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Abstract

Background: Aberrant alternative splicing plays a key role in cancer development. In recent years, alternative splicing has
been used as a prognosis biomarker, a therapy response biomarker, and even as a therapeutic target. Next-generation RNA
sequencing has an unprecedented potential to measure the transcriptome. However, due to the complexity of dealing with
isoforms, the scientific community has not sufficiently exploited this valuable resource in precision medicine. Findings: We
present TranscriptAchilles, the first large-scale tool to predict transcript biomarkers associated with gene essentiality in
cancer. This application integrates 412 loss-of-function RNA interference screens of >17,000 genes, together with their
corresponding whole-transcriptome expression profiling. Using this tool, we have studied which are the cancer subtypes
for which alternative splicing plays a significant role to state gene essentiality. In addition, we include a case study of renal
cell carcinoma that shows the biological soundness of the results. The databases, the source code, and a guide to build the
platform within a Docker container are available at GitLab. The application is also available online. Conclusions:
TranscriptAchilles provides a user-friendly web interface to identify transcript or gene biomarkers of gene essentiality,
which could be used as a starting point for a drug development project. This approach opens a wide range of translational
applications in cancer.
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Introduction

Alternative splicing (AS) is the mechanism by which a single
pre–messenger RNA (mRNA) molecule can lead to different ma-
ture mRNA molecules, called isoforms or transcripts. Through
this process, a gene is capable of encoding different proteins [1].
The number of discovered isoforms increases as the study of
an organism improves. In humans, ∼95% of multi-exonic genes
present AS events in diverse conditions [2].

AS occurs as a normal process in cells. However, there are
some genetic aberrations—such as mutations or expression

changes of splicing factor genes [3]—that affect AS and may re-
sult in the expression of less standard isoforms that produce an
anomalous gain or loss of protein function. AS has been shown
to play a pivotal role in the development of several diseases, in-
cluding cancer. Specifically, all the hallmarks of cancer (e.g., an-
giogenesis, cell immortality, avoiding immune system response)
are found to have a counterpart in aberrant splicing of key genes
[4–6]. In recent years, AS is being used as a prognosis biomarker,
a therapy response biomarker, and even as a therapeutic target
in cancer [7, 8].
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Several studies have analyzed the influence of AS in different
contexts, as reviewed in Carazo et al [9]. These studies are usu-
ally based on the study of the relative or absolute concentration
of transcripts looking for isoform changes across different con-
ditions [10, 11]. Because the best biomarkers for a certain con-
dition can be either genes or isoforms, it would be desirable to
develop a methodology that integrated transcript and gene ex-
pression to provide the best biomarkers regardless of whether
they are a gene or a transcript.

In the context of cancer, identifying genes that are essen-
tial to cellular viability is a potential source of drug targets. An-
alyzing mutant phenotypes and gene repression is especially
relevant to this aim. One selective and efficient way to post-
transcriptionally suppress gene expression is RNA interference.
Project Achilles [12] performed genome-wide RNA interference
screening in different cohorts of cancer cell lines, aiming to es-
tablish cancer dependencies and essential genes. Analyzing the
biological output data of these experiments has been a chal-
lenge, mainly as a result of the off-target hybridizations of the
RNA interference (RNAi) seed sequences. The DEMETER score
[13] is a statistical summarization of essentiality scores that
quantizes the competitive proliferation of the cell lines and min-
imizes the effect of off-target hybridizations by using a statisti-
cal model. DEMETER outperforms other summarizations such as
the ATARiS score [14] or Bayes factors [15]. Recently, the authors
of DEMETER have published an improved estimation of the es-
sentiality score [16].

Different studies have successfully used Project Achilles data
in combination with other omics data to define novel personal-
ized treatments, mainly based on mutations and copy number
variations [13, 14, 17]. Moreover, several web tools allow the visu-
alization of Project Achilles data, such as Depmap [18]. However,
little work has been done to relate Project Achilles with AS.

Here, we present TranscriptAchilles [19], a computational
genome-wide tool that exploits gene and isoform expression
as biomarkers of gene essentiality in the context of can-
cer. It integrates loss-of-function RNAi screening with whole-
transcriptome expression profiling of 412 cancer cell lines. Us-
ing this tool, we have studied which are the cancer subtypes for
which AS plays a significant role to identify gene essentiality. In
addition, we include a case study of renal cell carcinoma that
shows the biological soundness of the results. This approach
opens a wide range of translational applications in cancer.

