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Introduction

Tissue barriers. To guarantee specific organ function, the body 
must maintain compartments with a special environment and 
gradients for various kinds of solutes and ions. To sustain these 
gradients, organs have layers of cells which form barriers between 
the environment and the organ tissue. Most of these are epithelial 
cells such as the brush border cells in the intestine or the cells in 
the lining of the kidney tubules. Others are the endothelial cells 
which line blood vessels, forming the blood-brain barrier or the 
blood-retina barrier, for instance. Other examples are the Sertoli 
cells forming the blood-testis barrier or Schwann cells which 
electrically seal the myelin sheaths of neurons. The common 
function of these barrier-forming cells is to regulate the transport 
of water, ions, nutrients and other solutes, in order to maintain 
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A limitation in the uptake of many drugs is the restricted 
permeation through tissue barriers. There are two general 
ways to cross barriers formed by cell layers: by transcytosis 
or by diffusion through the intercellular space. in the latter, 
tight junctions (TJs) play the decisive role in the regulation of 
the barrier permeability. Thus, transient modulation of TJs is 
a potent strategy to improve drug delivery. There have been 
extensive studies on surfactant-like absorption enhancers. 
one of the most effective enhancers found is sodium caprate. 
However, this modulates TJs in an unspecific fashion. A novel 
approach would be the specific modulation of TJ-associated 
marvel proteins and claudins, which are the main structural 
components of the TJs. Recent studies have identified 
synthetic peptidomimetics and RnA interference techniques 
to downregulate the expression of targeted TJ proteins. This 
review summarizes current progress and discusses the impact 
on TJs’ barrier function.

the organ-specific environment in the steady-state. In addition, 
noxious agents and metabolic end products are removed from 
the organ tissue by means of efflux transporters. However, these 
functions may also impair the uptake of many drugs.

Barrier-forming cells are polarized. They possess an apical 
region facing the outer lumen and a basolateral plasma membrane 
region facing the organ side. Proteins (i.e., transport proteins, 
channels and receptors) within the apical plasma membrane 
cannot move to the basolateral side and vice versa. The protein 
patterns in these membrane compartments are different and 
they fulfil different functions, i.e., in the directed transport 
of molecules. This so-called fence function is due to a protein 
complex, the tight junctions (TJs), which are organized in strand 
networks. TJ-strands span the plasma membrane of adhering 
cells, like a belt at the interface between the apical and basolateral 
sites. TJs also establish a barrier in the extracellular space between 
neighboring cells by interactions between their TJ-strand 
networks. In consequence, these cells together with their TJs 
form a barrier which regulates transcellular flux indirectly and 
paracellular flux directly. Transcellular permeability is limited 
by the lipid surface of the cell and the outwards or inwards 
directed transporter activity (i.e., ABC transporters or Glut-1).1 
In general, only small lipophilic molecules are passively absorbed 
across barriers by the transcellular pathway if they are not a 
substrate of any of the transporters. Paracellular permeability 
can differ greatly between the diverse tissue barriers, depending 
on the composition of the expressed TJ proteins and on their 
expression level. Thus, TJs regulate paracellular passage of 
small hydrophilic substances, ions and water. However, large 
hydrophilic substances need an active permeation process, e.g., 
carrier-mediated transport.2-5

To improve the delivery of pharmaceutical agents through 
tissue barriers, drug enhancing methods have been developed. 
The largest body of information on a drug enhancer is available 
for caprate, as this is the best investigated agent for this purpose 
and has been used in clinical studies. Therefore, the main part 
of this review concerns caprate, as this is the standard approach 
in the field.
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that drugs are also less able to reach their destination. This is true 
for the blood-brain barrier, which prevents the uptake of almost 
all large molecules and more than 98% of small molecule drugs 
into the brain.29 Consequently, only small (< 500 Da) lipophilic 
drugs with fewer than 8–10 hydrogen bond to solvent water are 
believed to cross the blood-brain barrier.30 Most designed drugs 
are only poorly absorbed, due to their size or hydrophilicity. To 
face this problem of low bioavailability, two major strategies are 
being pursued in pharmacological research. One is to modify and 
couple drugs so that they can cross a barrier. The other strategy is 
to use an absorption enhancer which increases barrier leakiness.

