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Background: Protein kinase membrane associated tyrosine/threonine 1 (PKMYT1) regulates cell cycle and 
is a part of DNA damage repair (DDR)-related signaling. Recent studies have identified a role for PKMYT1 
in tumor immunity and DDR. Thus, we initiated this study aiming to characterize the molecular and 
immunological portrait of PKMYT1 in cancer.
Methods: Transcriptomic data extrapolated from Genotype-Tissue Expression (GTEx), The Cancer 
Genome Atlas (TCGA), and Cancer Cell Line Encyclopedia (CCLE) datasets were used to determine the 
mRNA expression levels of PKMYT1. PKMYT1 mRNA expression status was correlated with patients’ 
prognosis as well as immune neoantigens, and immune checkpoints in 34 different tumors. The Tumor 
Immune Estimation Resource (TIMER) dataset was used to analyze immune infiltrating scores.
Results: PKMYT1 mRNA is differentially expressed in common tumors and high expression levels of 
PKMYT1 mRNA is associated with poor prognosis except for malignant thymoma (THYM). In addition, 
PKMYT1 mRNA expression was correlated with tumor-infiltrating immune cells particularly in lung 
squamous cell carcinoma, esophageal carcinoma, THYM, and lung adenocarcinoma. An upregulation of 
immune checkpoints and neoantigens was observed in tumors with a high PKMYT1 mRNA expression. Data 
from gene set enrichment analysis (GSEA) revealed that PKMYT1 is involved in tumor immunogenicity, 
metabolism, and cell cycle progression.
Conclusions: PKMYT1 is differentially expressed in various cancers and exerts an important effect on 
tumor immunity and progression. The PKMYT1 gene holds the potential as a new potential biomarker. 
Therefore, further studies are clearly needed to elaborate our findings.

Keywords: Protein kinase membrane associated tyrosine/threonine 1 (PKMYT1); DNA damage repair (DDR); 
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Introduction

Cancer is the second leading cause of death worldwide (1) 
and due to its vast prevalence, there is an urgent need for 
more effective therapies. Despite great advances in current 
therapeutic strategies such as surgery, radiotherapy, 
chemotherapy, targeted therapies and more recently, 
immunotherapy, the prognosis of tumor patients, such 
as lung cancer remains poor (2-4). As such, there is 
an urgent unmet need to further explore underlying 
molecular mechanisms driving the development of lung 
cancer and other cancer types, in addition to identifying 
novel therapeutic regimens. Cancer is a genetic disease 
where genome instability and gene mutations confer this 
malignant phenotypes (5). The DNA damage can occur 
in different ways and it is now well documented that the 
accumulations of DNA damages can result in genome 
instability and ultimately tumorigenesis (6,7). Thus, DNA 
damage repair (DDR) complex prevents accumulations of 
DNA damages which could keep genome stability. DDR 
includes signaling pathways or enzymes related to cell 
cycle arrest, detection of DNA, repair, and replication of 
DNA (8). 

In both normal and malignant cells, DDR is responsible 
for preventing the accumulations of DNA damages and 
genome instability; however, in different contexts, diverse 
effects are respectively exerted (9). In normal cells, DDR 
can protect cells from carcinogenesis by maintaining 
genome stability (10), while in malignant cells, DDR-
deficient colorectal cancers was reported to be associated 
with conspicuously infiltrated immune cells especially 
effector memory T cells, which improved the prognosis of 
patients (11). Deficient DDR can lead to genetic alterations 
and further encode mounting pieces of molecules which 
can be divided into small peptides by the proteasome and 
loaded to major histocompatibility complexes (MHCs). 
This ultimately increases the number of neoantigens which 
have been shown to enhance the immune response to 
immunotherapy (12,13). Moreover, recent, studies have 
reported that protein kinase membrane associated tyrosine/
threonine 1 (PKMYT1), a regulator of the cell cycle, plays a 
crucial role in DDR (14).

