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Abstract

The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but
the computational principles by which cortical plasticity enables the development of sensory representations are unclear.
Here we describe a framework for cortical synaptic plasticity termed the ‘‘Convallis rule’’, mathematically derived from a
principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like
network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification
by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced
multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The
mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by
experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological,
and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the
neocortex.
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Introduction

Animal learning is believed to occur primarily through changes

in synaptic strengths. Experimental work has revealed an

increasingly detailed picture of synaptic plasticity [1,2], at the

level of both phenomenology and cellular mechanisms. However

an understanding of synaptic plasticity’s computational role in

cortical circuits lags far behind this experimental knowledge.

While spike timing dependent plasticity (STDP) has gained much

attention, the STDP rule is simply a description of how synapses

respond to one particular paradigm of temporally offset spike

pairings, and is neither a complete description of synaptic

behaviour, nor a computational principle that explains how

learning could occur in cortex [3–6]. It therefore seems likely that

STDP is just an approximation to a more fundamental

computational principle that explains the form and function of

cortical synaptic plasticity. Such a principle would not only have

to be consistent with experimental results on the phenomena and

mechanisms of synaptic plasticity, but also explain why it

provides a computational benefit. A strong test of the latter is

whether simulated cortex-like circuits employing the same

principle can learn to perform real-world information processing

tasks.

The nature and mechanisms of synaptic plasticity differ between

brain regions, developmental stages, and cell types, likely

indicating different computational roles of synaptic plasticity in

different contexts. In the sensory cortex, synaptic plasticity is

strongest at early ages [7], and is believed to play an important

role in the development of sensory representations. The juvenile

cortex learns to form representations of sensory stimuli even in the

absence of any required behavior or reward: the acquisition of

native language sounds, for example, begins through passive

exposure to speech before infants can themselves speak [8]. The

outcome of such learning is not simply a more faithful

representation of the learned stimuli — which are already

faithfully represented by sensory receptors themselves — but a

transformation of this representation into a form where relevant

information can be more easily read out by downstream structures

[9]. This problem of forming easily-decoded representations of a

data set, without reward or training signals, is called ‘‘unsupervised

learning’’ [10,11].

Unsupervised learning has long been proposed as a primary

function of the sensory cortex [12,13]. An intriguing connection

between cortical plasticity and artificial algorithms for unsuper-

vised learning arises from work of Bienenstock, Cooper, and

Munro (BCM) [14]. A key feature of the BCM rule is that inputs

occurring when the postsynaptic firing rate is below a ‘‘plasticity

threshold’’ will be weakened, whereas inputs firing when

postsynaptic firing rate exceeds the plasticity threshold will be

strengthened; the rule is made stable by allowing the plasticity

threshold to ‘‘slide’’ as a function of mean postsynaptic activity.

The BCM rule operates at the level of firing rate neurons, and at

this level has been successful in modelling a number of

experimental results such as the development of visual receptive

fields [15]. Theoretical analysis [16] has shown that this scheme

allows simplified neuron models to implement an unsupervised

learning algorithm similar to projection pursuit [17] or indepen-

dent component analysis (ICA) [18,19], extracting non-Gaussian
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features of their inputs which are a priori more likely than Gaussian

features to correspond to signals of interest.

Although the BCM theory was originally defined at the level

of firing rates, more recent modeling work [20–24] has

reproduced a dependence of the direction of synaptic plasticity

on postsynaptic firing rate in spike-based neurons. In cortical

neurons synaptic plasticity depends not only of postsynaptic

firing rates, but also shows a similar dependence on subthresh-

old depolarization, with presynaptic spikes during strong

postsynaptic depolarizations leading to potentiation, and during

weak postsynaptic depolarization leading to depression [25,26].

Computational models incorporating such behavior have

successfully matched several experimental findings of in vitro

plasticity [23].

In the present work, we present a framework for unsuper-

vised learning in cortical networks. The rule is derived as an

optimization of the skewness of a cell’s postsynaptic membrane

potential distribution under a constraint of constant firing rate,

and leads to a voltage-dependence similar to that observed

experimentally [25]. We term the resulting framework the

Convallis rule after the Latin word for ‘‘valley’’, in reference to

the shape of the voltage objective function. We show that the

Convallis rule causes simulated recurrent spiking networks to

perform unsupervised learning of speech sounds, forming

representations that enable a downstream linear classifier to

accurately identify spoken words from the spike counts of the

simulated neurons. When presented with paired pre- and

postsynaptic spikes or other paradigms used in vitro, predictions

of the Convallis rule more accurately match experimental

results than the predictions of STDP alone. Furthermore,

simulation of STDP alone (or of previously published plasticity

rules [21,23]) produced poorer performance on speech learning

than the full Convallis rule, indicating that STDP may be just

one signature of a cortical plasticity principle similar to

Convallis. The mathematical form of the Convallis rule

suggests implementation by a dual coincidence detector

mechanism, consistent with experimental data from juvenile

sensory cortex [6,27–33].

Results

We derived the Convallis rule from two principles, analogous to

those underlying artificial unsupervised learning algorithms such

as ICA. The first principle is that synaptic changes should tend to

increase the skewness of a neuron’s subthreshold membrane

potential distribution. Because the physical processes that produce

structure in real-world data sets often show substantial higher-

order moments, whereas random and uninformative combinations

follow a Gaussian distribution, projections with non-Gaussian

distribution are a priori more likely to extract useful information

from many real-world data sets [19]. The second principle is that

despite synaptic plasticity, neurons should maintain a constant

average firing rate. This principle is required for stable operation

of the rule, and is again analogous to a step of the ICA algorithm

(see below).

To derive the rule, we first defined an objective function

E~
Ð

F (Vm(t))dt that measures the non-Gaussianity of the

subthreshold distribution. The function F (Vm) has the valley-

shaped form shown in Figure 1B. Optimization of this objective

function ensures that the postsynaptic neuron spends as much time

as possible close to either resting potential or spiking threshold, but

as little time as possible in a zone of intermediate membrane

potential, i.e. exhibiting a skewed, non-Gaussian subthreshold

distribution. The form of F used in simulations is described in the

Materials & Methods, although our results did not depend

critically on this precise formula (data not shown).

To implement the first principle of skewness optimization, we

first compute the derivative of this objective function with respect

to the neuron’s input weights. Making certain assumptions (see

Materials and Methods for a full derivation) we obtain:

LE(Vm)

Lws

~(V rev
s {Vleak)

ð
dF (Vm(t))

dVm

XNs

i~1

K(t{ts
i )dt ð1Þ

where V rev
s is the reversal potential of synapse s, Vleak is the rest

voltage of the neuron, ts
i are the times of action potentials

incoming onto synapse s, and K(t) is the shape of a postsynaptic

potential elicited by synapse s. When a presynaptic input fires

shortly before the neuron is close to spiking threshold, the

integrand is positive leading to an increase in synaptic weight, but

when a presynaptic neuron fires shortly prior to a potential only

just above rest the integrand is negative leading to a decrease in

synaptic weight. This voltage dependence is similar to that

observed experimentally in cortical neurons [25] and also

employed in previous phenomenological models [23]. We note

that a direct computation of this integral would be computation-

ally prohibitive, as it would require numerical solution of a

differential equation for every synapse and at every time step of the

simulation. Tractable simulation of this rule was however made

possible by a trick that enabled solution of only a single differential

equation per neuron (see Materials and Methods). In our

simulations, voltage was reset to a level of 255 mV after action

potential firing, followed by an afterdepolarization simulating the

effects of active dendritic conductances [34] (see Materials and

Methods). This reset mechanism, rather than the reset to rest

commonly employed in integrate-and-fire simulations, was neces-

sary in order to produce voltage traces similar to those seen in

experimental recordings of cortical pyramidal cells (see Figure S1),

and also played an important role in matching in vitro plasticity

results (see below).

