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Abstract

Recent experimental advances are producing an avalanche of data on both neural connec-

tivity and neural activity. To take full advantage of these two emerging datasets we need a

framework that links them, revealing how collective neural activity arises from the structure

of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity

has drawn major interest in computational neuroscience. Existing methods for relating activ-

ity and architecture in spiking networks rely on linearizing activity around a central operating

point and thus fail to capture the nonlinear responses of individual neurons that are the hall-

mark of neural information processing. Here, we overcome this limitation and present a new

relationship between connectivity and activity in networks of nonlinear spiking neurons by

developing a diagrammatic fluctuation expansion based on statistical field theory. We

explicitly show how recurrent network structure produces pairwise and higher-order corre-

lated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open

new avenues to investigating how single-neuron nonlinearities—including those of different

cell types—combine with connectivity to shape population activity and function.

Author summary

Neuronal networks, like many biological systems, exhibit variable activity. This activity is

shaped by both the underlying biology of the component neurons and the structure of

their interactions. How can we combine knowledge of these two things—that is, models

of individual neurons and of their interactions—to predict the statistics of single- and

multi-neuron activity? Current approaches rely on linearizing neural activity around a sta-

tionary state. In the face of neural nonlinearities, however, these linear methods can fail to

predict spiking statistics and even fail to correctly predict whether activity is stable or

pathological. Here, we show how to calculate any spike train cumulant in a broad class of

models, while systematically accounting for nonlinear effects. We then study a fundamen-

tal effect of nonlinear input-rate transfer–coupling between different orders of spiking sta-

tistic–and how this depends on single-neuron and network properties.
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Introduction

A fundamental goal in computational neuroscience is to understand how network connectiv-

ity and intrinsic neuronal dynamics relate to collective neural activity, and in turn drive neural

computation. Experimental advances are vastly expanding both the scale and the resolution

with which we can measure both neural connectivity and neural activity. Simultaneously, a

wealth of new data suggests a possible partitioning of neurons into cell types with both distinct

dynamical properties and distinct patterns of connectivity. What is needed is a way to link

these three types of data; how is it that patterns of connectivity are translated into patterns of

activity through neuronal dynamics?

Any model of neural activity should also capture the often-strong variability in spike trains

across time or experimental trials. This variablity in spiking is often coordinated (correlated)

across cells, which has a variety of implications. First, correlations play an essential role in plas-

ticity of network structure [1–4]. Theories that describe spiking correlations allow for a self-

consistent description of the coevolution of recurrent network structure and activity [5, 6].

Second, correlations between synaptic inputs control their effect on postsynaptic neurons:

inputs that arrive simultaneously can produce stronger responses than those arriving sepa-

rately. This has been referred to as “synergy” or “synchronous gain” in early work [7], and the

magnitude of this synergy has been measured in the LGN by Usrey, Reppas & Reid [8] and

cortex by Bruno & Sakmann [9] (but see [10]). Indeed, the level of correlation in an upstream

population has been shown to act as a gain knob for firing rates downstream [11]. Finally, cor-

related fluctuations in activity can impact the fidelity with which populations can encode

information [12, 13]. Importantly, the coding impact depends on a subtle interplay of how sig-

nals impact firing rates in a neural population and of how noise correlations occur across the

population [14–18]. An accurate description of how network connectivity determines the indi-

vidual and joint activity of neural populations is thus important for the understanding of neu-

ral activity, plasticity and coding.

Many studies of collective activity in spiking systems can be traced to the early work of

Hawkes on self- or mutually-exciting point processes [19, 20]. The Hawkes model is also

closely related to the linear response theory that can be used to describe correlations in inte-

grate-and-fire networks [21, 22]. Here, each neuron and synapse is linearized around a central

operating point and modes of collective activity are computed around that point [23–25].

Including a nonlinear transfer of inputs to rates in the Hawkes model gives a generalized linear

model, which has been applied with considerable success to multi-neuron spike train data

[26].

Analyses based on computing modes of collecting activity based on linearized dynamics

have led to significant insights, but they also impose a limitation. While shifts of the operating

point can modulate the linearized dynamics of biophysical models [27], this approach cannot

capture the impact of nonlinear neural dynamics at the operating point.

Here, we present a systematic method for computing correlations of any order for nonlinear
networks of excitatory and inhibitory neurons. Nonlinear input-rate transfer couples higher-

order spike train statistics to lower-order ones in a manner that depends on the order of the

nonlinearity. In its simplest form, this coupling shows how pairwise–correlated inputs modu-

late output firing rates. This generalizes the effects of pairwise correlations on neural gain in

single-neurons [7, 8, 11] and feedforward circuits [28–31] to networks with high levels of

recurrence and feedback.

We begin with simple models and progress to nonlinearly interacting networks of spiking

neurons. Our method is diagrammatic, in the sense that the interplay of network connectivity

and neural dynamics in determining network statistics is expressed and understood via a

Linking structure and activity in nonlinear spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005583 June 23, 2017 2 / 47

(MAB). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005583


systematic series of graphical terms. Such graphs are commonly referred to as “Feynman dia-

grams” after Richard Feynman, who invented them. We use this diagrammatic expansion to

make and explain three main scientific points. First, we show how neural dynamics lead to

spike correlations modulating firing rates in a recurrent, nonlinear network. Second, we illus-

trate an additional role of the prominent “heavy-tailed” feature of neural connectivity where

some neurons have many more connections than others, and some connections are much

stronger than others. We show how this feature interacts with nonlinearities to control net-

work activity. And third, we show how different single-neuron nonlinearities affect the depen-

dence of firing rates on correlations.

Results

Diagrammatic expansion for spike train statistics

We will show that any coupled point process model, even one with nonlinearities or negative

interactions, has an associated expansion for all spike train cumulants organized by the

strength of coupling of higher statistical moments with lower ones (e.g., the influence of the

two-point correlation on the mean). The full model we aim to describe is one where each neu-

ron generates a spike train which is conditionally renewal with intensity:

riðtÞ ¼ �i

X

j

gij �
dNj

dt

� �

ðtÞ þ liðtÞ

 !

: ð1Þ

Here gij(t) is a matrix of interaction filters, λi(t) is the baseline point process drive to neuron i
and � denotes convolution: ðg � f ÞðtÞ ¼

R1
t0

dt0gðt � t0Þf ðt0Þ (with the integral starting at the

initial time for the realization). ϕi is the transfer function of neuron i. Neuron j’s spike train is
dNj
dt ¼

P
k dðt � tkj Þ, a sum over Dirac deltas at each of the k spike times. We will take the spike

trains to be conditionally Poisson given the input, so that in each time window (t, t + dt), the

probability of neuron i generating m spikes is (ri(t)dt)m/m! exp (−ri(t)dt). This corresponds to

a point process generalized linear model (GLM), or nonlinear multivariate Hawkes process

[32]. In contrast to biophysical or integrate-and-fire models in which spike trains are gener-

ated deterministically given the membrane potential (which might, however, depend on noisy

input), this model with escape noise generates spike trains stochastically with a rate that

depends on the “free” membrane potential (i.e., with action potentials removed) [33].

Current methods for the analysis of single-neuron and joint spiking statistics rely on linear

response techniques: using a self-consistent mean field theory to compute mean firing rates

and then linearizing the spiking around those rates to determine the stability and correlations.

We begin with a simple example highlighting the need to account for nonlinear effects. We

take an excitatory-inhibitory network of NE = 200 excitatory (E) neurons and NI = 40 inhibi-

tory (I) neurons, all with threshold-quadratic transfer functions �iðxÞ � �ðxÞ ¼ abxc2
þ

. In this

example we took network connectivity to be totally random (Erdös-Rényi), with connection

probabilities pEE = 0.2 and pEI = pIE = pII = 0.5. For simplicity, we took the magnitude of all

connections of a given type (E − E, etc.) was taken to be the same. Furthermore, the time

course of all network interactions is governed by the same filter gðtÞ ¼ t
t2 exp ð� t=tÞ (with

τ = 10 ms), so that gij(t) = Wijg(t). W is a matrix of synaptic weights with units of mV, so that

the input to ϕ can be interpreted as the free membrane potential. We set the strength of inter-

actions such that the net inhibitory input weight on to a neuron was, on average, twice that of

the net excitatory input weight so that for sufficiently strong interactions, the network was in

an inhibitory-stabilized regime [34].
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We examined the magnitude and stability of firing rates as we increased the strength of syn-

aptic coupling. We used mean field theory to predict the firing rates, and predicted their linear

stability by the standard measure of the spectral radius of the stability matrix Ψij ¼ �
ð1Þ

i gij. (�
ð1Þ

i

denotes the first derivative of neuron i’s transfer function with respect to its input.) As the

strength of interactions increases, the mean field prediction for the firing rates loses accuracy

(Fig 1A). This occurs well before the mean field theory crosses the stability boundary |Ψ| = 1

(Fig 1B). Examining simulations as the weights are increased reveals an even more fundamen-

tal failure of the theory: before the synaptic weights are strong enough for the mean field the-

ory to be unstable, the simulations reveal divergent firing rates (Fig 1C; the raster stops when

the instantaneous rates diverge).

Rather than restricting theoretical analysis to regimes of extremely low coupling strength or

linear models, we here develop a framework for activity cumulants that can apply to models

with nonlinear input-spike transfer. This will allow us to properly predict both the spiking

cumulants and the location of the rate instability in the nonlinear network above. Thus, we

Fig 1. Dynamics approaching the firing-rate instability in threshold-quadratic networks. A) Average

firing rate of the excitatory neurons as synaptic weights are scaled. While the ordinate axis shows the

excitatory-excitatory synaptic weight, all other weights are scaled with it. Solid lines: prediction of mean field

theory. Dots: result of simulation. Inset: threshold-quadratic transfer function. B) Spectral radius of the stability

matrix of mean field theory as synaptic weights are scaled. Stars indicate the weight values for the simulations

below. C) Example realizations of activity for three different interaction strengths. As synapses become

stronger, correlated activity becomes apparent. When synapses are strong enough the activity becomes

unstable, even though the mean field theory is stable. All plotted firing rates in A) are averaged over the time

period before the rates diverged (if they did). Left: (WEE, WEI, WIE, WII) = (.025, -.1, .01, -.1) mV. C). Middle:

(WEE, WEI, WIE, WII) = (1, −4, .4, −4) mV. Right: (WEE, WEI, WIE, WII) = (1.5, −6, .6, −6) mV.

https://doi.org/10.1371/journal.pcbi.1005583.g001
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develop a framework for activity cumulants that can apply to models with nonlinear input-

spike transfer for strongly coupled networks. The mean field and linear response predictions

for spiking cumulants correspond to the lowest order terms of this expansion and are good

whenever that lowest-order truncation is valid.

We will build this framework systematically: We begin with statistics of the drive λi(t), then

consider a filtered point process, g � λ(t). In these simple models we will introduce the method

and terminology that we will use to understand the more complicated models. We continue

by considering the linearly self-exciting Hawkes process, taking a single neuron so g = g and

ϕ(x) = x, before proceeding to arbitrary nonlinearities ϕ. Finally, we introduce an arbitrary net-

work structure g. This model is intimately related to the popular GLMs for spiking activity,

where the nonlinearity ϕ is commonly taken to be exponential, refractory dynamics can be

embedded in the diagonal elements of g, and λ corresponds to the filtered stimulus [26]. A use

of GLMs it to fit them to recorded spike trains and then ask about the structure of the inferred

functional connectivity g. In contrast, we interpret g as reflecting the structural connectivity

and synaptic and membrane dynamics of a specified model network and aim to compute sta-

tistics of its neurons’ spike trains. The derivation given here will be heuristic. A more rigorous

derivation of the expansion is given in Methods: Path integral representation.

Introduction to the general framework: Poisson process

An inhomogeneous Poisson process generates counts within a window dt independently with

a Poisson distribution at rate λ(t). A spike train produced by this process is

dN
dt
ðtÞ ¼

X

k
dðt � tkÞ ð2Þ

where tk is the kth spike time, and N(t) is the spike count. The mean and autocovariance for

this process are given by the familiar formulas:

dN
dt
ðtÞ

� �

¼ lðtÞ ð3Þ

dN
dt
ðtÞ

dN
dt
ðt0Þ

� �

c

¼ lðtÞdðt � t0Þ ð4Þ

where angular brackets denote the expectation across realizations and the subscript c denotes a

cumulant, not the moment (i.e., we have subtracted all terms which factor into products of

lower moments) [35]. The delta function arises because the process is independent at each

time step, so that there is no correlation between events from one time t and any other time t0.
In fact, because the events are generated independently at each time point, all of the cumulants

of this process can be written as

Y

i

dN
dt
ðtiÞ

* +

c

¼
R
dt lðtÞ

Y

i

dðti � tÞ ð5Þ

where integrating out one of the delta functions puts the second cumulant in the above form.

