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Abstract: We present the recently isolated virus vB_BthP-Goe4 infecting Bacillus thuringiensis HD1.
Morphological investigation via transmission electron microscopy revealed key characteristics of the
genus Phi29virus, but with an elongated head resulting in larger virion particles of approximately
50 nm width and 120 nm height. Genome sequencing and analysis resulted in a linear phage
chromosome of approximately 26 kb, harbouring 40 protein-encoding genes and a packaging RNA.
Sequence comparison confirmed the relation to the Phi29virus genus and genomes of other related
strains. A global average nucleotide identity analysis of all identified φ29-like viruses revealed the
formation of several new groups previously not observed. The largest group includes Goe4 and may
significantly expand the genus Phi29virus (Salasvirus) or the Picovirinae subfamily.
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1. Introduction

Bacteriophages or phages are viruses of bacteria and probably the most common biological
entities on earth. Phage species outnumber their hosts by 10 times [1] and thus, represent the largest
unexplored genetic reservoir. Bacteriophages play an essential role in the control of prokaryotic
populations, their biomass turnover and their diversification. In addition to the ecological effects,
phages also have economic relevance. Unintentional contamination of industrial fermenters can
destroy entire productions. Molecular biology would not be the same without phages or selected
phage proteins. Even the current genomic revolution, driven by the prospects of CRISPR-Cas, is related
to phages, as CRISPR-Cas is a bacterial phage defence system [2]. Currently, phages are in the
focus of medicine. For example, the first centre in USA for phage-based treatment methods for
antibiotic-resistant bacteria was recently opened [3]. Therefore, it is important to further explore phage
diversity in order to take advantage of all options.

In the current study, we used a Bacillus strain as the host for recovering novel phages from the
environment. The genus Bacillus represents Gram-positive, aerobic, endospore-forming bacteria and
incorporates many species that inhabit soil [4]. It includes species whose activity for humans can be
either negative or positive. For instance, B. anthracis causes anthrax and is therefore a serious pathogen.
Its closely related species B. thuringiensis is harmless to humans and is frequently used as a biological
control agent in agriculture. B. subtilis is a well-established model organism of molecular biology [5]
and led as host for phage isolation to the discovery of many important viral strains e.g., φ29 [6].
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Phages of the φ29-like group are the smallest Bacillus infecting phages (for review see [7]) and
members of the Podoviridae family. The sequenced representatives harbour a small linear genome
(18.4–21.1 kbp [8]) covalently linked to a terminal protein (TP) at the 5′ genome end. A DNA replication
mechanism first investigated in this phage group has attracted particular attention: Protein-primed
genome replication, is initiated at the origin at the 3′ end of the genome together with a TP protein
by forming a TP-dAMP complex, using the second base of the template. Afterwards a slide back
mechanism to the first base of the template takes place and the second base serves again as template.
The genome termini of φ29-like phages show inverted terminal repeats (ITRs), which are essential for
the initiation of genome replication and until now always revealed three identical nucleotides in the last
three positions, making a slide back possible without loss of information. After binding of the first two
bases, a short 10 bp fragment is synthesized and the DNA polymerase is released. This TP-10 bp primer
allows the DNA polymerase to reattach to complete genome synthesis. The monomeric B-type DNA
polymerase catalysis both the initialization and elongation of DNA synthesis. The DNA polymerase
shows 3′-5′ exo-nucleolysis activity, which enables proofreading and strand displacement, making
accessory proteins like DNA helicases unnecessary. These features make the φ29 DNA polymerase an
important tool for multiple displacement DNA amplification, in particular for long read lengths in
genome amplification [9]. Another feature appears to be unique to the φ29 phage: A translocation
machinery consisting of the packaging RNA (pRNA), the upper collar protein (gp10) and the DNA
encapsidation protein (gp16) form a unique motor that, driven by ATP hydrolysis, efficiently translocate
the viral genome into the head of the phage [10]. In view of phage-host interactions, several key events
in φ29 phage development have been elucidated in detail: The defence mechanism of the phage
against the host’s uracil excision activity [11], and the involvement of the Bacillus MreB protein in
viral development [12]. Consequently φ29-like viruses are resources for novel enzymes, useful for
applications in molecular biology (namely, amplification of DNA) and provide important insights
into evolution of phage assembly and host interaction mechanisms. Currently the genus Phi29virus,
harbouring the type strain φ29, is in the transition to be renamed into Salasvirus [13] in honour of
Margarita Salas who has worked on φ29 for over 50 years.