Findings
TranscriptAchilles pipeline

We have developed a statistical pipeline to predict the best
biomarkers (genes or transcripts) of gene essentiality. The model
is based on limma [20] to state the probability of a gene/transcript
to be differentially expressed in cell lines that are sensitive to
gene silencing.

TranscriptAchilles uses the essentiality score of DEMETER.
The DEMETER score quantizes the competitive proliferation of
the cell lines and minimizes the effect of off-target hybridiza-
tions by using a statistical model. The more negative the DEME-
TER score is, the more essential the gene is for a cell line. Au-
thors of the DEMETER score established a cutoff of –2 as a thresh-
old of essentiality. Genes with a DEMETER score lower than this
threshold can be considered essentials for a cell line.

Although DEMETER’s authors performed some validations of
their essentiality score, we did 2 simple tests to confirm its re-
liability. First, we checked that genes are expressed when they

are essentials (DEMETER score <–2). We found that genes are
expressed >1 transcript per million (TPM) in 85% of the cases
when they are essential, versus 70% when they are nonessen-
tial (Wilcoxon test P < 2.2e–16).

Second, we checked the essentiality scores of some well-
known driver oncogenes related to their mutational state. Figs.
S8–S13 show the DEMETER score for different cell lines grouped
by their mutation status in KRAS, BRAF, NRAS, and PIK2CA. We
found that mutated cell lines are sensitive to the knock-down
(KD) of the activated oncogenes; this effect is known as “onco-
gene addiction” [21]. We also checked that the mutation status
of TP53 affects the essentiality of MDM2 and MDM4 as expected,
because MDM4 and MDM2 regulate the activity and the stabil-
ity of TP53, respectively [22]. We confirmed, in all the cases, that
the relationships between DEMETER and mutation status are in
accordance with the bibliography.

In addition, we have developed an open and intuitive visual
platform to allow researchers to perform their own analysis fol-
lowing simple steps. The platform is presented in 3 main panels,
as shown in Fig. 1.

The main panels of the platform are as follows:

Select cell lines
The user can select the cohort of cell lines to be analyzed. Several
primary sites and subtypes can be selected at the same time. The
application is preloaded with all the necessary data, so that the
user does not need to upload any file.

Find essential genes
Based on the Achilles Project data, TranscriptAchilles identifies
essential genes for the selected cell lines. These genes are re-
quired to meet several criteria: (i) they must be essential for a
minimum percentage of samples in the selected subtype, (ii)
they must be specific for the subtype under study, and (iii) they
must be expressed. To achieve these 3 requirements, the user
can tune several thresholds. The first one is the percentage of
cell lines that are sensitive to the gene KD of interest. The sec-
ond one is an odds ratio, which can be illustrated with an ex-
ample: if the enrichment is set to 2, the percentage of cell lines
sensitive to the gene KD must be 2 times larger for the cell lines
under study than for the rest of the cell lines in the DEMETER
data set. Finally, a threshold on expression can be set to ensure
that the genes are expressed when they are essential.

Predict biomarkers for a target gene
In this section, the user can select ≥1 genes from the previous
step and predict putative biomarkers of their essentiality. The
statistical model estimates the local false discovery rate (local
FDR) for both genes and transcripts and decides whether genes
or transcripts are the best markers for each case (see Methods
section). The user can also find biomarkers for all the essential
genes identified by running the panel ”Find Essential Genes” in
the tab ”Predict Genome-Wide Biomarkers.”

Implementation and availability

TranscriptAchilles (SciCrunch.org RRID:SCR 016849) has been
fully developed using R [23] and Shiny [24]. The databases and
source code are available at GitLab [25]. Once the git repository
is cloned, TranscriptAchilles can be run locally following the in-
structions included in the repository. The application can also be
run locally within Docker to avoid installation problems and to
facilitate reproducibility. TranscriptAchilles is hosted using the
Amazon Web Services cloud environment service on the server

https://scicrunch.org/resolver/RRID:SCR_016849
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Figure 1: Screenshots of the 3 main tabs of TranscriptAchilles. (1) Selection of cell lines. Both primary site and subtypes can be selected. Two histograms summarize
the number of all (up) and selected (down) cell lines. (2) Find Essential Genes. This functionality finds genes whose inhibition reduces the proliferation of the selected

cohort. The returned genes are essential, specific, and expressed in the selected cell lines. All the parameters can be tuned with the sliders. A ranking of essential
genes and a box plot of essentiality (DEMETER score) for the selected cohort (left) and the rest of cell lines (right) are shown. The red dotted line marks the default
essentiality score of –2 dividing the samples into resistant (up) and sensitive (down) to the KD. In this case, the essential gene selected in the ranking table is ITGAV.
(3) Predict biomarkers (both transcripts and genes) for the essential genes selected by the user. This analysis can be run for every essential gene in the other tab.