We can interpret this equation as describing a source of events appearing at rate λ(t) at time t
that propagate to times ti. In this case, because the events are generated independently at each

t, the events only propagate to the same time t. For a general point process, cumulants mea-

sured at the collection of times {ti} could be affected by events occurring at any past time, so

that we would have to account for how events propagate across time.

Linking structure and activity in nonlinear spiking networks
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The expansion for cumulants we will develop has a natural construction in terms of graphs

(Feynman diagrams), wherein components of the graph represent factors in each term. A set

of defined rules dictate how terms in the expansion are formed from those graphs. While this

graphical representation is not necessary to understand the inhomogeneous Poisson process,

we describe it in detail in this simple case to develop intuition and introduce terminology. We

use cumulants in this construction because they provide the fundamental building blocks of

moments; any n-th order moment can be constructed from up to n-th order cumulants). This

also simplifies the developed expansion.

To begin, the nth cumulant has n arguments {ti, i = 1, . . ., n}, one for each factor of dN
dt in

Eq 5. We represent each of these by an open white vertex in the graph labeled with the time

point, ti, and we represent the source term λ(t) with a gray vertex. The white vertices are called

“external” vertices whereas the gray vertex is called “internal.”

The internal gray vertex represents the intensity of the underlying stochastic process gener-

ating events with rate λ(t). The white external vertices represent the spike trains whose statis-

tics we measure at times {ti}. For each delta function, δ(t − ti), in Eq 5, we place an edge drawn

as a dotted line from the gray vertex to the white vertex, i.e., from the event-generating process

to the spike train’s measurement times (Fig 2). More generally, events generated by the source

propagate through the graph to affect the external vertices.

In order to construct the term associated with each diagram, we multiply the factors corre-

sponding to edges (delta functions linking t and ti) or the internal vertex (λ(t)), and then inte-

grate over the time t associated with the internal vertex. This links the generation of events by

λ(t) to their joint measurement at times {ti} through the propagator (here δ(t − ti)). For the dia-

grams shown in Fig 2, these rules reproduce the cumulant terms in Eq 5. Note that these

graphs are directed, since we only consider causal systems where measured cumulants are only

influenced by past events.

Fig 2. Feynman diagrams for the first three cumulants of the inhomogeneous Poisson process. Each

dotted edge corresponds to a delta-function connecting the time indices of its two nodes. White nodes denote

the measurement times, while gray nodes denote the times at which spikes are generated. The cumulants are

constructed by convolving the term corresponding to the gray node with the product of all outgoing edges’

terms (Eq 5).

https://doi.org/10.1371/journal.pcbi.1005583.g002
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In general, a given moment will be the sum of terms associated with many different graphs.

For example the second moment is given by

dN
dt
ðt1Þ

dN
dt
ðt2Þ

� �

¼
dN
dt
ðt1Þ

dN
dt
ðt2Þ

� �

c

þ
dN
dt
ðt1Þ

� �
dN
dt
ðt2Þ

� �

: ð6Þ

Each term on the right-hand side will have a corresponding graph. Moreover, the graph for

the second term will include two disconnected components, one for each factor of the mean

rate, which appears as in Fig 2. The graphs for the cumulant will always be described by con-

nected graphs.

Filtered Poisson process

We proceed to a simple model of synaptic input: a presynaptic Poisson spike train, with count

N(t) and intensity λ(t), drives postsynaptic potentials with shape g(t):

nðtÞ ¼ � g �
dN
dt

� �

ðtÞ ð7Þ

where � denotes convolution: ðg � f ÞðtÞ ¼
R1
t0
dt0gðt � t0Þf ðt0Þ (with the integral starting at the

initial time for the realization). We assume g is normalized,
R1
� 1

gðtÞdt ¼ 1, so that � gives the

magnitude of the filtering.

The cumulants of the postsynaptic potential ν(t) can be calculated directly. In general, they

are given by:

Y

i

nðtiÞ

* +

c

¼

Z

dt lðtÞ
Y

i

�ðg � dÞðti � tÞ ð8Þ

where the input spikes are generated at times t, arrive at times given by the delta functions and

influence the cumulant measured at {ti} through g. Eq 8 is the same as that for the inhomoge-

neous Poisson process but with factors of g�. This provides a simple interpretation of Eq 8:

cumulants of the filtered Poisson process are given by taking the cumulants of the underlying

Poisson process and examining how they can be filtered through the system at hand.

Similarly to the case for the Poisson process, we can represent the cumulants graphically.

We again represent each measurement time on the left-hand side of Eq 8 by an external vertex

(Fig 3a). The convolution of δ and g in Eq 8 corresponds to an internal time point which we

integrate over (denoted by primes). We also represent these internal time points with white

vertices that carry a factor of �, the magnitude of the filter. We represent the source term λ(t)
with a gray vertex. All vertices that are not “external” are again called internal. Every internal

vertex also carries its own time index, t0.
The internal gray vertex again represents the intensity of the underlying stochastic process,

λ(t). The white external vertices represent the processes whose statistics we measure at times

{ti}. For each delta function, δ(t0 − t), in Eq 8, we place an edge drawn as a dotted line from the

gray vertex to the white vertex, i.e., from the event-generating process to the arrival time of the

event t0. In this example an event “arrives” as soon as it is generated. A wavy edge corresponds

to the filter, g, and represents the effect of a spike arriving at time t0 on the output process mea-

sured at time ti (Fig 3b). Events generated by the source thus propagate through the graph to

affect the observed, external vertices.

In order to construct the expression associated with each diagram, we again multiply the

factors corresponding to each edge in the diagram (e.g., δ(t0 − t) or g(ti − t0)) or internal vertex

(� or λ(t)) and then integrate over the times associated with the internal vertices. Note that

Linking structure and activity in nonlinear spiking networks
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integration over the internal times t0, t00, etc. results in the convolutions �(g � δ)(ti − t). Integra-

tion over the time t associated with the source term corresponds to the outermost integral in

Eq 8 This links the generation of events by λ(t) to their joint measurement at times {ti} through

their arrival times (via δ(t − t0)) and temporal filtering (g(ti − t0)). For the diagrams shown in

Fig 3, these rules reproduce the cumulant terms in Eq 8. Note that the graphs are directed, as

for the expansion we describe the “propagator” term will be causal.

We can simplify the cumulants of this process (and the corresponding diagrammatic repre-

sentations) by considering the propagator of ν(t) (also known as the linear response or impulse

response). The propagator measures the change in hν(t)i in response to the addition of one

input spike in N(t). We can compute it by taking a functional derivative with respect to the

input intensity λ(t):

Dðt; t0Þ ¼
d

dlðt0Þ
hnðtÞi

¼
d

dlðt0Þ
�

Z 1

t0

dt00 gðt � t00Þ
dNðt00Þ
dt

� � !

¼ �
R1
t0

dt00 gðt � t00Þ
dlðt00Þ
dlðt0Þ

¼ �ðg � dÞðt � t0Þ

ð9Þ

Since the dynamics are linear, this is also equivalent to the change of the expected rate with

the addition of one spike to the input, i.e., taking λ(t) λ(t) + δ(t0 − t) and hν(t)ic hν(t)ic +

Fig 3. Feynman diagrams for the first three cumulants of the filtered inhomogeneous Poisson

process. A) Cumulant corresponding to the graph. B) Diagrammatic expressions using the filter and the

underlying Poisson process. Each dotted edge corresponds to a delta-function connecting the time indices of

its two nodes. Each wavy edge corresponds to the filter g connecting the time indices of its two nodes. C)

Diagrammatic expressions using the propagator. In all graphs, external white nodes (leaves of the graph)

denote measurement times. Gray nodes denote the times at which spikes are generated in the input spike

train. Internal white nodes (with time indices t 0) denote the times at which input spikes arrive at the

postsynaptic neuron. The cumulants are constructed by convolving the term corresponding to the gray node

with the product of all outgoing edges’ terms (Eq 8).

https://doi.org/10.1371/journal.pcbi.1005583.g003
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Δ � δ(t) (or equivalently the Green’s function of the expected rate). This allows us to rewrite

the cumulants in terms of the input rate and the propagator:

Y

i

nðtiÞ

* +

c

¼

Z

dt lðtÞ
Y

i

Dðti; tÞ ð10Þ

which can be represented graphically by introducing a solid, directed edge for Δ(t, t0) (Fig 3c).

The propagator will be a central feature of the expansion for cumulants in more complicated

models involving connections among neurons.

Impact of self-excitation on activity statistics of any order: Linearly self-

exciting process

In order to generalize the graphical representation of Poisson cumulants, we begin with a line-

arly self-exciting process as considered by Hawkes [19]. Let the rate be a linear function of the

instantaneous event rate (that is to say the firing rate conditioned on a particular realization of

the event history)

rðtÞ ¼ � g �
dN
dt

� �

ðtÞ þ lðtÞ: ð11Þ

We assume that g(τ) and λ(t) are such that r(t)> 0, and
R1
� 1

dt gðtÞ ¼ 1. If � < 1, then an

event will generate less than one event on average, and the rate will not diverge. The history

dependence of the firing rate will now enter into our calculations. We can compute the

expected rate using the self-consistency equation:

�rðtÞ �
dN
dt
ðtÞ

� �

¼ � g �
dN
dt

� �� �

ðtÞ þ lðtÞ ¼ �ðg � �rÞðtÞ þ lðtÞ ð12Þ

We provide an alternate derivation of this result that will prove useful below: We construct

a perturbative expansion of the mean firing rate and show how this expansion can be re-

summed to yield the full rate of the self-exciting process. This procedure can also be applied to

obtain cumulants of arbitrary order for this process.

We will begin with a recursive formulation of the self-exciting process. In contrast to the fil-

tered Poisson process of the previous section, here the process with count N generates events,

which then influence its own rate, dN/dt. Each event can thus generate others in turn. In the

case of a linear filter, g, the following approach is equivalent to the Poisson cluster expansion

[36–38] and similar to the construction of previous linear response theories for spike train

covariances [22]. Define the nth order self-exciting process, Nn(t), to be the inhomogeneous

Poisson process given by:

dNnðtÞ
dt

¼
dN0ðtÞ
dt
þ
dMn� 1ðtÞ

dt
; ð13Þ

where N0(t) and Mn(t) are inhomogeneous Poisson processes with rates λ(t) and νn(t), respec-

tively, where

nnðtÞ ¼ � g �
dNn

dt

� �

ðtÞ ð14Þ

so n0ðtÞ ¼ � g � dN0

dt

� �
ðtÞ. Mn(t) is a process with intensity that depends on a stochastic realiza-

tion of Nn(t), making M0(t) a “doubly stochastic” process. We can generate these processes

Linking structure and activity in nonlinear spiking networks
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recursively: To generate Nn(t), we use a realization of Nn−1(t) to compute the rate νn−1 and gen-

erate a realization of Mn−1(t). These are added to events generated from the original inhomoge-

neous Poisson process with rate λ(t) to produce Nn(t). We can use this recursive procedure to

develop an expansion for the cumulants of the process at a given order in � (thus a given order

in the self-convolution of g).
Let us compute the value of hdNdt ðtÞi in powers of � using our recursive approach. The zeroth

order solution, h
dN0

dt ðtÞi, is the rate of the inhomogeneous Poisson process λ(t). At order n, we

compute h
dNn
dt ðtÞi using the (n − 1)st order solution in the right-hand side of Eq 13. At first

order, using the Poisson solution for h
dN0ðtÞ
dt i we get

dN1

dt
ðtÞ

� �

¼
dN0

dt
ðtÞ

� �

þ
dM0

dt
ðtÞ

� �

ð15Þ

¼ lðtÞ þ � g �
dN0

dt

� �� �

ðtÞ ð16Þ

¼ lðtÞ þ �ðg � lÞðtÞ ð17Þ

¼ lðtÞ þ �
Z 1

t0

dt0 gðt � t0Þlðt0Þ ð18Þ

At second order we similarly arrive at

dN2

dt
ðtÞ

� �

¼
dN0

dt
ðtÞ

� �

þ
dM1

dt
ðtÞ

� �

ð19Þ

¼ lðtÞ þ � g �
dN1

dt

� �� �

ðtÞ ð20Þ

¼ lðtÞ þ �
Z 1

t0

dt0 gðt � t0Þlðt0Þ þ �2

Z 1

� 1

dt0 gðt � t0Þ
Z 1

t0

dt00 gðt0 � t00Þlðt00Þ ð21Þ

At higher orders we would obtain further terms with additional convolutions with g.
It will be useful to write these expansions in another way, which will allow their form to

generalize to nonlinear processes: we will construct the cumulants from the baseline rate and

the propagator. We can always replace

lðtÞ ¼
R1
t0

dt0 dðt � t0Þlðt0Þ ð22Þ

resulting in

dN1

dt
ðtÞ

� �

¼

Z 1

t0

dt0 dðt � t0Þlðt0Þ þ �
Z 1

t0

dt0 gðt � t0Þ
Z 1

t0

dt00 dðt0 � t00Þlðt00Þ ð23Þ

Fig 4a shows the graphical representation of this expansion. As before, the order of the

moment is given by the number of external vertices and each external vertex carries a mea-

surement time ti. We have three types of internal vertices: two open white vertices that carry

factors of � (one type has one wavy incoming and one wavy outgoing line; the other has one

incoming dotted line and one wavy outgoing line) and one gray vertex (that has one
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outgoing dotted line). As before, each gray internal vertex corresponds to the source term,

and thus represents the factor λ(t). The white internal vertices and their edges represent how

the events generated by the source are propagated through the filter g. Each white vertex cor-

responds to a possible past event time, t0. To construct the cumulant corresponding to a dia-

gram, we integrate over all these possible internal times, weighting each by their influence

on the current spiking rate. These weights are given by the filters, g, represented by the wavy

edges. The graphical representation of h
dN1

dt ðtÞi (using the delta function as in Eq 23) is

shown in Fig 4a.

