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ABSTRACT: A digital filter derived from linear discriminant
analysis (LDA) is developed for recovering impulse responses
in photon counting from a high speed photodetector (rise time
of ∼1 ns) and applied to remove ringing distortions from
impedance mismatch in multiphoton fluorescence microscopy.
Training of the digital filter was achieved by defining
temporally coincident and noncoincident transients and
identifying the projection within filter-space that best separated
the two classes. Once trained, data analysis by digital filtering
can be performed quickly. Assessment of the reliability of the
approach was performed through comparisons of simulated
voltage transients, in which the ground truth results were known a priori. The LDA filter was also found to recover deconvolved
impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier
tube. The LDA filter was successful in removing these ringing distortions from two-photon excited fluorescence micrographs and
through data simulations was found to extend the dynamic range of photon counting by approximately 3 orders of magnitude
through minimization of detector paralysis.

Photon, ion, and particle counting can offer substantial
signal-to-noise (S/N) improvements in the detection of

weak signals by removing thermal electronic noise, baseline
drift, and noise from variation in detector gain. In the simplest
application, photon counting (n.b., this same analysis also
applies to ion and particle counting) is performed using a
discriminator, in which a count is recorded for each transient
exceeding the discriminator threshold. The upper limit on the
dynamic range in photon counting is dictated by bunching of
photons in time, often described as “paralysis”. Bunching can
introduce two sources of measurement bias. First, two or more
time-coincident photons will still only produce a single count as
measured by a discriminator. Second, the temporal response
function of the detector and electronics imposes a time delay
for the voltage to recover below the discriminator threshold
before an additional count can be recorded.
The first problem of undercounting from time-coincident

multiple-photon events has been explored in several previous
studies. In single-threshold measurements, it has been shown
by several investigators that the bias can be removed by
analyzing the raw measurements in terms of binomial counting
statistics, given that the discriminator has only two possible
outcomes for each laser pulse (no photons are present, or one
or more photons are present). The binomially distributed
measurements can then be related back to the Poisson
distribution to determine the underlying mean of the Poisson,
which is proportional to the unbiased detected intensity. In
recent studies by Kissick et al., an analytical expression was
derived for the uncertainty in the Poisson mean obtained by
binomial counting and used to interpret second harmonic
generation (SHG) measurements generated from a pulsed

laser.1 On the basis of these analytical expressions, Muir et al.
subsequently demonstrated a method of stitching counting and
signal averaging in SHG microscopy measurements for real-
time S/N optimization.2 However, these results are strictly
limited to pulsed excitation measurements, in which the time
delay between laser pulses is significantly longer than the
instrument response time.
The second source of bias from paralysis is from multiple

noncoincident photons falling within the finite rise/fall time of
the detector and electronics (i.e., the impulse response
function), such that the voltage does not recover below the
discriminator threshold prior to the next photon detection
event. The detection of discrete events with a sensor can be
mathematically modeled as a convolution of instantaneous
impulses with the impulse response function, where the
temporal locations of all the underlying impulses are the
parameters of interest.
Several strategies have been adopted to correct for this

second and routinely more insidious source of bias. A common
solution is to reduce the signal level or to use a series of
detectors that detect fractions of the total light intensity to
diminish the occurrence of paralysis,3,4 though diminishing the
observed signal necessarily diminishes the S/N of the
measurement. Other strategies disable signal observation for a
period of time after a successful count to wait out the temporal
response function, though this typically leads to under-
estimation of the true number of counts and limits the speed
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of acquisition.5 The use of multiple detectors, or single
multiplexed detectors, can reduce effects of paralysis and
increases data acquisition times.5−7 However, each detector
adds its own dark current and allows for modest gains in
dynamic range (doubling the number of detectors doubles the
noise from dark counts and yields only a factor of 2 increase in
dynamic range).
Alternative approaches rely on correcting for dead-time and

“pulse pile-up” using analytical models and fitting of
experimental signal outputs, which are computationally
expensive and typically too time-consuming to be performed
in real-time for fast (>MHz count rates) counting applica-
tions.4,8−14The simplest strategies based on nonlinear curve-
fitting, such as are routinely done in spectroscopy and
chromatography, require initial selection of guess values and
multiple iterations to achieve convergence and are not
guaranteed to avoid false minima. However, the greatest
limitation of nonlinear curve fitting is arguably the time
required to perform the analysis. With streaming data rates
corresponding to a new data point every 12.5 ns at the
repetition rate of a conventional ultrafast laser, real-time fitting
for a single channel of data is well beyond the current
capabilities of curve-fitting algorithms. More recently, digital
processing of the time-dependent output was shown to lead to
increased analysis speed for real-time analysis for X-ray photon
counting, made possible by the use of simple algorithms
coupled with relatively long-lived voltage transients (10s to
100s of ns).15−18