The ranking of biomarkers has the following columns: Gene Ess: essential gene; Gene bmkr and Transcript bmkr: gene/transcript expression biomarker; tr: number
of transcripts of the corresponding gene; logFC: log2 Fold change of expression; Lfdr: local false discovery rate; Group bmkr: indicates whether the best biomarker is a
gene or a transcript. See legend of Fig. 2 for a more detailed explanation of the plots.
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[26]. The security of the app is managed by using the ShinyProxy
framework [27].

Splice-based overview of tumor subtypes

We conducted several comparisons throughout 20 tumor sub-
types to quantify the potential of genes and transcripts to be
used as biomarkers of essentiality. We ran our pipeline for every
tumor subtype with ≥7 samples (20 tumor subtypes). For each
of them, we identified a set of genes that are essential in the se-
lected cohort of cell lines by running the Find Essential Genes
tab (essential: DEMETER score <–2; specific: enrichment of es-
sentiality ≥ 1; expressed: TPM > 1).

Using our statistical pipeline, we predicted which genes or
transcripts are potential biomarkers of gene essentiality. A con-
dition affected by splicing is more likely to have more transcript
biomarkers than one with no splicing changes. To estimate this
characteristic, we compared the proportion of genes/transcripts
relative to the total number of predicted biomarkers (i.e., if a cer-
tain essential gene has 10 potential biomarkers, 9 of which are
“transcripts”, we would say that 90% of its biomarkers are tran-
scripts) (Fig. 3).

Differences found within the tumor types were strongly sig-
nificant (Kruskal-Wallis P = 3.18e–16). Skin carcinoma, esopha-
gus squamous carcinoma, lung large cell lung carcinoma, and
multiple myeloma are the most splicing-influenced cancer sub-
types. On the other hand, isoforms have less predictive power in
lung adenocarcinoma, acute lymphoblastic leukemia, and colon
adenocarcinoma. These findings are in accordance with a recent
large-scale study of 4,542 patients from The Cancer Genome At-
las, which measured driver and functional isoform switches in
11 cancer types [11]. Within the tumor types shared with our
study, kidney carcinoma and colon adenocarcinoma were the
cancers with the most and the fewest driver isoform switches,
respectively. Lung squamous carcinoma was more affected by
splicing switches than lung adenocarcinoma. In addition, we
found that within hematological tumors, acute lymphoblastic
leukemia had the lowest proportion of transcript biomarkers.
Diffuse B-cell lymphoma, acute myeloid leukemia, and multi-
ple myeloma had more than half of their essential genes better
predicted by transcripts.

Considering the whole transcriptome as the source for
biomarkers, we studied the recurrence of each transcript bio-
type of the predicted biomarkers in comparison to the general
biotypes (Fig. 4). Ensembl [28] catalogs transcripts into 4 main
biotypes: protein coding, pseudogene, long noncoding, and short
noncoding. These 4 main groups contain 35 subcategories in to-
tal. More than 90% of the transcriptome of the 412 cell lines
taken together falls into 7 biotypes (out of 35), namely, protein
coding, nonsense-mediated decay, long intergenic noncoding
RNA, microRNA, antisense, processed transcript, and retained
intron. Protein-coding transcripts is the most represented cate-
gory (∼40% of transcripts).