We can compute the firing rate of the self-exciting process �rðtÞ as the limit of the nth order

self-exciting processes, continuing the process outlined for Eq 13:

�rðtÞ ¼
X1

n¼0

�nðgðnÞ � d � lÞðtÞ; ð24Þ

where g(n) is the n-fold convolution of g with itself and g(0)(t) = δ(t). Indeed, we can see that

Fig 4. Diagrammatic expansion for the mean firing rate and linear response of the self-exciting process. A) First-order

approximation of the firing rate. B) Diagrams corresponding to the re-summing of the expansion of the mean field rate (Eq 25),

which is represented by the black dot. C) Diagrams corresponding to the re-summing calculation of the propagator (Eq 28),

which is represented by the solid edge. In all diagrams, time indices associated with internal vertices have been suppressed.

https://doi.org/10.1371/journal.pcbi.1005583.g004
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this expression for �rðtÞ yields the same recursive self-consistency condition as above:

�rðtÞ ¼ �0ðgð0Þ � d � lÞðtÞ þ
X1

n¼1

�nðgðnÞ � d � lÞðtÞ

¼ lðtÞ þ � g �
X1

n¼1

�n� 1gðn� 1Þ � d � l

 !

ðtÞ

¼ lðtÞ þ �ðg � �rÞðtÞ:

ð25Þ

We can also represent this recursive relation graphically as in Fig 4b, using a black vertex to

denote the mean-field rate �rðtÞ. The infinite sum defined by Eq 13 has a specific graphical

representation: the leftmost vertex and wavy line in the right-hand side of Fig 4b (top) can be

detached and factored, with the remaining series of diagrams corresponding exactly to those

of the mean. This series of subgraphs on the right-hand side sums to hdNdt ðtÞi, leading to the

recursion relation in Eq 25 (Fig 4b). This graphical representation is equivalent to the recur-

sion relation.

The propagator, Δ(t, t0), measures the fluctuation in the expected rate (around the mean-

field value) in response to the addition of one spike at time t0 to the drive λ(t). Setting λ(t) λ
(t) + δ(t − t0) and �rðtÞ  �rðtÞ þ ðD � dÞðt; t0Þ in Eq 12 gives:

�rðtÞ þ ðD � dÞðt; t0Þ ¼ �ððg � �rÞðtÞ þ ðg � D � dÞðt; t0ÞÞ þ lðtÞ þ dðt � t0Þ

Dðt; t0Þ ¼ �ðg � DÞðt; t0Þ þ dðt � t0Þ
ð26Þ

where for convolutions involving Δ(t, t0), we use the notation (f � Δ)(t, t0) =
R
dt00 f(t − t0 0)Δ(t00,

t0) and (Δ � f)(t, t0) =
R
dt0 0 Δ(t, t00)f(t00 − t0)

As with the expected rate �rðtÞ, we can examine the propagators of the n-th order self-

exciting processes. For the first-order process N1(t),

D1ðt; t
0Þ ¼ dðt � t0Þ þ �ðg � dÞðt � t0Þ ð27Þ

The first term is the propagator of the inhomogeneous Poisson process. The second term of Δ1

is the propagator of the filtered Poisson process, Eq 9. This equation can be represented by the

same type of graphs as for the expected rate (Fig 4c top), but stand for functions between two

time points: the initial time t0 of the perturbation, and the later time t, at which we are comput-

ing the rate of the process. We don’t represent these initial and final points as vertices, because

the propagator is a function that connects two vertices. However, we still integrate over the

times corresponding to the internal vertices since the propagator accounts for the total effect

of a perturbation of the source on the observed activity.

In general, the propagator for the nth-order self-exciting process can be computed by taking

a functional derivate of the rate with respect to the input rate λ:

Dnðt; t0Þ ¼
d

dlðt0Þ
ðlðtÞ þ �g � �rn� 1ðtÞÞ

¼ dðt � t0Þ þ �
d

dlðt0Þ
ðg � �rn� 1ÞðtÞ

¼ dðt � t0Þ þ � g �
Xn� 1

k¼0

�kgðkÞ � d

 !

ðt; t0Þ

ð28Þ

This recursion relation can be expressed graphically just as for the mean rate (Fig 4c, top). Fac-

toring out �g� corresponds to popping off an edge and vertex from the series (Fig 4c, middle).
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Taking the limit n!1 in Eq 28 yields the self-consistency condition for the full propagator Δ
(t, t0) given by Eq 26, and indicated by the solid black line in Fig 4c (bottom).

These diagrammatic expansions may seem cumbersome for so simple a model. Even for the

self-exciting Hawkes process, however, they allow the fast calculation of any order of spike

train cumulant. Let us begin with the second cumulant of the instantaneous firing rate. Again

we will construct an expansion in �, i.e., powers of g. To zeroth order, this is the inhomoge-

neous Poisson solution. To first order in � we have

dN1

dt
ðtÞ

dN1

dt
ðt0Þ

� �

c

¼
dN0

dt
ðtÞ þ

dM0

dt
ðtÞ

� �
dN0

dt
ðt0Þ þ

dM0

dt
ðt0Þ

� �� �

c

¼
dN0

dt
ðtÞ

dN0

dt
ðt0Þ

� �

c

þ
dN0

dt
ðtÞ

dM0

dt
ðt0Þ

� �

c

þ
dM0

dt
ðtÞ

dN0

dt
ðt0Þ

� �

c

þ
dM0

dt
ðtÞ

dM0

dt
ðt0Þ

� �

c

¼

Z 1

t0

dsdðt � sÞdðt0 � sÞlðsÞ þ �

Z 1

t0

dsdðt � sÞðg � dÞðt0 � sÞlðsÞ

þ �

Z 1

t0

dsdðt0 � sÞðg � dÞðt � sÞlðsÞ

þ �

Z 1

t0

dsdðt � sÞdðt0 � sÞ g �
Z 1

t0

ds0dðs � s0Þlðs0Þ

 !

ðsÞ:

ð29Þ

The first term on the second line is the second cumulant of the inhomogenous Poisson pro-

cess. The other terms arise from the dependency of the processes M0(t) and N0(t). The expecta-

tion over M0(t) must be performed first, followed by that over N0(t), because the process M0(t)
is conditionally dependent on the realization of N0(t), having intensity � g � dN0

dt

� �
ðtÞ (Eq 13).

This decomposition relies on the linearity of the expectation operator.

We can construct diagrams for each of these terms using the same rules as before, with

the addition of two new internal vertices (Fig 5a). These new vertices are distinguished by

their edges. The first has two outgoing dotted lines representing the zeroth-order propagator

δ(t − t0), as in the second cumulant of the inhomogeneous Poisson process. It represents events

that are generated by the drive λ(t) and propagate jointly to the two measurement time points.

The second new vertex has the same two outgoing lines and one incoming wavy line for the fil-

ter g(t, t0)–it represents the fourth term on the right-hand side of Eq 29. This vertex carries a

factor of � and represents the filtering of past events that then propagate to the two measure-

ment time points.

Continuing the computation of the second cumulant to any order in � will result in higher

order terms of the linear response and expected rate being added to the corresponding legs of

the graph. At a given order n, one leg of each diagram will be associated with a particular term

in the expansion, to order n, of the expected rate or the linear response. The second cumulant

of dN2/dt would thus add diagrams with two filter edges to the diagrams of Fig 5a, either both

on the same leg of the graph or distributed among the graph’s three legs.

As with the filtered Poisson process, we can simplify this sum of four diagrams for the sec-

ond cumulant of the first-order self-exciting process. Examining subgraphs of each term on

the right-hand side of Fig 5A reveals a connection to the linear response and mean rate of the

first-order self-exciting processes. On each leg emanating from the internal branching vertex,

the four terms sum to the product of two copies of the linear responses of the first-order self-

exciting process N1(t) (compare subgraphs on the top branch of the diagrams in Fig 5a with

Linking structure and activity in nonlinear spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005583 June 23, 2017 13 / 47

https://doi.org/10.1371/journal.pcbi.1005583


Fig 4a). Similarly, the sum of the legs coming into the branching vertex is the firing rate of

N1(t) (compare to Fig 4b). So, we will group the terms on the legs of the graph into contribu-

tions to the linear response and the mean (Fig 5b middle).

When we add the diagrams of up to order n together, we can separately re-sum each of

these expansions because of the distributivity of the expectation. So, we can replace the entire

series to all orders in � with simpler diagrams using the full representations for the linear

response and expected rate (Fig 5b). This can be proved inductively, or by rigorously deriving

the Feynman rules from the cumulant generating functional (Methods: Path integral represen-

tation). This yields the following result for the second cumulant, which corresponds to the

final graph at the bottom far right of Fig 5b:

dN
dt
ðtÞ

dN
dt
ðt0Þ

� �

c

¼

Z 1

t0

ds Dðt � sÞDðt0 � sÞ�rðsÞ ð30Þ

This is the complete analytic result for the second cumulant of the self-exciting process for

fluctuations around the mean field solution �rðtÞ [19]. It can be represented by the single term

on the right-hand side of Eq 30 and the corresponding single diagram (Fig 5b, right). Compare

this with the filtered Poisson process, which has a diagram of the same topology but with dif-

ferent constituent factors (Fig 3C, middle row). The Feynman diagrams capture the form of

Fig 5. Diagrammatic expansion for the second cumulant for the self-exciting process. A) First-order approximation of the

second cumulant. B) Re-summing to obtain the full second cumulant. Compare the expansions within the square brackets

adjacent to external vertices to the expansion of the propagator, Fig 4c, and compare the expansion of the source term to that of

the mean field rate, Fig 4b.

https://doi.org/10.1371/journal.pcbi.1005583.g005
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the re-summed perturbative expansions for the cumulants, while the definitions of the vertices

and edges capture the model-specific rate, �rðtÞ, and propagator, Δ(t, t0).
One might think that the higher cumulants are generated as simply by replacing each leg of

the filtered inhomogeneous Poisson process with the correct propagator, along with the rate

�rðtÞ. This would mean that the general cumulant term would be given by:

Y

i

dN
dt
ðtiÞ

* +

c

¼
R1
t0
dt �rðtÞ

Y

i

Dðti; tÞ: ð31Þ

This is incorrect, as many important terms arising from the self-interaction would be lost.

The reason this naive generalization fails is that it neglects the higher-order responses to

perturbations in the event rate. For example, the second cumulant responds to perturbations

in the rate; this quadratic response impacts the third cumulant. We can see this in the third

cumulant of the first-order self-exciting process:

dN1

dt
ðtÞ

dN1

dt
ðt0Þ

dN1

dt
ðt00Þ

� �

c

¼
dN0

dt
ðtÞ þ

dM0

dt
ðtÞ

� �
dN0

dt
ðt0Þ þ

dM0

dt
ðt0Þ

� �
dN0

dt
ðt000Þ þ

dM0

dt
ðt000Þ

� �� �

c

¼
R1
t0
ds dðt � sÞdðt0 � sÞdðt00 � sÞlðsÞ

þ �
R1
t0
ds dðt � sÞdðt0 � sÞðg � dÞðt00 � sÞlðsÞ þ ðt $ t0 $ t00Þ

þ �
R1
t0
ds dðt � sÞdðt0 � sÞdðt00 � sÞ g �

R1
t0
ds0 dðs � s0Þlðs0Þ

� �
ðsÞ

þ �
R1
t0
ds0 dðt00 � s0Þ

R1
t0
ds dðt � sÞdðt0 � sÞðg � dÞðs � s0Þlðs0Þ þ ðt $ t0 $ t00Þ:

ð32Þ

The first term is the third cumulant of the inhomogeneous Poisson process. The second

and third are generalizations of the terms found in the second cumulant (we have used

(t$ t0 $ t0 0) to denote “all other permutations of t, t0, t00”). These terms are part of the naive

expression in Eq 31. The last term is the novel one that arises due to the “quadratic response.”