The first strategy is implemented, for example, by employing 
prodrugs. These are initially inactive compounds, which are 
modified to raise transcellular permeability, either by increased 
lipophilicity or by coupling to a ligand, which allow the drug 
to use a transporter.31 After uptake, those drugs are activated, 
e.g., by enzymatic conversion. Other compounds achieve 
carrier-mediated uptake after modification, e.g., nanoparticles 
conjugated to aminosubstituted vitamin B

12
 derivatives.32

Whereas the first strategy attempts to exploit transcellular 
uptake, the second strategy focuses on the paracellular pathway. 
For transient modification of the TJs, promising candidates 
have been described in the recent years: small molecules,33-35 
peptides36 and small interfering ribonucleic acid (siRNA).37 
These are specifically directed against TJ molecules, especially 
against claudins, in contrast to indirect TJ modulation by the 
calcium chelators ethylenediamine tetraacetic acid/ethylene 
glycol tetraacetic acid (EDTA/EGTA)38 or the clinically used 
hyperosmolar mannitol.39 It has been demonstrated that 
hyperosmolar saline solution transiently enhances analgesic drug 
delivery through the perineural barrier in rats.40

Since the claudins make the dominant contribution to 
the function of the TJs, specific targeting of the claudins is 
an obvious and promising approach. Additionally, the tissue-
specific expression of the claudins allows tissue-barrier specific 
modulation, which should lead to fewer side effects.

Surfactant-like agents. Various agents, such as surface active 
agents (surfactants), lipids and polymers, have been tested for 
their efficiency in improving the systemic availability of drugs.33 
So far only capric acid (C

10
H

20
O

2
) has achieved clinical relevance.

Sodium caprate (C
10

), the sodium salt of capric acid, also 
known as sodium decanoate, has been approved (in Japan and 
Sweden) as an absorption enhancer in a rectal suppository for 
the antibiotic ampicillin, with the trade name Doktacillin®.41 
Lindmark and colleagues showed that 50 mg/person C

10
 signifi-

cantly increased ampicillin concentration in the serum of adult 
humans.42 This absorption enhancement of C

10
 was also clinically 

demonstrated for oral applications.42 Since capric acid is present 
in dairy products, e.g., milk and plant oils (i.e., coconut oil), C

10
 

is accepted by the US American Food and Drug Administration 
for use in food (Sec. 172.863 Salts of fatty acids. http://www.
accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.
cfm?CFRPart=172&showFR=1; 2013).

C
10

 is an amphiphilic substance, with a hydrophilic “head” 
(carboxylate ion) and a hydrophobic “tail” (aliphatic C

10
 chain) 

and has a critical micelle concentration of about 50 mM. At this 

Tight junctions and claudins. TJ-complexes mainly consist 
of the transmembrane proteins occludin, tricellulin, marvelD3, 
as well as the claudin protein family and various scaffolding 
proteins, such as zonula occludens proteins 1–3 (ZO-1 to 3).6-9 
Occludin was the first transmembrane TJ-protein discovered.10 
This is specifically located in TJs and plays a regulatory role. 
Nonetheless, since occludin-knockout mice are viable and fail to 
display defective barrier function, its physiological importance 
is still unclear. It may well be relevant to regulation under 
pathological circumstances, as it has multiple phosphorylation 
sites.11,12 In addition, occludin can be partially replaced by the 
other tight junction-associated marvel protein(TAMP) family 
members, tricellulin and/or marvelD3.6 Tricellulin has recently 
been shown to be mainly localized at tricellular contacts.13 
Knockdown of tricellulin expression by RNA interference 
technology leads to impaired TJ organization, a decrease in 
transcellular electrical resistance (TER) and a size-selective 
increase in permeability.14 Thus, tricellulin plays an important 
role in sealing tricellular contacts in epithelial barriers. However, 
a more essential TJ-protein family has been identified—the 
claudins.15 The claudin family is currently thought to consist 
of up to ~27 members.16 Claudins have a dominant influence 
on the properties of the TJs. They are expressed in a tissue-
dependent combination, which results in tissue-specific barrier 
characteristics, since some claudins lead to a leakier barrier and 
others to a tighter barrier. Thus, the functional backbone of the 
TJ is formed by the claudins.5