We examined whether the biomarker’s biotypes mimic the
general distribution of biotypes in the transcriptome (Fig. 4).
Remarkably, 5 biotypes accounted for the vast majority of the
biomarkers. Protein-coding transcripts were the most abun-
dant category across the 20 cell line subtypes, and tended to
be overrepresented when compared with the global proportion.
MicroRNA and other small RNAs are underrepresented in the
table. This result makes sense because short RNAs are usu-
ally depleted before sequencing and thus, microRNA concen-
tration cannot be properly measured. Intron retention is, with
nonsense-mediated decay, the third most represented transcript

biotype. The widespread abundance of intron retention in tumor
transcriptome is well documented [29], but, to our knowledge, it
has not been proposed as a possible source of biomarkers [30]
or even neoantigens [31]. In fact, our results suggest that coding
isoforms are better biomarkers. The roles of intron retention in
cancer have yet to be elucidated. The primary fate of this class of
AS is degradation through the nonsense-mediated mRNA decay
(NMD) mechanism. NMD results in reduced parent gene expres-
sion. However, it has been shown that certain intron retentions
are capable of avoiding NMD and have been postulated to reg-
ulate the function of the parent gene in a dominant-negative
manner [32].

Case study

To further illustrate the potential of this platform in precision
medicine, we show a case study using renal carcinoma cell lines
(n = 14). We first conducted the gene essentiality analysis of
these cell lines. We selected genes (i) essential in ≥25% of renal
cancer cell lines, setting the threshold for the DEMETER score as
–2; (ii) with a specificity odds ratio of ≥2; and (iii) with a mini-
mum expression of 1 TPM in ≥75% of cell lines when the genes
are essential. Applying these parameters, 121 genes were found
to be essential for renal carcinoma. Some of these genes belong
to pathways known to be dysregulated in renal cancer (e.g., IT-
GAV, TIAM1, and PIK3CB) [33]. Interestingly, 73 of 121 genes (P =
1.1e–3, Fisher exact test) have previously been identified as po-
tential cancer drivers in other tumor types in mice according to
the Candidate Cancer Gene Database [34].

Among these genes, PAX8 and HNF1B play a key role in renal
carcinoma [35, 36]. PAX proteins are transcription factors that
regulate cell proliferation and migration of embryonic precur-
sor cells [37]. The depletion of PAX2 by RNAi induces apoptosis
in kidney carcinoma [38]. In addition, PAX2 and PAX8 double-
mutant cells do not exhibit mesenchymal–epithelial transition
and in turn lack mesonephric tubules [39]. On the other hand,
HNF1B is a transcription factor that acts as a tumor suppressor
in renal carcinoma through control of PKHD1 expression [40].

Biomarkers for essential genes were obtained by running the
“Predict Biomarkers for a Target Gene” panel. In this case, we
focused on the interleukin-1 receptor-associated kinase (IRAK),
which is implicated in cancer initiation and progression [41].
TranscriptAchilles revealed that all the proposed biomarkers for
IRAK1 (P < 1e–4, |log2 fold change| > 2, and local FDR < 0.1)
were transcripts, which stresses the importance of splicing as
a source of biomarkers.

The HSP90AA1-005 transcript is one of the best markers of
IRAK1 essentiality (Fig. 2). The HSP90 gene plays a role in the reg-
ulation of IRAK1 [42]. Interestingly, while gene expression is not
capable of distinguishing between sensitive and resistant groups
of cell lines (P = 0.37; local FDR = 0.7; AUC = 0.63), the predicted
transcript HSP90AA1-005 is a good biomarker of IRAK1’s essen-
tiality (P = 2.62e–07; local FDR = 0.01; AUC = 1).

TranscriptAchilles can also predict genome-wide biomarkers
for all essential genes and rank them according to their signifi-
cance. We found companion biomarkers for 101 essential genes
(out of 121). In 60% of cases, the best markers were transcripts
rather than genes.

Fig. 2 and Figs. S6 and S7 show 3 essential gene and
biomarker pairs (IRAK1/HSP90AA1-005, PER3/SEC31A-020,
IRAK1/MAPK1-201). In these cases, transcripts are differentially
expressed between sensitive and resistant cell lines, while the
corresponding genes do not show this pattern. In addition,
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Figure 2: Percentage of transcripts predicted to be biomarkers of essential genes in 20 tumor types. Each essential gene has different biomarkers: some of them are
genes and others are transcripts. Each point of the box plots represents the proportion of transcript biomarkers for an essential gene for a given tumor type. ALL:

acute lymphoblastic leukemia; AML: acute myeloid leukemia; BRCA: breast ductal carcinoma; CNSA-IV: central nervous system astrocytoma grade IV; COAD: colon
adenocarcinoma; CUADT: upper aerodigestive tract squamous cell carcinoma; DLBCL: diffuse large B-cell lymphoma; ESCA: esophagus squamous cell carcinoma; KIRC:
kidney renal clear cell carcinoma; LCC: lung large cell carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MM: multiple myeloma; NSCLC:
non–small cell lung carcinoma; OS: osteosarcoma; OVAD: ovary adenocarcinoma; PDAC: pancreas ductal carcinoma; SCLC: small cell lung carcinoma; SKCM: skin

carcinoma; UCEC: endometrium adenocarcinoma.