It appears when we compute

dN0

dt
ðtÞ

dM0

dt
ðt0Þ

dM0

dt
ðt00Þ

� �

c

¼ �

Z 1

t0

ds dðt0 � sÞdðt00 � sÞ
dN0

dt
ðtÞ g �

dN0

dt

� �

ðsÞ
� �

c

ð33Þ

We have to take into account that the process
dN0

dt ðtÞ is correlated with the rate of the process
dM0

dt ðtÞ (since one is a linear function of the other!). This produces a “cascade” effect that results

in the quadratic response. For the first-order process, only one step in the cascade is allowed.

By introducing branching internal vertices similar to those in Fig 5, we can express these some-

what unwieldy terms with diagrams. These are shown in Fig 6. The cascade of one source

spike producing three spikes in the first-order process is represented by the second diagram of

Fig 6a and the cascade of one source spike producing two spikes, one of which then produces

another two spikes in the first-order process, is represented by the last diagram of Fig 6a.

As before, continuing to higher orders in the recursively self-exciting process would add

diagrams with additional filter edges along the legs of the graphs in Fig 6a, corresponding to

additional steps in the potential cascades of induced spikes. For example, the third cumulant

of the second-order process, h
dN2

dt ðtÞ
dN2

dt ðt
0Þ

dN2

dt ðt
00Þic, would add diagrams with two filter edges

to those of Fig 6a, with those two filter edges appearing either sequentially on the same leg of

the graph or distributed among the legs of the graph. We can then use the same ideas that

allowed us to re-sum the graphs representing the second cumulant. As before, we identify the

expansions of the mean-field rate, �r , and the linear response, Δ, along individual legs of the
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graph and use the multilinearity of cumulants to resum those expansions to give the diagrams

at the bottom of Fig 6.

Considering the re-summed graphs, we have the following result for the third cumulant:

dN1

dt
ðtÞ

dN1

dt
ðt0Þ

dN1

dt
ðt00Þ

� �

c

¼
R1
t0
ds Dðt; sÞDðt0; sÞDðt00; sÞ�rðsÞ

þ
R1
t0
ds0Dðt00; s0Þ

R1
t0
ds Dðt; sÞDðt0; sÞðg � DÞðs; s0Þ�rðs0Þ

þ ðt $ t0 $ t00Þ

ð34Þ

The types of diagram developed for up to the third cumulant encompass all the features

that occur in the diagrammatic computations of cumulants of linearly self-exciting processes.

The general rules for diagrammatically computing cumulants of this process are given in Fig 7.

They are derived in general in Methods: Path integral representation. The graphs generated

with this algorithm correspond to the re-summed diagrams we computed above.

For the nth cumulant, h
Q

i
dN
dt ðtiÞic, begin with n white external vertices labelled ti for each i.

Construct all fully connected, directed graphs with the vertex and edge elements shown in

Fig 7. For each such fully connected directed graph constructed with the component vertices

and edges, the associated mathematical term is constructed by taking the product of each asso-

ciated factor, then integrating over the time points of internal vertices. The nth cumulant is the

sum of these terms. This produces cumulants of up to third order, as recently shown by Jova-

nović, Hertz & Rotter [38], as well as cumulants of any order. As we show next, this procedure

can also be generalized to calculate cumulants in the presence of a nonlinearity, including both

Fig 6. Diagrams corresponding to third order cumulants. A) Diagrams corresponding to the third cumulant of the first-order self-

exciting process. B) Diagrams corresponding to the third cumulant of the self-exciting process, after resumming the perturbative

expansion. Nodes and edges correspond to the same terms as in Fig 5.

https://doi.org/10.1371/journal.pcbi.1005583.g006
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thresholds enforcing positive activity (as commonly disregarded in studies of the Hawkes pro-

cess) and any nonlinear input-rate transfer function.

Nonlinearities impose bidirectional coupling between different orders of

activity: Nonlinearly self-exciting process

Now we include a nonlinearity in the firing rate, so that the process produces events dN/dt
with a rate given by

rðtÞ ¼ � g �
dN
dt

� �

ðtÞ þ lðtÞ
� �

ð35Þ

We begin by considering the mean-field solution �r , which, if it exists, is self-consistently given

by �rðtÞ ¼ �ððg � �rÞðtÞ þ lðtÞÞ. Thus, as always the mean-field solution is given by neglecting

second and higher-order cumulants of the spiking process. Next, we consider the propagator,

which as above is the linear response of the rate around the mean field, given by expanding

Eq 35 around the mean-field solution �rðtÞ and examining the gain with respect to a perturba-

tion of the rate. This propagator obeys:

Dðt; t0Þ ¼ �ð1Þ � ððg � DÞðt; t0ÞÞ þ dðt � t0Þ ð36Þ

Fig 7. Feynman rules for the self exciting process. These rules provide an algorithm for computing the

expansion of the cumulants around the mean field solution �rðtÞ. The dots between the legs of the first two

vertices indicate that there are such vertices with any number of outgoing legs greater than or equal to two.

https://doi.org/10.1371/journal.pcbi.1005583.g007
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where ϕ(1) is the first derivative of ϕ with respect to the input, evaluated at g � �r þ l. We will

first develop a recursive formulation of the mean-field rate and propagator, which will be

required for calculating cumulants of the full process. For an arbitrary nonlinearity ϕ, we

would begin by Taylor expanding around 0. For simplicity, we here consider a quadratic ϕ so

that:

rðtÞ ¼ lðtÞ þ �1 g �
dN
dt

� �

ðtÞ þ lðtÞ
� �

þ �2 g �
dN
dt

� �

ðtÞ þ lðtÞ
� �2

: ð37Þ

We now develop the point process dN/dt recursively at each order of the nonlinearity:

dNm;n

dt
ðtÞ ¼

dN0;0

dt
ðtÞ þ

dMm� 1;n

dt
ðtÞ þ

dPm;n� 1

dt
ðtÞ ð38Þ

where Mm,n is an inhomogeneous Poisson process with rate �1 g � dNm;n
dt

� �
ðtÞ and Pm,n is an

inhomogeneous Poisson process with rate �2 g � dNm;n
dt

� �2

ðtÞ and N0,0(t) is an inhomogeneous

Poisson process with rate λ(t). To generate a set of events in N at order m in the linear term of

ϕ and order n in the quadratic term of ϕ, we take events at each previous order, (m − 1, n) and

(m, n − 1) and use those to develop Mm−1,n(t) and Pm,n−1(t). These, together with N0,0(t), give
dNm;n
dt ðtÞ. In contrast to the linear self-exciting process, the quadratic process here is recursively

defined on a lattice.

Similar to the case of the linearly self-exciting process, we can use this recursive definition

to develop an expansion for the mean-field rate and propagator in powers of �1 and �2. When

we calculate higher-order cumulants, we will identify the expansions of the mean-field firing

rate and propagator which will allow us to use them to simplify the resulting diagrams. The

mean-field rate to finite order in m, n is once again given by neglecting second and higher-

order cumulants of Nn,m, which allows us to take an expectation inside the quadratic term of

Eq 38. Taking the expectation of both sides of this equation in the mean field approach then

yields:

�rm;nðtÞ ¼ lðtÞ þ �1ðg � �rm� 1;nÞðtÞ þ �2ðg � �rm;n� 1Þ
2
ðtÞ: ð39Þ

For example,

�r1;1 ¼ lðtÞ þ �1ðg � �r0;1ÞðtÞ þ �2ðg � �r1;0Þ
2
ðtÞ ð40Þ

where

�r1;0ðtÞ ¼ lðtÞ þ �1ðg � lÞðtÞ ð41Þ

�r0;1ðtÞ ¼ lðtÞ þ �2ðg � lÞ
2
ðtÞ: ð42Þ

Similarly, the propagator (for the dynamics of the recursive process, linearized around

zero) is, to finite order in m, n:

Dm;nðt; t
0Þ ¼ dðt � t0Þ þ �1ðg � Dm� 1;nÞðt; t

0Þ þ 2�2 ðg � �rm;n� 1ÞðtÞðg � Dm;n� 1Þðt; t
0Þ: ð43Þ

To zeroth order in �2, this yields an expansion of the mean-field rate �rðtÞ, which takes the

same form as the expansion of the rate of the linearly self-exciting process (Eq 13) and admits

the same graphical representation (Fig 4b). Similarly, a perturbative expansion of the linear
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response about the mean-field rate to zeroth order in �2 takes the same form as for the linearly

self-exciting process (Eq 28) and admits the same graphical representation (Fig 4c).

To account for the nonlinear terms arising at first order and greater in �2, we will need to

add another type of internal vertex in diagrammatic descriptions of the cumulants. These ver-

tices, carrying factors of �2, will have two incoming edges and any number of outgoing edges.

Each incoming edge carries the operator g� and the number of incoming edges corresponds to

the order in the Taylor expansion of the nonlinearity. (It also corresponds to the order of

cumulant influencing that vertex’s activity. The number of outgoing edges corresponds to the

order of cumulant being influenced, locally in that subgraph.) The factor of �rðtÞ that appears

in other vertices is modified to be consistent with the mean firing rate under the quadratic

nonlinearity, and will thus obey Eq 35 above.

The mean-field rate and propagator, to first order and greater in �2, can be represented dia-

grammatically using the new vertex (e.g., Fig 8a and 8b). Notice that these directed graphs are

treelike, but with their leaves in the past. Repeating these calculations to the next order in �2

can be accomplished by taking the basic structure of Fig 8 and, along each leg entering the new

vertex for �2, inserting the previous-order graphs (Figs 4a and 8a). Including higher-order

terms in �1 would require inserting those graphs along the �-carrying vertices of Fig 4a.

In addition to expanding the mean field rate and propagator, we can use Eq 38 to calculate

cumulants of dN
dt to finite order in �1 and �2. The first nonlinear correction to the firing rate

appears at first order in �2:

dN0;1

dt
ðtÞ

� �

c

¼ lðtÞ þ �2 g �
dN0;0

dt

� �2

ðtÞ

* +

c

ð44Þ

which can be represented diagrammatically using the new vertex (Fig 9a). Notice that in con-

trast to the corresponding graph for the mean field expansion (Fig 8a), this diagram has a

“loop” (a cycle were it an undirected graph). This reflects the dependence of the rate on the

second cumulant of the baseline process N0,0. This dependence of the firing rate on higher-

order spiking cumulants is a fundamental feature of nonlinearities.

Fig 8. Expansion of the mean firing rate and propagator for the nonlinearly self-exciting process. A)

One of the first nonlinear terms of the expansion of the mean-field firing rate, to first order in the quadratic term

of the nonlinearity and zeroth order in the linear term. The two diagrams shown correspond to the two terms in

Eq 42. B) First nonlinear terms of the expansion of the propagator around the mean-field firing rate.

https://doi.org/10.1371/journal.pcbi.1005583.g008
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Proceeding beyond the first order in both �1 and �2, we see that the expansion of each term

of the nonlinearity depends on the other:

dN1;1ðtÞ
dt

� �

c

¼ lðtÞ þ �1g �
dN0;1

dt
ðtÞ

� �

c

þ �2 g �
dN1;0

dt

� �2

ðtÞ

* +

c

ð45Þ

so that at each order in �2 we must insert the solution at the previous order in �2 and the same

order in �1 (and vice versa). This recursive mixing of expansions between the linear and non-

linear terms of ϕ seems intractable. However, this joint expansion can be re-summed; for a

more formal derivation, see Methods: Path integral representation. For the linear model, this

re-summing left us with simple expressions for the firing rate and propagator. For the nonlin-

ear model, re-summing leaves us with a new expansion organized by the number of loops

appearing the Feynman diagrams, so it is called a loop expansion. The Feynman rules for the

re-summed diagrams of the nonlinearly self-exciting process are given in Fig 10. For a qua-

dratic nonlinearity, these rules allow us to write the one-loop contribution to the firing rate

(Fig 9b):

r1ðtÞ ¼
Z t

t0

dt1

Z t

t0

dt2 Dðt; t1Þ
�
ð2Þ

2
ððg � DÞðt1; t2ÞÞ

2
�rðt2Þ ð46Þ

Fig 9. Corrections to the mean-field firing rate and propagator of the nonlinearly self-exciting

process, to quadratic order in the nonlinearity ϕ. A) The correction to mean field theory for the firing rate to

first order in the quadratic term of ϕ. B) The full one-loop correction to the mean-field rate. C) The full one-loop

correction to the propagator.

https://doi.org/10.1371/journal.pcbi.1005583.g009
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where ϕ(2) is evaluated at ðg � �rÞðt1Þ þ lðt1Þ. These Feynman rules also allow us write down

the one-loop correction to the propagator (Fig 9c):

D1ðt; t
0Þ ¼

Z t

t0

dt1

Z t

t0

dt2 Dðt; t1Þ
�
ð2Þ

2
ððg � DÞðt1; t2ÞÞ

2
ðg � DÞðt2; t

0Þ: ð47Þ

The appearance of a loop in the Feynman diagram for the mean rate of the quadratically

self-exciting process is a general feature of nonlinearities. It represents the influence of higher-

order spike train cumulants on lower order ones. In order to measure that dependency, we

can count the number of loops in the graphs. To do this, we add a bookkeeping variable, h. We

count the number of loops by multiplying factors of h and 1/h. Each internal vertex adds a fac-

tor of 1/h and each outgoing edge a factor of h. In this way, every vertex with more than one

outgoing edge will contribute a factor of h for every edge beyond the first. h thus effectively

counts the order of fluctuations contributed by the vertex. For example, the mean for the linear

self-exciting process has a graph with a single internal vertex and a single internal edge, so it is

zeroth order in h (Fig 4b). The two-point function, however, having two edges and one

Fig 10. Feynman rules for the nonlinearly self exciting process. These rules provide an algorithm for

computing the expansion of the cumulants around the mean field solution �rðtÞ. The dots between the outgoing

legs of the first vertex indicate that there any number of outgoing legs greater than or equal to two. The

number b of incoming edges of the second vertex correspond to its factor containing the bth derivative of ϕ,

evaluated at the mean field input. The a dots between the outgoing edges of the second vertex indicate that it

can have any number of outgoing edges such that a + b� 3.

https://doi.org/10.1371/journal.pcbi.1005583.g010
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internal vertex (Fig 5b), is first order in h. Similarly, the tree-level diagrams will always contrib-

ute a total of hn−1, where n is the order of the cumulant.