Deconvolution of the raw input prior to threshold based
counting has been pursued to a much lesser degree. The
measured transient results from a convolution of the initial
photon absorption event with the impulse response function of
the detector/instrument. If the detector output were a simple
impulse, rather than a rising and falling transient, there would
be no dead-time issues related to overlapping transients.12 For
data initially stored in digital form, deconvolution can in
principle be performed simply by digital filtering with a filter
function representing the inverse of the impulse response
function (often calculated in the Fourier domain). However, in
practice, this simple approach tends to greatly amplify the
noise, often overwhelming relatively weak signals. The noise-
amplification problem can be minimized by using a Wiener
filter (or a variant thereof), but these standard approaches often
suffer from difficulties in handling noise in general, require prior
knowledge of a noise-free impulse response, and are specifically
optimized for normally distributed noise. As a result, the
robustness of the existing techniques is arguably limited in
scope.
In the present work, an alternative approach for deconvo-

lution is proposed and evaluated on the basis of digital filters
derived from LDA. This approach is based on maximizing the
resolution between time-coincident and noncoincident events.
Simulations of the impulse response were performed to assess
the scope of use of the algorithm. The signal and noise are
integrated into the LDA training sets, such that the filters are
inherently optimized to include the impact of the filter on both.
Measurements performed using a set of photomultiplier tubes
for optical detection of continuous wave sources were
performed to test experimentally. A complex impulse response
function was observed and successfully deconvolved. Although
a specific example is provided for photon counting, the
proposed LDA-based digital filtering may serve as a general
approach for deconvolution in other applications as well.

■ THEORETICAL FOUNDATION
Digital filters are widely used in signal processing in either the
time or space domain. In the present work, digital filtering was
performed in the time domain (depicted in Figure 1). Digital

filtering involves a transformation of a signal (blue trace in
Figure 1) through convolution with a digital filter (red trace).
As the filter is translated across the signal, the filtered trace is
generated (green trace).
The digital filter design proposed in this work targets

recovery of a temporally sharp impulse for an arbitrary detector
impulse response function using a digital filter constructed on
the basis of LDA. LDA is a supervised approach for separating
high-dimensional data into distinct classes. In the present
application for digital filtering, the length of the filter, L, defines
the dimensionality of the space. Two classes are defined for
separation: (i) one class in which the voltage transients are
time-coincident with the center of the filter and (ii) another in
which they are noncoincident, either preceding or following by
random time-steps. The coincident training set is generated
from numerous independent measurements of the single-
photon response function (e.g., obtained from the dark counts),
with each measurement corresponding to a single point in the
L-dimensional space of the filter. The noncoincident set was
generated by randomly time-shifting either the same or a new

Figure 1. Graphical depiction of the process of digital filtering through
convolution of the filter and the signal. The digital filter (red) is
translated across the signal trace (blue). The dot product of the filter
and signal replaces the data point in the signal trace that corresponds
to the filter origin (indicated by the arrows), generating the filtered
signal (green).
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coincident data set. An example of this process for simulated
data is shown in Figure 2. Defining the classes in this manner
maximized the resolution between transients initiated at the
filter origin and all other closely neighboring and temporally
overlapping transients. Formally, it is not the resolution itself
that is maximized but rather the closely related value of the
Fisher linear discriminant J, given by eq 1 for a two-class
system.
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In eq 1, J is a constant evaluated for a particular direction ⇀w
within the L-dimensional space of the filter (i.e., a particular
selection of elements). The parameters μc and μn correspond to
the average projected values of the coincident and non-
coincident classes, respectively, along the direction ⇀w . The
variance matrix in the coincident class Sc is given by eq 2, in
which Nc is the number of coincident waveforms used in the
training set, Vci is the ith time-dependent coincident single-

photon response, and Vc is the mean waveform.
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The length L of the waveform spans the temporal range of
the single-photon voltage transient. Using an analogous
definition for the variance in the noncoincident class Sn, the
total within class variance is given by eq 3.
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The vector ⇀*w directly serves as the filter function F to be used
for digital deconvolution of the raw data.
The Fisher discriminant is remarkably similar to the

definition of resolution for two overlapping peaks. Therefore,
the vector F corresponds to the direction in the L-dimensional
space of the filter that provides the greatest experimental
resolution between the coincident and noncoincident classes.