Claudins and TAMPs consist of two extracellular domains 
(ECDs) and four transmembrane domains, whereas the C- and 
N-terminal domains are located in the cytoplasm. Many of 
the claudins can bind via the C-terminus to the PDZ domain 
of the scaffolding protein ZO-1, which links them to the 
actin cytoskeleton. ZO-1 and -2 are essential for the spatial 
organization, but not for the formation of the claudin-based 
TJ-strands.17 To form these strands, the claudins can interact in 
different ways, either trans (interaction between claudins in two 
neighboring cells) and cis (established between claudins along 
the same membrane).18,19 There are also homo- and heterophilic 
interactions between claudins and TAMPs.20,21

Although some claudins have very similar sequences, their 
expression can lead to quite different TJ characteristics. For 
example, claudin-2 is known to be involved in paracellular pore 
formation for cations, whereas claudin-5 seals the paracellular 
cleft for small molecules.22,23 Therefore, detailed information 
is necessary about the structural differences between claudins, 
especially their ECDs. In this context, some studies point 
to the importance of both ECDs for proper tightening of the 
paracellular cleft,24 ion selectivity25-27 and the involvement 
in strand formation.18,28 In summary, claudins, particularly 
their ECDs, are potent targets for manipulating paracellular 
permeability.

Substances to Modulate Tight Junctions

In general, many organs are protected by a barrier to avoid contact 
with unwanted or even toxic substances. Regrettably, this means 
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molecules through Caco-2 or human intestinal epithelial (T84) 
monolayers, as shown by Watson and colleagues. A permeation 
study was performed with 24 polyethylene glycols of different 
molecular weight (238 to 1250 Da; ~3.5 to 7.39 Å). Permeation 
decreased markedly between 238 and 326 Da, but remained at a 
constant low value with the larger oligomers. After C

10
 treatment, 

the permeation profile was still biphasic, but was enhanced 6-fold 
over the whole size range. EGTA treatment also caused increased 
permeability, but no size selectivity was observed.58 However, 
molecules >20 kDa did not permeate after C

10
 treatment.54

Thus, C
10

 increases the permeability of cell monolayers in a 
biphasic, size-selective manner. This observation points toward 
modulation of the paracellular, rather than the transcellular 
pathway after C

10
 treatment.54

The mode of action of C
10

 was illustrated by Maher et al.44 
In their model, C

10
 at concentrations up to 50 mM induces 

contraction of the actomyosin perijunctional ring, dilating 
the paracellular space.34 This effect is mediated by an increase 
in the intracellular Ca2+ level, caused by phospholipase C 
activation and the subsequent cleavage of phosphatidylinositol 
4,5-bisphosphate (PIP2) into inositol triphosphate (IP3) and 
diacylglycerol (DAG).59 Intracellular Ca2+ forms complexes with 
calmodulin (CaM) in response to IP3, which in turn activate 
CaM-dependent protein kinases and the myosin light chain 
kinase.60 Phosphorylation of the regulatory light chain of myosin 

concentration, C
10

 may improve the solubility of hydrophobic 
substances and acts like a detergent.43 C

10
-micelles may enhance 

in vivo absorption via transcellular transport.44 On the other 
hand, it is well established that C

10
 widens TJs, thus serving to 

open the barriers.34 Several in vivo studies have shown that this 
enhances drug uptake (Table 1).