>95% of the proposed biomarkers for IRAK1 and PER3 were
transcripts (P < 1e–4, |log2 fold change| > 2, and local FDR < 0.1).

The suggested essential gene-biomarker pairs are biologi-
cally sound. The interleukin-1 receptor-associated kinase (IRAK)
plays a key role in the toll-like receptor (TLR) and interleukin-1
receptor (IL1R) signaling pathways, which are implicated in can-
cer initiation and progression [41]. Mitogen-activated protein ki-
nase (MAPK) is involved in the regulation of normal cell prolifer-
ation, survival, and differentiation. Aberrant regulation of MAPK
contributes to cancer through the well-studied Ras-Raf-MEK-ERK
pathway [43]. The relationship between MAPK and IRAK is also
documented. IRAK participates in the activation of p38 MAPK by
associating with Ras [44].

Methods
Data sources and preprocessing

The Cancer Cell Line Encyclopedia (CCLE)(CCLE, RRID:SCR 01383
6) [45] provides public access to genomic data of nearly 900 can-
cer cell lines. The transcriptome profiles of these samples were
calculated in a previous study [46] from raw RNA-sequencing
data using Kallisto (kallisto, RRID:SCR 016582) [47]. This study
uses the Gencode 24 transcriptome (GRCh 38) as reference an-
notation [48]. This version of the transcriptome contains 199,169
transcripts. Transcript expression was measured in TPM and fil-

tered. In the filtering step, we excluded transcripts that had zero
TPMs in every sample. Then, for the selected cohort of cell lines,
we required the average expression of transcripts to be above
a threshold, whose default value is 50% quantile of all the av-
erage expressions. After these filters were applied, the resulting
number of transcripts was ∼90,000. This number depends on the
selection of cell lines.

In the Achilles Project, 412 of these cell lines were interro-
gated for gene essentiality using short hairpin RNA (shRNA). We
used the DEMETER score as a measure of essentiality. DEMETER
quantizes the competitive proliferation of the cell lines and min-
imizes the effect of off-target hybridizations by using a statistical
model. The more negative the DEMETER score is, the more es-
sential the gene is for a cell line. Authors of the DEMETER score
established a cutoff of –2 as a threshold of essentiality. Genes
with a DEMETER score lower than this threshold can be consid-
ered essentials for a cell line. Missing elements of DEMETER were
imputed using the nearest neighbor averaging algorithm (KNN)
[49].

Combining gene and isoform expression and DEMETER, we
developed a statistical pipeline to find essential genes and pre-
dict the best markers of essentiality (Fig. 5).

https://scicrunch.org/resolver/RRID:SCR_013836
https://scicrunch.org/resolver/RRID:SCR_016582
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Figure 3: Proportion of transcript biotypes of biomarkers in 20 tumor types vs in general. Acronyms are included in Fig. 3 caption. General biotype shows the proportion
of each specific biotype in the reference transcriptome (Gencode 24). Protein-coding transcripts are overrepresented as biomarkers for all tumor types. lincRNA: long
intergenic noncoding RNA.

Statistical model

Let e denote the number of RNAi target genes and n denote the
number of screened samples. Let D be an e × n matrix of essen-
tiality with each element di j representing the DEMETER score for
the RNAi target i in sample j. Let D∗ be an n × e dichotomized
matrix whose each element d∗

i j denotes whether sample j is re-
sistant or sensitive to the RNAi target i as follows:

d∗
i j =

{
1, if di j < thr (Sensitive; S)
0, otherwise (Resistant; R)

,

where thr is a threshold whose default value is −2 as proposed
in DEMETER.

Let s be a subset of N cell lines that yields an essential-
ity vector d∗

es
= (des1 , . . . , des N ) for the eth RNAi target. Let ygs

=
(ygs1

, . . . , ygs N
) be the expression vector of a putative gene

biomarker and yts
= (yts1 , . . . , yts N ) be an expression vector of

one of their corresponding transcripts. The null hypotheses are
defined as

Hg
0 : E

(
ygs

|d∗
es

∈ S
) = E

(
ygs

|d∗
es

∈ R
)
.