Figure 2. Temporally coincident and noncoincident signals (Top). After linear discriminant analysis, a digital filter is constructed, along with
projections of the temporally coincident and noncoincident signals.
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When the origin of the filter (typically the center) is time-
coincident with the onset of the transient, the scalar output of
the filter is given by the dot product of the filter with the
transient. Analogously, application of the filter function in a
noncoincident position will correspond to a projection of the
noncoincident class. Consequently, convolution of the time-
trace by the digital filter F generated by LDA maximizes the
contrast between coincident and noncoincident events to
optimally recover deconvolved δ-function single pixel maxima
at the location of the transient onsets.
Following digital filtering with the LDA-based filter, photon

counting of the recovered impulse responses was performed by
counting the number of pixels above a selected threshold in the
postfiltered deconvolved time-trace. In practice, high-pass
filtering is also subsequently performed prior to counting to
remove a rolling low-frequency background introduced by the
filter. The rolling features arise as a consequence of the
maximization of the resolution between coincident and
noncoincident events by LDA, rather than a maximization of
the absolute voltage above baseline.

■ METHODS

Simulations with known ground-truth results were performed
to assess the performance of LDA-derived digital filtering
relative to both conventional photon counting and signal
averaging. To produce the training sets, each photon generated
a random peak height to model a log-normal distribution in
gain in the PMT. A mean μL of 7 mV and standard deviation σL
of 4 mV describing the log-normal distribution were selected

on the basis of measured characteristics for PMTs similar to
those used in the present study. The temporal impulse response
was also approximated by a log-normal function. For the
coincident training set, the initial onset of the pulse was
assumed to be at time zero in the center of the filter. The
noncoincident training set was generated by offsetting the
initial onset by normally distributed random shifts Δτ. Each
trial also included addition of random 1/f noise, generated by
Fourier transformation of normally distributed time-trace,
multiplication by (1/( f + b))1/2, in which f is the frequency
and b = 0.005 is a constant describing the time-scale for 1/f
fluctuations, followed by inverse Fourier transformation to
recover a time-trace. Qualitatively similar results were observed
with normally distributed random noise.
In the simulations of the experimental data acquisition, each

time-point contained a Poisson-distributed random number of
photons, where λ was the mean of the Poisson distribution
(typically less than 1). The time-traces also included 1/f noise
calculated identically as the simulated data used to generate the
training sets.
The probability of two or more photons arriving within a

single time-step becomes non-negligible as the mean of the
Poisson distribution approaches unity, which can introduce
additional bias not accounted for directly by deconvolution
alone. The LDA-filtering approach is designed to maximize the
separation between transients produced at separations of more
than one time-step of the digitizer and will therefore not be able
to correct for the recording of a single count from two or more
simultaneous photons. Fortunately, this source of bias can be

Figure 3. Simulated detector data of three measured intensities. The temporal pulse locations are evident in the raw data (red), though a threshold
discrimination technique would not successfully count every pulse. After LDA filtering (blue), a threshold (green) can successfully count every pulse
(purple).
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corrected by connecting the measured counts (distributed
according to a binomial distribution, with only two possible
outcomes) to the underlying number of photons described by a
Poisson distribution. Using algorithms developed previously,1,19

the mean λ and standard deviation σλ of the Poisson
distribution in a given Δt time window are given below,
where p is the mean probability for successful counting and N is
the number of measured time-points used to assess the mean.

λ = − − pln(1 ) (5)
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−
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λ
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For a sufficiently large number of measurements, the
experimental mean of p provides a reasonable estimate for
the true mean of p, from which the mean and standard
deviation of the underlying Poisson distribution can be
determined through eqs 5 and 6.
Two-photon excited ultraviolet fluorescence (TPE-UVF)

