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Abstract: In this contribution, a correlative confocal Raman and scanning probe microscopy approach
was implemented to find a relation between the composition, lithiation state, and functional
electrochemical response in individual micro-scale particles of a LiMn2O4 spinel in a commercial Li
battery cathode. Electrochemical strain microscopy (ESM) was implemented both at a low-frequency
(3.5 kHz) and in a high-frequency range of excitation (above 400 kHz). It was shown that the
high-frequency ESM has a significant cross-talk with topography due to a tip-sample electrostatic
interaction, while the low-frequency ESM yields a response correlated with distributions of Li
ions and electrochemically inactive phases revealed by the confocal Raman microscopy. Parasitic
contributions into the electromechanical response from the local Joule heating and flexoelectric effect
were considered as well and found to be negligible. It was concluded that the low-frequency ESM
response directly corresponds to the confocal Raman microscopy data. The analysis implemented in
this work is an important step towards the quantitative measurement of diffusion coefficients and
ion concentration via strain-based scanning probe microscopy methods in a wide range of ionically
active materials.

Keywords: low-frequency electrochemical strain microscopy; confocal Raman microscopy; scanning
probe microscopy; lithium manganate; LiMn2O4; quantitative electrochemical strain microscopy;
batteries; cathodes

1. Introduction

Li-ion accumulators (LIA) are one of the important factors for the development of systems
for energy storage, transport, and mobile electronics. The worldwide production of LIA is rapidly
growing [1,2]. Functional investigations of the LIA materials by microscopic methods play a key role for
understanding of the LIA due to their ability to study electrochemical processes occurring in batteries
at the micro- and nanoscale. Local studies of the materials for the electrochemical power sources using
scanning probe microscopy (SPM) started simultaneously with the appearance of the first commercial
scanning probe microscopes [3]. At the beginning, topography change under the macroscopic actions
(cycling, intercalation, deintercalation, etc.) and local action of the voltage applied to the atomic
force microscopy (AFM) tip were used by researchers [3,4]. Later, methods allowing inspection of
ionic conductivity at the nanoscale, so-called scanning electrochemical microscopy (SECM) [3,5],
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were developed, which are based on direct measurements of ion interactions with a sample in an
electrolyte media across the sample area. However, these methods require complicated sample
preparation, specialized cells and probes, as well as a high homogeneity of the surface, and need to be
implemented in a liquid electrolyte media. This makes their usage complicated for implementation in
many practical electrochemical systems [5].

Balke with co-authors suggested an alternative approach, so-called Electrochemical Strain
Microscopy (ESM) [6,7], based on registration of local strain in a material appearing as a result
of application of a DC and/or AC voltage with conventional silicon AFM probes with a conductive
coating [8]. The strain is believed to be caused by the Vegard expansion induced by the local change of
the ion concentration [9,10]. The corresponding response was observed in a wide range of ionically
active materials, such as lithium battery materials: lithium manganites [11] and cobaltites [7,12],
amorphous silicon (used as an anode material in lithium-ion batteries) [6], nanocrystalline LiFePO4 [13],
a high-temperature ionic conductor cerium oxide in the form of thin films [14,15] and bulk ceramics [16],
lithium manganate extracted from commercial lithium batteries [17,18], solid state electrolytes [19],
and even organic transistors [20]. A special case proving the possibility to induce large rearrangements
of ions under the action of the tip-induced electric field is the formation of metal islands on the surface
of some Li- and Ag-conducting glasses [21,22].

Nevertheless, in most of the cases, the nature of the ESM response is still under discussion
because of a variety of other parasitic processes accompanying the electromechanical strain in the
voltage modulated AFM measurements. Most of the parasitic contribution are associated with the
application of a DC voltage, such as charge injection as well as local electrochemical reactions and phase
transitions [18,23]. Recently, Seol et al. demonstrated an alternative approach based on implementation
of the ESM without application of a DC bias in a low-frequency AC range in Li-ion conductive
glass ceramics [24]. Later, our group developed a theoretical basis for a quantitative ESM in mixed
ionic-electronic conductors and quantitatively evaluated local diffusion coefficients in commercial
battery cathodes [25].