In this study, we present the bacteriophage vB_BthP-Goe4 (Goe4) isolated with Bacillus thuringiens
HD-1 [14] as host. Its morphology and genome sequence were characterized, and comparative analysis
of related strains revealed new groups of φ29-like phages.

2. Materials and Methods

2.1. Phage Isolation and Genome Sequencing

The virus vB_BthP-Goe4 was isolated from the Göttingen municipal sewage plant (Göttingen,
Germany, 51◦33′15.4′ ′ N 9◦55′06.4′ ′ E) via an overlay plaque assay using Bacillus thuringiens HD-1 [14]
as the host. Culture conditions and overlay techniques were applied as described previously [15].

Phage genomic DNA was prepared with the MasterPure complete DNA and RNA purification
kit (Epicentre, Madison, WI, USA). Paired-end Illumina sequencing libraries were generated with
the Nextera XT DNA sample preparation kit and were sequenced with a MiSeq instrument and
MiSeq reagent kit v3 as recommended by the manufacturer (Illumina, San Diego, CA, USA).
Trimming and quality-filtering of the recovered reads was performed with Trimmomatic version
0.36 [16] and analysed with FastQC version 0.11.7 [17]. Initial assembly was performed with
SPAdes version 3.12.0 [18] using 394,938 high-quality paired reads as input and resulted in a
single contig with a coverage of 2,900,000. Genome ends were verified via Sanger sequencing as
described previously [15] with the primers PP005 (5′ GTTTGTTACTGTTCTGCGTTTAGC) and
PP006 (5′ CCGACAAATGGTGGGTACTG). Initial ORF (open reading frame) calling and automatic
annotation was done with the Prokka pipeline [19] with implemented pVOG database [20]. Identified
protein-encoding genes were compared using the web based NCBI blastp and a global alignment with
the φ29protein (see below). All hypothetical proteins were additionally verified for the presence of



Viruses 2018, 10, 624 3 of 14

known domain structures by employing InterProScan [21]. The final annotated genome sequence of
vB_BthP-Goe4 was submitted to GenBank and is publicly available under the accession number
MH817022. Biological samples of vB_BthP-Goe4 are available from the German Collection of
Microorganisms and Cell Cultures (DSMZ) under the sample number DSM105107.

2.2. Transmission Electron Microscopy

Transmission electron microscopy (TEM) analysis were performed as described previously [15,22].
Phosphotungstic acid dissolved in pure water (3% w/v) and adjusted to pH 7.0 served as staining
solution. Electron microscopy was carried out on a Jeol 1011 electron microscope (Eching, Munich,
Germany) at calibrated magnifications. Calibrations were performed with a cross grating replica,
with rulings of 2160 lines/mm according to manufacturer’s instructions (Plano, Wetzlar, Germany).
Images were captured using a Gatan Orius 4 K camera and processed with the Gatan 314 Digital
Micrograph software package (Gatan, GmbH, Munich, Germany) and Adobe Photoshop CS2 (Adobe
Systems Inc., Jan José, CA, USA). The average sizes of each isolate based on results obtained from of at
least six individual virions.

2.3. Genome Analysis and Comparison

Global genome alignment of Goe4 and φ29 on nucleotide level was done with EMBOSS stretcher
service of the EBI website [23]. Deduced protein sequences of phage φ29 and Goe4 were compared
using blastp [24]. The resulting protein pairs were globally aligned with Needleman-Wunsch-algorithm
using the needle program of EMBOSS suite [25] with the default parameters. Promoter prediction
was performed with PePPER (http://genome2d.molgenrug.nl/g2d_pepper_promoters.php) [26].
The prediction of rho independent transcription terminators was made with TransTermHP 2.08 [27]
and ARNold (http://rna.igmors.u-psud.fr/toolbox/arnold/index.php) [28,29] on an un-annotated
Goe4 genome sequence. Pairwise phage genome comparison was done with tblastx [24], visualized
with Easyfig 2.2.2. [30]. Data output of both comparisons were combined and further processed with
Adobe Illustrator CS2 (Adobe Systems Inc., San José, CA, USA).