images of pure L-tryptophan crystals (Sigma- Aldrich) were
acquired using a custom microscope. Briefly, a Fianium Inc.,
ultrafast fiber laser (1060 nm, 150 fs, 80 MHz) output was
doubled to generate 530 nm, which served as the incident light
source for TPE-UVF excitation. The incident beam was
scanned along the fast axis using a resonant vibrating mirror
(∼4 kHz) and along the slow axis using a galvanometer mirror.
The scanned beam was directed through an inverted Nikon
microscope (TE2000) through telecentric lens pairs and
dichroic mirrors and focused onto the sample using a 10×
objective (Nikon). TPE-UVF signal generated from the sample
was split into its horizontal and vertical components using a
Glan-Taylor polarizer, both of which were detected on two
separate photomultiplier tubes (PMTs) in the reflected
direction. TPE-UVF signal was passed through a filter stack
(SP01-532RS-25 and FF01-440/SP-25 filters Semrock) to
reject the fundamental 530 nm light and pass two-photon
tryptophan emission (∼350 nm). The voltage transients from
the photomultiplier tubes were flash digitized using oscilloscope
cards from AlazarTech (ATS 9462) at 160 MHz, with the laser
providing the master clock to the digitizer cards. To artificially
produce a noisy ringing transient, the oscilloscope cards were
set to an internal impedance of 1 MΩ and the PMT with a
nominal impedance of 50 Ω was connected to the oscilloscope
cards with a 20 m long cable and a 400 Ω resistor in parallel at
the oscilloscope card input. Experimental training sets were
acquired from one highly signal averaged waveform generated
from the impedance mismatched PMT signal with added
normally distributed noise. For the coincident training set, the
initial onset of the pulse was assumed to be at time zero in the
center of the filter with the noncoincident training set
generated by offsetting the initial onset, as described previously
for the simulated data.

■ RESULTS AND DISCUSSION

Simulations were performed to evaluate the characteristics of
the filtering approach. Training sets of 6000 coincident and
6000 noncoincident time-traces were used to generate the
digital filter shown in Figure 2. Three representative images of
each of the training set data are also shown in the figure. The
histogram shows the distribution of values for the dot products
of the training set time-traces with the coincident digital filter,

demonstrating the degree of resolution between the two
classes.
Application of the filter was performed on simulated data

representing a sensor exhibiting an exponential decay temporal
response function (Figure 3). The temporal location of each
pulse is apparent by eye in the simulated raw data, though a
threshold counting technique would not be able to successfully
count the number of pulses for incidences of significant pulse
pileup. After LDA filtering in blue, the temporal location of
each pulse is marked by a large positive transient and can be
threshold counted as represented by the green threshold and
purple count markers.
In this simulated data set, the temporal locations of each

pulse are known a priori, and the quality of the technique can
be assessed as a function of threshold position. The ratio of true
positives vs false positives as the threshold is swept across the
full range of positive values is shown in Figure 4 as a receiver

operating characteristic curve. A data point at the top-left of the
graph represents an optimal measurement, with few false
positives or false negatives. The drop-off in the true positive
rate at higher λ values is consistent with the presence of pulse
pileup, though the algorithm still performs well at high
intensities in which voltage transients are initiated in almost
half the time-points (λ = 0.4).

■ EXPERIMENTAL DEMONSTRATION
An experimental impulse response function was chosen to be
more challenging than a simple log-normal or exponential
decay by inducing substantial ringing in the impulse response.
The load on a photomultiplier tube was terminated with a 400
Ω resister in parallel with an internal 1 MΩ resister of the
oscilloscope card. By using a long transmission cable (20 m), a
series of reflections arose from each transient (Figure 5a). After
generation of the LDA filter (Figure 5b) and LDA filtering the
data (Figure 5c, green trace), a high-pass filter was applied to
adjust the shifted baseline (Figure 5c, blue trace). The temporal
location of the initial impulse was the position of the first and
largest spike in the raw data, which the LDA analysis marked
with a strong positive transient.
The mechanism of action of the digital filter optimized by

LDA to recover an impulse response on just the first voltage
transient of the ringing waveform may not be immediately