However, some parasitic contributions can take place even in the case when only an AC voltage is
used in the measurements. For example, the local electrostatic force was found to play a dominating
role in the ESM in the on-resonance ESM measurements [26]. Another possibility is the local Joule
heating of a sample occurring in a mixed electronic-ionic conductor with intense electronic current
flows [27,28]. Moreover, an ESM response can occur together with different physical phenomena taking
place simultaneously. For example, an AFM probe can respond to an electrostatic force modulated
by ionic motion in a manner similar to that observed in the electrostatic force microscopy in Li ionic
conductors [29], or variations of the ion concentration can be induced by local heating, such as in the
scanning thermo-ionic microscopy [28].

Thus, the knowledge of the local ionic and electronic transport is incomplete without
comprehensive studies of samples with methods of the microscopic local structural analysis together
with the scanning probe microscopy. The present work fills this gap by employing correlated
ESM, conductive atomic force microscopy (C-AFM), and confocal Raman microscopy, which allows
obtaining complementary images of the structural changes, phase composition, and degree of
lithiathion/delithiation together with functional properties, such as electronic conductivity and
electrochemical strain response. Based on this approach, different parasitic responses in the scanning
probe measurements were systematically separated and analyzed. Correlations between material
states, such as parasitic phases and Li ion concentration in LiMn2O4 cathodes, were evaluated from
the ESM data.

2. Materials and Methods

A Li-battery cathode (positive electrode) was investigated in our experiments. The cathode
sample consisted of Li0.61Mn2O4 (LMO) active particles embedded in a carbon binder mixed with
poly(vinylidene fluoride) (PVDF). The particles have a cubic spinel lattice structure with a nominal
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lattice parameter of 0.809 nm as was determined from X-ray diffraction measurements of identical
samples in [30,31]. The average concentration of Li ions can be estimated from these data to be about
1.15 × 1027 m−3. The LMO cathode was prepared and tested in an electrochemical cylindrical cell at
Robert Bosch GmbH (Gerlingen, Germany). It was cycled against graphite anodes at a 1 C-rate from
2.5 V to 4.2 V three times with an 1 C charge rate and 1 C discharge rate. The cells were opened in an
argon-filled glove box. The cathode, separator, and anode were uncoiled and separated from each
other. Pieces of the cathode on the current collector were cut and washed in a dimethyl carbonate
solution in order to remove the electrolyte. After that, samples were taken out of the glove box and
dried. Then, cathodes were thoroughly polished by step-by-step decreasing the polishing abrasive grit
size with a finish by the stress-free silica fine polishing. As the last step, the sample surface was treated
by Ar plasma to thin and possibly remove the damaged surface layer. A more detailed procedure of
sample preparation can be found elsewhere [17,18].

Confocal Raman microscopy was carried out using a confocal Raman microscope Alpha 300
AR (WiTec GmbH, Ulm, Germany). A 488 nm-wavelength solid state laser together with an 1800
lines-per-mm diffraction grating was used for the spectroscopic measurements. The laser beam was
focused on a cathode particle into a 260 nm-diameter laser spot using a 100×, 0.75 NA objective.
Control of the particle heating under the focused laser light was done by carefully controlling the
Raman spectra stability. The Raman signal was collected at each scanning point for 25 s. The obtained
spectra were fitted by superpositions of Lorentzian functions. Positions and intensity of individual
peaks determined after the fitting were plotted as pseudo-color maps with the help of the Gwyddion
software (Department of Nanometrology, 2.53, Brno, Czech Republic) following a procedure described
in our earlier publication [32].

SPM was carried out with an MFP-3D (Oxford Instruments, Abingdon, UK) and an NTEGRA Aura
(NT-MDT Spectral Instruments, Zelenograd, Russia) scanning probe microscopes. ESM measurements
were performed with the MFP-3D SPM in a closed cell under flow of dry nitrogen. HR_NC
(37 N/m spring constant), HA_NC, (11 N/m spring constant) and HA_FM (3.5 N/m spring constant)
W2C-coated probes (ScanSens GmbH, Hamburg, Germany) were used for the measurements. The ESM
measurements were made in low- and high-frequency ranges. The low-frequency ESM measurements
were carried out at a frequency of 3.5 kHz in the single-frequency mode. The high-frequency ESM was
conducted at a frequency of the first flexural resonance mode of the cantilever probe (400–2000 kHz) to
utilize the resonance amplification. The resonance tracking was accomplished via implementing the
dual AC resonance tracking (DART) capability of the MFP-3D microscope [33]. A 5 kHz to 20 kHz-wide
frequency window was used in the DART measurements with an AC voltage amplitude from 10 V to
20 V applied to the SPM probe. A 1 ms to 30 ms time constant was used to optimize the scan time and
signal-to-noise ratio.