Average nucleotide identity (ANI) [31] was calculated using the average_nucleotide_identity.py
(https://github.com/widdowquinn/pyani) script with the ANIm option employing MUMer3 [32] and
the ANIb option employing blastn [24] for global genome alignments. The pRNA in the genome of Goe4
and its close relatives were indentified by using the Infernal 1.1.2 software package [33]. The required
co-variance model was calculated using the pRNA gene sequences from virus Nf (EU622808.1) and
GA-1 (NC_002649.1) as input and is included in the supplementary (pRNA-Nf-GA1.cm). Both pRNA
sequences were previously aligned with the LocARNA web tool [34] with default parameters and
saved in Stockholm format.

GC-contents of all phage genomes were calculated using the script get_gc_contetn.pl by Jennifer
Meneghin [35].

To identify the potential host for phage Luci, a blastn search with the Lucilia cuprina draft
genome (accession number JRES00000000) against the non-redundant NCBI database was performed,
and second best hits were evaluated to avoid a self-hit (Table S1).

2.4. Orthology and Evolutionary Analyses

Protein sequences were extracted from GenBank files using the cds_extractor.pl script (http:
//dx.doi.org/10.5281/zenodo.215824). All protein sequences were used for orthology analysis
employing Proteinortho V5.16b [36]. Evolutionary analyses were conducted in MEGA7 [37]. Initially
23 DNA-polymerase amino acid sequences and 22 pre-neck-appendage protein amino acid sequences
were aligned with the MUSCLE [38] using default parameters suggested by MEGA7. From this
alignment phylogeny was reconstructed using the maximum likelihood method based on the JTT
matrix-based model [39] and tested with the bootstrap method with 500 replications. All sites from
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the alignment were used for calculation. Search for an optimal tree structure was done with the
nearest-neighbour interchange method.

3. Results

3.1. Isolation and Morphological Characterisation of vB_BthP-Goe4

The virus vB_BthP-Goe4 (Goe4) was isolated from raw sewage using Bacillus thuringiens
HD-1 [14] as host bacterium. TEM analysis revealed a head-tail structure, which is typical for
members of the order Caudovirales (see Figure 1). An elongated head (height 70.7 nm ± 1.9 nm
and width 50.4 nm ± 1.5 nm) and a short non-contractile tail (length 45.4 nm ± 2.8 nm and width
6.6 nm ± 0.4 nm) allowed a classification into the Podoviridae virus family, whereas its dimensions and
tail structure (Figure 1) indicated an association with the Picovirinae subfamily [40].
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3.2. Genomic Characterization of vB_BthP-Goe4

Genome sequencing and annotation revealed a linear 25,722 bp viral chromosome with 30.43%
GC content. The genome encoded one ncRNA packaging RNA (pRNA) and 43 putative proteins of
which 16 could be assigned with a potential function. Annotated genes showed frequent similarity
to genes of B. subtilis-infecting virus φ29 (NC_011048). Direct comparison of Goe4 and φ29 genomes
revealed a high degree of similarity with respect to genome organisation and gene content (Figure 2).
Approximately 80% of the φ29 genome components showed similarity to the corresponding ones
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in the genome of Goe4. Highest identities were recorded for the genes involved in morphogenesis
and genes encoding the DNA-polymerase and the terminal protein located in the early region on
the left genome site. These homologies allowed classification of Goe4 into the φ29-like virus group.
Due to the genome composition of Goe4 compared with φ29 we postulate two early regions, at the left
and right genome ends of Goe4, and a late region in the genome center (Figure 2). The unique genes
of Goe4 are encoded by the early regions, which are variable among φ29 and its closer relatives [8].
Global genome alignment of Goe4 with φ29 revealed 43.4% nucleotide sequence similarity, thereby
indicating that Goe4 is not a species within the Phi29virus genus and may open up a new genus within
the Picovirinae subfamily.
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Figure 2. Overview of the Goe4 genome in Relation to φ29. Similarity indicated by grey bars was
calculated via tblastx. Protein coding open reading frames (ORFs) were further compared to the genus
type strain φ29 via global protein alignment employing the Needleman–Wunsch algorithm. The yellow
arrowhead indicates a region of φ29 absent in Goe4 and red arrowheads and line regions of Goe4
absent in φ29.