While equation 1 is sufficient to implement our first principle of

skewness optimization, we found that better learning performance,

Author Summary

The circuits of the sensory cortex are able to extract useful
information from sensory inputs because of their exqui-
sitely organized synaptic connections. These connections
are wired largely through experience-dependent synaptic
plasticity. Although many details of both the phenomena
and cellular mechanisms of cortical synaptic plasticity are
now known, an understanding of the computational
principles by which synaptic plasticity wires cortical
networks lags far behind this experimental data. In this
study, we provide a theoretical framework for cortical
plasticity termed the ‘‘Convallis rule’’. The computational
power of this rule is demonstrated by its ability to cause
simulated cortical networks to learn representations of
real-world speech data. Application of the rule to
paradigms used to probe synaptic plasticity in vitro
reproduced a large number of experimental findings, and
the mathematical form of the rule is consistent with a dual
coincidence detector mechanism that has been suggested
experimentally in juvenile neocortex. Based on this
confluence of normative, phenomenological, and mecha-
nistic evidence, we suggest that the rule may approximate
a fundamental computational principle of the neocortex.

Unsupervised Learning in Cortical Networks
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as well as a closer match to physiological data, could be

obtained with an additional feature modeled after the statistical

technique of shrinkage [11]. Specifically, the integrand of

equation 1 was not used directly to modify weights, but first

convolved with a decaying exponential to yield a function

Y(t)~
Ð t

{? F ’(V (t))
PNs

i~1 K(t{ts
i )e

{(t{t)=T dt, and then passed

through a nonlinear shrinkage function H to ensure plasticity

only occurs in response to multiple coincidences: dw
dt

~H(Y(t))

([22,24,35]; see Materials and Methods for more details). This

ensures that weight changes occur only due to reliable and

repeated relationships between presynaptic activity and post-

synaptic membrane potentials, rather than random occurrence

of single spikes. An illustration of how pre- and post-synaptic

activity lead to weight changes under this rule is shown in

Figure 1C. Physiologically, such an integration mechanism

could be instantiated via self-exciting kinases as suggested

previously [22].

The second principle underlying the Convallis rule is a

constraint on the mean firing rate of each neuron to a target

value. Analogous principles are also often found in machine

learning algorithms: in ICA, for example, the root-mean-square

activity of each unit is fixed at a constant value by a constraint on

the weight vector norm together with sphering of inputs [19]. Such

constraints are typically implemented in one of two ways: by

including a penalty term in the objective function, whose gradient

is then added to the learning rule resulting in ‘‘weight decay’’; or

by repeated projection of the system parameters onto a subspace

satisfying the constraint [19]. In our simulations, we found that

simple gradient ascent was not effective at enforcing stability, and

therefore used a projection method. This was implemented by a

mechanism which responded to deviations from the target firing

rate by linearly scaling all excitatory synaptic weights up or down

[36], and suppressing activity-dependent plasticity until the rate

constraint was restored (Figure 1D; see Materials and Methods for

details). Physiologically, the ‘‘metaplasticity’’ [37,38] required for

suppression of synaptic changes until rate homeostasis is restored,

could be instantiated via one of the many molecular pathways

gating induction and expression of synaptic plasticity.

To study the rule’s effects, we first considered the behaviour of

an individual neuron implementing the rule on a simple artificial

data set. The parameters used in the learning rule were fixed in

this and all subsequent simulations (see Materials and Methods for

more details). For this first artificial task, inputs consisted of a

population of 1000 excitatory sources (see Figure 2A). The

simulated postsynaptic neuron received plastic excitatory synapses

from these sources, as well as constant inhibitory background with

input at 10 Hz through 250 synapses which were not subject to

plasticity. We first considered a simple case where inputs fired as

Poisson spike trains with rates determined as spatial Gaussian

profiles whose centre changed location every 100 ms (Figure 1A;

see Materials and Methods) [21,22,39]. When weights evolved

according to the rate constraint only, no structure was seen in the

weight patterns. With the Convallis rule, postsynaptic neurons

developed strong weights from groups of closely-spaced and thus

correlated inputs, but zero weights from neurons uncorrelated

with this primary group. When weights instead evolved by classical

all-to-all STDP augmented by the rate constraint (called rcSTDP,

see Materials and Methods for details), the firing rate was kept at

the desired value of 10 Hz, and weights became more selective,

but in a manner less closely related to the input statistics.

Examination of post-synaptic voltage traces showed that after

learning with the Convallis rule, but not after rate constraint alone,

the membrane potential spent considerably longer close to resting

Figure 1. Illustration of the Convallis rule. (A) Schematic of a particular plastic synapse (blue) onto a post-synaptic neuron with membrane
potential Vm. (B) The objective function F optimized by the neuron: Vm values in between resting state or threshold are penalized, while values close
to rest or spike threshold are rewarded. (C) Illustration of the learning rule. Presynaptic spike times (top, gray lines), are filtered by the EPSP shape
K(t) (top black trace). This activity is multiplied by F ’(Vm(t)) (shown to the right of Vm), to yield a function that is positive when the presynaptic cell
fires shortly before Vm is close to threshold, and negative for presynaptic spikes at intermediate Vm (blue trace). This function is then accumulated
through a slowly decaying exponential (Y(t), green, bottom), and passed through a shrinkage function H(Y) (right) to yield the weight changes. The
horizontal orange lines indicate the thresholds hpot and hdep that Y must cross to yield potentiation and depression. (D) Illustration of the rate
constraint mechanism. Deviations of the long-run average firing rate from a target value lead to multiplicative scaling of excitatory synaptic inputs
and suppression of activity-dependent plasticity until the rate target is restored.
doi:10.1371/journal.pcbi.1003272.g001

Unsupervised Learning in Cortical Networks
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potential (Figure 2C), corresponding to an increased skewness of

the membrane potential histogram, (Figure 2D; pv0:005, t-test).

This in turn reflected the development of selectivity of the neurons

to particular stimuli (Figure 2E) (pv0:005, t-test). Application of

rcSTDP caused an increase in skewness tuning intermediate

between rate constraint alone and the Convallis rule, even after

optimizing by parameter search (pw0:05, t-test; see Figure S2).

This confirms that the Convallis rule is able to perform

unsupervised learning in a simple artificial task, causing neurons

to select inputs from groups of coactive neurons; STDP produces a

poorer approximation to the same behavior.

We next asked whether the Convallis rule would enable

individual simulated neurons to perform unsupervised learning

in a real-world problem. Because we are interested in the

development of cortical representations of sensory stimuli, we

asked whether the Convallis rule could promote unsupervised

formation of representations of speech sounds. Spike train inputs

were generated from the TIDIGITS database of spoken digits

[40], by pre-processing with a cochlear model filter bank [41],

followed by transformation into inhomogeneous Poisson spike

trains that contacted the simulated neuron with a range of synaptic

delays (Figure 3A; see Materials and Methods). Figure 3B (top row)

shows a representation of the output of the cochleogram for

utterances of the digits ‘‘four’’, and ‘‘five’’. To the right is a

pseudocolor representation of the excitatory weights developed by

neurons initialized to random weights and trained on 326

utterances of all digits by the rate constraint mechanism alone,

by the Convallis rule, or by rcSTDP. Each digit was repeated ten

times. Figure 3B (lower three rows) shows the response of these

three neurons to a test set consisting of previously unheard

utterances of the same digits by different speakers. The neuron

trained by Convallis responds selectively to ‘‘four’’ while the

response to ‘‘five’’ is largely eliminated, whereas the neuron

trained by rate constraint alone responds equally to both. Thus,

the Convallis rule has enabled the neuron to develop a differential

response to the presented digits, which has generalized to

utterances of the same digits spoken by new speakers.

To verify that this behaviour holds in general, we performed

five thousand independent simulations of the Convallis rule in

single neurons, with excitatory and inhibitory inputs drawn

from the simulated cochlear cells, each trained by 10 presen-

tations of the TIDIGITS training set, which we found sufficient

to ensure convergence of all learning rules (Figure S3). Each

simulation began from a different random weight configuration.

The mean firing rate constraint was fixed to 1.5 Hz for all cells.

As previously seen with artificial inputs, the membrane

distribution produced in response to this real-world input was

more skewed after training with the Convallis rule (Figure 4A

for the example cell shown in Figure 3, Figure 4B for population

summary). On average, over 1000 independent runs, there was

a significant difference in skewness between Convallis and rate

constraint alone, with rcSTDP producing an intermediate

increase in skewness (pv0:05). We measured the selectivity of

the simulated neurons using an F-statistic that measured

differences in spike count between different digits (see Materials

and Methods). The Convallis rule caused neurons to become

more selective (pv5|10{5, t-test), whereas application of rate

constraint alone or rcSTDP led to output neurons that were

actually less selective than the raw cochleogram input

(Figures 4C for the same example cell shown in Figure 3,

Figure 4D for population average). Similar results were found

when comparing Convallis to multiple implementations of the

STDP rule as well as for other plasticity rules described in the

modelling literature [21,23] (see Figure S4).