Ht
0 : E

(
yts

|d∗
es

∈ S
) = E

(
yts

|d∗
es

∈ R
)
.

This null hypothesis is therefore “the mean expression of a
biomarker is identical in resistant and in sensitive cell lines to
a gene KD.” To test this hypothesis, we used a moderated t-test
implemented in limma [20]. We applied this test for each RNAi
target and all the expressed genes and transcripts to get the cor-
responding P-values. Dealing with these P-values implies solv-
ing 2 challenges: (i) integrating transcripts and genes to get the
best biomarkers and (ii) correcting for multiple hypotheses.
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Figure 4: Output of TranscriptAchilles in renal carcinoma cell lines (n = 14). HSP90AA1-005 is a transcript biomarker of essentiality of IRAK1. (A) Scatterplot of IRAK1

essentiality and HSP90AA1-005 log2-expression. Each dot represents a single cell line. The dotted black line marks the –2 essentiality threshold. (B) Essentiality of

IRAK1. Samples are sorted by their essentiality (more negative implies IRAK1 is more essential). Samples in panels B and C are sorted in the same order. The x-axes are
shared by both panels. The black line marks the default essentiality score of –2 dividing the samples into resistant and sensitive to IRAK1 KD. (C) log2-expression of gene
HSP90AA1 (black line) and its transcripts. The dotted black line divides cell lines into resistant (left side) and sensitive (right side). The best biomarker (HSP90AA1-005)
is shown in pink. In this case, transcript expression provides better essentiality markers than gene expression. (D) Receiver operating characteristic (ROC) curve of the

selected biomarker. Here the AUC is 1, but this is not generally the case.

To face these challenges, we followed a methodology similar
to the independent hypothesis weighting procedure [50], which
increases the power of a test by grouping the results using co-
variates. In our case, we divided the P-values corresponding to
all the tests into 2n groups, where n is the number of KD genes
(see Fig. 6). Each group includes the P-values of either the tran-
scripts or genes interrogating each KD gene.

For each of these groups, we computed the local FDR [51].
The local FDR estimates, for each test, the probability that the
null hypothesis is true, conditioned on the observed P-values.
The formula of the local FDR is the following:

P (H0|z) = local F DR (z) = π0 f0 (z)
f (z)

,

where z are the observed P-values; π0 is the proportion of true
null hypotheses (estimated from the data); f0(z), the empirical
null distribution—usually a uniform (0,1) distribution for well-
designed tests- and f (z), the mixture of the densities of the null
and alternative hypothesis, also estimated from the data.

As stated in Efron et al. [51], “the advantage of the local FDR
is its specificity: it provides a measure of belief in gene i’s ’signifi-
cance’ that depends on its P-value, not on its inclusion in a larger
set of possible values” as it occurs, e.g., with q-values or the stan-
dard FDR. In addition, the clear statistical meaning of the local
FDR [i.e., P(H0|z)] allows genes to be compared with transcripts
to provide the best biomarker, taking into account whether it is
a gene or a transcript. For example, in Fig. 6, transcripts are bet-

ter biomarkers than genes for the first KD gene and vice versa
for the last KD gene. Splitting the results into different groups
increases the statistical power (as stated in [50]).

The local FDR and π0 were estimated using the Bioconductor
R Package qvalue (Qvalue, RRID:SCR 001073) [52]. The value of π0

provides an estimate on whether transcripts or genes are better
biomarkers for a particular RNAi target, as observed in Fig. 6.
In addition, Fig. S5 shows different real cases in which the best
biomarkers are genes or isoforms.

Discussion

We have developed TranscriptAchilles, a large-scale tool to
predict genomic biomarkers associated with gene essentiality.
This is the first approach that combines high-throughput RNAi
screenings with isoform expression. In addition, we have devel-
oped a methodology that combines gene and transcript expres-
sion to predict biomarkers of essentiality.

The 2 main technologies integrated in TranscriptAquilles
are genome-wide loss-of-function RNAi screens and whole-
transcriptome expression profiling using RNA-seq. We first dis-
cuss the potential and limitations of these technologies and
then comment on the results of TranscriptAchilles.