Probe tip displacements in the electromechanical (EM) SPM measurements were determined
following the method described in [34,35]. Calibration of the probe tip displacements was made based
on the quasi-static force-distance curves. The actual on-resonance values of the cantilever bending
in the DART mode were determined from the measured amplitudes following Gannepalli et al. [33].
The obtained values were divided by the corresponding quality factor of the contact resonance and
the resonance mode shape factor [34]. The shape factor and contact stiffness were calculated using
a home-made MATLAB program (2018a, MathWorks, Natick, MA, USA) based on the measured
contact and free resonance frequency values according to procedure described in [34,35]. Parameters
of the probes as well as determined contact stiffness and shape factors are summarized in Appendix A
(Table A1). The resonance frequency of the first flexural contact mode for the 3.5 N/m probe
was determined using the ESM response, while for the 11 N/m and 37 N/m probes, auxiliary
piezo-transducer-induced sample vibrations were used to excite the probe oscillations and to measure
the contact resonance peaks.

C-AFM measurements were performed on the NTEGRA Aura SPM under vacuum at a pressure
of about 10−3 Torr. HA_NC W2C coated cantilevers (Scansens) with a spring constant of about 11 N/m
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were used for the measurements. Local current-voltage (I−V) curves were acquired by application of
triangle-shape voltage waves with an 8 V amplitude and a 2 s period. The I−V curve measurements
were carried out over a matrix of points across the active particle surface, and the C-AFM maps were
constructed using values of current at a selected positive or negative bias. Fitting of the I−V curves
was made with a home-made Python program. The parameters of the fittings were extracted and
plotted as pseudo-color maps with the help of the Gwyddion software.

Surface potential measurements were made with the MFP-3D SPM using the amplitude-modulated
Kelvin probe force microscopy (KPFM) mode with a 30 nm tip-surface distance and a 0.5 V AC voltage
applied to the tip.

3. Results and Discussion

3.1. Confocal Raman Microscopy

As the first step, a number of LiMn2O4 particles were inspected with complimentary AFM and
confocal Raman microscopy. The measurements were conducted at different spots across the cathode
sample. An AFM topography image of a typical particle is presented in Figure 1a. According to our
previous studies, a few peaks of the Raman spectrum can be used to determine the lithiathion state
and phase composition of LMO [32]. At a nominal composition Li0.61Mn2O4, Raman spectra consist
of 5 peaks: 310 cm−1, 490 cm−1, and 630 cm−1 related to the F2 lattice vibrational modes and peaks
at 565 cm−1 and 592 cm−1 related to the A1 modes [32]. Details of the Raman spectra are discussed
in [32]. Here, to construct confocal Raman maps, the A1 peak at 592 ± 4 cm−1, which indicates the
local lithiation state, was used (Figure 1b) as well as the peak at 660 ± 3 cm−1 associated with the A1g

mode of Mn3O4 (Figure 1b). A higher value of the Raman shift of the A1 peak of LMO corresponds to
a higher lithiation degree. From the map in Figure 1c, it is evident that the lithiation degree gradually
increases towards the grain boundaries, while the center of the particle is slightly less lithiated. At the
same time, the strong A1g peak at 660 cm−1 is indicative of the Mn3O4 phase. The Mn3O4 phase
was observed mainly in the vicinity of the particle-binder interface, where it forms distinct clusters
(Figure 1d). This behavior is expected due to the Mn dissolution in the electrolyte during cycling (the
cathodes were cycled 3 times before delithiation) and supposed to be a key factor of the electrode
capacity degradation [36].
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to 14 pm with Vac = 10 V. The EM response in the Li-ion conductors that are nominally not EM-active, 
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Figure 1. Complimentary atomic force microscopy (AFM) and micro-Raman spectroscopy of an active
ionic particle: (a) AFM topography image of the area mapped with the micro-Raman spectroscopy.
(b) Averaged Raman spectra in the Li0.6Mn2O4 and Mn3O4 phases from the blue and red regions,
respectively, of the map in panel (d). (c) Distribution of the A1 Raman peak shift corresponding to the
local lithiation state. (d) Distribution of the A1g peak intensity reflecting aggregation of the Mn3O4

phase. Signal histograms are displayed on the right from the color scalebars of the corresponding
images. The dashed line in (c) indicates the line used to extract the profile of the Raman peak shift
displayed in Figure 5a.