Figure 2. Operation of the Convallis rule in a simple feed-forward situation. (A) The activity of a population of input neurons was simulated
by ascribing each input a location on a virtual circle. Every 100 ms, the firing rate of the inputs was updated as a circular Gaussian distribution with
random center, and spike trains were simulated as Poisson processes with this rate. These inputs were fed to a single output cell that employed rate
constraint alone, the Convallis rule, or STDP together with rate constraint (rcSTDP). (B) Evolution of the input weights and mean firing rate of an
example neuron during learning. Note the development of spatially selective inputs for the Convallis rule, but not rate constraint, and the
development of approximate selectivity by rcSTDP. (C) Illustrative membrane potential trace after learning in the three different conditions. (D)
Probability distribution of the membrane potential for the neurons shown in B, and skewness values averaged over a population of 1000 neurons. (E)
Tuning for the neurons shown in B, and tuning index values averaged over a population of 1000 neurons. Black bars and traces represent rate
constraint rule only; red represents Convallis rule; and blue represents rcSTDP. Error bars show standard error of the mean. * represents pv0:05, t-
test, and ** represents pv0:005.
doi:10.1371/journal.pcbi.1003272.g002

Unsupervised Learning in Cortical Networks
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The aim of unsupervised learning is to generate representations

of input data that enable downstream neurons to easily form

associations with them. Although complete information about

the stimulus is of course present in the raw input, a downstream

cell may not be able to extract this information unless it is

represented in a suitable form. We next asked whether the

representation generated by the Convallis rule allowed im-

proved classification by a linear downstream readout in which

spike timing information was discarded; this choice was

motivated by results indicating that information in higher

sensory cortices can be progressively more easily read out in

such a format [9]. Specifically, we used a linear support vector

machine to predict which digit was uttered, from the spike

counts of a population of simulated cells arranged in a

feedforward configuration (Figure 4E; see Materials and

Methods; note that while the SVM was trained with a

biologically unrealistic quadratic programming algorithm, the

same solution would be found by a large-margin perceptron

[42]). Figure 4F shows the generalization performance of the

classifier (measured on the TIDIGITS test set) as a function of

population size. Performing the classification from a layer of

neurons that used rate constraint alone produced an improve-

ment over prediction directly from the cochleogram. The size

of this improvement increased with the number of cells used,

consistent with reports that large numbers of random

projections can provide useful data representations [43,44].

Applying the Convallis rule produced a substantially improved

representation over the rate constraint alone (18% vs 29.9%

errors; pv5|10{5, t-test), whereas rcSTDP produced an

intermediate improvement (25.9% error; pv1|10{3, t-test).

Evaluation of performance with time-reversed digit stimuli

indicated that the neurons had learned specific temporal

features of the input rather than simply frequency content

(Figure S3). Evaluation of several other proposed learning

rules for spiking neurons taken from the literature, such as

rcNN-STDP (STDP with interactions only between neigh-

bouring pairs of spikes, and the rate constraint), triplet STDP

[21] with rate constraint, or phenomenological rules also

based on post-synaptic voltages [23] (see Materials and

Figure 3. Illustration of Convallis rule as applied to speech data. (A) Preprocessing pipeline. Waveforms corresponding to utterances of
eleven spoken digits (zero to nine plus ‘‘oh’’) by multiple speakers were processed by a cochleogram model [41], which was used to produce
inhomogeneous Poisson spike trains of 100 input cells. (B) Illustration of spiking and voltage responses after learning for two particular digits. Top
row: examples of the input population spike patterns corresponding to a single presentation of the digits ‘‘four’’ and ‘‘five’’. Top row right,
pseudocolor representation of the simulated neuron’s input weights after learning, for rate constraint, the Convallis rule, and rcSTDP. Bottom three
rows show a raster representation of the trained neuron’s responses to a test set consisting of 300 utterances of these digits by previously unheard
speakers, together with a membrane potential trace from a single test-set utterance. Right column shows mean firing rate vs. time averaged over the
whole test set, illustrating the development of selective responses by the Convallis rule.
doi:10.1371/journal.pcbi.1003272.g003

Unsupervised Learning in Cortical Networks
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Methods for details) also confirmed that their performance did

not match those of the Convallis rule (25.0%, 27% and 25.9%

vs 18.0% errors; see Figure S4).

The above analysis showed that the Convallis rule caused

individual neurons to develop selective representations of the digit

stimuli, which when arranged together in a feedforward config-

uration formed a population code that enabled the spoken digit to

be decoded with 82% accuracy. The cortex, however, is a

recurrent rather than a feedforward network, and we next asked

whether a recurrent architecture would lead to further improved

classification performance (Figure 5A). Recurrent spiking network

models can exhibit multiple global patterns of population activity,

of which the asynchronous irregular state provides the closest

match to in vivo cortical activity in alert animals [45–47]. We set

the initial conductances (prior to training) to obtain asynchronous

irregular activity at a mean spontaneous activity at 1.5 Hz, and

with the coefficient of variation of inter-spike intervals (CV ISI)

equal to 1.1 (Figure 5C; see Materials and Methods). When a

sound input was presented to the network, mean firing rates

increased from 1.5 Hz to ^ 15 Hz (Figure 5B), while remaining in

the asynchronous irregular regime.

To measure the ability of the Convallis rule to produce

unsupervised learning in recurrent spiking networks, we trained

the network with 10 iterations of the TIDIGITS training set,

which were again sufficient for convergence (see Figure S5). All

recurrent excitatory connections in the network were plastic, while

inhibitory and input connections were fixed. Running the learning

rule did not disrupt the asynchronous irregular dynamics of the

network, as indicated by the ISI CV, mean firing rate distribution,

and mean spontaneous correlation values (Figure 5B and

Figure 5C, D, E). As in the feed-forward case, the network’s

constituent neurons showed increased tuning and membrane

potential skewness after training (Figure 5F, G).

The ability to perform unsupervised learning in a recurrent

network was again measured by ability to identify the spoken digits

using a linear classifier trained on the spike counts of the network’s

excitatory neurons (Figure 5H). We note that even prior to

training, as in the feed-forward case, the representation generated

by the recurrent network allowed higher classification perfor-

mance than the raw cochleogram input (5.8% error), consistent

with previous reports that randomly connected ‘‘liquid-state’’

networks can compute useful representations of spatiotemporal

input patterns [48–50]. Training with the Convallis rule signifi-

cantly boosted performance to reach 3.3% error (Figure 5H). As in

the feedforward case, application of rcSTDP produced error rates

more than 50% higher than those of the full Convallis rule

(Figure 5H) (5.1% error; pv0:005). Thus, the Convallis rule

enables spiking neurons to perform unsupervised learning on real-

world problems, arranged either in a feedforward or in a recurrent

configuration. As in the feed-forward scenario, performance with

Figure 4. Feed-forward processing of speech data. (A) Histogram of subthreshold potentials for the cell illustrated in Figure 3, accumulated
over all test-set data after learning with three different plasticity rules. (B) Distribution of skewness for 4500 neurons trained similarly from random
initial weights. Skewness after Convallis training is significantly higher than after rate constraint or rcSTDP, but rcSTDP and rate constraint do not
differ. (C) Mean rate response of the example neuron to all digits. Errors bar show s.e.m. (D) The strength of tuning for each neuron was summarized
by an F-statistic that measured the selectivity of its spike counts for particular digits (see Materials and Methods). The main graph shows an histogram
of tuning strength across the simulated population for the 3 learning rules and the raw cochleogram input, while the inset shows mean and standard
error. Note that while the Convallis rule produces sharper tuning than the cochleogram inputs, rate constraint alone and rcSTDP produce weaker
tuning. (E) To evaluate the ability of these rules to perform unsupervised learning, the spike count responses of up to 4500 cells were used as input to
a linear classifier trained to distinguish digits. (F) Mean classification performance as a function of the number of unsupervised neurons. (Errors bars
show s.e.m over 10 independent runs of the analysis). The left axis marks the number of neurons in the cochleogram representation, and the
horizontal dashed line indicates classification from the raw cochleogram. Note that Convallis outperforms the raw cochleogram, populations trained
by rate constraint, and populations trained by rcSTDP for all numbers of neurons.
doi:10.1371/journal.pcbi.1003272.g004

Unsupervised Learning in Cortical Networks
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time-reversed digit stimuli indicated that the neurons had learned

specific temporal features of the input rather than simply

frequency content (Figure S5). Once again, we were unable to

produce comparable results with rules previously published in the

literature, which resulted in error rates more than 50% higher

than those produced by Convallis (5.2% and 5.3% errors for

rcNN-STDP and rcTriplet, respectively; see Figure S6).