In terms of powers of h, a graph for a nth order cumulant with one loop will be equivalent

to a graph for a n + 1st order cumulant with one less loop. Consider cutting one of the lines

that form the loop in Fig 9b at the internal vertex and leaving it hanging. Now the graph for

the one-loop correction to the mean rate appears to be a graph for a second cumulant–it has

two endpoints. The power counting in terms of h, however, has not changed. The one-loop

correction to the mean is of the same order in h as the tree-level second cumulant. In general,

we will have that the order hm will be given by

m ¼ nþ l � 1 ð48Þ

where n is the number of external vertices and l is the number of internal loops. The number

of loops thus tracks the successive contributions of the higher order fluctuations. This expan-

sion is called the “loop” expansion and is equivalent to a small-fluctuation expansion. If one

can control the size of the fluctuations, one can truncate the loop expansion as an approxima-

tion for the statistics of the system. One way of doing this with networks is to insure that the

interactions are Oð1=NÞ so that h/ 1/N and the expansion becomes a system size expansion.

The Taylor expansion of an arbitrary nonlinearity ϕ could have infinitely many terms. This

would lead, in the recursive formulation, to infinitely many processes {M, P, . . .}. Even after

re-summing the recursive formulation, this would leave an infinite number of diagrams corre-

sponding to any given cumulant. There are two ways to approach this. The first is to insist on a

perturbative expansion in the nonlinear terms, e.g., only consider terms up to a fixed order in

the Taylor expansion of the nonlinearity ϕ.

The second approach to controlling the order of the loop expansion is to consider a regime

in which mean field theory is stable as this will also control the fluctuations, limiting the mag-

nitude of the loop contributions [39]. We expect that the bookkeeping variable h could be

related to the largest eigenvalue of the tree-level propagator, λ1, so that m-loop corrections

would scale as l
m
1

. The expansion then breaks down in the regime of a bifurcation or “critical

point.” In this case, the spectrum of the linear response diverges, causing all loop diagrams to

similarly diverge. This is a fluctuation-dominated regime in which mean field theory, along

with the fluctuation expansion around it, fails. In that case, renormalization arguments can

allow discussion of the scaling behavior of correlations [40].

Interaction between single-neuron nonlinearities and network structure

No new concepts are required in moving from a nonlinear self-exciting process to a network

of interacting units. Each external and internal vertex must now be associated with a unique

neuron index i and the integrations over time for the internal vertices must now be accompa-

nied by summations over the indices of the internal vertices. In addition, the filter g(τ) must be

expanded to include coupling across units. In general, this is given by gij(τ) for the coupling

from neuron j to neuron i. We will consider the general model of a network of units that gen-

erate conditionally Poisson-distributed events, given an input variable. The conditional rate

for unit i is given by

riðtÞ ¼ �i

X

j

gij �
dNj

dt

� �

ðtÞ þ liðtÞ

 !

: ð49Þ
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Similarly, the propagator now obeys

Dijðt; t
0Þ ¼ �

ð1Þ

i �
X

k

ðgik � DkjÞðt; t
0Þ

 !

þ dijdðt � t0Þ: ð50Þ

These dynamics are qualitatively the same as those of the nonlinearly self-exciting process

(Eq 35 but replace the neuron’s own rate with the sum over its presynaptic inputs). Introduc-

ing these sums over neuron indices yields the complete set of rules for generating Feynman

diagrams for the cumulants of this model (Fig 11).

Mid-course summary: Diagrammatic expansion reveals interplay of network structure

and neural nonlinearities in driving neural activity. To summarize, we now have in hand a

set of tools—a fluctuation expansion—to compute spike train cumulants of arbitrary order in

networks of linear-nonlinear-Poisson neurons. This expansion provides a systematic way to

account for the synergistic dependence of lower-order activity on higher-order activity

through the spiking nonlinearity and naturally incorporates the full microstructure of the

Fig 11. Feynman rules for networks of stochastically spiking neurons with nonlinear input-rate

transfer ϕ. These rules provide an algorithm for computing the expansion of the cumulants around the mean

field solution �rðtÞ. The dots between the outgoing legs of the first vertex indicate that there are any number of

outgoing legs greater than or equal to two. The number b of incoming edges of the second vertex correspond

to its factor containing the bth derivative of ϕ, evaluated at the mean field input. The a dots between the

outgoing edges of the second vertex indicate that it can have any number of outgoing edges such that

a + b� 3.

https://doi.org/10.1371/journal.pcbi.1005583.g011
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neuronal network. The order of the nonlinearity (for non-polynomials, the order of its Taylor

expansion) determines the single-neuron transfer gain (Fig 12 left). It also determines how

activity propagates through the network (Fig 12).

We next provide an example of using this fluctuation expansion to compute a cumulant of

spiking activity: the first nonlinear correction to the second cumulant. We will compute these

using the Feynman rules (Fig 11) to construct the corresponding diagrams, from which we

will write the corresponding equation.

We begin by placing external vertices corresponding to the measurement times, each with

one propagator edge coming into it. For the two-point cumulant there are two external vertices

(Fig 13a). The propagators coming into those external vertices can, according to the Feynman

rules, arise from either a source vertex or from an internal vertex with incoming filter edges

(Fig 11). If both propagators arise from a source vertex, we arrive at the tree-level diagram of

Fig 5b, which provides the linear prediction for the two-point cumulant. To obtain the first

nonlinear correction, we will begin by adding an internal vertex. There are two ways we can

do this: with one internal vertex providing the propagators for both external vertices or with

the internal vertex providing the propagator of just one external vertex (Fig 13b, top and bot-

tom respectively).

Fig 12. Fluctuation expansion links single-neuron nonlinearities and network structure to determine network activity. The linear response for

linear neurons depends on the network structure both explicitly and implicitly, through the mean-field rates. The first nonlinear correction brings in

additional explicit and implicit dependencies on the connectivity.

https://doi.org/10.1371/journal.pcbi.1005583.g012
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We next proceed to add another layer of vertices. The internal vertices added in each dia-

gram of Fig 13b have incoming propagator edges. Those edges could emanate from other

internal vertices or from source verticies. We will start by finishing the diagrams where they

emanate from source vertices; placing these yields the top two, final diagrams of Fig 13c.

We then continue constructing the diagram with an internal vertex providing the two propa-

gators (Fig 13c, bottom). Note that if we added an internal vertex to the propagator hitting the

t2 external vertex, it would require at least two incoming filter edges (in order to obey a +

b� 3 per the rules of Fig 11), which would give rise to a second loop in the graph.

This last diagram has a hanging filter edge, which must arise from an internal vertex with

one incoming propagator edge. We finish the diagram with that internal vertex and the source

vertex providing its propagator (Fig 13d). We could not add additional internal vertices along

that path, since they would either violate n + m� 3 or give rise to more than one loop in the

diagram (and thus belong at a higher order in the loop expansion).

Following the rules of Fig 11 while restricting ourselves to graphs with a certain number

of loops (here one) thus allowed us to construct the diagrams corresponding to the first

Fig 13. Construction of Feynman diagrams for the first nonlinear correction to the two-point cumulant (graphs containing one

loop). In each panel, we add a new layer of vertices to the diagrams, until we arrive at a source vertex. When there are multiple potential

ways to add vertices, we add diagrams to account for each of those constructions. A) External vertices corresponding to the two

measurement times, with incoming propagator (Δ) edges. B) Diagrams with one internal vertex added. t1$ t2 corresponds to switching

the two external vertices in the bottom diagram; the top diagram is symmetric with respect to that switch. C) Diagrams with two layers of

vertices. The top diagram finishes that of B, top. The second two arise from the second diagram of B, and each also have copies with t1$

t2. D) Last diagrams containing one loop. The final diagrams corresponding to the one-loop correction to the second cumulant are the top

two of C) and that of D).

https://doi.org/10.1371/journal.pcbi.1005583.g013
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nonlinear correction to the two-point cumulant. We next write the equation corresponding to

these diagrams. For each of the complete diagrams, we begin at the external vertices and, pro-

ceeding from left to right in the graph, multiply the factors corresponding to each edge and

vertex together. We finish by summing over indices for all internal vertices and integrating

over all internal time points. The contributions from each diagram are then added together.

This yields:

dNi

dt
ðt1Þ

dNj

dt
ðt2Þ

� �

c;1

¼
X

k;l;m;n

Z

dt0
Z

dt00Dikðt1; t
0ÞDjkðt2; t

0Þ
�
ð2Þ

k

2
ðgkl � DlnÞðt

0; t00Þðgkm � DmnÞðt
0; t00Þ�rnðt

00Þ

þ
X

k;l;m;n

Z

dt0
Z

dt00Dikðt1; t
0Þ
�
ð2Þ

k

2
ðgkl � DlnÞðt

0; t00Þðgkm � DmnÞðt
0; t00ÞDjnðt2; t

00Þ�rnðt
00Þ

þ
X

k;l;m;n

Z

dt0
Z

dt00Dikðt2; t
0Þ
�
ð2Þ

k

2
ðgkl � DlnÞðt

0; t00Þðgkm � DmnÞðt
0; t00ÞDjnðt1; t

00Þ�rnðt
00Þ

þ
X

k;l;m;n;o;p

Z

dt0
Z

dt00
Z

dt000 ½Dikðt1; t
0Þ
�
ð2Þ

k

2
ðgkl � DlnÞðt

0; t00Þðgkm � DmnÞðt
0; t00Þ

� �
ð1Þ
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ðgkl � DlnÞðt

0; t00Þðgkm � DmnÞðt
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ð1Þ

n ðgno � DopÞðt
00; t000ÞDjpðt1; t

000Þ�rpðt
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ð51Þ

Demonstrating the interplay between single-neuron transfer,

connectivity structure and network dynamics

Our methods predict how spike time statistics of all orders emerge from the interplay of

single-neuron input-output properties and the structure of network connectivity. Here we

demonstrate how these methods can be used to predict key phenomena in recurrent spiking

networks: the fluctuations and stability of population activity. First, we isolate the contribu-

tions of nonlinearities in single-neuron dynamics to network activity and coding as a whole.

We do so by computing “one-loop” correction terms; these correspond to the first structures

in our diagrammatic expansion that arise from nonlinear neural transfer. The one-loop correc-

tions provide for the dependence of nth order spiking cumulants on n + 1st order cumulants.

Predictions that would be made by linearizing neural dynamics, as in classic approaches for

predicting pairwise correlations [19, 22, 41] and recent ones for higher-order correlations [38],

are described as “tree-level.” We show how these one-loop corrections, which give new,

explicit links between network structure and dynamics (Fig 12), predict spiking statistics and

stability in recurrent networks.

1. Recurrent spike-train correlations drive firing statistics and stability in

nonlinear networks

In our analysis of the impact of nonlinear neural transfer on network dynamics, a principal

finding was that spike correlations could affect firing rates, as described by the one-loop cor-

rection to the mean-field firing rates. In this section we illustrate the importance of this effect

in a class of networks under intensive study in neuroscience: randomly connected networks

of excitatory and inhibitory cells. We began with a network for which we expect classical
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theoretical tools to work well, taking the neurons to have threshold-linear transfer functions

ϕ(x) = αbxc. Here, as long as the neurons do not receive input fluctuations that push their rates

below this threshold, the tree-level’ theory that takes transfer to be entirely linear should work

well. We then move on to consider nonlinear effects.

As in our original motivational example, we took network connectivity to be totally random

(Erdös-Rényi), with pEE = 0.2 and pEI = pIE = pII = 0.5. The magnitude of all connections of a

given type (E − E, etc.) was taken to be the same and the time course of all network interactions

was governed by the same filter gðtÞ ¼ t
t2 exp ð� t=tÞ (with τ = 10 ms), so that gij(t) = Wij g(t).