RNAi screening provides an approach to predict genes that
are essential for cell viability. Analyzing the output of these
experiments is a challenge owing to the off-target effects of
shRNAs, which are mainly produced by the similarity of seed
sequences. Several methodologies have explicitly modeled seed

https://scicrunch.org/resolver/RRID:SCR_001073
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Figure 5: TranscriptAchilles’ workflow. Database icons represent CCLE and Project Achilles data. A total of 412 samples were matched between them. Step boxes
represent algorithmic analysis, for both preprocessing (grey) and mathematical modeling (red). Green boxes represent applications of TranscriptAchilles. CL: cell line.

Figure 6: (A) Histogram of P-values of all tests (both genes and transcripts) taken together. The local FDR and the π̂0 (the proportion of true null hypotheses) values
are shown. (B) Histogram of P-values after splitting by the covariates. The complete histogram in panel A gathers all the histograms in panel B. The covariates are, by

rows: the KD genes; and, by columns: whether the biomarker is a gene or a transcript. In KD gene 1, transcripts are better biomarkers than genes (π̂0 = 0.37 vs π̂0 = 1),
and vice versa in KD gene n (π̂0 = 0.35 vs π̂0 = 1).

effects and dramatically improved the essentiality score [13–15,
53]. In this scenario, the DEMETER score outperforms other sum-
marization techniques. Despite the efforts made to decrease

these errors, reducing the off-target effects of shRNA remains
a challenge when it comes to predicting the essentiality of
the gene. In fact, DEMETER’s developers are further improv-
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ing their tool [16]. In addition, other promising loss-of-function
approaches are emerging to identify essential genes, such as
genome editing through the use of CRISPR [54].

Isoforms were quantified in a previous investigation using
Kallisto. It could be argued that Kallisto only detects known iso-
forms included in a reference transcriptome and that, in can-
cer, there are many novel isoforms, perhaps because of malfunc-
tioning of the spliceosome [55]. Despite this disadvantage, iso-
form quantification algorithms—such as Kallisto—can be better
adapted to compare disparate experiments. In addition, tran-
scriptome annotation is ever increasing and improving, filling
gaps of previous versions. Kallisto was able to identify well-
expressed isoforms that, in turn, were almost perfect biomark-
ers of the essentiality of their companion genes. Using other al-
gorithms, such as Stringtie [56] or Cufflinks [57, 58], we could
have discovered novel isoforms. Unfortunately, the specificity
and sensitivity of the transcriptome reconstruction algorithms
is well below 50% [59] and computation time is much larger.
In summary, novel splicing events can be a fruitful source of
biomarkers, but, given the present knowledge of the transcrip-
tome, known isoforms also present great potential as a source
of biomarkers in precision medicine and are much easier to in-
tegrate.

Regarding TranscriptAchilles, the pipeline has 3 steps: (i) se-
lecting the cohort of cell lines, (ii) finding essential genes, and
(iii) predicting biomarkers. The standard use of the pipeline be-
gins by selecting a single tumor subtype. The user can also
choose a combination of tumors according to other characteris-
tics such as histology (e.g., lung and stomach adenocarcinoma).
Within this cohort, the algorithm finds genes that are essential
for cell viability. Essential genes are also required to be specific
for the selected cohort (when compared with the rest of the cell
lines). Setting this parameter is important in order to exclude
genes that, because they are essential for all cells, could be a
source of adverse effects in a potential therapy.

The algorithm also predicts the best biomarkers (either genes
or transcripts) of gene essentiality. We filtered the transcripts ac-
cording to their expression before running the statistical model
because >30% are not expressed at all in our data set. Our model
integrates genes and transcripts and, with the aid of their cor-
responding local FDR, selects (if existing) the proper biomarker
for each cancer target.

The analysis in 20 tumor subtypes suggested that the in-
corporation of splicing complements gene expression to find
biomarkers in several cancer types. This is the case in skin car-
cinoma, esophagus squamous carcinoma, lung large cell carci-
noma, and multiple myeloma, among others. In other tumors,
such as lung adenocarcinoma, acute lymphoblastic leukemia,
and colon adenocarcinoma, an analysis based merely on gene
expression recalled >60% of the biomarkers. Unsurprisingly, the
proportion of coding transcripts in the predicted biomarkers is
higher than what is expected by chance in almost all cancer sub-
types.

Finally, we showed a case study of the pipeline using kidney
carcinoma cell lines. This example can easily be replicated us-
ing the application. In kidney carcinoma, 60% of essential genes
were better marked by transcripts than by genes. Based on this
study, the inhibition of IRAK1 is proposed as a new potential
therapeutic strategy in this tumor.