In addition to the variations in the early regions, differences could be observed in the conserved
late region. The first is located between the major head protein gene and the tail protein gene (Figure 2,
yellow arrowhead). In φ29, the head fibre gene is located at this position. The second region is located
between the peptidoglucan hydrolase gene and the gene of the DNA encapsidation protein (Figure 2,
red line). Both regions might be involved in regulatory processes. At the first region, rho-independent
transcription terminator was predicted without a promoter region for the transcription initiation of the
downstream genes. At the second region, which showed a strong drop in GC-content upstream of the
coding region of the DNA encapsidation protein, a promoter was predicted (Supplemental Table S2).

The organization of the early genomic regions of Goe4 is different from its φ29 counterparts.
Two genes are missing in the right early region, including early protein 17, which is involved in
replication, but is non-essential [41]. The size of the right early region is similar between the two
phages, due to the presence of new Goe4 specific genes (see Figure 2).

The left end early region reveals more variations and compared with phage φ29 harbours 16
additional protein-coding genes, arranged in three sets (see Figure 2, red arrowheads). The first is
located between the pRNA and a series of short hypothetical proteins genes, the second between
the terminal protein and the ssDNA binding protein gene and the third between the ssDNA binding
protein and a hypothetical protein gene in front of the dsDNA binding protein gene. Almost all
Goe4-specific genomic elements contain hypothetical proteins. The genomic element near the left
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genome border harbours seven large protein-encoding genes of which five are hypothetical and two
were assigned as potential dUTPase/dCTP pyrophosphatase and glutaredoxin.

3.3. Goe4 and Its Closest Relatives

A global blastn analysis using the Goe4 genome as query against the non-redundant nucleotide
data base of NCBI resulted in the identification of nine closely related virus strains (Juan (MF156577),
RadRaab (MF156580.1), Stich (KX349901.1), KonjoTrouble (MF156578.1), Aurora (KX349899.1), QCM11
(KX961631.1) [42], SerPounce (KY947509.1) [43], Claudi (KX349900.1) and MG-B1 (KC685370.1) [44]).
Many of those employ B. thuringiesnis as host, but also other members of the B. cereus clade [45]
like B. weihenstephanensis [44], phage QCM11 in B. anthracis [42]. Members of this bacterial clade
are genomically conserved and mainly differ in number and content of plasmids, which define
their lifestyle [45]. To identify also distinct relationships, the nucleotide sequences of the Goe4
DNA polymerase and the terminal protein were used as query for a blastx search against the NCBI
nr database. In this way, two more B. thuringiensis-infecting phages BeachBum (KY921761.1) and
Harambe (KY921761.1) [43], the known Phi29virus genus members [8], a φ29-like virus VMY22
(KT780304.1) [46] and a contig Scaffold4203 (JRES01001113.1) derived from the draft genome sequence
of Lucilia cuprina [47] were identified. Automatic re-annotation of contig Scaffold4203 from Australian
sheep blowfly L. cuprina (16,580 bp) resulted in a virus genome similar to φ29, but lacking the early
genes at the right end of the genome. Due to its origin, this virus was named Luci (see supplemental
material for the artificial GenBank file Luci_art.gbk) and included in the analysis. It is known that
the genus Lucilia is associated with many Firmicutes [48] so it can be expected that Luci also replicates
on a Bacillus host. Blastn analysis of the Lucilia cuprina draft genome [47] against the non-redundant
database of NCBI revealed a scaffold contig JRES01000365.1 being similar to Paenibacillus polymyxa.
The resemblance was only very slight, but supports the previous assumption (Table S1).