(The matrix W contains synaptic weights.) The net inhibitory input weight on to a neuron

was, on average, twice that of the net excitatory input weight.

We examined the spiking dynamics as the strength of synaptic weights proportionally

increased (Fig 14a) and studied network activity with using both theory and direct simulation.

Due to the high relative strength of inhibitory synapses in the network, firing rates decreased

with synaptic weight (Fig 14d). The magnitude of spike train covariances (reflected by the

Fig 14. Dynamics approaching the firing-rate instability in threshold-linear networks. A) Threshold-

linear input-rate transfer function. B,C) Raster plots of 1 second realizations of activity for weak and

strong synaptic weights. Neurons 0–199 are excitatory and 200–240 are inhibitory. B) (WEE, WEI, WIE, WII) =

(.025, −.1, .01, −.1) mV. C) (WEE, WEI, WIE, WII) = (.2, −.8, .08, −0.8) mV. D-F) Average firing rate of the

excitatory neurons (D), integral of the auto-covariance function of the summed population spike train (E), and

spectral radius of the stability matrix of mean field theory (F) vs. excitatory-excitatory synaptic weight. While

excitatory-excitatory weight is plotted on the horizontal axis, all other synaptic weights increase proportionally

with it. Black lines: tree-level theory: mean-field firing rates and covariance computed by linearizing dynamics

around it, for each value of synaptic weights. Dots: simulation.

https://doi.org/10.1371/journal.pcbi.1005583.g014
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integrated autocovariance of the summed excitatory population spike train) increased (Fig

14e). These changes were also visible in raster plots of the network’s activity (Fig 14b and 14c).

At a critical value of the synaptic weights, the mean field theory for the firing rates loses sta-

bility (Fig 14f). The location of this critical point is predicted by the linear stability of the

dynamics around the mean-field rate; the spectrum of the propagator Δ(ω) = (I − ϕ(1) g(ω))−1

diverges when the spectral radius of ϕ(1) g is�1. (This is also the point where the spectral

radius of the inverse propagator crosses zero.) Until that critical point, however, the tree-level

predictions for both firing rates and spike train covariances (i.e., mean field theory and linear

response theory) provided accurate predictions (Fig 14d and 14e).

We next give a simple example of how nonlinearities in neural transfer cause this standard

tree-level theory (mean-field formulas for rates and linear response theory for covariances) to

fail–and how tractable one-loop corrections from our theory give a much-improved descrip-

tion of network dynamics. We take the same network as above, but replace neurons’ thresh-

old-linear transfer functions with a rectified power law ϕ(x) = αbxcp (Fig 15a). This has been

suggested as a good description of neural transfer near threshold [42–46]. For simplicity, we

take the power law to be quadratic (p = 2). As we increased synaptic weights, the tree-level the-

ory qualitatively failed to predict the magnitude of spike train covariances and firing rates

(Fig 15d and 15e black curve vs. dots). This occurred well before the mean-field firing rates

lost stability (Fig 15f, black).

Higher-order terms of the loop expansion described above (Nonlinearities impose bidirec-

tional coupling between different orders of activity) provide corrections to mean field theory

for both firing rates and spike train correlations. These corrections represent coupling of

higher-order spike train cumulants to lower order cumulants. In the presence of an input-rate

nonlinearity, for example, synchronous (correlated) presynaptic spike trains will more effec-

tively drive postsynaptic activity [7, 47]. This effect is described by the one-loop correction to

the firing rates (Fig 9).

The one-loop correction for the mean field rate of neuron i in a network is given by the

same diagram as the one-loop correction for the nonlinearly self-exciting process, Fig 9, but

interpreted using the network Feynman rules (Fig 11). This yields:

ri;1 ¼
Z t

t0

dt1

Z t

t0

dt2
X

j;k

Dijðt; t1Þ
1

2
�
ð2Þ

j

X

l

gjl � Dlkðt1; t2Þ

 !2

�rkðt2Þ ð52Þ

where t0 is the initial time. This correction was, on average, positive (Fig 15d for excitatory

neurons; also true for inhibitory neurons). Similarly to firing rates, the loop expansion pro-

vides corrections to higher-order spike train cumulants. The one-loop correction to the

spike train covariances (Eq 51, derived in Fig 13) accounts for the impact of triplet correla-

tions (third joint spike train cumulants) on pairwise correlations and provided an improved

prediction of the variance of the population spike train as synaptic weights increased

(Fig 15e).

Since the one-loop correction to the firing rates could be large, we also asked whether it

could impact the stability of the firing rates–that is, whether pairwise correlations could,

through their influence on firing rates through the nonlinear transfer function, induce an

instability. This is a question of when the eigenvalues of the propagator diverge—or equiva-

lently, when the eigenvalues of the inverse propagator cross zero. The one-loop correction to

the inverse propagator is given by the “proper vertex” obtained by amputating the outside

propagator edges of the one-loop correction to the propagator; or equivalently, calculated

from the Legendre transform of the cumulant-generating functional [39]. We can heuristically

derive the one-loop stability correction as follows.
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The full propagator, Δ, obeys the expansion

Δ ¼ �Δ þ Δ1 þ Δ2 þ . . . ð53Þ

where �Δ is the tree-level propagator, Δ1 is the one-loop correction, two-loop corrections are

collected in Δ2, and so on (Fig 16a). Notice from the diagram (Fig 16a, second diagram on the

right-hand side) that the one-loop correction to the propagator begins and ends with the tree-

level propagator, �Δ. We will label the bubble in the middle of the diagram Γ1. The first two-

loop correction is a chain of loops (Fig 16a), and so can also be factored as �ΔΓ1
�ΔΓ1

�Δ. We can

represent this factorization diagrammatically by pulling out the tree-level propagator and the

loop Γ1 (Fig 16b). Just as at two-loop order we were able to factor out a factor �ΔΓ1 and obtain

the expansion of the propagator to one loop, continuing to higher-orders in the loop

Fig 15. Correlation-driven instability in nonlinear networks. A) Threshold-quadratic input-rate transfer

function. B,C) Raster plots of 6 second realizations of activity for weak and strong synaptic weights. Neurons

0–199 are excitatory and 200–240 are inhibitory. B) (WEE, WEI, WIE, WII) = (.025, −.1, .01, −.1) mV. C) (WEE,

WEI, WIE, WII) = (1.5, −6, .6, −6) mV. D-F) Average firing rate of the excitatory neurons (D), integral of the

auto-covariance function of the summed population spike train (E), and spectral radius of the stability matrix of

mean field theory (F) vs. excitatory-excitatory synaptic weight. While excitatory-excitatory weight is plotted on

the horizontal axis, all other synaptic weights increase proportionally with it. Black line: tree-level theory. Red

line: one-loop correction accounting for impact of the next order (pairwise correlations’ influence on mean and

triplet correlations’ influence on pairwise). Dots: simulation. All dots after the one-loop spectral radius crosses

1 represent results averaged over the time period before the activity diverges.

https://doi.org/10.1371/journal.pcbi.1005583.g015
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expansion of the full propagator would all the rest of the full propagator with factors of �ΔΓ1 in

front. The remaining terms would have factors starting with the two-loop correction, and so

forth.

Pulling out all terms of Eq 53 that begin with �ΔΓ1 and summing them allows us to write

(Fig 16b):

Δ ¼ �Δþ �ΔΓ1ΔþOð2 loopsÞ ð54Þ

We now truncate at one loop and operate on both sides with the inverse of the tree-level prop-

agator:

Γ0Δ � Γ0
�Δ þ Γ0

�ΔΓ1Δ ð55Þ

¼ Idþ Γ1Δ; ð56Þ

revealing that −Γ1 is the one-loop correction to the inverse propagator. From the Feynman

rules (Fig 11), that factor is:

Γjm;1 ¼

Z t

t0

dt1

Z t

t0

dt2
X

k

1

2
�
ð2Þ

j

X

l

gjl � Dlkðt1; t2Þ

 !2

�
ð1Þ

k gkm ð57Þ

Fig 16. Calculation of the one-loop stability correction. A) Loop expansion of the full propagator. B) Factorization of the loop and resumming

of the full propagator after that factorization.

https://doi.org/10.1371/journal.pcbi.1005583.g016
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where �
ð2Þ

j denotes the second derivative of the transfer function of neuron j, evaluated at its

mean-field input (and similar for �
ð1Þ

k ). The eigenvalues of this provide a correction to the sta-

bility analysis based on the tree-level propagator. This predicts that the firing rates should lose

stability significantly before the bifurcation of the mean field theory (Fig 15f, red vs. black).

Indeed, we saw in extended simulations that the spiking network could exhibit divergent activ-

ity even with synaptic weights that mean field theory predicted should be stable (Fig 1c). In

summary, mean field theory can mis-predict the bifurcation of the rate of spiking models since

it fails to capture the impact of correlations on firing rates through nonlinear transfer

functions.

2. Impact of connectivity structure on correlation-driven instabilities in

nonlinear networks

Recent work has shown that cortical networks are more structured than simple Erdős-Rényi

networks (e.g., [48–53]). One feature of cortical networks is a broad spread of neurons’ in- and

out-degree distributions (i.e., the distributions of the number of synaptic inputs that each neu-

ron receives or sends); another is broadly spread synaptic weights. These network properties,

in turn, can have a strong impact on population activity [54–58]. Here, we illustrate the link

between network structure and activity in the presence of nonlinear neural transfer. To gener-

ate structured networks, we began with the type of excitatory-inhibitory networks discussed in

the previous section, but took the excitatory-excitatory coupling to have both heavy-tailed

degree and weight distributions. Specifically, we took it to have truncated, correlated power

law in- and out-degree distributions (Methods: non-Erdős-Rényi network model). We then

took to the synaptic weights to be log-normally distributed [48, 59]. For simplicity, we took the

location and scale parameters of the weight distribution to be the same.

We then examined the network dynamics as the location and scale of the excitatory-

excitatory synaptic weights increased. For each mean weight, we sampled the excitatory-

excitatory weights from a lognormal distribution with that mean and variance. The excitatory-

inhibitory, inhibitory-excitatory and inhibitory-inhibitory weights remained delta-distributed.

Each such network specified a weight matrix W, which allowed the methods described previ-

ously for computing tree-level and one-loop rates, covariances and stability to be straightfor-

wardly applied. For strong and broadly distributed synaptic weights (Fig 17b), the network

exhibited a similar correlation-induced instability as observed in the Erdős-Rényi network

(Fig 17c) even though mean field theory predicted that the firing rates should be stable

(Fig 17f, black vs. red curves). As synaptic weights increased from zero, the mean field theory

for firing rates provided a misprediction (Fig 17d, black line vs. dots) and the linear response

prediction for the variance of the population spike train also broke down (Fig 17e, black line

vs. dots). The one-loop corrections, accounting for the impact of pairwise correlations on

mean rates and of triplet correlations on pairwise correlations, yielded improved predictions

(Fig 17d and 17e red lines) and a much more accurate prediction for when firing rates would

lose stability (Fig 17c and 17f). These effects were similar to those seen in Erdős-Rényi net-

works (Fig 15), but the transition of the firing rates occurred sooner, both for the mean field

(because of the effect of the weight and degree distributions on the eigenvalues of the weight

matrix) and one-loop theories (because of the impact of the correlations on the firing rates).

3. Exponential single-neuron nonlinearities

In the previous section, we investigated how a non-Erdős-Rènyi network structure could

amplify the one-loop corrections by increasing spike train correlations. We now examine a
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different single-neuron nonlinearity: ϕ(x) = αex, which is the canonical link function com-

monly used to fit GLM point process models to spiking data [26].

As before, we take the mean synaptic weight onto each neuron in the network to be 0. First,

we take excitatory and inhibitory neurons to have the same baseline drive, λE = λI = −1.5. As

we scale synaptic weights, we see that the one-loop correction is small compared to the tree-

level theory for the firing rates, population variances and stability analysis (Fig 18a–18c, red vs.

black lines). It nevertheless provides an improved correction for the variance of the excitatory

population spike train (Fig 18b, between 1.5 and 2 mV synaptic weights). The bifurcation of

the one-loop theory is close to the bifurcation of the mean field theory, and before that point

the mean field theory and one-loop corrections both lose accuracy (Fig 18a and 18b). This

makes sense: when the mean field theory fails, the only reason that the one-loop correction to

Fig 17. Correlation-driven instability in a non-Erdős-Rényi network with broadly distributed

excitatory-excitatory weights. A) Threshold-quadratic input-rate transfer function. B) Histogram of

excitatory-excitatory synaptic weights with location parameter of 1.42 (mean of.29 mV), corresponding to the

simulation in panel C. C) Raster plots of 6 second realizations of activity. Neurons 0–199 are excitatory and

200–240 are inhibitory. (WEE, WEI, WIE, WII) = (1.125, −4.5, .45, −4.5) mV. D-F) Average firing rate of the

excitatory neurons (D), integral of the auto-covariance function of the summed population spike train (E), and

spectral radius of the stability matrix of mean field theory (F) vs. excitatory-excitatory synaptic weight. While

the mean excitatory-excitatory weight is plotted on the horizontal axis, all other synaptic weights increase

proportionally with it. Black line: tree-level theory. Red line: one-loop correction. Dots: simulation. If a

simulation exhibits divergent activity, the spike train statistics are averaged over the transient time before that

divergence for visualization.

https://doi.org/10.1371/journal.pcbi.1005583.g017
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the rates would be accurate is if all third- and higher-order spike train cumulants were small.