TranscriptAchilles opens a wide range of translational appli-
cations in cancer, especially in those cases that lack an effective
therapy or an adequate response biomarker. Future work may
exploit this powerful technique in combination with mutations,

copy number variations, or chromatin modifications to find new
potential drug targets with their corresponding biomarkers.

Availability of supporting data and materials

Snapshots of the code are available in the GigaScience GigaDB
repository [60].

Availability of source code and requirements

Project name: TranscriptAchilles
Project home page: https://gitlab.com/fcarazo.m/transcripta

chilles
http://biotecnun.unav.es:8080/app/TranscriptAchilles

� Operating systems: Platform independent
� Programming language: R
� Other requirements: RShiny, CRAN
� License: GNU GPL v3
� RRID:SCR 016849

Additional files

Figure S1. Quick start: pipeline
Figure S2. Quick start: selection of samples
Figure S3. Quick start: essential genes
Figure S4. Quick start: prediction of transcript biomarkers
Figure S5. Three examples of TranscriptAchilles in kidney

carcinoma (n = 14). In each example, the essentiality of a gene
for every cell line and the log2 expression values of the gene
biomarker are shown in the upper and lower plot, respectively.
The cell lines are ordered according to increasing essential-
ity. The vertical dotted line separates the cell lines into resis-
tant (left) and sensitive (right) to the inhibition of the essen-
tial gene (DEMETER score ≤2). Gene expression is highlighted
in red. The best transcript biomarker is also highlighted. When
the best biomarker is the gene, no transcript is highlighted.
(A) Essentiality of ZNF610. The biomarker is the gene expres-
sion of RAB17. (B) Essentiality of CENPU. The best biomarker is
isoform AP000275.65-003. (C) Essentiality of IRAK1. The isoform
biomarker is not the most expressed isoform. Gene expression
is not a good biomarker. However, there is a clear expression
change in Isoform HSP90AA1-005.

Figure S6. (A) log2-expression box plot of the predicted tran-
script biomarker (SEC31A-020) in renal cancer cell lines (n = 14).
PER3 sensitive (red) and resistant (blue) cell lines are shown. (B)
Expression pattern of gene SEC31A (red highlighted line) and its
transcripts. Samples are ordered according to increasing essen-
tiality. The black line marks the –2 essentiality threshold. The
best transcript biomarker (SEC31A-020) is highlighted in blue.

Figure S7. Predicted target gene (IRAK1) in renal carcinoma
cell lines (n = 14) with its companion biomarker (transcript
MAPK1-201). (A) renal cell lines ordered by increasing essential-
ity of IRAK1. The dotted black line marks the default essential-
ity score of –2. (B) Expression pattern of gene MAPK1 (red high-
lighted line) and its transcripts. Samples are ordered according
to increasing essentiality of IRAK1. The dotted black line marks
the –2 essentiality threshold dividing cell lines into resistant (left
side) and sensitive (right side). The best transcript biomarker
(MAPK1-201) is highlighted in purple. In this case, transcript ex-
pression is a better marker of essentiality than gene expression.

Figure S8. BRAF oncogene. Essentiality of BRAF for BRAF wt
(0) and BRAF mut (1) in 412 samples.

https://gitlab.com/fcarazo.m/transcriptachilles
http://biotecnun.unav.es:8080/app/TranscriptAchilles
https://scicrunch.org/resolver/RRID:SCR_016849
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Figure S9. KRAS oncogene. Essentiality of KRAS for KRAS wt
(0) and KRAS mut (1) in 412 samples.

Figure S10. NRAS oncogene. Essentiality of NRAS for NRAS wt
(0) and NRAS mut (1) in 412 samples.

Figure S11. PIK3CA oncogene. Essentiality of PIK3CA for
PIK3CA wt (0) and PIK3CA mut (1) in 412 samples.

Figure S12. TP53 mutation and MDM2. Essentiality of MDM2
for TP53 wt (0) and MDM2 mut (1) in 412 samples. MDM2 is known
to be essential if TP53 is functional -TP53 wt (0).

Figure S13. TP53 mutation and MDM4. Essentiality of MDM4
for TP53 wt (0) and MDM4 mut (1) in 412 samples. MDM4 is known
to be essential if TP53 is functional -TP53 wt (0)
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