The drug berberine is normally poorly absorbed after oral 
administration. Two studies have found that its bioavailability is 
enhanced when it is orally administered together with C

10
. The 

intestinal mucosa is not damaged.45,46 The in vitro enhancement 
ratios were 2.08, 1.49 and 3.49 in the rat duodenum, jejunum 
and ileum, respectively (C

10
: 0.2% w/v).46 C

10
 (100 mg/kg) also 

increases the permeability for nanoparticles across the intestinal 
epithelium of rats47 and for chemically modified antisense 
oligonucleotides (C

10
: 25, 50 and 100 mg/kg) in pigs48 after 

enteral application. After intraduodenal administration, the 
uptake of nucleotide prodrugs into the liver was enhanced (C

10
: 

86 mg/kg).49 Intracarotid injections of C
10

 lead to a transient, 
reversible and molecular weight-dependent opening of the blood-
brain barrier in the rat, beginning 5 min after injection.50,51 After 
epidural injection of C

10
 with the anesthetic ropivacaine, the 

maximal intrathecal concentration of ropivacaine was elevated.52 
This effect is transient and reversible and limited to the arachnoid 
barrier.

Cell culture experiments have been performed to characterize 
the detailed mode of action of C

10
. These studies have mostly 

used cells from the colon53,54 or kidney,55,56 but also freshly 
isolated brain capillaries55 and excised rat intestinal mucosa.57 
In these experiments TER decreased and/or the permeability of 
molecules with a molecular weight between 182 and 10,000 Da  
increased after incubation with C

10
 (Table 2).

The decrease in TER depends on the C
10

 concentration, the 
incubation time and the cell line used. 7.5–10 mM C

10
 seems to 

be the optimal concentration for MDCK and HT-29/B6 cells. 
Lower concentrations are less effective and higher concentrations 
do not decrease TER further. The maximum effect of C

10
 on TER 

is already reached within 5–30 min (50% of control value) and 
lasts for up to 300 min. After removal of C

10
, the TER returns to 

control values if the initial C
10

 concentration is below 30 mM.56 
In Caco-2 cells, concentrations of 25 mM to 50 mM C

10
 are 

necessary to increase permeability.53 In all studies, C
10

 caused 
much higher permeation ratios for small molecules (up to 1 
kDa) than for large molecules (4 to 20 kDa).53,54,57 This biphasic 
permeability corresponds to the size-dependent permeation of 

Table 2. increased drug uptake by caprate in vitro

Cell type TER Permeability (mol. weight) Literature

Caco-2 ↓ ↑ mannitol (182 Da)

↑ polyethylene glycol (900 Da)

↑ decapeptide (~1 kDa)

53

HT-29/B6 ↓ ↑ fluorescein (330 Da)

↑ FD4, FD10 (4, 10 kDa)

→ FD20 (20 kDa)

54

MDCK-i ↓ ↑ FD4 (4 kDa) 56

MDCK-ii n.a. ↑ lucifer yellow (457 Da) 55

excised rat  
intestinal mucosa

↑ sodium fluorescein (376 Da)

↑ FD4 (4 kDa)

57

Caco, human colorectal adenocarcinoma cell line; HT, human colon 
carcinoma cell line; MDCK, Madin-Darby canine kidney cells line; 
↓ decreasing; ↑ increasing; → no change; n.a. not accessible; FD, 
fluorescein isothiocyanate-dextran.

Table 1. increased drug uptake by caprate in vivo

Drug Caprate concentration Species Administration Literature

berberine 100 mg/kg rat oral 45

berberine 50 mg/kg rat oral 46

oleanolic acid 100 mg/kg rat oral 43

cefotaxime 0.25% w/v rat oral 105

ropivacaine 20 mM in 10 ml saline sheep epidural 52

cyclosporine A 0.25% w/v rat oral 50

oligonucleotides 25–100 mg/kg pig enteral 48
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molecules are more permeable. However, the exact mechanism 
behind the modulation of specific membrane proteins is still 
unclear.