Those higher-order correlations are not small near the instability.

Next, we broke the symmetry between excitatory and inhibitory neurons in the network by

giving inhibitory neurons a lower baseline drive (λI = −2.). This shifted the bifurcation of the

mean field theory and the one-loop correction to much higher synaptic weights (Fig 19c). For

intermediate synaptic weights, we saw that the one-loop correction provided a better match to

simulations than the tree-level theory (Fig 19a and 19b, between 1 and 1.5 mV synaptic

weights). For stronger synapses, however, the simulations diverged strongly from the tree-level

and one-loop predictions (Fig 19a and 19b, around 1.5 mV synaptic weights). In principle, we

could continue to calculate additional loop corrections in an attempt to control this phenome-

non. The exponential has arbitrary-order derivatives, however, preventing a perturbative

expansion of the nonlinear terms—suggesting a renormalization approach [39], which is

beyond the scope of this article. In sum, with an exponential transfer function, we saw that for

intermediate synaptic weights, the one-loop correction improved on the tree-level theory. For

strong enough synaptic weights, however, both failed to predict the simulations. How soon

before the mean-field bifurcation this failure occurred depended on the specific model.

Discussion

Joint spiking activity between groups of neurons can control population coding and controls

the evolution of network structure through plasticity. Theories for predicting the joint statistics

of activity in model networks have been locally linear so far. We present a systematic and dia-

grammatic fluctuation expansion (or, in reference to those diagrams, loop expansion) for

spike-train cumulants, which relies on a stochastic field theory for networks of stochastically

spiking neurons. It allows the computation of arbitrary order joint cumulant functions of

Fig 18. Stability of a network with exponential transfer functions. A) Mean firing rate of the excitatory

neurons. B) Integral of the auto-covariance function of the summed population spike train. C) Spectral radius

of the stability matrix of mean field theory, all (A-C) vs. excitatory-excitatory synaptic weight. While the mean

excitatory-excitatory weight is plotted on the horizontal axis, all other synaptic weights increase proportionally

with it. Black line: tree-level theory. Red line: one-loop correction. Dots: simulation. If a simulation exhibits

divergent activity, the spike train statistics are averaged over the transient time before that divergence for

visualization.

https://doi.org/10.1371/journal.pcbi.1005583.g018
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spiking activity and dynamical response functions, which provide a window into the linear sta-

bility of the activity, as well as nonlinear corrections to all of those quantities.

Using this expansion, we investigated how nonlinear transfer can affect firing rates and

fluctuations in population activity, imposing a dependence of rates on higher-order spiking

cumulants. This coupling could significantly limit how strong synaptic interactions could

become before firing rates lost stability.

Relationship to other theoretical methods

Dynamical mean field theory is a classic tool for analyzing the rate models with Gaussian-dis-

tributed synaptic weights, which reveals a transition to chaotic rate fluctuations with strong

connectivity [60]. This proceeds, briefly, by taking the limit of large networks and replacing

interactions through the quenched heterogeneity of the synaptic weights by an effective Gauss-

ian process mimicking their statistics. Recent extensions have incorporated a number of sim-

ple biological constraints, including non-zero firing rates [61–63] and certain forms of cell

type-specific connectivity [61, 64–66]. In this framework, spiking is usually only described in

the limit of slow synapses as additive noise in the rates, which can shift the transition to chaotic

rate fluctuations to higher coupling strengths and smooth the dynamics near the transition

[61, 67].

An alternative approach is to start from the bottom up: to posit an inherently stochastic

dynamics of single neurons and specify a finite-size network model, and from these derive a

set of equations for statistics of the activity [68, 69]. This approach provides a rigorous deriva-

tion of a finite-size rate model as the mean field theory of the underlying stochastic activity, as

well as the opportunity to calculate higher-order activity statistics for the activity of a particular

network [40, 70–72]. This is the approach taken here with the popular and biologically

Fig 19. Failure of one-loop corrections with exponential transfer functions. A) Mean firing rate of the

excitatory neurons. B) Integral of the auto-covariance function of the summed population spike train. C)

Spectral radius of the stability matrix of mean field theory, all (A-C) vs. excitatory-excitatory synaptic weight.

While the mean excitatory-excitatory weight is plotted on the horizontal axis, all other synaptic weights

increase proportionally with it. Black line: tree-level theory. Red line: one-loop correction. Dots: simulation. If a

simulation exhibits divergent activity, the spike train statistics are averaged over the transient time before that

divergence for visualization.

https://doi.org/10.1371/journal.pcbi.1005583.g019
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motivated class of linear-nonlinear-Poisson models. A similar approach underlies linear

response theory for computing spike train covariances [73], which corresponds to the tree

level of the loop expansion presented here. For integrate-and-fire neuron models receiving

Poisson inputs, Fokker-Planck theory for the membrane potential distributions can be used to

calculate the linear response function of an isolated neuron [74], which together with the syn-

aptic filter and weight matrix determines the propagator Δ.

Convergence and truncation of the loop expansion

The loop expansion is organized by the dependence of lower-order activity cumulants to

higher-order ones. The first-order (tree level) description of the nth activity cumulant does not

depend on higher-order cumulants. One-loop corrections correspond to dependence of the

order n cumulants on the tree-level n + 1-order cumulants, two-loop corrections correspond

to dependence of the order n cumulant on the tree-level n + 1 and n + 2 order cumulants and

so on. This coupling arises from the nonlinearity of the single-neuron transfer function ϕ
(Results: Nonlinearities impose bidirectional coupling between different orders of activity:

nonlinearly self-exciting process; Methods: Path integral representation). When the transfer

function is linear at the mean-field rates, the tree-level theory provides an accurate description

of activity (Fig 14). This corresponds to the second- and higher-order derivatives of the trans-

fer function ϕ with respect to the total input, evaluated at the mean-field rates, being zero.

When ϕ has non-zero second- or higher derivatives at the mean-field rates, higher orders of

the loop expansion can be important. The magnitude of n-loop corrections depends on two

things: the magnitude of the n + 1-order tree-level activity cumulants and the magnitude of

the n + 1st derivative of ϕ at the mean-field rates (i.e., the strength of the coupling to that

cumulant).

Recent work has shown that the the magnitude of spike train correlations depend on the

motif structure of the network (Fig 17; [41, 55, 56, 75]), as well as on the correlation structure

of the inputs it receives. For a particular model network of interest, the accuracy of a truncated

loop expansion can be evaluated empirically by comparing against simulations. Computing

higher-order loop corrections can quickly become unwieldy. The ratio of the n-loop correction

to a particular spike train cumulant to the n + 1 loop correction can provide an estimate (but

not a guarantee) of whether truncating at n loops is sufficient. If the loop contributions scale

with a small parameter such as the inverse system size, this provides a natural justification for

truncation. This can occur if the tree-level cumulants scale with 1/N, which happens if synaptic

weights scale as 1/N [23, 71], or (in the thermodynamic limit) if connections are strong but

sparse [76], or if strong, dense, balanced excitation and inhibition actively cancel correlations

[77]. Finally, if the system lies close to a bifurcation of the mean field theory so that the eigen-

values of the propagator diverge, then the mean field theory and this expansion around it can

also fail. In that case, renormalization arguments can allow the discussion of the scaling behav-

ior of correlations [40].

Dynamics and stability in spiking networks

Fluctuations in large spiking networks. Networks of excitatory and inhibitory neurons

with instantaneous synapses have been shown, depending on their connectivity strengths and

external drive, to exhibit a variety of dynamics, including the “classical” asynchronous state,

oscillatory population activity and strong, uncorrelated rate fluctuations [24, 78, 79]. The clas-

sical asynchronous state and oscillatory regimes exist in the presence of Poisson-like single-

neuron activity, either due to external white noise or to internally generated high-dimensional

chaotic fluctuations [77, 80]. Transitions between these modes correspond to bifurcations in
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which a given state loses stability. The present results allow one to compute these transition

points with greater accuracy, by explicitly computing correlations of arbitrary order and, cru-

cially, how these correlations “feed back” to impact firing rates and the stability of states with

different rates.

Inhibitory-stabilized and supralinear-stabilized networks. Beyond the overall stability

of network states, an important general question is how firing rates depend on inputs in recur-

rent neural networks. “Inhibitory-stabilized” networks can have surprising dependencies on

inputs, with rates trending in opposite directions from what one would at first expect [34].

Supra-linear input-rate transfer in inhibitory-stabilized networks can explain a variety of phys-

iological observations [81–83]. Our results are therefore useful in predicting how correlations

emerge and couple to firing rates in these networks. The impact of cell type-specific dynamics

on dynamics and coding remains to be fully elucidated [84].

A new potential impact of correlations on population coding. Many studies have exam-

ined the impact of “noise correlations” on population coding, examining the vector of neural

responses. If all responses are conditionally independent given the stimulus, the distribution of

responses to a particular stimulus is spherical. The discriminability of the responses to two sti-

muli corresponds to the area of overlap of those multi-neuron response distributions. To tree

level in the loop expansion of the population responses, correlations stretch that response dis-

tribution. These correlations can either improve or lower coding performance, depending on

how they relate to the stimulus-evoked responses [12, 16–18, 85]. In the presence of a nonlin-

ear transfer function, a further potential impact of correlations is to change neurons’ mean

activities (Fig 15. This corresponds to a translation of the multi-neuron response distributions

(Fig 20, bottom), which could, in principle, either increase or decrease their discriminability

(Fig 20, bottom).

Methods

Non-Erdős-Rényi network model

For Fig 17, we generated the excitatory-excitatory connectivity with a truncated power-law

degree distribution. The marginal distributions of the number of excitatory-excitatory synaptic

inputs (in-degree) or outputs (out-degree) obeyed:

pðdÞ ¼

C1dg1 ; 0 � d � L1

C2dg2 ; L1 < d � L2

0; else

ð58Þ

8
><

>:

where d is the in- or out-degree. Parameter values are contained in Table 1; C1 and C2 are nor-

malization constants to make the degree distribution continuous at the cutoff L1. The in- and

out-degree distributions were then coupled by a Gaussian copula with correlation coefficient

ρ to generate in- and out-degree lists. These lists generated likelihoods for each possible con-

nection proportional to the in-degree of the postsynaptic neuron and the out-degree of the

presynaptic neuron. We then sampled the excitatory-excitatory connectivity according to

those likelihoods.

Path integral representation

Here we outline the derivation of a path integral formalism for a network of processes with

nonlinear input-rate transfer, following methods developed in nonequilibrium statistical

mechanics [86–91]. We will begin by developing the formalism for a simple model, where a
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Table 1. Model parameters (unless otherwise specified in text).

Parameter Description Value

ϕ(x) Single-neuron transfer function αbxcp

α Gain of single neuron transfer .1 ms−1mV−p

λ(t) Baseline drive .1 mV

NE Number of excitatory neurons 200

NI Number of inhibitory neurons 40

pEE Excitatory-excitatory connection probability 0.2

pEI Inhibitory-excitatory connection probability 0.5

pIE Excitatory-excitatory connection probability 0.5

pII Excitatory-excitatory connection probability 0.5

τ Time constant for postsynaptic potentials 10 ms

g(t) Shape of postsynaptic potentatials (t/τ2) exp (−t/τ)
L1 Left cutoff for power-law degree distribution 0

L2 Right cutoff for power-law degree distribution NE

γ1 Rising exponent for power-law degree distribution .8

γ2 Falling exponent for power-law degree distribution -1.5

ρ Correlation of Gaussian copula for degree distributions .8

https://doi.org/10.1371/journal.pcbi.1005583.t001

Fig 20. Potential impacts of correlations on coding in a presence of a nonlinearity. A) The independent Poisson

assumption for neurons gives rise to uncorrelated distributions of population activity. B) Correlations could increase or

decrease the overlap of those distributions by stretching them, decreasing or increasing the decoding performance (top

and bottom, respectively). C) The impact of correlations on the mean responses can shift those distributions, potentially

counteracting the impact of stretching the distributions (as shown), or exaggerating it.

https://doi.org/10.1371/journal.pcbi.1005583.g020
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spike train is generated stochastically with intensity given by some input ν(t). We will specify

the cumulant generating functional of the spike train given ν(t) below.