The PKMYT1 gene belongs to the WEE kinase 
family that includes PKMYT1, WEE1 G2 Checkpoint 
Kinase (WEE1), and WEE2 oocyte meiosis inhibiting 
kinase (WEE1B) (15). It is involved in the regulation 
of  cyc l in-dependent  k inase  1  (CDK1)-Cycl inB1 
complex, also known as mitotic-promoting factor 
(MPF) by phosphorylatingTyr15 and Thr14 (16). This 
phosphorylation by PKMYT1 could exert inhibited effect 
on MPF until such time as cells undergo mitosis. As the 
G2/M phase, PKMYT1 phosphorylation is removed by 
CDC25C only if DNA damage is undetected and ultimately, 
the cell cycle continues as normal (17). That is, PKMYT1 
could prevent cell cycle progression of cells with DNA 
damages and may eliminate DNA damages by control the 
transition of cell cycle. Moreover, as a DDR-related kinase, 
PKMYT1 also exerts different effects on normal cells and 
tumor cells (18), and a high PKMYT1 expression has been 
detected in several tumors, including esophageal carcinoma 
(ESCA) (19), non-small cell lung cancer (NSCLC) (20), 
breast cancer (BRCA) (21), gastric cancer (GC) (22), 
ovarian serous cystadenocarcinoma (OV) (23), kidney renal 
clear cell carcinoma (RCC) (24), hepatocellular carcinoma 
(HCC) (25), neuroblastoma (NB) (26). Recently, PKMYT1 
was reported to be associated with malignancy especially 
with prostate adenocarcinoma (PRAD) (27). However, the 
underlying mechanisms and role of PKMYT1 in tumor 
immunity and proliferation remain largely elusive and 
comprehensive analyses of PKMYT1 are urgently needed.

In this study, we analyzed the mRNA expression and 
the prognostic role of PKMYT1 in common tumors using 
data of Genotype-Tissue Expression (GTEx) data, The 
Cancer Genome Atlas (TCGA), and Cancer Cell Line 
Encyclopedia (CCLE) datasets. In addition, we performed 
correlation analysis between PKMYT1 mRNA expression 
and tumor-infiltrating immune cells, immune checkpoints, 
microsatellite instability (MSI), and tumor mutational 
burden (TMB) in multiple malignancies. Furthermore, 
we analyzed gene sets enriched by PKMYT1 upregulated 
tumors. 

We present the following article in accordance with the 
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org/10.21037/tlcr-21-973).

Submitted Nov 02, 2021. Accepted for publication Dec 17, 2021.

doi: 10.21037/tlcr-21-973

View this article at: https://dx.doi.org/10.21037/tlcr-21-973

https://dx.doi.org/10.21037/tlcr-21-973
https://dx.doi.org/10.21037/tlcr-21-973


4602 Shao et al. PKMYT1 in various malignancies

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(12):4600-4616 | https://dx.doi.org/10.21037/tlcr-21-973

Methods

Data acquisition

We explored data GTEx dataset (https://commonfund.nih.
gov/GTEx/) and TCGA database (https://portal.gdc.cancer. 
gov/) for PKMYT1 mRNA expression status in 31 different 
types of normal tissues and 34 different tumor types. These 
two databases have collected mRNA sequencing data of normal 
and tumor tissues as well as related clinical data, respectively. 
In addition, the mRNA expression data of cell lines of 21 
different tumor types were obtained from the CCLE database 
(https://portals.broadinstitute.org) The Tumor Immune 
Estimation Resource (TIMER) dataset was used to calculate 
cancer immune infiltrating scores to analyze tumor immune 
infiltration. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

PKMYT1 mRNA expression analysis 

Kruskal-Wallis test line analysis was used to compare 
PKMYT1 mRNA expression in 31 different normal tissues 
and in 21 different cancer cell lines. An evaluation of 
PKMYT1 mRNA expression between tumor tissues and 
normal tissues in TCGA database was performed afterwards. 
Since the small sample size of normal non-cancerous tissue in 
the TCGA database, we further explored PKMYT1 mRNA 
expression on normal tissue using the GTEx database. 

Correlation of PKMYT1 mRNA expression with prognosis

To correlate the association of PKMYT1 mRNA expression 
and prognosis, we used the univariate Cox proportional 
hazards regression analysis and survival analysis, including 
disease-free survival (DFS), overall survival (OS) rate, 
disease-specific survival (DSS), and progression-free 
survival (PFS). PKMYT1 mRNA expression was splited into 
high mRNA expression group and low expression group by 
median expression levels. 