3.2. Low-Frequency Electrochemical Strain Microscopy

To inspect distributions of the Li-ion concentration and diffusivity, we used the low-frequency
ESM (LF ESM). The 3.5 kHz ESM images in Figure 2a–c reveal variations of both amplitude and phase
of the EM response across the particle. As seen in Figure 2b, the amplitude varies from about 12 pm to
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14 pm with Vac = 10 V. The EM response in the Li-ion conductors that are nominally not EM-active,
like LMO, is attributed to the local alterations of the Li ion concentration [7,37]. An increase of ion
concentration in the vicinity of an SPM tip results in a local volume expansion, the so-called Vegard
strain [7]. Application of a DC voltage to the SPM tip leads to a local Li electro-migration with Li
intercalation or deintercalation, depending on the polarity of the applied voltage, while an AC voltage
induces a reciprocating electro-migration of Li ions [25]. A large enough DC electric field causes a
topographic change, while an AC voltage induces surface vibration at the corresponding frequency.
The amplitude of the AC-induced surface displacement usually lies in the pm range, which is within
the range of the SPM vertical resolution [25,38].
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Figure 2. ESM in the active ionic particle shown in Figure 1. Three cantilever probes with different
stiffness (denoted on the left side of the figure) were used to obtain the images. The corresponding
contact stiffness is shown on the right side of the figure. Images in one row were obtained simultaneously
with one probe. (a) Topography, (b) amplitude, and (c) phase measured with the 37 N/m cantilever
(Vac = 10 V) in the 3.5 kHz LF ESM. (d) Dual AC resonance tracking (DART) resonance frequency,
(e) amplitude, and (f) phase measured with the 11 N/m cantilever (Vac = 20 V). (g) DART resonance
frequency, (h) amplitude, and (i) phase measured with the 3.5 N/m cantilever (Vac = 10 V). The signal
histograms are displayed on the right from the color scalebars of the corresponding images. The dashed
line in (b) indicates the line used to extract the profile of the ESM amplitude displayed in Figure 5a.

Nevertheless, the level of the EM response during the LF ESM measurements is significantly
lower than a typical piezoresponse signal from a piezo-electric [39,40]. Therefore, it can be comparable
to parasitic signals of different origins [40]. Hence, before analysis of the LF ESM maps, we estimate
possible contributions from parasitic effects.

The strongest parasitic contributions discussed in literature are the converse flexoelectric effect [41],
electrostatic tip-surface interaction [42], and local Joule heating in the contact area [27]. The converse
flexoelectric effect induces surface displacements existing in every dielectric material due to polarization
in a stress gradient [41]. In our experiments, the measured ESM response was found to be independent
of the force applied to the probe, and, based on the analysis in [34], the contribution due to the
flexoelectric effect can be excluded. Further, our samples are mixed ionic-electronic conductors, and,
thus, the tip-surface interface is non-blocking for transport of electrons and blocking for ions. Hence,
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both the electrostatic force and local Joule heating are expected to contribute to the electromechanical
response. We discuss them in detail below.

3.3. Parasitic Contributions to the ESM Response

3.3.1. Electrostatic Tip-Surface Interaction

The electrostatic tip-surface interaction associated with a non-zero sample surface potential results
in a tip response at the frequency of the applied AC voltage, which can be expressed as [42]:

Sω =
1
k∗

C′ ·UspUac, (1)

where k* is the tip-sample contact stiffness, C′ is a coefficient depending on the tip-sample system
geometry and electrical properties of the sample, and Usp is a surface potential. We note that the
response due to this mechanism is frequency-independent.

In order to clarify the role of the electrostatic force in the observed ESM contrast, we performed
ESM measurements at a higher frequency. Since the electrostatic response is expected to be independent
of frequency while the response due the Vegard expansion drops with increasing frequency as f−1/3 [25],
the increase of the measurement frequency effectively eliminates the ESM contrast from the images.
To further increase the signal from the electrostatic tip-surface interaction, experiments can be performed
at a smaller tip-sample contact stiffness k* (Equation (1)).