The Convallis rule was derived mathematically from an

optimization principle, rather than by fitting to experimentally

measured parameters. Before suggesting that an analogous process

might occur in the cortex, it is thus important to check how a

neuron employing this rule would behave in paradigms that have

been used to experimentally probe cortical synaptic plasticity.

Although we found simulation of rcSTDP alone produced poorer

learning than Convallis, STDP is a robustly observed experimental

result that the Convallis rule must reproduce if a similar rule does

occur in cortical neurons. To test this, we applied a spike-pairing

paradigm to two simulated cells, using the same parameters as in

the previous speech-classification simulations. Figure 6A shows a

close-up view of the Convallis rule in operation for three spike

pairings. The green trace shows a pre-post interval of 10 ms. Here,

the period immediately after the presynaptic spike (where K(t{ts
i )

is positive) contains an action potential, leading to a high value of

F ’, and synaptic potentiation. The black trace shows a post-pre

pairing of 210 ms. In this case, the period immediately following

the presynaptic spike occurs during the postsynaptic afterdepolar-

ization, a moderately depolarized voltage range for which F ’ is

negative. The gray trace shows a pre-post interval of 30 ms, longer

than the duration of the kernel K . Now, the postsynaptic potential

during the entire period while Kw0 is very close to rest, leading to

a value of F ’ close to zero, and neither potentiation nor depression.

Figure 6B shows the results of similar simulations for a range of

pre-post intervals, applying 60 spike pairings performed at 1 Hz.

The Convallis rule reproduces a STDP curve similar to bi-

exponential form found in many computational models [51].

STDP does not fully summarize the nature of cortical synaptic

plasticity, which cannot be explained by linear superposition of

effects caused by individual spike pairs. Various in vitro pairing

protocols, in hippocampus [52] or in cortex [26,53,54] showed

that LTP and LTD pathways can not be reduced to additive

interactions of nearby spikes. Therefore, we next asked whether

the Convallis rule would also be able to predict additional

experimental results beyond STDP. As one of the pieces of

evidence in favor of the original BCM theory is the dependence of

the sign of plasticity on the rate of tetanic stimulation, we asked if

the Convallis rule could produce a similar result. To simulate

extracellular stimulation in vitro, we synchronously simulated

multiple excitatory and inhibitory presynaptic synapses at a range

of frequencies ranging from 0.1 Hz to 100 Hz, and investigated

the amount of plasticity produced in a downstream neuron.

Consistent with experimental data in cortical [55] as well as

hippocampal [56] slices in vitro, low frequencies resulted in

depression while higher frequencies resulted in potentiation

(Figure 6C). As a second example, we considered spike triplets

in paired recordings (see Materials and Methods). Linear

superposition of STDP would predict that presentation of post-

pre-post spike triplets should cause no synaptic change; experi-

mentally however, this causes robust potentiation (although pre-

post-pre triplets do not) [52]. The Convallis rule is able to

reproduce this finding (Figure 6D). A third example of nonlinear

Figure 5. Learning and classification in a balanced recurrent network. (A) Network illustration. A set of 3600 excitatory and 900 inhibitory
recurrently connected neurons are driven by an external excitatory input drawn from a cochleogram simulated as before. Excitatory synapses within
the network are plastic while inhibitory synapses and external inputs are kept fixed. A population of linear readout neurons use the spike counts of
the recurrent excitatory neurons to classify the spoken digits. (B) Illustration of population activity in the network, before and after learning, in
response to a particular digit. The rasters show activity of the entire population of excitatory and inhibitory neurons (red and blue) to a single digit
presentation; the lower curves show population-averaged firing rate throughout this trial. Note that training produces no visible change in global
network dynamics, which maintains an asynchronous regular state. (C–E) Distributions of ISI CVs, firing rates, and pairwise correlation coefficients
(averaged over 2000 randomly chosen pairs of cells) in the network before and after learning with rate constraint only, rcSTDP, or with the Convallis
learning rule. Note that none of the learning rules produce a change in any of these measures of network dynamics. Error bars show the standard
deviation. (F) Distribution of membrane potential skewness for 200 randomly chosen cells in the network before or after learning. Note that skewness
is highest with the Convallis rule. (G) Distribution of the tuning sharpness (as measured by F-statistic) for all neurons before and after learning. Inset
displays the mean of the distributions. Error bars show standard deviation. (H) Classification performance as a function of the number of neurons
considered by the external classifier. Errors bars show s.e.m over 10 different simulations, run independently from different random seeds. While
Convallis learning produces improved performance, rate constraint did not, and rcSTDP produced a smaller but still significant improvement
(pv0:05).
doi:10.1371/journal.pcbi.1003272.g005
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plasticity effects concerns the spike pairing repetition frequency. In

cortical slices, post-pre pairings at low repetition rates cause

synaptic depression, but this converts to potentiation for fast

enough repetition rates, a non-linear effect that likely reflects

subthreshold phenomena [26]. The Convallis rule produces a

similar effect (Figure 6E, top). For pre-post pairings, potentiation is

not seen experimentally at low (0.1 Hz) repetition rates in L5 of

juvenile cortex [26]. The Convallis rule also replicated this finding

(Figure 6E, bottom); for this, the shrinkage mechanism was critical

(data not shown). Finally, we asked whether network-level

plasticity using the Convallis rule left traces similar to those seen

experimentally in vivo. Specifically, we assessed whether simulated

neurons with similar receptive fields would exhibit higher

connection probabilities, as has been reported in mouse visual

cortex [57,58]. This was indeed the case (Figure 6F), strongly for

Convallis (pv0:05, t-test), weakly for rcSTDP (pv0:05, t-test), but

not for rate constraint alone. We therefore conclude that the

Convallis rule is consistent with a wide range of plasticity

phenomena described in vitro and in vivo, supporting the possibility

that a similar process occurs in cortex.

If cortical neurons do indeed implement a rule similar to

Convallis, what cellular mechanisms might underlie it? Plasticity in

the developing neocortex appears to involve different cellular

mechanisms to those of the well-studied hippocampal Schaffer

collateral synapse. One of the leading mechanistic models of

hippocampal synaptic plasticity is the calcium concentration

hypothesis [59–61]. In this model, both LTP and LTD are

triggered by calcium influx through NMDA receptors, with LTP

triggered by high Ca2+ concentrations, and LTD triggered by low

concentrations (see Figure 7A). This model has a similarity with

Convallis in that weak activation causes LTD and strong

activation LTP. Nevertheless, the functional form of the Convallis

rule (Eqn. 1) has a critical difference to the calcium hypothesis. In

the Convallis rule, the nonlinear function F ’ that determines the

Figure 6. Reproduction of experimental findings. (A) Schematic illustrating the Convallis learning rule in case of a 10 ms post-pre (black), a
10 ms pre-post pairing (green), or a 30 ms pre-post pairing (brown). (B) Synaptic modifications arising after 60 spike pairings repeated at 1 Hz, as a
function of time Dt between pre- and post-synaptic spikes. The red curve indicates the results of the Convallis rule, the blue curve indicates the
traditional bi-exponential STDP curve for comparison purposes. (C) Effect of tetanic stimuli at various frequencies. Red curve indicates Convallis rule
results, errorbars are data reproduced from [55]. For the Convallis rule, as for the original data, high frequency stimulation yields potentiation,
intermediate frequency stimulation yields depression, whereas the lowest frequencies yield no effect. (D) Effect of post-pre-post (top) and pre-post-
pre (bottom) spike triplets at various intervals. White bars represent data from [52], red represents Convallis simulation, blue represents STDP. (E)
Effect of repeating post-pre (top) and pre-post (bottom) pairings at frequencies between 0.1 and 50 Hz. Errorbars indicate data from [26], red
indicates Convallis simulation and blue indicates STDP. (F) After training synapses are stronger between neurons representing similar features, as
found experimentally in mouse cortex [57]. Histograms show mean synaptic weights after training the recurrent network on speech sounds, (Figure 5)
for neuronal pairs maximally responsive to the same (top schematic, example of two neurons both tuned to digit 5), or different digits (bottom
schematic, two neurons tuned to different digits). * represents pv0:05, t-test, and ** represents pv0:005.
doi:10.1371/journal.pcbi.1003272.g006
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sign of synaptic plasticity operates directly on the membrane

potential prior to coincidence detection with presynaptic input,

whereas in the calcium rule this nonlinearity happens after

coincidence detection. This leads to a diverging experimental

predictions, with the calcium model predicting a triphasic STDP

curve [60] (but see also [61]). This has been reported in some

hippocampal experiments [62,63], but not in the neocortex

(Figure 7B).