The general strategy is to introduce an auxiliary variable, called the “response variable,”

whose dynamics will determine how information from a given configuration (e.g. the spike

counts n(t)) at one time will effect future configurations of the dynamics. Introducing the

response variable allows us to write the probability density functional for the process in an

exponential form. The integrand of that exponential is called the “action” for the model, which

can then be split into a “free” action (the piece bilinear in the configuration and response vari-

ables) and an “interacting” one (the remainder). Cumulants of the process can then be com-

puted, in brief, by taking expectations of the configuration and response variables and the

interacting action against the probability distribution given by the free action.

Let n(t) be the number of spike events recorded since some fiducial time t0. In a time bin dt,
Δn events are generated with some distribution p(Δn) and added to n(t). Let the events gener-

ated in any two time bins be conditionally independent given some inhomogeneous rate ν(t),
so that p(Δn) = p(Δn|ν). So, assuming that initially n(t0) = 0, the probability density functional

of the vector of events over M time bins is:

p½DnðsÞ : s � t� ¼
YM

i¼1

pðDnijniÞ ¼
YM

i¼1

Z
d~ni

2pi
e� ~niDniPð~nijniÞ ¼

YM

i¼1

Z
d~ni

2pi
e� ~niDniþW½~ni jni� ð59Þ

where Pð~nijniÞ is the Laplace transform of p(Δni|νi) and W½~nijni� is the cumulant generating

functional for the auxiliary variable. In the third step we have written the distribution of p(Δni)
as the inverse Laplace transform of the Laplace transform. The Laplace transform variable ~ni is

our auxiliary response variable. In the fourth step we identified the Laplace transform of the

probability density functional as the moment-generating functional, so that W½~nijni� is the

cumulant generating functional of the spike count. Note that these are complex integrals. The

contour for the integration over ~ni is parallel to the imaginary axis.

Taking the continuum limit M!1, dt! 0 then yields the probability density functional

of the spike train process _n:

p½ _n� ¼
Z

D~nðtÞ e�
R

dt ð~nðtÞ _nðtÞ� W½~nðtÞ�Þ
ð60Þ

where D~nðtÞ ¼ lim M!1

QM
i¼1

d~ni
2pi and _n ¼ dn

dt and we suppress the conditional dependence of

~nðtÞ on ν(t). In the continuum limit the integral is a functional or path integral over realiza-

tions of ~nðtÞ. We will call the negative exponent of the integrand in Eq 60 the action:

S½~n; _n� ¼
Z

dt ð~n _n � W½~n�Þ: ð61Þ

We have slightly abused notation here in that a factor of 1/dt has been absorbed into W½~n�. We

will justify this below.

We have not yet specified the conditional distribution of the events given the input ν(t),
leaving W½~nðtÞ� unspecified. Here, we will take the events to be conditionally Poisson [92], so

that

W½~n� ¼ ðe~n � 1ÞnðtÞ ð62Þ

(In the continuum limit, the rate ν(t) allowed us to absorb the factor of 1/dt into W. A finite

size time bin would produce ν(t)dt events in bin dt.)
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This representation of the probability density functional yields the joint moment-generat-

ing functional (MGF) of _n and ~n:

Z½J;~J � ¼
Z

D _nðtÞ
Z

D~nðtÞ e� S½~n ; _n �þJ~nþ~J _n ð63Þ

and the moment-generating functional of _n:

Z½~J � ¼
Z

D _nðtÞ
Z

D~nðtÞ e� S½~n ; _n �þ~J _n ð64Þ

The above strictly applies only to the inhomogeneous Poisson process. This formalism is

adapted to the self-exciting process by introducing conditional dependence of the rate ν(t) on

the previous spiking history. In the discrete case, before taking the limit M!1, we say that

the rate νi = ϕ[ni−], where ϕ is some positive function and ni− indicates all spiking activity up

to but not including bin i. This requirement is equivalent to an Ito interpretation for the mea-

sure on the stochastic process _nðtÞ. Because of this assumption, the previous derivation holds

and we can write

W½~n� ¼ ðe~nðtÞ � 1Þ�ð _nð< tÞÞ ð65Þ

where _nð< tÞ ¼ _nðsÞ : s < t. In the continuum limit, there is an ambiguity introduced by the

appearance of the time variable t in both ~nðtÞ and _nðtÞ. This is resolved in the definition of the

measure for the functional integral and affects the definition of the linear response (below).

Again, this is a manifestation of the Ito assumption for our process.

The specific model used in this paper assumes a particular form for the argument of ϕ. We

assume that the input is given by

nðtÞ ¼ �ððg � _nÞðtÞ þ lðtÞÞ ð66Þ

where g(t) is a filter that defines the dynamics of the process in question and λ(t) is an inhomo-

geneous rate function. The result is that the action for nonlinearly self-exciting process is given

by

S½~n; _n� ¼
Z

dt ð~n _n � ðe~nðtÞ � 1Þ�ððg � _nÞðtÞ þ lðtÞÞÞ: ð67Þ

The only extension required to move from the above action to the network model is to

introduce indices labelling the neurons and couplings specific for each neuron pair. Nothing

of substance is altered in the above derivation and we are left with

S½~n; _n� ¼
X

i

Z

dt ~ni _ni � e~niðtÞ � 1
� �

�
X

j

ðgij � _njÞðtÞ þ liðtÞ

 ! !

: ð68Þ

Mean field expansion and derivation of Feynman rules. We could use the above action

in order to derive Feynman rules for these processes. The expansions so described would be

equivalent to our initial expansions before re-summing (the sets of diagrams that use dashed

lines). These would describe an expansion about _nðtÞ ¼ 0. We can arrive at this expansion by

separating the action into two pieces, called the “free” action and the “interacting” action:

S½~n; _n� ¼ S0½~n; _n� þ SV ½~n; _n�. The free action, S0½~n; _n� is defined by the bilinear component of
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S½~n; _n� in an expansion around 0, i.e.,

S0½~n; n� ¼ �
X

i;j

Z

dtdt0~niðtÞKijðt; t
0Þ _njðt

0Þ ð69Þ

for some operator Kij(t, t0). Define

hniðtÞ~njðt
0Þi ¼ Dijðt; t

0Þ: ð70Þ

Taking the expectation with respect to the probability density given by the free action yields

X

k

Z

ds Kikðt; sÞDkjðs; t
0Þ ¼ dðt � t0Þdij ð71Þ

so that K is the operator inverse of Δ under the free action. That expectation can be computed

via the moment-generating functional for the free action (which we denote Z0½
~J ; J�), and then

completing the square in order to compute the integral. This leaves

Z0½J;~J � ¼ e
P

i;j

R
dtdt0 ~J iðtÞDijðt;t0ÞJjðt0Þ

ð72Þ

which implies that h _niðtÞ~njðt0Þi ¼ Dijðt; t0Þ. We have used the fact that Z0½
~J ; J� ¼ 1.

Computing moments requires functional integrals of the form

h
Y

i

_niðtiÞ
Y

j

~njðtjÞi ¼
Z

D _nðtÞD~nðtÞ
Y

i

_niðtiÞ
Y

j

~njðtjÞe
� S½~n ; _n �: ð73Þ

We Taylor expand each neuron’s nonlinearity ϕ (around its λi(t)) and expand the exponential

arising from the cumulant generating functional of the spike counts (that in ðe~n � 1Þ) around

zero. We then collect the terms with one power of ~ni and of _ni in the free action. This leaves

the interacting action SV ½~n; _n� as:

SV ¼ �
X

i

Z

dt
X1

p¼1;q¼0

nðp¼q¼1Þ

1

p!

�
ðqÞ
i

q!
~np
i

X

j

gij � _nj

 !q

: ð74Þ

Note that at each term in this expansion, each of the p factors of ~ni and the q factors of
P

jgij �
_nj carries its own time variable, all of which are integrated over; we have suppressed these time

variables and their integrals. Now the action can be written as:

S½~n; _n� ¼ � ~niKij _nj �
X1

p¼1;q¼0

nðp¼q¼1Þ

1

p!
Vi

p;q~n
p
i

X

j

gij � _nj

 !q

ð75Þ

where we have suppressed the sums over neuron indices and all time integrals. We have

defined the “vertex factor” Vi
pq ¼ �

ðqÞ
i =q! (the index p recalls which power of ~n it arrived with).

Note that we have defined vertex factors with a minus sign relative to SV ½~n; _n�. Introducing the

shorthand ðg � _nÞi ¼
P

jgij � _nj, and then again suppressing neuron indices, we write the
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moment in Eq 73 as:

h _np~nqi ¼

Z

D~n D _n _np~nqe� S ¼
Z

D~nD _n _np~nqe~nK _nþ
P

p;q
1
p!
Vpq~npðg� _nÞq

ð76Þ

¼

Z

D~nD _n _np~nq
Y1

p¼1;q¼0

nðp¼q¼1Þ

X1

l¼0

1

l!
1

p!
Vpq~n

pðg � _nÞq
� �l

e~nK _n ð77Þ

¼ _np~nq
Y1

p¼1;q¼0

nðp¼q¼1Þ

X1

l¼0

1

l!
1

p!
Vpq~n

pðg � _nÞq
� �l

* +

0

ð78Þ

where we denote the expectation with respect to the free action S0½~n; _n� by hi0. Expectations

with respect to the free action are determined by its generating functional, Eq 72. Due to

Wick’s theorem, any moment will decompose into products of expectation values

Dijðt; t0Þ ¼ h _niðtÞ~njðt0Þi0, according to all possible ways of partitioning the operators into ~n; _n
pairs, i.e.,

h _np~nqi
0
¼
X

pair� wise
partitions

Y

pairs

Dijðt; t
0Þ ð79Þ

where the indices i, j, t, t0 are determined by the partitioning. For the terms in the expansion

(Eq 78), each term will be decomposed into a sum over ways in which factors of ~n can be

paired with factors of _n [93].

We can represent each term in this sum diagrammatically by associating each of the p fac-

tors of _n and q factors of ~n from the moment with external vertices with a single outgoing or

exiting line, respectively. Each vertex factor Vpq gets a vertex with p lines exiting to the left

(towards the future) and q wavy lines entering from the right (from the past). The partitions of

pairing ~n and _n are determined by connecting outgoing lines to incoming lines. The terms in

the expansion with l powers of a vertex factor will also appear l! times in the partitioning. As

such, the sum over partitions will result in the cancellation of the factor of l! for vertex factor

Vpq. All such terms from a vertex factor Vpq with p outgoing lines will generate p! copies of the

same term, which will cancel the factor of p!, justifying our definition. Each vertex factor also

carries a sum over neuron indices i and an integral over internal time variable, which must be

performed to compute the moment; these are the sums and integrals we suppressed in Eq 75.

Thus, in order to compute the terms in the expansion for a moment 1) each factor of _n or

~n gets an external vertex, 2) every graph is formed using the vertices associated with the vertex

factors Vnm by constructing the available partitions with all possible vertices, 3) for each vertex,

contribute a factor of Vnm, 4) for each line contribute a factor of Δij, 5) contribute an operation

g� for each wavy line (operating on the term associated with the attached incoming line) and

finally 6) all integrals and sums are performed. Note that some of these terms will produce dis-

connected graphs. These correspond to factorizable terms in the moment.

The rules derived using the action above will produce the initial expansions that we demon-

strated about the n = 0 configuration. The re-summed rules that we present in the Results arise

from first performing a slight change of variables in the integrand. Instead of considering the

fluctuations about n(t) = 0, we shift the configuration and response variables by their mean

Linking structure and activity in nonlinear spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005583 June 23, 2017 41 / 47

https://doi.org/10.1371/journal.pcbi.1005583


field solutions. Defining �r iðtÞ ¼ h _niðtÞi0 and ~r iðtÞ ¼ h~niðtÞi0, these are determined by

~riðtÞ ¼ 0

�riðtÞ ¼ �
X

j

ðgij � �r jÞðtÞ þ liðtÞ

 !

:
ð80Þ

We shift by these solutions by defining

d _niðtÞ ¼ _niðtÞ � �riðtÞ ð81Þ

This leaves us with the action

S½~n; _n� ¼
X

i

Z

dt ~nid _ni � ðe
~niðtÞ � 1Þ�

X

j

ðgij � ðd _nj þ �rjÞÞðtÞ þ liðtÞ

 !

þ ~niðtÞ�riðtÞ: ð82Þ

Now we can develop the rules for the expansion we provide in the text using the same pro-

cedure outlined above. The only difference is that Δij(t, t0) will be replaced by the linear

response around mean field theory and the vertex factors will be determined by an expansion

around the mean field solution. The rules otherwise remain the same. The rules so derived are

shown in Fig 11. An expansion around the true mean h _nðtÞi would lead to the “effective

action,” the expansion of which gives rise to the proper vertex factors defining the different

orders of stability correction.

Counting powers of the vertex factors allows one to compute a “weak coupling” expansion.

Alternatively, the fluctuation expansion is determined by the topology of graphs and is equiva-

lent to a steepest descent evaluation of the path integral. This allows us to truncate according

to the number of loops in the associated graphs and is the approach we use in this paper. The

approach here is a standard device in field theory and can be found many texts, for one exam-

ple see [39].
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