a key role for
these purposes [131,132].

The results obtained should be confirmed in large ASD and Ctrl cohorts, and the effect
of the up-regulated miRNAs and piRNAs should be studied on microbial cultures as well.
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