A substantial body of experimental evidence suggests that in

juvenile neocortical neurons, the potentiation and depression

components of STDP are produced by different cellular mecha-

nisms [27–33]. While these data are obtained from different

sensory cortices (visual, somatosensory), and for different cortical

synapse types (typically L4RL2/3 or L5RL5), they suggest a

hypothesis for a common mechanism underlying STDP in at least

some neocortical synapses [6]. In these systems, LTP appears of

the conventional type, dependent on postsynaptic NMDA

activation caused by coincident glutamate release and release of

magnesium block by postsynaptic depolarization. For LTD

however, induction is independent of postsynaptic NMDA

receptors, and instead appears to be induced by a separate

mechanism in which postsynaptic phospholipase Cb acts as a

coincidence detector for the activation of group I metabotropic

glutamate receptors, and postsynaptic depolarization detected by

voltage-sensitive calcium channels (VSCCs), leading to presynaptic

expression of LTD via retrograde endocannabinoid signaling.

Importantly, the VSCCs implicated are of the low-threshold T-

type [27,30]. Together, these results suggest a hypothesis that in

the developing sensory cortex, there exist two separate molecular

coincidence detectors for LTP and LTD, and that the coincidence

detector for LTD has a lower voltage threshold (Figure 7C; [6,32].

The mathematical form of the Convallis rule is consistent with

just such a mechanism. The function F ’ can be expressed as a

difference of two non-negative functions F ’(V )~P(V ){D(V ),
both sigmoidal in shape, but with D(V ) having a lower threshold.

The rule can then be expressed as a sum of two terms

Dws!
ðT

0

P(V )
XNs

i~1

K(t{ts
i )dt{

ðT

0

D(V )
XNs

i~1

K(t{ts
i )dt

Figure 7. The Convallis rule is inconsistent with the Calcium Hypothesis but consistent with a dual-sensor model. (A) Illustration of the
calcium hypothesis. In this scheme, the direction of synaptic plasticity depends on calcium concentration, with high concentrations leading to LTP
and lower concentrations leading to LTD. The calcium hypothesis predicts that short pre-post pairings produce LTP (green), short post-pre pairings
predict LTD (black), but unlike the Convallis also predicts that long pre-post pairings should produce LTD (gray). (B) Triphasic STDP curve predicted by
the Calcium hypothesis, set against prediction of the Convallis rule. (C) Hypothesized cellular mechanism for Convallis rule. LTP is induced by
coincidence detection via an NMDA receptor, requiring glutamate and strongly depolarized membrane potential. LTD is induced by a separate
coincidence detector with a lower voltage threshold, in which activation of phospholipase Cb requires coincident activity of group I metabotropic
glutamate receptors and T-type (low threshold) calcium channels. (D) Summation of the voltage-dependence curves for high-threshold potentiation
and low-threshold depression gives the F ’(V ) function of the Convallis rule.
doi:10.1371/journal.pcbi.1003272.g007
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This equation has a natural mechanistic interpretation, as the

result of two coincidence detectors. The first, corresponding to

P(V ), is activated when the membrane is strongly depolarized

after a presynaptic spike fires, and leads to synaptic potentiation.

The second, corresponding to D(V ), is activated when the

membrane is moderately depolarized after presynaptic firing, and

leads to synaptic depression. Linear addition of P(V ) and D(V )
would be expected due to their implementation by separate

coincidence detectors, triggered by spatially separated calcium

sources [64]. The mathematical form of the Convallis rule

therefore bears a striking resemblance to a leading hypothesis

for the mechanisms synaptic plasticity in the juvenile sensory

cortex.

Discussion

We derived a synaptic plasticity rule for unsupervised learning

in spiking neurons, based on an optimization principle that

increases the skewness of subthreshold membrane potential

distributions, under the constraint of a fixed mean firing rate.

Applying this rule to a speech recognition task caused individual

neurons to develop skewed membrane potential distributions and

selective receptive fields both in a feedforward configuration and

within a recurrent network. The spike count outputs of the

recurrent network were sufficient to allow good readout by a linear

classifier, suggesting that this unsupervised rule had enabled the

network to form an easily-decoded representation of the key

spatiotemporal features of the input that distinguished the spoken

digits. Simulation of paradigms used to study synaptic plasticity in

vitro produced similar behaviour to that found experimentally.

Furthermore the form of the rule is consistent with a dual-sensor

mechanism that has been suggested experimentally for cortical

neurons.

The phenomenon of spike-timing dependent plasticity has

been robustly observed in a large number of neuronal systems

(see for example [65] for review). It is important to remember

however that STDP is not a fundamental description of

synaptic plasticity, but simply an experimental observation that

describes how synapses respond to one particular stimulus of

temporally offset spike pairings [3–6]. We found that the

Convallis rule, when presented with paired spikes, reproduced

a biphasic STDP curve. However, implementation of all-to-all

STDP alone produced both a worse fit to experimental

plasticity paradigms, and poorer unsupervised learning of

speech sounds than the full Convallis rule. Implementation of

other learning rules described in the literature which match

more experimental observations than STDP alone [21,23] also

produced poorer results.The higher performance of Convallis

compared to rules based on spike timing alone may reflect the

fact that the subthreshold potential conveys additional infor-

mation that is useful to guide synaptic plasticity. We note

however that better unsupervised learning was also obtained

compared to a previous phenomenological rule [23] that

exhibited a similar voltage dependence, but was derived

primarily to match experimental observations, rather than

derived from an optimality principle. Other than the similar

voltage dependence, this rule was different in many details to

Convallis, for example with regard to the precise temporal

relationship of presynaptic activity and postsynaptic voltage

required for potentiation or depression. The derivation of these

relationships from an optimality principle might underlie

Convallis’ better performance. Additionally or alternatively,

the difference might reflect a difference in the stabilizing

mechanism between the two rules. For Convallis, we found

that a penalty-based weight decay term could not provide

optimal stability, and much better performance was obtained

with a hard constraint on firing rate with plasticity inhibited

until the constraint was satisfied. In our simulations of the

framework of [23], we were similarly unable to obtain robust

stabilization of firing rates, which may have contributed to

poorer learning performance.

Although unsupervised learning has long been proposed as a

primary function of the sensory cortex [12,13], the circuit

mechanisms underlying it are still unknown. One influential

class of models holds that unsupervised learning occurs through

the coordinated plasticity of top-down and bottom-up projec-

tions, leading to the development of ‘‘generative models’’ by

which the brain learns to form compressed representations of

sensory stimuli [66–68]. Although these models have produced

good performance in real-world tasks such as optical character

recognition, the mapping between these abstract models and

concrete experimental results on cortical circuitry and plasticity

is as yet unclear, and their implementation in spiking neuron

models has yet to be demonstrated. Here we describe an

alternative scheme for unsupervised learning in cortex, in which

every neuron acts essentially independently, using a plasticity

rule to form an unsupervised representation of its own synaptic

inputs. Despite the simplicity of this approach, it could be

applied in recurrent spiking networks to produce good

unsupervised learning. We hypothesize that incorporating other

mechanisms to coordinate plasticity at the network level [69]

may further improve network performance.

In psychophysical experiments, perceptual learning is typically

studied by repeated practice at sensory discrimination tasks. In

such cases, learning might be boosted by attention directed to the

stimuli to be learned, or rewards delivered after a correct response.

Nevertheless, purely unsupervised perceptual learning can also

occur in humans, both in development [8] and adulthood [70].

The Convallis rule as simulated here is a purely unsupervised rule

that operates continuously. The effects of attention, reward and

task-relevance could be captured in the same framework by a

modulation of learning rates by neuromodulatory tone [71,72].

This would allow cortical networks to devote their limited

resources to representing those stimulus features most likely to

require behavioural associations.