Figure 4. Receiver operating characteristic curve for LDA filtered data.
The error rate is relatively low for good threshold settings, even in
situations of high pulse pileup (λ = 0.4).
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obvious. However, we conjecture that the digital filter is
designed to exploit the nonlinearity in the exponentially
decaying peak heights from the multiple transients. If it is
assumed that the peak heights in the transient decay linearly
with time (a reasonable approximation for the later ringing
pulses), then baseline can be recovered by appropriately
rescaling and inverting the later peak. In this way, the higher
intensity peak and the rescaled lower intensity peak will cancel
in the filtered output. Provided the amplitude scales linearly
with time, this same strategy removes all the later-time peaks.
However, the nonlinearity in the exponential decay results in a
greater disparity between the relative peak height of the first
transient and the second compared to all the subsequent
adjacent peaks. Consequently, convolution with the digital filter
retains residual peak height at that position but no others.
The relative count rate (megacounts per second) across

multiple optical intensities for various counting algorithms is
shown in Figure 6, simulated on the basis of the measured
ringing waveform training set as the impulse response function.
LDA filtering substantially improved the accuracy of the counts
when compared to threshold counting the raw data, which
overestimated the counts due to the ringing present in the
response function. In addition to over counting, the use of the
unfiltered data also introduced errors in the photon arrival

times from the recurring pulses. Imposing a dead-time delay to
allow the impulse response function to return to baseline
(paralysis) recovered the true count rate at low intensities.
However, many counts were missed at higher intensities as the
probability of photons originating in the dead-time delays
became significant. For comparison, application of the same
data with the LDA filter extended the linear dynamic range of

Figure 5. Deconvolution of the experimentally measured waveform with ringing to recover an impulse response; (a) representative waveform
produced upon single photon absorption, (b) filter produced by LDA in order to perform the deconvolution, and (c) representative measurements
prior to filtering, filtering with the LDA-based filter, and filtering with both an LDA and high-pass (HP) filter.

Figure 6. Comparison of different count methods for ringing data.
LDA filtering recovered a better estimator for the counting rate
compared to counting the raw data (high-pass filter alone) or counting
with a timeout (paralysis) for the response function.
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the count rate by approximately 3 orders of magnitude
compared to the paralysis algorithm.
TPE-UVF micrographs of tryptophan crystals are shown in

Figure 7. The collected TPE-UVF light was split using a
polarizing beamsplitter into two channels, one of which was
terminated in 50 Ω as a reference and the other using the same
400 Ω termination design resulting in ringing. The 400 Ω
channel exhibited both fast ringing and a slow drift in baseline
due to capacitive charging. The drifting baseline substantially
complicated the selection of a single appropriate counting
threshold, resulting in highly distorted images. Application of a
high-pass digital filter removed complications from baseline
drift but still retained the multiple pulse ringing artifacts. From
the raw images as well as the line-traces, it is clear that the
artifacts produced both qualitative and quantitative errors in the
measured intensity. The multiple pulses produced blurring
from spreading counts across multiple pixels. Furthermore, the
intensity measured in total counts is significantly biased on the
basis of comparisons with the LDA-filtered image and the
orthogonally polarized detection channel.
Interestingly, the output of the LDA filter consistently

produced a rolling background drift over distances comparable
to the length of the filter function. The origin of this baseline
drift can be understood in hindsight by considering the nature
of the LDA algorithm, in which the filter is designed solely to
maximize the separation between coincident and noncoincident

classes. The baseline drift is irrelevant to the algorithm and,
therefore, is not actively corrected by the LDA filter itself.
Passing the filtered data through a second high-pass filter
removed the baseline offset to make the data more amenable to
photon counting based on a simple threshold. Because
convolution is associative, the LDA and high-pass filter can
also be combined into a single digital filter by convolving the
two filters with each other to further reduce computational
costs, as was done prior to analysis of the images shown in
Figure 7.
Not surprisingly, the act of deconvolution resulted in a

reduction in the overall S/N ratio of the raw measurements,
clearly indicated in the simulations shown in Figure 3.
Deconvolution retains only the high frequency content within
the signal capable of recovering an impulse response, which
explains the significant reduction in the integrated area under
each transient peak. In the analysis of simulated data, the
average S/N (defined here as the peak voltage divided by the
standard deviation of the background) dropped from 65
initially to 22 following deconvolution. In contrast, only a small
drop in S/N was observed in the experimental measurements of
the ringing waveform (S/N = 29 for the left-most peak in
Figure 5 in the original data to S/N = 27 post deconvolution),
presumably by nature of the greater relative signal strength at
high frequencies.