To expose relationships of Goe4 to its above-identified closest relatives, average nucleotide identity
(ANI) values were calculated (see Figure 3 and Table S5). A separation in seven sequence clusters
was recorded. Goe4 groups together with MG-B1, Aurora, RadRaab, Stich, KonjoTrouble, SerPounce,
Claudi, QCM11 and Juan, thereby revealing highest similarity to phages Stich and RadRaab with a
ANI value of approximately 93%. RadRaab and Stitch share an ANI value of 98%, which is indicative
for members of the same species [49]. Furthermore, phage Claudi showed an ANI value of ≥95% in
relation to SerPounce and KonjoTrouble. Unfortunately, the assignment of the three phages to the same
species is not possible, since analysis of SerPounce and KonjoTrouble did not show an ANI value of
≥95%. The most distant member of this cluster is MG-B1, which matches best with KonjoTrouble (ANI
value approximately 85%). The remaining phages split in six more clusters. The first one comprised
phage Nf (EU622808.1), B103 (X99260.1) and Goe1 (KU831549.1) [8], the second one φ29 (EU771092.1),
PZA (M11813.1) and Goe6 (MF407276.1) [50], third one Harambe, BeachBum and three more with only
one representative, like VMY22, GA-1 (X96987.2) [51] and Luci. Goe1 and Nf seem to be of the same
species (ANI value 96%), as well as φ29 and Goe6 (ANI value 95%), and BeachBum and Harambe
(ANI value 97%).

The results of global tblastx of each phage with its respective closest relatives, reveal an overall
consistent genome organisation of all viruses (Figure 4). The GC-content correlates with the cluster
formation observed during the previous ANI analysis (see Figure 3). A non-coding genomic region
of Goe4 between the genes encoding the major head protein and the tail protein (see Figure 1) is
frequently observed among most members, but with variable size. Phage MG-B1 is special as it lacks
this intergenic region. Early gene sets are generally of higher diversity with strain-specific areas at the
right end of the left early regions. Phages related to the clusters harboring phage B103 and φ29 are
very similar with conserved genome synteny. Phage B103-associated genomes are shorter and of lower
GC-content compared to those associated with φ29. Phage Harambe and BeachBum both revealed
an opposite orientation of their left early region with respect to the majority of other phages and
may thereby represent a specific property of this phage group. VMY22, GA-1 and Luci remain single.
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The most characteristic features of these three unique phage genomes are size, genomic organisation
and position of the pRNA (see Figure 4). In frame of this investigation, the pRNA was bioinformaticaly
predicted in all phage genomes, beside phage VMY22 (Table S3). In almost all strains it is found at the
end of the left early gene region. GA-1 is the only genome revealing an additional operon on the left
border downstream the pRNA gene. Due to the draft status of the genome Luci the predicted position
of the pRNA was not considered for this analysis.
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Figure 4. Blast Comparison of all φ29-like Phages. Genomes are ordered like presented in the ANI
analysis in Figure 3. Phages are compared via tblastx using the Easyfig tool [30]. Name, genome size
and GC-content of each phage are listed on the left side and highlighted in colour. Members of the same
cluster are equally highlighted. The respective hosts are listed on the right side. Bluish highlighted
strains infect hosts of the B. cereus clade, yellowish highlighted strains infect hosts of the B. subtilis
clade. pRNA genes are shown as red arrows and were identified via a covariance model created during
this investigation (supplemental pRNA-Nf-GA1.cm).

To further examine the relationship among the present φ29-like goupe members, we focused
on the inverted terminal repeats (ITRs), which are essential for protein primed initiation of genome
replication [7]. All in all, 13 of 21 phage genomes clearly exhibited their ITRs at their genome ends
(Table S4). The ITRs were of five different types and correlated with the observed clustering of the
phages. All members of the Goe4 cluster harbor a conserved 7 bp core ITR (5′ AAATGTA), with the
only exception of phage MG-B1, which revealed a specific 7 bp ITR (5′ AAATATA). Members of
the clusters with phages Nf, Goe1, B103, Goe6 and φ29, showed a 6 bp long conserved core ITR
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(5′ AAAGTA). Phage Harambe and BeachBum revealed the longest ITR with approximately 16 bp
(5′ AAGATAGCCCCCCACC) and the first with only two identical nucleotides at its 5′ end. Phage GA-1
revealed the last type of ITR. It is 7 bp in size and its sequence (5′ AAATAGA) differs from the MG-B1
ITR only in one base. No ITRs could be identified for phage VMY22 what indicates its draft status.
Of the phages that infect B. subtilis, only PZA showed no ITRs at either genome end. However, the right
end of the genome showed the respective AAAGTA sequence, which corresponds to the phages related
to B103 and φ29. The absence of the ITR at the left end of the genome seems to be the result of an
incorrect assembly, which is indicated by the twisted left genome region (see Figure 4). In such a case,
the ITR would orientate itself towards the genome centre. In fact, such an ITR hexamer can be found
between the pRNA gene of PZA and its scaffold protein gene (positions 5195–5200). The distance of
141 bp between pRNA gene and ITR is the same as in φ29 and Goe6, which supports the assumption
of an assembly artefact.