Models of synaptic plasticity typically fall into three classes:

phenomenological models, which aim to quantitatively summa-

rize the ever-growing body of experimental data [21–23];

mechanistic models, which aim to explain how these phenom-

ena are produced by underlying biophysical processes [60,73];

and normative models, which aim to explain the information-

processing benefit that synaptic plasticity achieves within the

brain [74–79]. The Convallis rule bridges all three levels of

analysis. Being mathematically derived from an optimization

principle, it belongs in the normative class, and the fact that it

can organize recurrent spiking networks to perform unsuper-

vised learning in a real-world task supports the idea that a

similar principle could enhance cortical information processing.

The rule is consistent with a number of experimental findings on

cortical plasticity, including but not limited to STDP, suggesting

that a similar principle may indeed operate in cortical cells.

Finally, the functional form of the Convallis rule has a direct

mechanistic interpretation in terms of a dual coincidence-

detector model, for which substantial evidence exists in

neocortical synapses [27–32,32,33]. Based on this confluence

of normative, phenomenological, and mechanistic evidence, we

suggest that the Convallis rule may approximate a fundamental

computational principle of the neocortex.
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Materials and Methods

Neuron model
Simulations of the spiking neurons were performed using a

custom version of the NEST simulator [80] and the PyNN
interface [81], with a fixed time step of 0.1 ms. In all simulations,

we used an integrate-and-fire neuron model with a membrane

time constant tm~20ms, a leak conductance of Gleak~10nS, and

a resting membrane potential Vleak~{75mV. Spikes were

generated when the membrane potential Vm reaches the threshold

Vthresh~{50mV. To model the shape of the action potential, the

voltage was set to 20 mV after threshold crossing, and then

decayed linearly during a refractory period of time twidth~5ms to

a reset value of Vreset~{55mV, following which an exponentially

decaying after-depolarizing current Idep of initial magnitude 50 pA

and time constant tdep~40ms was applied. We used this scheme

with a high reset voltage and ADP, rather than the more common

low reset value, as it provided a better match to intracellular

recordings in vitro and in vivo (see supplementary Figure S1).

Synaptic connections were modelled as transient conductance

changes with instantaneous rise followed by exponential decay.

Synaptic time constants were chosen to be texc~5ms and

tinh~10ms for excitation and inhibition respectively, and reversal

potentials were Eexc~0mV and Einh~{80mV.

The complete set of equations describing the dynamics of a

neuron is thus given by

Cm

dV (t)

dt
~gleak(Vleak{V (t))zgexc(t)(Eexc{V (t))

zginh(t)(Einh{V (t))zIdep(t)

tsyn
dgsyn(t)

dt
~{gsyn(t)zSsyn(t)

tdep

dIdep(t)

dt
~{Idep(t)

ð2Þ

where syn[fexc,inhg, Ssyn(t) are the incoming synaptic spike

trains represented as sums of delta functions.

Learning rule
In the Convallis rule, a neuron adapts its synapses in order to

optimize an objective function E depending on its membrane

potential V :

E(V )~

ð
F (V (t))dt ð3Þ

To enforce skewness of the distribution of postsynaptic

potentials, we chose an objective function that penalized

intermediate membrane potential values, but rewarded membrane

potentials close to either resting potential or spike threshold.

Because the neuron spent considerably less time depolarized than

hyperpolarized, the objective function was chosen to reward

potentials close to spike threshold more strongly than potentials

close to rest. For all simulations in the present paper, we used a

sum of a logistic function and of its integral. More precisely:

F(V )~{
1

1ze
{

V{V0
s0

zas1log(1ze
V{V1

s1 ) ð4Þ

Parameters values were taken as V0 = 255 mV, V1 = 252 mV,

s0 = 4 mV, s1 = 2 mv and a~0:5, and the same parameters were

used for both the speech processing application and simulation of in

vitro experiments. The shape of F (V ) was therefore constant in all

the simulations of the paper, and its exact form did not appear to be

crucial (as long as a clear valley-shaped function was used), since

similar results were achieved with a variety of functions (not shown).

To derive the Convallis rule, we used a gradient ascent method.

Differentiating E with respect to incoming synaptic weights w gives

LE(V )

Lws

~

ð
dF(V (t))

dV

LV (t)

Lws

dt ð5Þ

To compute LV (t)
Lws

, we considered the variable V0~V{Vleak.

Equation 2 can be rewritten as

Cm
dV0(t)

dt
~{V0(t)(gleakzGsyn(t))zIsyn(t) ð6Þ

Where Gsyn(t) is the total synaptic conductance and Isyn(t) the

synaptic current. Specifically, if ts
i[f1,::,Nsg are the times at which a

particular synapse s of weight ws is active, and if

g(t)~e{t=tsyn=tsyn (if tw0) is the kernel function representing

the conductance time course,

Gsyn(t)~
XN

s~1

(ws

XNs

i~1

g(t{ts
i )) and Isyn(t)

~
XN

s~1

(ws(V
rev
s {Vleak)

XNs

i~1

g(t{ts
i ))

ð7Þ

where V rev
s is the reversal potential of synapse s. Inspecting

equation 6, we see that for a conductance-based neuron, V
integrates Isyn(t) with an effective time constant

teff~(Cm=(gleakzGsyn(t))){1. Approximating teff by a constant

equal to (Cm=(gleakzSGsyn(t)T)){1 where SGsyn(t)T denotes a

running average of the synaptic conductance [82], we can

approximate V (t) by the following equation:

V (t)~
XN

s~1

(ws(V
rev
s {Vleak)

XNs

i~1

K(t{ts
i ))zVleak ð8Þ

where

K(t{ts
i )~

e

t{ts
i

teff {e

t{ts
i

tsyn

teff{tsyn
ð9Þ

Note that this approximation holds as long as we ignore the reset

mechanism and non-linearity due to the spike, an approximation

that will be more accurate when using a ‘‘soft’’ reset mechanism as

described here. Substituting in equation 5, we obtain the following

equation for the gradient:

LE(V )

Lws

~(V rev
s {Vleak)

ð
F ’(V(t))

XNs

i~1

K(t{ts
i )dt ð10Þ

This generic form is similar to previous supervised learning rules

that were also based onto the post-synaptic Vm, such as the
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Tempotron [82,83] or Chronotron [84]. As noted by [85], Vm is

used here as a proxy for the input current flowing into the cells,

which is the only relevant quantity at the cell level to measure the

correlation between incoming pre and post-synaptic activity.

To prevent plastic changes for spurious single pairings, plasticity

changes are accumulated through the convolution of a slowly

decaying exponential, and then expressed at the synapse level only

if the accumulated value crosses thresholds hpot and hdep for

respectively potentiation and depression. Specifically, we define

Y(t)~

ðt

{?
e{(t{t)=T F ’(V (t))

XNs

i~1

K(t{ts
i )dt ð11Þ

The time constant T of the slowly decaying exponential is taken

to be 1 second throughout the paper. The final weight changes are

then given by

dw

dt
~H(Y(t)) ð12Þ

where the shrinkage function H is defined as

H(Y)~

Y{hpot if hpotvY

0 if hdepvYƒhpot

Y{hdep if Yƒhdep

0
B@ ð13Þ

Throughout the paper, we fixed the values of hdep=pot to 210

and 50 respectively. A graph of H(Y) can be seen in Figure 1C.

Note that the weights are clipped to hard bounds values

wmin~0nS and wmax~5nS. The Convallis rule has therefore

have 3 parameters in addition of the shape of F : the time at which

the changes are accumulated T~1s, and those two thresholds for

the shrinkage function.

Implementation
Direct calculation of the above integrals would be prohibitive in

large-scale simulations, as it would require computing the products

F ’(Vm(t))
PNs

i~1 K(t{ts
i ), for all synapses and for each time step,

resulting in a complexity scaling in O(NT=a), where N is the

number of synapses, a the time step, and T the simulation length.

To speed up implementation of the algorithm, we write:

LE(V)

Lws

~
XNs

i~1

ðT

0

F ’(V (t))K(t{ts
i )dt~

XNs

i~1

U(ts
i ) ð14Þ

where U(t)~
Ð T

0
F ’(V (szt))K(s)ds. We can implement the rule

much faster by first computing and storing the history U(t) for

neuron, and computing weight changes as a sum over all input

spikes Ns for all synapse s, which is of order O(
P

s Ns). To

compute U(t), we note that U is the convolution of F ’ and a filter

K which is a difference of decaying exponentials (see Equation 9).