The high-frequency ESM was carried out in the DART mode where resonance amplification is used
for sensitivity enhancement. It must be noted that no EM signal was found in the high-frequency range
with the 37 N/m-stiff cantilever (3890 N/m contact stiffness). Some measurable response can be observed
only with softer cantilevers with a 11 N/m spring constant (910 N/m contact stiffness) as displayed
in Figure 2d–f. As seen, application of an AC voltage as high as 10 V in amplitude at a frequency of
about 1 MHz does not result in any significant response (Figure 2e). Indeed, the corresponding tip
displacement amplitude was below 0.01 pm/V. Thus, we further inspected the sample with an even
softer probe with a spring constant of 3.5 N/m at a 620 N/m contact stiffness (Figure 2g–i). The EM
measurements with the softer probe at about 440 kHz clearly show distribution of amplitude and phase
across the particle surface (Figure 2g,h). However, the EM image contrast in this experiment is mainly
due to a cross-talk with sample topography and significantly differs from that in the low-frequency
ESM images. These observations point to different mechanisms of EM response at the low and high
frequencies. The EM probe tip displacement measured at the high frequency is about 0.1 pm/V.
We performed numerical calculations of the electrostatic force acting onto the AFM tip employing
an ‘AC–DC’ module of the COMSOL Multiphysics v.5.3a (COMSOL Inc., Stockholm, Sweden) finite
element simulations package (Appendix B, Figure A1). The calculated result was applied to calculate
the tip displacements caused by the electrostatic force. The obtained value of 0.1 pm/V is in a close
match with the high-frequency experimental result.

Assuming a dominant electrostatic response with the 3.5 N/m probe, we can determine the
strength of the electrostatic tip-surface interaction from Equation (2) and apply the result to the
low-frequency experiments with the 37 N/m probe by substitution of the corresponding contact
stiffness, k*, in Equation (2). This estimate yields around 0.01 pm/V, that is, significantly less than
the obtained displacement values of ~1.3 pm/V for the 37 N/m-stiff probe and near the technique
sensitivity. This clearly points to a negligible contribution from electrostatic force in the LF ESM data
in Figure 2a–c.

3.3.2. Local Joule Heating

Next, we turn to consideration of the Joule heating due to electric current flow in the tip-sample
contact area and its contribution to the LF ESM response in our experiments. Local Joule heating in a
tip-surface contact leads to a thermal expansion of the sample, which results in corresponding surface
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displacements. If the tip-sample electric conduction is ohmic, a mechanical response of the AFM probe
can be detected only at the second harmonic of the applied AC voltage [27,28]. However, situation
becomes different if the I−V characteristic is non-linear and is not perfectly anti-symmetric in respect
to the applied voltage. The general equation for the time-dependent electromechanical response to the
applied AC voltage due to the Joule heating with a non-linear I−V characteristic can be expressed as:

S(t) = βJP(t) = βJI(U(t)) ·U(t), (2)

where βJ is a Joule heat transduction coefficient, i.e., a factor describing conversion of the Joule heat
into the mechanical displacement. Generally, this factor is frequency-dependent. To find the response
at the n-th harmonic of the applied AC voltage U(t) = Uac ·Cos(2π f t), the n-th coefficient of the cosine
Fourier series expansion of the displacement S(t) should be calculated:

Sn = 4 f

1/(2 f )∫
0

S(t)Cos(2πn f t)dt. (3)