Gene set enrichment analyses (GSEA)

We performed GSEA to assess the differentially enriched 
signaling pathways between PKMYT1 high and low mRNA 
expression groups. In this part, The Kyoto Encyclopedia 
of Genes and Genomes database (KEGG; https://www.
kegg.jp.) and Hallmark gene set were used. Normalized 
enrichment score (NES) >1.5, P<0.01, and false discovery 
rate (FDR) <0.25 were considered significant. 

Correlation analysis of PKMYT1 with immune checkpoints 
and immune neoantigens 

Spearman’s rank correlation coefficient was applied 
to evaluate the correlation between PKMYT1 mRNA 
expression and 60 common immune-related molecules, 
including immune activation proteins, immunosuppressive 
proteins, chemokine, and chemokine receptor proteins. 
The relation of PKMYT1 mRNA expression level and 
neoantigens was also analyzed. 

Correlation analysis of PKMYT1 with the tumor 
microenvironment 

Based on the RNA-sequencing data obtained from 
the TCGA database, the Estimation of STromal and 
Immune cells in MAlignant Tumors using Expression 
data (ESTIMATE) algorithm (28) was performed to 
obtain the ImmuneScore, StromalScore, and further 
ESTIMATEScore.  Addit ional ly,  Spearman’s  rank 
correlation coefficient was employed to assess the role 
of PKMYT1 in 6 types of immune cell infiltration, 
including B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells (DC). 

Correlation analysis of PKMYT1 with TMB and MSI 

We performed a correlation analysis of PKMYT1 expression 
with TMB and microsatellite instability (MSI) using the 
Pearson correlation coefficient. 

Statistical analysis 

Data shown in this study were analyzed with R software 
(version 4.0.2; https://www.R-project.org) and the plots 
were obtained using the R packages, including limma (29), 
clusterprofiler (30), survival (31), ggplot2 (32). A P value 
<0.01 was considered as statistically significant. 

Results

PKMYT1 is highly expressed in various malignancies

To assess the mRNA expression levels of PKMYT1 in normal 
non-cancerous and tumor tissues, data from TCGA, GTEx, 
and CCLE were analyzed. As shown in Figure 1A, PKMYT1 
was basically expressed in 31 normal tissues with the highest 
mRNA expression in testis and the lowest expression rate in 
muscle. The CCLE analysis demonstrated that PKMYT1 

https://www.kegg.jp.
https://www.kegg.jp.
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GTEx Database Kruskal-Wallis test P<0.001
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Figure 1 Differential expression of PKMYT1 in pan-cancer. (A) Expression analysis of PKMYT1 in 31 kinds of normal tissues using 
data from GTEx database. (B) Expression analysis of PKMYT1 in tumor cell lines of 21kinds of tumors using data from CCLE dataset. 
(C) Expression analysis of PKMYT1 in matched tumor and normal tissues using data from TCGA database. (D) Expression analysis of 
PKMYT1 in tumor tissues from TCGA database and matched normal tissues from the GTEx database. *P<0.05, **, P<0.01; ***, P<0.001; 
****, P<0.0001. PKMYT1, protein kinase membrane associated tyrosine/threonine 1; GTEx, Data of Genotype-Tissue Expression; CCLE, 
Cancer Cell Line Encyclopedia; TCGA, The Cancer, Genome Atlas. 

is most highly expressed in the salivary gland (Figure 1B). 
Because of the small size of matched groups (normal and 
tumor tissues) solely from the TCGA database (Figure 1C), 
we further compared the PKMYT1 mRNA expression of 
tumor tissues from the TCGA database and normal tissues 

from the GTEx dataset (Figure 1D). Except for testicular 
germ cell tumors (TGCT), PKMYT1 was more highly 
expressed in 33 different tumor tissues than in normal tissues. 
Above results indicated that compared with normal tissues. 
PKMYT1 was upregulated in almost all solid tumors.
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The prognostic role of PKMYT1 mRNA expression in cancer