If C
10

 is to be used as a drug enhancer, its cytotoxic effects 
must be studied. 50 mM C

10
 is at least harmful in Caco-2 

cells.53 Caco-2 cell cultures are apparently more sensitive to the 
cytotoxic effects of C

10
 than the intestine in vivo, since there is 

no evidences of mucosal irritation or damage after exposure to 
twice the concentration used in the cell culture experiments.53 
Perhaps this could be explained by the dilution effect in vivo, by 
the protective intestinal mucus layer or by the high regeneration 
of mucosa cell.41 Furthermore, while the t

max
 (time point at which 

the maximal concentration is reached) of a drug or marker 
administered with C

10
 in vivo is between 10 to 60 min,43,48,57 the 

in vitro effect lasts at least 300 min.56 After removal of C
10

, it 
takes 120 min until the TER is back to control values.54 This may 
contribute to the stronger cytotoxic effects.

The mode of administration of C
10

 and its effective 
concentration also influence cytotoxicity. Possibilities include 
reincubation with C

10
 or coadministration in a liquid or solid 

form, e.g., tablets by spray freeze-drying.43,57,68 Because the 
uptake of C

10
 in vivo is quite fast (t

max
 ~7 min,48) after injection, 

the drug is injected before and after the application of C
10

.52 C
10

 
was coadministered with two different size markers combined in 
tablet or in liquid form. It was found that the solid form enhanced 
uptake much better than the liquid form. Additionally, the smaller 
marker is taken up to a greater extent than the larger marker.57 
An in situ drug delivery study showed that co-administration 
of C

10
 and FD4 achieved the optimal effect compared with pre-

incubation with C
10

.68 In summary, C
10

 enhances paracellular 
drug uptake for molecules with a molecular weight less than 
20 kDa. No difference between hydrophobic and hydrophilic 
drug enhancement was reported. However, most of the drugs 
investigated tended to be hydrophilic.

In addition to C
10

, tartaric acid, sodium taurodeoxycholate, 
sodium dodecyl sulfate (SDS) or p-t-octyl phenol polyoxyeth-
ylene-9.5 (Triton X-100) were tested as penetration enhancers 
with surface activity.69 They were tested at the rat jejunum and 
have potential as enhancing systems for oral delivery of poorly 
absorbed hydrophilic compounds such as protein or peptide 
drugs. These approaches have not been further developed.

A further group of surfactant-like drug enhancers are 
short chain alkylglycerols.70 Intra-arterial injection leads to 
concentration-dependent enrichment of co-applied cytostatic 
drugs and antibiotics in the brain.71 Even the penetration of 
large molecules like albumin could be significantly increased.72 
Opening of the blood-brain barrier in vivo is reversible and 
lasts from a few minutes to about one hour, depending on the 
concentration used.71,73 In vitro and in vivo analysis showed that 
alkylglycerols are nontoxic.74 In freshly isolated brain capillaries, 
the small molecule fluorescein diffused into the capillary 
lumen after addition of alkylglycerols through the paracellular 
cleft, indicating opening of the paracellular diffusion barrier.72 
However, the exact mode of action remains unknown.

Peptides. Specific targeting of TJ proteins could also be 
achieved by using peptides which are thought to bind to 

II induces the contraction of the actomyosin perijunctional ring.61 
Contraction of the actin myosin ring complex is also induced by 
another signaling pathway, mediated by DAG and protein kinase 
C.62 The TJ complex linked by ZO-1 to the actin cytoskeleton is 
then redistributed from the TJs to the cytoplasm.34,60,62-64

However, recent reports have shown that this model cannot 
be completely true as a general mode of action. In HT-29/B6 
cells, for example, no morphological change in the perijunctional 
actomyosin ring could be observed after incubation with 10 
mM C

10
.54 Furthermore, the effect of C

10
 could not be blocked 

with inhibitors of the actin-myosin interaction, phospholipase 
C, Rho-kinase or by Ca2+ chelators.54 The redistribution of the 
TJ-complex is under discussion as well, since several studies 
have reported that the membrane localization of ZO-1 is 
unchanged (30 mM C

10
;65 7.5 mM C

10
55). However, claudin-1, 

claudin-4, junctional adhesion molecule and β-catenin in 
human airway epithelial cells and claudin-5 in brain endothelial 
cells were reduced after C