We used I−V curve mapping to evaluate the electronic current across the particle surface (Figure 3).
To this aim, I−V curves were acquired at every pixel by moving the probe from pixel to pixel across
the particle. A bias voltage in these experiments was applied to the probe. A typical I−V curve is
presented in Figure 3b. Current maps obtained at fixed bias voltages of ±3 V DC are presented in
Figure 3c,d. It is seen that the current weakly varies across the surface more or less correlating with
topography (Figure 3a–c). Some non-topographic features in the image contrast can be associated
with redistribution of lithium ions by the electric field of the probe. The obtained I−V curves are
non-linear and asymmetric (Figure 3b). The current is usually larger at a positive bias than at the
negative bias of the same value (Figure 3c,d). The asymmetry of the I−V curves can be traced to
changes of the material conductivity, which is a function of Li-ion concentration [43]. Application of a
nominally small bias voltage to an AFM tip induced a quite high local electric field (see Appendix B).
The field value is above 10−7 V/m, that is, high enough for electron and hole injection into a sample [44].
The injection of additional charge carriers in the material leads to a space charge limited electronic
transport (space-charge-limited current, SCLC) [44–46].
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Figure 3. Analysis of local I−V curves and electric current distribution across the active ionic particle.
(a) Differential topography (deflection error signal). The dashed line shows the 5.5 µm × 5.5 µm area
where the I−V curve mapping was performed. (b) Typical I−V curve (circles) with a fit by Equation (4)
(solid line). (c) Current distribution map for Vdc = −3 V. (d) Current distribution map for Vdc = +3 V.
Maps of parameters A and n found by fitting local I−V curves by Equation (4): (e) n, (f) A−, (g) A+,
(h) A+/A−. Black areas in (e–h) are regions inside the binder that do not show the typical I−V curve
shape. For the images in (c–h), corresponding signal histograms are displayed on the right from the
color scalebars.
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For the purpose of a simplified analysis of the EM response here, we assume that the I−V curve
shape can be described by the SCLC model [44–46]:

Isclc(t) = A± ·Un, (4)

where U is an applied DC voltage, n is a SCLC exponent, which can vary between 2 and 4 depending
on the properties of charge traps in the current conducting material, and A± are the SCLC coefficients
generally assuming different values for positive and negative U. From Figure 3b, it is clearly seen
that the I−V curve is well fitted by Equation (4), thereby proving applicability of the SCLC model.
Generally, values of n are different also for the positive and negative bias due to differences in injection
of electrons and holes into the material. The difference in n was found to be of a minor importance in
our experiments (Figure 3b) and was neglected in the subsequent consideration.

The I−V curves obtained at each pixel were fitted by Equation (4) with A± and n being fitting
parameters; the values of n were set to be equal for the positive and negative branches of the I−V
curves. After that, the values of A± and n were plotted as separate maps, and the maps are displayed
in Figure 3e–g. As seen, the exponent n varies between 2 and 4, which is in line with the SCLC
model, while the average values of the A± coefficients are different by a factor not exceeding 2 for the
positive and negative branches (Figure 3h). This fact has an important consequence for the possible
heating-induced EM response. Indeed, in the absence of a DC voltage offset in the AC measurements
and with a linear I−V dependence, the dissipation of the Joule power, P, must result in a temperature
oscillation and a corresponding sample expansion, S, only at the second harmonic of the applied
AC voltage because S ∼ P ∼ U2

ac(Cos(2π f t))2 (Equation (2)), that is, the first harmonic signal must
be zero. However, with a non-linear I−V curve, the situation can be different. An example of the
AC-voltage-induced heat generation as a function of time for different values of the parameters A±

with n = 2.5 in Equation (4) are represented in Appendix C (Figure A2). It is clear from the plots that
only asymmetric I-V dependences can be a source of a first harmonic EM response. Calculations with
use of Equation (3) show that the amplitude of the Joule power oscillations at the first harmonic for our
maximal I−V curve asymmetry (A+/A− = 2) is about 50% of that at the second harmonic.

In order to estimate the value of the EM response due to the local heating, we performed
FE numerical simulations of the Joule heat generation and thermal expansion with use of ‘Joule
heating’ module of the COMSOL Multiphysics v.5.3a finite element simulations package (Appendix D,
Figure A3). The approximation of an Ohmic contact was used in the FE model. The frequency of the
AC current was half of the experimental one, and the current amplitude and material conductivity
were adjusted to produce the first harmonic dissipated power oscillations calculated with Equation (3)
(applied to the power) for the maximal asymmetry of the experimental I−V curves. A surface
displacement amplitude of about 0.01 pm/V was obtained in the modelling, which is significantly less
than the measured LF ESM response.