Survival analysis and univariate Cox proportional 
hazards regression analysis were performed to evaluate 
the prognostic role of PKMYT1 in different cancers 
using the data of PKMYT1 mRNA expression levels and 

associated clinical information. As shown in Figure 2A, 
results suggested that PKMYT1 mRNA expression was 
markedly associated with OS in LUAD (P<0.001), KIPAN 
(P<0.001), glioma (GBMLGG) (P<0.001), kidney renal 
clear cell carcinoma (KIRC) (P<0.001), mesothelioma 
(MESO) (P<0.001), lower grade glioma (LGG) (P<0.001), 

Figure 2 Correlation analysis between PKMYT1 expression and OS, DSS, DFS, and PFS across common tumors. (A) Forest plot of associations 
between PKMYT1 expression and OS; (B) forest plot of associations between PKMYT1 expression and DSS; (C) forest plot of associations 
between PKMYT1 expression and DFS; (D) forest plot of associations between PKMYT1 expression and PFS. PKMYT1, protein kinase membrane 
associated tyrosine/threonine 1; OS, overall survival; DSS, disease-specific survival; DFS, disease-free survival; PFS, progression-free survival.

OS DSS

DFS PFS

A B

C D
log2 (Hazard ratio, 95%CI)

log2 (Hazard ratio, 95%CI)

log2 (Hazard ratio, 95%CI)

log2 (Hazard ratio, 95%CI)
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adrenocortical carcinoma (ACC) (P<0.001), kidney 
chromophobe (KICH) (P<0.001), kidney renal papillary 
cell carcinoma (KIRP) (P<0.001), liver hepatocellular 
carcinoma (LIHC) (P<0.001), skin cutaneous melanoma 
(SKCM) (P<0.001) ,  SKCM-M (P=0.0017) ,  acute 
myeloid leukemia (LAML) (P=0.0026), and pancreatic 
adenocarcinoma (PAAD) (P=0.009) (Figure 2A). Similarly, 
when DSS was examined, PKMYT1 was significantly linked 
to LUAD (P=0.0015), KIPAN (P<0.001), KIRC (P<0.001), 
GBMLGG (P<0.001), KIRP (P<0.001), MESO (P<0.001), 
KICH (P<0.001), LGG (P<0.001), ACC (P<0.001), SKCM 
(P=0.0021), SKCM-M (P=0.0024), and LIHC (P=0.0038) 
(Figure 2B). Additionally, the mRNA expression status of 
PKMYT1 was significantly related with DFS in KIPAN 
(P<0.001), KIRC (P<0.001), KIRP (P<0.001), GBMLGG 

(P<0.001), PRAD (P<0.001), ACC (P<0.001), KICH 
(P<0.001), MESO (P<0.001), LIHC (P<0.001), LGG 
(P=0.0012), SKCM-M (P=0.0052), PAAD (P=0.0067), 
SARC (P=0.0085), SKCM (P=0.0086), and UVM (P=0.01) 
(Figure 2C). We could observe that PKMYT1affects PFS 
in LIHC (P<0.001), PRAD (P=0.0011), KIRP (P=0.0013), 
KIPAN (P=0.0054), and sarcoma (SARC) (P=0.0097) 
(Figure 2D). Furthermore, Kaplan-Meier (KM) curves 
of PKMYT1 mRNA expression and OS, DSS, DFS and 
PFS were obtained. In ACC, KICH, KIRC, KIRP, LGG, 
LIHC, LUAD, MESO, PAAD, PRAD, SKCM, and UVM, 
a higher PKMYT1 mRNA expression status was related to 
shorter OS; whereas a higher PKMYT1 mRNA expression 
was related to longer OS in thymoma (THYM) (Figure 3). 
DSS analysis was carried out to eliminate the confounding 
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Figure 3 Kaplan Meier curves of OS in PKMYT1 high and low-expressing tumors in (A) ACC, (B) KICH, (C) KIRC, (D) KIRP, (E) LGG, 
(F) LIHC, (G) LUAD, (H) MESO, (I) PAAD, (J) PRAD, (K) SKCM, (L) THYM, (M) UVM. KM, Kaplan-Meier; OS, overall survival; 
PKMYT1, protein kinase membrane associated tyrosine/threonine 1; ACC, adrenocortical carcinoma; KICH, kidney chromophobe; KIRC, 
kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, lower grade glioma; LIHC, liver hepatocellular 
carcinoma; LUAD, lung adenocarcinoma; MESO, mesothelioma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; 
SKCM, skin cutaneous melanoma; THYM, thymoma; UVM, uveal melanoma. 
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effects of deaths of other reasons and results confirmed 
that high level of PKMYT1 mRNA expression was 
associated with inferior outcomes in several tumors same 
as OS except for THYM (Figure 4). DFS results showed 