10
 treatment.55,65 In MDCK cells, 

claudins-4, -5 and occludin were displaced from lipid rafts to 
more fluid membrane domains, whereas claudins-1, -2 and -3 
were unchanged after C

10
 treatment.56 In this context, it should 

be noted that another group found that both occludin and 
claudin-1 were partially removed from TJs after C

10
 treatment 

in skin epithelial cells.66 Slightly different observations have 
been made with HT-29/B6 cells. While no changes could be 
observed in claudins-1 to -5, -8, occludin and tricellulin in the 
total lysate or membrane fraction, there was a selective and 
reversible decrease in tricellulin and claudin-5 at tricellular and 
bicellular TJs, respectively.54 The reported differences in the 
effect of C

10
 on TJ-protein localization could be related to the 

kind of cell line and their diverse TJ-protein expression patterns. 
However, claudins and occludin are connected via ZO-1 to the 
actin cytoskeleton and no changes in ZO-1 localization upon 
C

10
 treatment were observed in HEK-293 (human embryonic 

kidney 293), MDCK, bEND5 (mouse brain endothelioma) and 
mouse brain capillaries.55 The conclusion from these findings 
would be that there is more specific modulation of TJ-proteins, 
rather than just the modulation of the actin-myosin ring complex 
alone. Interestingly, the decreases in TER and claudin-5 in the 
membrane are reached within 5 min, suggesting that these 
events are directly linked.55,56 Since claudin-5 tightens the TJ 
against molecules with a molecular weight less than 800 Da, 
this may explain why low molecular weight molecules permeate 
much more rapidly than higher molecular weight proteins.23

But how is the permeability of macromolecules enhanced by 
C

10
? This issue was also addressed by Watson and colleagues, 

who showed that the unspecific absorption enhancer EGTA 
increased the permeability of 10 kDa fluorescein isothiocyanate 
dextran (FD10) 21-fold, whereas C

10
 only results in a 1.9-fold 

increase.58 This might be explained if C
10

 acts on tricellulin. In 
this scenario, the decrease in tricellulin allows macromolecules 
up to a certain size (10 kDa) to pass via the paracellular pathway, 
since it is known that tricellulin acts as a barrier to macromole-
cules.54,67 As tricellular contacts are rarer than bicellular contacts 
and the possibilities of macromolecular permeation are corre-
spondingly rare, this could explain why low molecular weight 
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Specific targeting of claudins and occludin is an innovative 
and promising approach modulating TJ expressing cells directly 
and avoiding effects of the drug enhancer on other cell types. 
Peptides directed against certain claudins interfere with claudin-
interactions only in TJs containing the target claudins of the 
peptide. Therefore, the effect is tissue barrier specific. Since 
peptide-treated barriers open slowly, but stay open for a period of 
hours, long-term treatments with antibiotics or chemotherapy are 
conceivable.

A more rapidly acting but less specific peptide is a 6-mer, 
FCIGRL, called AT1002. This short, synthetic peptide corresponds 
to the amino acids 288–293 of the zonula occludens toxin from 
Vibrio cholera.86 Both the toxin and the peptide reversibly open TJs 
and increase paracellular permeability in intestinal cells by binding 
to proteinase activating receptor (PAR) 2 and, subsequently, to 
actin polymerization mediated by protein kinase Cα activation.87 
In male Sprague-Dawley rats, intestinal uptake of cyclosporin A 
was increased by co-treatment with 10–40 mg/kg AT1002 (1.5 to 
2.5-fold, 0–120 min after application).88 Nasal administration of 
the low bioavailability agent ritonavir (Abbott Laboratories), an 
antiretroviral drug to treat HIV infections, was increased 2.55-
fold up to 240 min with AT1002 when co-administered with 
the bioadhesive polymer carrageenan.89 One problem with the 
use of AT1002 is the instability of the peptide in neutral to basic 
pH conditions. It has been recently shown that the stability of 
AT1002 could be increased up to 6 h in 5% dextrose solution.90,91 
Another approach to stabilize AT1002 is the systematic exchange 
of amino acids, especially, the cysteine at position two.92

siRNA and antibodies. An even more specific new approach to 
modulate tissue barrier functions is the administration of siRNA 
found to knockdown the expression of TJ proteins in barrier-
forming epithelial93,94 and endothelial cells.95 This affects ZO-1,96 
occludin97 or claudins.98