3.4. Relationship between Electrochemical Strain, Composition, and Lithiation State

Summarizing the previous discussion, we conclude that the LF ESM measurements performed by
the stiff cantilevers are free from parasitic responses and, therefore, they can be used for qualitative
comparison with the confocal Raman microscopy data. The contrast correlation between the images
obtained with the two techniques (Figures 1c,d and 2b,c) was found to be imperfect, but this is expected
due to a significantly different in-depth sensitivity of the Raman spectroscopy and SPM measurements.
The penetration of the laser light is about 300 nm, while the in-depth sensitivity of the SPM is a few
tip-sample contact radii, that is <50 nm. Moreover, the penetration of the electric field from the AFM
tip is limited due to a voltage drop across the low-conductivity surface layer [25]. Nevertheless, some
distinguishable similarity of the images can be found.

Surprisingly, in the area with the segregated Mn3O4 phase, the ESM signal is larger in comparison
with the rest of the particle. In turn, the EM signal outside the particle, i.e., from the binder composed
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of the PVDF mixed with carbon black is shifted in phase by 180 degrees in comparison with the
signal from the active particle (Figures 2c and 4a,b). At the same time, the measurements of the
surface potential (not shown) revealed a uniform surface potential distribution inside and outside
the particle area with an average value close to –160 mV. Thus, the 180-degree phase shift across the
particle-binder interface (Figure 4a,b) cannot be caused by a surface potential change and associated
with the electrostatic tip-surface interaction and must be ascribed to a change of the EM response
mechanism. We interpret this as a possible indication of a piezoresponse from the β-phase of the PVDF,
which has a negative electrostriction coefficient [16].
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Figure 4. Analysis of the LF ESM signal phase in the active ionic particle. (a) LF ESM phase; the inset
shows the line profile of the image along the dashed line. (b) Histogram of the image in panel (a);
average EM response amplitudes corresponding to the histogram peaks are indicated near the peaks.
(c) Local histograms for the signal in the image in (a) from the areas marked in (a) by the circles with
corresponding colors.

The ESM phase signal in the area with the segregated Mn3O4 phase is slightly noisier (compare
the areas indicated in Figure 4a by circles). This fact is validated by different widths of the signal
histograms displayed in Figure 4c for the indicated areas of the image. To interpret this observation,
we note that Mn3O4 is expected to have a lower Li diffusion coefficient in comparison to LMO [36].
However, a careful analysis of the Raman spectra allows us to identify the LMO peaks even in the areas
with the Mn3O4 segregation (Figure 1b). The corresponding shift of the A1g peak around 660 cm−1 in
clusters containing Mn3O4 was 1–2 cm−1 greater, which may be associated with an enhanced lithiation
degree of LMO in these areas. Thus, enhancement of the ESM signal in the area with the Mn3O4 phase
can be attributed to the presence of the LMO phase with a higher lithiation. The enhancement of the
noise is, therefore, due to mixing of electrochemically active and non-active phases.

The ESM signal inside the active particle area in Figure 2b is distributed non-uniformly even
outside the areas with the Mn3O4 phase. These areas are spatially correlated with the distribution
of the A1 Raman line shift in Figure 1c, and, therefore, can be attributed to a variation of the Li ion
concentration over the particle area. For a more detailed picture, we turn to results of our previous
publication on the LF ESM of LMO cathodes [25]. Assuming that the charge neutrality holds across the
whole sample volume in a mixed ionic-electronic conductor, it was derived in [25] that the surface
displacement amplitude, Sω, under an SPM tip can be calculated as:

Sω ≈
1 + ν
π

β(1− γ)S0R0

 3

√
1 + 3µiUe f fγ

1
R2

0 f
− 1

, (5)

where v is the Poisson ratio, β is the Vegard coefficient, µi = Dqi/kBT is the ionic mobility, C0 is
Li ion concentrations in the particle, γ is a coefficient accounting for the maximal change of the
ion concentration due to the tip-induced electro-migration (γ ≈ 1/3 according to [25]), D is the
diffusion coefficient, qi is the ionic charge, R0 is the tip radius, and Ueff is an effective voltage applied
to the material bulk. Due to a voltage drop in the surface layer, Ueff ≈ 1/4 Uac, where Uac is the
amplitude of the AC voltage applied between the probe and the sample bottom electrode [25]. In the
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approximation of a uniform diffusion coefficient across the particle, Equation (5) allows evaluating
the local ion concentration, C0, at each image pixel over the particle. For use with Equation (5) in our
setup, β ≈ 10−30 m3 [47], v ≈ 0.3 [47], D ≈ 10−9 cm2/s [48], Uac = 10 V, R0 = 10 nm, and f = 3.5 kHz.
The average tip displacement amplitude obtained from the LF ESM images in Figures 2b and 4b is
Sω = 1.3 ± 0.02 pm/V, which is in agreement with the value 1−2 pm/V expected for the Vegard strain
in LMO under our experimental conditions according to measurements and analysis in [25]. The local
concentration across the particle area varies from 0.7 × 1027 m−3 to 1.4 × 1027 m−3, which, in turn,
agrees well with the average concentration value of 1.15 × 1027 m−3 that follows from the data of the
macroscopic XRD measurements of the sample.