Figure 7. Two-photon excited fluorescence of tryptophan powder acquired by photon counting. (A) Micrograph acquired with an impedance-
matched transmission line. Inset raw data trace. (B) Attempted photon counting from the raw impedance mismatched configuration. Inset raw data
trace, with baseline drift complicating photon counting with a set discriminator threshold. (C) Photon counting of the ringing waveform following
high-pass filtering to remove artifacts from baseline drift (inset data trace after high-pass filtering), and (D) photon counting following LDA-based
deconvolution of the raw time-dependent data (inset data trace after high-pass filtering and LDA filtering).
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Fortunately, in photon counting applications such as those
considered herein, both the random noise in the baseline and
noise from variance in the peak heights of the transients are
naturally removed through the counting process. As a result, no
significant loss in S/N in the measured counts is expected
following deconvolution of photon/ion/electron counting
measurements, provided the raw S/N of the measurements is
sufficient to recover deconvolved transients still rising above
threshold. In fact, significant improvement in the confidence of
photon arrival times was observed from analysis of the
deconvolved simulated data, as well as increased linear dynamic
range through the removal of counting dead-time.
Along this same argument, reliable recovery of an impulse

response is only expected for waveforms retaining sufficient
signal content at the sampling frequency. If the impulse
response removes all signal content at the highest accessible
frequency, only noise is retained following deconvolution.
Consequently, balance should be struck between the selection
of the sampling frequency versus the S/N required for reliable
photon counting postdeconvolution. Reducing the sampling
frequency can potentially increase the probability of multiple
photons initiated in the same sampling period. However, bias
associated with such occurrences can be removed by using
binomial photon counting. Because of the close relationship
between the definition of the resolution and the Fisher
discriminant, the value of the scalar J (⇀*w ) from combining
eqs 1 and 4 may potentially be used directly to assess the
sampling frequency over which reliable deconvolution may be
reasonably expected.
The recovery of a deconvolved time-trace by LDA-based

digital filtering was compared to two alternative strategies:
nonlinear curve fitting and Richardson-Lucy digital deconvolu-
tion. Nonlinear peak-fitting of the data using standard
approaches from spectroscopy and chromatography can
suppress the background noise and provide the origins of
overlapping peaks more accurately than digital deconvolution in
most instances. However, peak fitting is an iterative procedure
requiring initial guess values, complicating application for
streaming data analysis. Furthermore, peak-fitting requires the a
priori assumption of a known functional form for the peaks.
Preliminary estimates based on optimized algorithms in
MatLab suggest fitting times of 1.7 s per photon event for
the fitting of a single ringing waveform, corresponding to
approximately 5 days to process each frame in a video rate
acquisition with a mean of 0.05 photons per pulse. Alternative
digital deconvolution approaches were also assessed, on the
basis of the iterative Richardson-Lucy deconvolution algorithm.
As with many deconvolution approaches, the Richardson-Lucy
algorithm requires a priori determination of the noise free
impulse function. In general, deconvolution with the
Richardson-Lucy approach recovered impulse responses with
comparable or higher S/N than the LDA-based approach but at
the expense of considerable additional computational time.
Preliminary assessments using Matlab built-in algorithms
required between 10 and 100 μs per data point on average to
perform the deconvolution, corresponding to a little more than
8 s to roughly a minute per frame. While reasonable for a single
frame of acquired data, the need for at least 8 s to perform the
data analysis represents a significant gap to bridge relative to
the 15 fps data acquisition rate. From this analysis, the long
times required for nonlinear curve fitting and for iterative
deconvolution using the Richardson-Lucy algorithm are

incompatible with real-time data analysis at the experimental
160 MHz repetition rate for each channel.
Clearly, the improvements afforded by deconvolution must

also be weighed against the computational costs associated with
the data processing based on the particular application. For
real-time data processing at the high data throughput rates used
in this study, digital filtering arguably represents the fastest
approach for performing deconvolution in terms of computa-
tional cost. Direct digital filtering for deconvolution can be
performed in as little as 2 clock cycles of a field programmable
gate array (FPGA) (when parallelized).20 FPGA clock speeds in
the hundreds of MHz are currently available, allowing direct
real-time analysis at data throughput rates exceeding the 160
MHz acquisition rates of the present study. However, there is
still an initial expense associated with the design of the
appropriate digital filter. The LDA approach described herein
requires significant training to reduce the noise inherent in the
filter function. Provided the impulse response function does not
change substantially over the time-course of a measurement as
in the photon counting applications described herein, this initial
investment may be easily justified by enabling subsequent high
speed data analysis through simple digital filtering.
It is significant that one LDA algorithm performed

reasonably well for two very different impulse response
functions. No explicit models were required for treating the
measurement noise or the variance in signal intensities. All of
these effects were implicitly incorporated into the algorithm
through the training set used to produce the LDA filters.
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