3.4. Orthology and Evolutionary Analyses

To find out about common proteins among all investigated and obviously related phages and to
describe group specific proteins we performed an orthology analysis. Beside all φ29 related phages,
the Streptococcus phage Cp-1 [23], a non-Bacillus infecting Picovirinae and the membrane-containing
virus PRD1 infecting Gammaproteobacteria [52] were introduced to this analysis. The last mentioned
replicates its genome similar to φ29 [52]. The results revealed the DNA-polymerase as the only
orthologue protein among all investigated viruses. Cp1 shared three more orthologue proteins
with the other Picovirinae, like the DNA encapsidation protein, upper collar protein and the major
head protein. The phage group associated with Goe4 revealed common orthologues like the
dUTPase/dCTP pyrophosphatase, Glutaredoxin, ssDNA binding protein, dsDNA binding protein
and four hypothetical genes from the left early gene region, the first hypothetical gene from the late
gene region and the last hypothetical gene from the right early gene region. Joint orthologues with
phage BeachtBum and Haramba could also be observed. These two phages in turn also shared specific
orthologues with the remaining strains outside the Goe4 group. For more details, consult the primary
results present in the supplemental Table S6.

A marker protein based phylogeny was calculated in order to further clarify the evolutionary
relationships of the individual viruses. The DNA polymerase was predestined for this calculation,
due to its presence as conserved proteins in all examined Picovirinae and in the outlier PRD1.
The resulting dendrogram, shown in Figure 5A, revealed a very similar grouping like seen on the
average nucleotide identity analysis (see Figure 3). Phages associated with Goe4 organized again in a
similar manner and evolutionarily split off even before the phage Cp1. Phages BeachBum, Haramba
and VMY22 are closer associated with φ29 related phages than with those associate with Goe4, even
they also infect bacteria of the B. cereus clade. Thus, all three are new representatives of the genus
Phi29virus. A further dendrogram, was calculated using the pre-neck-appendage protein (Figure 5B).
With respect to phages BeachBum and Haramba the observed results were contradictive to the previous
ones (Figures 3 and 5) and showed a host-related grouping with the Goe4 clade. This means that
proteins involved in host interaction are not suitable for phylogenetic analysis.
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particularly conserved (Figure 4). The scaffolding protein, located in this region, is distinct from the 
corresponding one of φ29 (Figure 2). This protein is essential for the maturation of the prohead [53]. 
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fibres). This is supported by the orthology analysis, revealing two distinct conserved proteins (Table 
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Pre-neck appendage proteins of both phages contain a predicted pectin lyase fold with a beta-helix 

Figure 5. Molecular Phylogenetic analysis, using the Maximum Likelihood method. The evolutionary
history was inferred by using the Maximum Likelihood method based on the JTT matrix-based
model [39]. Trees with the highest log likelihood (−13,127.87 for (A) and −17,734.54 for (B)) are shown.
The percentage of trees in which the associated taxa clustered together are shown next to the branches.
Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and
BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting
the topology with superior log likelihood value. The trees are drawn to scale, with branch lengths
measured in the number of substitutions per site. DNA-polymerase served as marker protein for tree
(A) and the pre-neck-appendage protein for (B). The analysis involved 23 amino acid sequences with
a total of 735 positions in the final dataset for (A) and 22 amino acid sequences with a total of 1015
positions for (B). The respective hosts are listed on the right side of each dendrogram and colour coded
like in Figure 4.