For a further analysis, we plotted corresponding line profiles of the A1 Raman peak shift and
average LF ESM response amplitude as displayed in Figure 5a. The data used to plot Figure 5a were
taken along the lines indicated in Figures 1c and 2b. The plot demonstrates a correlation of the two
signals, with an enhanced lithiation towards particle boundaries. In Figure 5b, we further plot the
Raman shift versus LF ESM response amplitude for a number of corresponding line profiles similar
to the profiles in Figure 5a. The degree of the correlation was quantified by calculating a Pearson
correlation coefficient and linear fit of the data (Figure 5b). The value of the Pearson coefficient for the
data in Figure 5b is 0.8, which indicates a strong correlation.
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Figure 5. Correlation analysis of confocal Raman microscopy and ESM data. (a) Overlapped image
profiles along the corresponding lines indicated in Figure 1c (Raman shift) and Figure 2b (ESM
amplitude). (b) Circles: experimental A1 Raman peak shift versus ESM amplitude for a number of line
profiles similar to those shown in (a); solid line: linear fit for the experimental data points.

4. Conclusions

In conclusion, we implemented a correlative microscopy approach to the active ionic particles of a
lithium manganese spinel inside a commercial battery cathode. It was shown that the low-frequency
electrochemical strain microscopy reveals contrast significantly different from that obtained in the
high-frequency range. It was shown both experimentally and by finite element modeling that this
contrast cannot be attributed to the converse flexoelectric effect, influence of the local electrostatic
forces, or electromechanical cantilever oscillations induced by local Joule heating of the sample. The LF
ESM signal distribution was found to be correlated with the confocal Raman microscopy data, which
demonstrates a possibility of a correlative approach to locally resolve electrochemically-inactive phases
and state of charge variations. However, it must be noted that the tip-induced electrochemical strain
in lithium manganate results in quite small surface displacements around 1–2 pm per Volt of AC
voltage applied to the surface. This value is close to the sensitivity limit of the modern scanning
probe microscopes. Reliable ESM signals can be collected only via implementing time-consuming
lock-in measurements. One order of magnitude enhancement in the signal-to-noise ratio would be
crucial to obtain clearer and more useful signals in the ESM measurements. This can be achieved,
for instance, by improvement of the excitation and registration schemes of the cantilever deflection
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sensor in scanning probe microscopes [49]. Until more sensitive measurements are available, the ESM
needs to be supplemented by data obtained with alternative methods.
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Appendix A

Table A1. Parameters of the probes used for the ESM measurements and corresponding calculated
values of the contact stiffness and shape factor.

Probe Model Scansens HA_NC,
W2C Coated

Scansens HA_FM,
W2C Coated

Scansens HA_HR,
W2C Coated

Spring Constant (N/m) 3.5 11 37
Free Resonance Frequency (kHz) 95 235 372

Free Resonance Quality Factor 356 392 694
First Contact Resonance Frequency (kHz) 442 1154 1912

First Contact Resonance Quality Factor 65 32 10
Cantilever Length (µm) 223 94 93

Length to Tip (µm) 219 90 89
Tip Height (µm) 10 10 10

Contact Stiffness (N/m) 620 910 3890
Shape Factor for Contact Resonance 1.37 1.06 -

Shape Factor for 3.5 kHz - - 0.14

Appendix B
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Figure A1. Finite element modeling of the local electrostatic forces in a LiMn2O4 particle for the
AFM probe with the 3.5 N/m spring constant: (a) Distribution of the electric potential. (b) Electric
field distribution in dependence on the distance from the contact (electric field strength values at the
tip-sample contact line were limited by 5 × 108 V/m following the approach in [42]). The resulting
probe tip displacement is 0.01 pm/V.
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