By selectively decreasing claudin-5 at the TJs, the chance of 
drugs reaching their target in the brain increases, as claudin-5 
tightens the blood-brain barrier for small molecules.23 Campbell 
et al. injected siRNA into mice specifically to modulate claudin-5 
expression in blood vessels in the brain.99 20 μg siRNA per mouse 
suppresses the expression of a protein by degrading its mRNA. 
Claudin-5 selective siRNA reduced claudin-5 protein content and 
size-selective opening (up to 1 kDa) of the blood-brain barrier 
between 24 and 72 h post injection. In a mouse model of trau-
matic brain injury, they also showed that water efflux to the blood 
from the brain—caused by edema—is increased.99 siRNA in com-
plex with in vivo-jetPei™, an in vivo delivery agent, is now being 
used in a phase I clinical trial (www.polyplus-transfection.com/
transfection-reagents/5_in-vivo delivery/1_dna_sirna_delivery/
dna-sirna-delivery-in-vivo-jetpei/).

Selective targetting of claudins is also the goal of several 
therapeutic anti-claudin antibodies since some types of tumors, 
such as breast, pancreatic or ovarian cancers, exhibit increased 
expression of claudins-3 and -4.100,101 Therefore, a monoclonal 
antibody, KM3907, with in vivo antitumor activity (10 mg/kg) 
was developed. KM3907 recognized claudins-3 and -4, but not 
claudins-5, -6 and -9.102 Another monoclonal antibody against 
claudin-4 (KM3934) has also shown promising antitumor 

extracellular parts of TJ transmembrane proteins. Occludin has 
been the first target for barrier modulation, using an 18 amino 
acid peptide derived from the ECD2. After calcium depletion 
of T84 cells, the ECD2 peptide prevents reformation of TJs 
and binds to claudin-1, occludin and the junctional adhesion 
molecule-A.36 Peptides derived from the N-terminal half of 
the first ECD of human occludin increased the permeability 
of airway epithelia.75 Moreover, a 22-amino acid peptide of the 
ECD1 corresponding to the residues 209–230 of rat occludin 
was injected into the testis of adult rats (1.5–10 mg/testis) and 
was able to open the blood-testis barrier.76 This peptide fused to 
the follicle stimulating hormone (FSH) specifically opened the 
blood-testis barrier after intraperitoneal injection (40 μg/adult 
rat), without disturbing the epithelia of other organs.77

A similar effect was shown in T84 cell monolayers for a 
peptide related to the amino acids 53–80 of the ECD1 of mouse 
claudin-1, whereas claudin-1_146–160 and claudin-1_31–54 did 
not increase TER or FD3 permeability. This peptide increased 
paracellular gastric permeability for sucrose 1 day after oral 
administration in rats (0.1 mg/kg body weight).78 A similar 
peptide was used to improve the delivery of pharmaceutical 
agents through the perineural barrier. Beginning at 48 h after 
perineural injection of 400 μM peptide, there was an improved 
effect of opioid receptor agonists (e.g., DAMGO) or sodium 
channel blockers (tetrodotoxin) on raised the mechanical 
nociceptive threshold.79 This demonstrated that the perineural 
barrier was opened by an induction mechanism carried by the 
peptide.