4. Discussion

The comparison of Goe4 with closely related strains showed a conserved genetic structure
among all phages. The late genome region, which mainly contains the structural genes, is particularly
conserved (Figure 4). The scaffolding protein, located in this region, is distinct from the corresponding
one of φ29 (Figure 2). This protein is essential for the maturation of the prohead [53]. The head is the
main morphological difference between Goe4 and φ29 (elongated and without head fibres). This is
supported by the orthology analysis, revealing two distinct conserved proteins (Table S6). The pre-neck
appendage protein and morphogenesis protein needed for tail assembly [54] differed strongly from
their counterparts in φ29 with protein similarities below 30% (Figure 2). Pre-neck appendage proteins
of both phages contain a predicted pectin lyase fold with a beta-helix repeat. Investigation on
a very similar protein Dpo7 from phage vB_SepiS-phiIPLA7 infecting Staphylococcus epidermidis
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showed depolarization activity and was successfully used for biofilm degradation [55]. Furthermore,
the pre-neck appendage protein of φ29 participates in host cell recognition and entry whereas the
morphogenesis protein of φ29 is involved in cleavage of both the polysaccharide backbone and peptide
cross-links of the cell wall during infection [56]. Thus, the potentially different exopolysaccharide
composition of the B. thuringiensis and B. subtilis host cells, explains the differences at gene level.
This hypothesis is supported by the fact that BeachBum and Harambe, which are closely related to
φ29 according to the presented analyses (Figures 3 and 5), harbour pre-neck appendage proteins with
high similarity to those of the Goe4 group (Table S6). In line are also the different pre-neck appendage
proteins of phages VMY22, GA-1 and Luci (Figure 5B and Table S6), as each replicates on a distinct
bacterial species or genus (potentially cold active B. cereus for VMY22 [46], B. pumilus for GA-1 [57],
Paenibacillus for Luci).

The left early region of Goe4 is much larger, with respect to φ29, and shows an increased
dissimilarity. The question arises which purpose the many additional hypothetical genes might serve.
From phages φ29 it is known that genes of this region are involved in host interaction, as for example
gp56 is involved in inhibiting uracil DNA glycosylase and thus preventing host factors from interfering
with phage replication [58]. Now, the genomes of B. thuringiensis, and of other representatives of
B. cereus clade, are about 1 Mbp larger (~+25%) than of B. subtilis, resulting in a more diverse enzymatic
equipment, which the phage must handle to ensure its replication. It might be conceivable that the
additional viral genes of the left early region are present due to this fact. Supportive indications for
this assumption came from the smallest Phi29virus vB_BsuP-Goe1 (Goe1) which has been isolated
recently [8]. The fact that this phage was isolated just now and not decades earlier is probably related
to its host, which is a genome-reduced mutant (~−8%) of the model organism B. subtilis 168 [59].
Phage Goe1 can replicate only very poorly on B. subtilis 168 [8]. Probably, it lacks the equipment to
tame the extra genes of this strain in relation to its isolation host. The deletion of further genes from the
left early region of Goe1 without obvious reproduction limitation on its genome-reduced host further
support this assumption [60].

According to the Bacterial and Archaeal Viruses Subcommittee (BAVS), members of the same
genus shall share >50% nucleotide sequence similarity [49]. With that, we can state that all strains
associated within the Goe4 group are members of the same genus. Now the question arises whether
this group should be assigned to the existing Phi29virus genus or whether they should open up a new.
Arguments for the implementation into Phi29virus could be the common genomic organization of both
groups. Thus, many genome components of φ29 (~80%) can be found in Goe4. In addition, the pRNA
of all Goe4 associated strains could be identified with a covariance model based on pRNA sequences
of current Phi29virus members. This indicates that the genome translocation system of Goe4 is very
closely related to the one of φ29. The same covariance model could not reliably identify the pRNA of
Cp1 [61], another Picovirinae, but not a Phi29virus. Arguments for the establishment of an own genus
would be the low nucleotide based similarities of Goe4 and φ29 and the ~35% larger genome of Goe4,
which consequently brings with it a complex and diverse constituents, so far not observed within
the genus Phi29virus. In addition, phylogenetic analysis (Figure 5A) showed that Goe4 associated
viruses all group together and that this cluster evolutionary branches off even before the phage Cp1,
a representative of a separate genus Cp1virus. Therefore, the question whether Goe4 forms a new
genus or whether to integrate it into the existing Phi29virus is not closed and needs further discussion.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1999-4915/10/11/
624/s1, Luci_art.gbk; pRNA-Nf-GA1.cm; Table S1: Luci host search; Table S2: Promoter terminator prediction;
Table S3: pRNA prediction; Table S4: ITRs of φ29-like-phages; Table S5: ANI percentage identity; Table S6:
Orthology analysis.
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