By defining Vt(t)~
Ð?

0
F ’(tzu)e{u=tdu, we can write

U(t)~(Vteff
(t){Vtsyn (t))=(teff{tsyn). Integrating by parts, we

obtain

dVt(t)

dt
~

ð?
0

dF ’(V (uzt))

dt
e{u=tdu

~½F ’(tzu)e{u=t�?0 z
1

t

ð?
0

F ’(V (uzt))

dt
e{u=tdu

~{F ’(t)z
Vt(t)

t

Therefore, we have a differential equation that can be used

to compute look-up tables of U(t) for all neurons during this

period, by running backwards in time from starting values

Vteff
(T)~Vtsyn (T)~0. Weight changes are then calculated

by summing over spikes. We note that this method of

running backward in time is simply a trick to speed up

execution time, and is equivalent to the original deterministic

algorithm. In practice, we perform this by stopping the

simulation after the presentation of each input pattern

(T = 1 s). This implementation does not impact the results

when the frequency T of the updates is changed (data not

shown), as long as the assumption U(T)~0 is valid, which

will hold provided the support of the K filter is shorter

than T .

Firing rate constraint
Run in isolation, the above rule is unstable, as the response

of the neuron tends to accumulate either above or below the

plasticity threshold, leading to either explosive increases in

synaptic weights or convergence of all weights to zero. In the

BCM theory, this problem was solved by a sliding plasticity

threshold, computed as a long-running average of the firing

history of the post-synaptic neuron. For the Convallis rule we

found that a sliding threshold was not necessary, provided a

mechanism was in place to constrain the neurons firing rate to a

fixed value. We implemented this via ‘‘synaptic scaling’’ [86],

using an approach analogous to the projected subgradient

method for constrained optimization. In the projected sub-

gradient method, gradient-following steps are allowed to

temporarily break the constraint, but are followed by a

projection onto the constraint subspace. Because direct projec-

tion onto the subspace of synaptic weights corresponding to the

targeted mean firing rate would not be computationally

tractable or biologically realistic, we instead used a Proportion-

al-Integral (PI) controller [87] to enforce the constraint, and

suppress gradient learning until the constraint was re-estab-

lished. Specifically, we define D(t)~(ftarget{Sf post(t)T) to be the

deviation from target mean firing rate, where Sf post(t)T is a

cell’s firing rate computed as a running average over its past-

history with a time constant T (10 s in our simulations) and

ftarget is the targeted mean rate. The output of the PI controller

is

C(t)~D(t)zc1

ðt

0

D(t’)dt’

where c1 is a coefficient regulating the contribution of the

integral term. The value of c1 balances speed of convergence

against the possibility of oscillation; in all simulations, we fixed

c1~0:01s{1. To suppress gradient descent until the constraint

was satisfied, we scaled the synaptic plasticity rule by a term
1

(1zC(t)2)(1zD(t)2)
that was small if either C or D was not close to

zero, leading to a final form of
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dws

dt
~l1

Dwconvallis

(1zC(t)2)(1zD(t)2)
zl2ws(t)C(t) ð15Þ

The parameters l1=2 were set to 10{4 and 10{5, respectively.

We found this latter feature was essential for stable operation of

the Convallis rule.

Circular Gaussian simulations
In simulations of artificial data (Figure 2), 1000 excitatory and

250 inhibitory inputs were connected to a single post-synaptic

neuron. Only excitatory connections were plastic. Initial values of

the weights were drawn from Gaussian distribution N(gsyn,
gsyn

3
)

with syn[fexc,inhg. The values were gexc~1nS and ginh~10nS,

and the target output rate was fixed to 10 Hz. Pre-synaptic

neurons were stimulated with wrapped Gaussian profiles of rates

ni~5z50exp((i{m)2=2s2) spikes/sec, the centre m being shifted

randomly every 100 ms over all possible positions i[f1,::,1000g
and with s~100. The tuning index used in Figure 2 was

computed as a directional statistic: for each cell, the distance

between neuron 0 and 1000 was mapped into an angle h, and if rh

is the average firing rate for this particular angle, the tuning was

defined as
E
P

h
rheihEP
h

rh
. The closer the tuning is to 1, the more the

neuron is responding only to one particular angle.

TIDIGITS database
To test the ability of the rule to perform unsupervised learning

in a real-world context, we applied it to a problem of speech

recognition, using the TIDIGITS database [40]. This data consists

of recordings of eleven English digits (‘‘zero’’ to ‘‘nine’’ plus ‘‘oh’’),

spoken twice each by 326 speakers of various ages and genders

(man, woman, boy, girl), at a sampling rate of 20 KHz. The

TIDIGITS database was separated into its standard training and

test sets of 167 speakers each. The raw recorded waveforms were

pre-processed into spike trains using the Lyon model [41], to

produce a simulated cochleogram of 93 frequency channels. The

cochleogram output for each digit was centered in a one second

epoch, sampled at 500 Hz, and normalized to equalize the

summed activity of all frequencies for all digit utterances. Input

spike trains were generated as inhomogeneous Poisson spike trains

with intensity function given by the cochleogram output, at an

average frequency of 5 Hz.

For feedforward simulations (Figure 3), each target neuron

received plastic excitatory projections from 50% of randomly

chosen cochleogram cells with initial conductances gexc uniformly

drawn in [0, 10 nS] and synaptic delays uniformly drawn from

[0.1 ms,5 ms], while also receiving static inhibitory projections

from all cells in the cochleogram with conductances ginh uniformly

drawn in [0, 40 nS].

For recurrent network simulations, 4500 neurons were simulat-

ed with an excitatory/inhibitory neuron ratio of 4:1 on a square

sheet with periodic boundary conditions. Every neuron was

sparsely connected with the rest of the network with a connection

probability of 5%. Synaptic delays were drawn randomly from a

uniform distribution between 0.1 and 5 ms. Initial synaptic

conductances were taken randomly from Gaussian distributions

with means gexc~1nS and ginh~8nS, and standard deviations

equal to a third of their means. To sustain spontaneous activity,

each neuron also received an independent Poisson spike train at a

frequency of 300 Hz, through an excitatory synapse of weight

gext~1nS. Although recurrent connections were uniform, input

connections were arranged in a tonotopic manner, with each

cochleogram cell projecting with excitatory synapses to a fraction

of e~5% of neurons in the network, with a probability following a

Gaussian profile e{d=2s2

(d being the distance between the source

and a target neuron within the network, and s being equal to 0.2

unit). The mean conductances of the external connections were

equal to the recurrent ones, i.e gext~gexc~1ns, and all external

inputs were fixed rather than plastic.

To measure the selectivity of a neuron to the digit stimuli, we

used the F-statistic, commonly used in one-way analysis of

variance (ANOVA). Specifically, to measure the difference

between mean spike counts of each digit, relative to within-digit

variance, we computed

F~
(N{M)

P
i ni( �XX i{ �XX )2

(M{1)(
P

ij Xij{ �XX i)
2

ð16Þ

where Xij is the spike count the neuron produces on the jth

presentation of digit i, �XXi is the mean response to digit i, �XX the

overall mean response, M the number of digits, and N the total

number of stimulus presentations.

To quantify the efficacy of unsupervised learning, we evaluated

the ability of a downstream linear classifier to identify the digit

spoken from the spike counts of each simulated neuron. This

approach therefore evaluates the network’s ability to form a

linearly separable representation of the digit inputs that can be

read out without requiring temporal analysis. Specifically, if A is a

matrix of size U|N containing the mean firing rate of all N cells

to each of the U digit utterances in the training set, and if B is an

‘‘answer’’ matrix of size U|11 with each row consisting of all

zeros except a single 1 indicating the presented digit during this

trial, we used multi-class linear support vector machine [88] to find

a matrix w of size N|11 to predict B from A. Performance was

evaluated by computing Aw on the test set, and classifying each

utterance according to the highest value. The cost parameter c
used for the support vector machine was set to 0.01. We note that

while the SVM was for efficiency trained with a (biologically

unrealistic) quadratic programming algorithm, the same solution

would be found by the perceptron rule [42]. Ridge regression

learning was also tried (data not shown), leading to qualitatively

similar results.