Another ligand for a subgroup of claudins is the Clostridium 
perfringens enterotoxin (CPE), a common source of many 
symptoms of Clostridum perfringens-related food borne diseases. 
Among other claudins (6, 8 and 14), the main binding partners 
for CPE are the ECDs2 of claudin-3 and claudin-4.80 CPE could 
be separated into a cytotoxic N-terminal and a claudin binding 
C-terminal part at the very end of CPE (290–319).81 The larger 
C-terminal fragment (amino acid 194–319, cCPE) is capable of 
modulating TJs and increases the permeability of CPE sensitive 
claudin expressing epithelial cells (3.5 μg/ml, 18 h).82 In rats, it 
was demonstrated that 1 μg/μl cCPE enhanced the nasal mucosal 
absorption of dextran ≥4 kDa and jejunal absorption and also for 
150 kDa dextrans one hour after administration.83 Since claudin-4 
is highly expressed in human epithelial ovarian carcinomas, but 
not in normal ovary tissue, cCPE was tested as drug enhancer for 
cancer treatment. After application of 5 μg/ml cCPE for 24 h, the 
claudin-4 expression level decreased and claudin-4 was removed 
from TJs in cell culture, without showing any cytotoxicity (0.01–
15 μg/ml, 0–48 h).84 In a human epithelial ovarian carcinoma 
xenograft model, Gao and coworkers also found suppression of 
tumor growth by 59% compared with the vehicle, when the mice 
were treated with taxol (20 mg/kg) combined with cCPE (0.1 mg/
kg) twice a week for a period of four weeks.

A toxicological study in mice using intravenous administration 
(5 mg/kg) or nasal cCPE administration (2 mg/kg), did not 
increase biochemical markers of liver and kidney injury but, 
after six administrations once a week, the cCPE-specific serum 
immunoglobulin G rose.85
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During the last decade, specific peptide ligands of ECDs of 
TJ proteins have been designed. They affect single TJ proteins, 
allowing selective targeting of specific barriers, depending on the 
expression pattern of the TJ proteins. Micromolar amounts of the 
peptides were found to be effective. However, the transient action 
has a lag phase of several hours and lasts for many hours.

The most advanced approach is to administer siRNA for 
downregulation of selected TJ proteins. This method is highly 
specific. Submicromolar dosage is required; drug delivery is 
improved after one day and lasts for a second day.

In summary, unspecific approaches need higher dosages, have 
a shorter duration of action and may cause more side effects. 
Specific procedures require lower doses, may cause fewer side 
effects and longer lasting effects. Longer opening times are disad-
vantageous. Consequently, one should prefer immediately acting 
agents, such as caprate, for the time necessary to deliver the drug, 
i.e., opening for some hours. On the other hand, procedures 
selectively targeting single TJ proteins are advantageous and, spe-
cific for defined tissue barriers. Moreover, fewer secondary effects 
would be expected. However, even more specific approaches, e.g., 
siRNA, have a longer duration of action which, in turn, may raise 
the risk of side effects.
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efficacy in preclinical models.103 A monoclonal anti-claudin-1 
antibody, which binds to the first ECD of claudin-1, was proven 
to efficiently inhibit infection of primary human hepatocytes with 
all major genotypes of hepatitis C virus. Fofana and coworkers 
preincubated cell cultures in vitro with 10 μg/ml for one hour 
without observing cytoxic effects (up to 1000 μg/ml) or effects 
on TJ integrity.104

This demonstrates that the development of antibodies against 
ECDs of TJ proteins is possible. The design of non-cytotoxic anti-
bodies targeting single TJ components could raise new options 
for the development of drug enhancers. Since TJ protein binding 
proteins and peptides take a short time to bind to their target, but 
several hours to show an effect on permeability, these antibodies 
should be analyzed for their potential as drug enhancers.

Conclusion

Different drug enhancing approaches, with very different prop-
erties, are available in experimental and clinical investigations. 
Hyperosmolar solutions have been used since the 1970s. These 
drastic procedures immediately and transiently disrupt the TJs. 
As yet, mannitol is the only compound with any clinical rele-
vance. Nevertheless, hyperosmolar solutions give limited repro-
ducibility, strong side-effects are common and a molar dosage is 
used.

Milder approaches have since been developed, based on sur-
face active agents. They also show rather unspecific modes of 
action. However, there is evidence that some TJ proteins can be 
selectively targeted. The activity appears directly after adminis-
tration and lasts for a short time. Millimolar concentrations are 
effective.
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