Comparison with other learning rules
Throughout the paper, the rcSTDP rule is implemented as a

normal additive STDP rule combined with the PI mechanism

described for the Convallis rule (Equation 15), in order to ensure

that the same output firing rate is achieved. Optimization of this

rule’s parameters is described in Figure S2. To compare the

Convallis rule with NN-STDP (STDP with interactions only

between neighbouring pairs of spikes [20]) or triplet STDP [21],

we again combined these rules with a PI mechanism to make sure

that they were stable and had the same rate constraint. For the

rule of [23], we did not add the firing rate constraint, as it already

contains a homeostatic mechanism. In all cases, we used the

parameter values in the originally published manuscripts; in the

case of the triplet rule, we used the data obtained from the fit to

visual cortex data.

Simulations of in vitro experiments
For all in vitro simulations (except Figure 6C), we considered

only two neurons with a single connection between them. The

parameters used for the learning rules were the same as in the

learning applications. The initial synaptic strength of the
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connection, if not specified elsewhere or varied, was taken to be

2 nS. All parameters had the same values as in the network

simulations, but since it is assumed that these in vitro protocols are

taking place over a short time scale, the rate constraint mechanism

of the model was turned off. For Figure 6C, we considered a group

of 20 excitatory and 5 inhibitory synapses, connected onto a single

post-synaptic neuron. For each stimulation of the simulated

afferent fibers, every synapse had 50% chance of being active. The

fibers were stimulated with 100 presynaptic pulses at varying

frequencies, as in in vitro experiments [55]. To reproduce the triplet

experiment [21,52], we use a stimulation protocol of 60 triplet of

spikes repeated at 1 Hz. Each triplet consists of two pre and one

post synaptic spikes or two post and one pre-synaptic spikes, as can

be seen in the inset of Figure 6D (see references for more details).

To reproduce the dependance on frequency [26], we used a

protocol as in the original paper: interdigitated burst of 5 spikes

paired with a given dt and frequency repeated 15 times at a

0.1 Hz frequency, thus leading to 75 spikes in total.

Supporting Information

Figure S1 Reset mechanism. In integrate-and-fire neuronal

simulations, the membrane potential is often reset to its resting

value after each spike. Although this might be an appropriate

model of certain neuronal classes, cortical pyramidal cells do not

show this behavior. Instead, pyramidal cells return to a voltage

only just below spike threshold after an action potential is fired,

and frequently exhibit an after-depolarization caused by activation

of dendritic voltage-gated conductances, which is believed to

underlie burst firing [34]. (A) Intracellular recording trace of a L5

pyramidal cell in mouse visual cortex (courtesy of M. Okun). Note

the lack of reset to resting potential after spike firing. (B)

Illustration of membrane potential trace generated in response

to white noise injection by a neuron with hard reset to resting

potential after spike firing. Note the clear difference in reset

behavior to the data in (A), and the lack of burst firing. (C)

Illustration of membrane potential trace generated in response to

the same input, by a neuron with soft reset to 255 mV after spike

firing and ADP (the model used in all simulations). Note the more

realistic spike reset and presence of burst firing.

(EPS)

Figure S2 Calibration of the rcSTDP rule. (A) To obtain

optimal performance with the rcSTDP rule, we performed a

parameter search varying the the rate constraint parameter a and

the STDP learning rate l, initially on a linear scale, for the

wrapped Gaussian stimulus ensemble. Performance was assessed

as the skewness of the final Vm distributions, shown in the

pseudocolor matrix presented. Note the peak for values around

a~10{5 and l~10{4. (B) To gain further accuracy we

performed an additional parameter search fixing a~10{5, with

l now on a log scale. A peak was seen at l~10{4.

(EPS)

Figure S3 Additional details of Convallis performance,
feedforward case. (A) Weight distribution after learning the

speech data. Note that Convallis leads to a highly skewed

distribution with a large mode at 0 and a secondary peak at

larger values, corresponding to a sparse weight matrix consisting of

mainly silent synapses. STDP by contrast leads to a single-peaked

distribution. (B) Convergence analysis. To show that all rules had

converged we plotted the mean-square weight change in weight

between consecutive training iterations. For all rules, the mean

change tended to zero, indicating that weights had converged. (C)

To evaluate whether the Convallis rule had detected true temporal

features, rather than simply power in different frequencies, we

evaluated performance on time-reversed digit stimuli. The

unsupervised representation was trained using forward presenta-

tions only, and spike counts were measured in response to time-

reversed digits. These spike counts were then fed into the SVM

classifier to predict the presented digit. Classification performance

was poorer, even when the SVM was retrained on the spike counts

generated in response to time-reversed digits. This indicates that

the Convallis rule has produced an unsupervised representation of

temporal features in the input stimulus, rather than just frequency

selectivity.

(EPS)

Figure S4 Comparison to alternative learning rules,
feedforward case. In addition to rcSTDP, whose performance

is shown in the main text, we also compared the Convallis rule to

various other learning rules described in the literature, specifically

nearest-neighbor STDP (NN-STDP) [20], triplet STDP [21], and

a rule based on post-synaptic voltage [23]. This figure shows the

same analyses as Figure 4 for these rules. (A) Histogram of

subthreshold potentials for the cell illustrated in Figure 3,

accumulated over all test-set data after learning with the three

alternative plasticity rules. (B) Distribution of skewness for 4500

neurons trained similarly from random initial weights. Note that

skewness after Convallis training is markedly higher than after the

rcTriplet, NN-rcSTDP, or Clopath rules. (C) Mean rate response

of the same example neuron to all digits. Errors bar show s.e.m.

(D) The strength of tuning for each neuron was summarized by an

F-statistic that measured the selectivity of its spike counts for

particular digits (see Materials and Methods). The main graph

shows a histogram of tuning strength across the simulated

population for the 3 learning rules and the raw cochleogram

input, while the inset shows mean and standard error. Again,

Convallis shows greater selectivity. (E) To evaluate the ability of

these rules to perform unsupervised learning, the spike count

responses of up to 4500 cells were used as input to a linear

classifier trained to distinguish digits. (F) Mean classification

performance as a function of the number of unsupervised neurons.

(Errors bars show s.e.m over 10 independent runs of the analysis).

Note that while the alternative rules exhibit better performance

than rate constraint alone, they do not match the Convallis

performance.

(EPS)

Figure S5 additional details of Convallis performance,
recurrent case. (A) Weight distribution after learning the speech

data. As in the feedforward case, the Convallis rule exhibits a

sparse weight distribution while STDP produces a single-peaked

distribution. (B) Convergence analysis showing the mean-square

weight change in weight between consecutive training iterations.

For all rules, the mean change tended to zero, indicating that

weights had converged. (C) To evaluate whether the Convallis rule

had detected true temporal features, rather than simply power in

different frequencies, we evaluated performance on time-reversed

digit stimuli. The unsupervised representation was trained using

forward presentations only, and spike counts were measured in

response to time-reversed digits. These spike counts were then fed

into the SVM classifier to predict the presented digit. Classification

performance was poorer, even when the SVM was retrained on

the spike counts generated in response to time-reversed digits. This

indicates that the Convallis rule has produced an unsupervised

representation of temporal features in the input stimulus.

(EPS)

Figure S6 Comparison to alternative learning rules,
recurrent case. To evaluate how other plasticity rules from the
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literature operated in a recurrent framework, we attempted to

simulate the same plasticity rules as in Figure S4. Although the

triplet and NN-STDP rules (supplemented with the firing rate

constraint) were stable and fast enough to simulate in our

recurrent network of 4500 cells, we were not able to simulate

the rule of [23] as we found large networks implementing this rule

were unstable. (A–C) Distributions of ISI CVs, firing rates, and

pairwise correlation coefficients (averaged over 2000 randomly

chosen pairs of cells) in the network before and after learning with

rcTriplet and NN-rcSTDP rules. Note that none of the learning

rules produce a change in any of these measures of network

dynamics. Error bars show the standard deviation. (D) Distribu-

tion of membrane potential skewness for 200 randomly chosen

cells in the network before or after learning. Note that skewness is

highest with the Convallis rule. (E) Distribution of the tuning

sharpness (as measured by F-statistic) for all neurons before and

after learning. Inset displays the mean of the distributions. Error

bars show standard deviation. (F) Classification performance as a

function of the number of neurons considered by the external

classifier, for various learning rules. Errors bars show s.e.m over 10

different simulations, run independently from different random

seeds. Neither rule gave significantly improved performance over

rate constraint alone (p.0.05).

(EPS)
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