that high PKMYT1 mRNA expression was correlated 
with poor prognosis in KIRP, LIHC, MESO, PRAD and 
THCA (Figure 5). A similar correlation was observed 
between PKMYT1 mRNA expression and PFS (Figure 6).
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Figure 4 Kaplan Meier curves of DSS in PKMYT1 high and low-expressing tumors in (A) ACC, (B) KICH, (C) KIRC, (D) KIRP, (E) 
LGG, (F) LIHC, (G) LUAD, (H) MESO, (I) PAAD, (J) PRAD, (K) SKCM, (L) UVM. KM, Kaplan-Meier; DSS, disease-specific survival; 
PKMYT1, protein kinase membrane associated tyrosine/threonine 1; ACC, adrenocortical carcinoma; KICH, kidney chromophobe; KIRC, 
kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, lower grade glioma; LIHC, liver hepatocellular 
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Correlation analysis of PKMYT1 mRNA expression and 
tumor immune infiltration 

To evaluate the role of PKMYT1 in the recruitment of 
tumor-infiltrating immune cells, correlation analysis of 
PKMYT1 mRNA expression and different types of immune 
cells was performed. These included B cells, CD4+ T cells, 
CD8+ T cells, neutrophils, macrophages, and dendritic cells 
(DC) (20). Our data demonstrated correlations between 
PKMYT1 mRNA expression levels and infiltration of CD8+ 
T cells in PRAD (negatively), of DCs in diffuse large B-cell 
lymphoma (DLBC) (negatively), and of macrophages 
in cholangiocarcinoma (CHOL) (negatively). A higher 
PKMYT1 mRNA expression was associated with high 
CD4+ T cells in KICH. Among thoracic cancers, positive 
correlations between the infiltration of CD4+ T cells, 
CD8+ T cells and DCs and PKMYT1 mRNA expression 
combined with negative correlations of expression level and 
macrophages were identified in THYM. The expression 
level of PKMYT1 was negatively correlated with CD8+ T 
cells and macrophages infiltration in LUSC, B cells and 
macrophages infiltration in ESCA, and B cells infiltration 
in LUAD (Figure 7A). To further explore the effect of 
PKMYT1 on the tumor microenvironment (TME), the 

association between PKMYT1 mRNA expression and 
immune score, stromal score, and ESTIMATE score were 
assessed using the ESTIMATE algorithm (33). Results 
of the top tumors are shown in Figure 7B. The mRNA 
expression status of PKMYT1 was negatively correlated 
with the stromal score in BRCA, LUAD, STES and LUSC 
(Figure 7B). These results indicate that PKMYT1 may 
negatively influence immune cells infiltration in the TME.

Correlation analysis of PKMYT1 mRNA expression levels 
with immune checkpoints and immune neoantigens

The data presented above highlight a potential role for 
PKMYT1 in tumor immunity. Based on these findings, 
further correlation analysis of PKMYT1 mRNA expression 
was examined in 60 common immune checkpoints across 
34 different tumor types. Positive correlations between 
PKMYT1 and lymphocyte activating 3 (LAG3) was found in 
28 tumors, CD276 in 23 tumors, TNF receptor superfamily 
member 18 (TNFRSF18) in 23 tumors, vascular endothelial 
growth factor B (VEGFB) in 21 tumors, and CD70 in 20 
tumors. Negative correlations were also detected between 
PKMYT1 and endothelin receptor type B (EDNRB) in 31 
tumors, Toll-like receptor 4 (TLR4) in 28 tumors, CD28 in 
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Figure 5 Kaplan Meier curves of DFS in PKMYT1 high and low-expressing tumors in (A) KIRP, (B) LIHC, (C) MESO, (D) PRAD, (E)
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Figure 6 Kaplan Meier curves of PFS in PKMYT1 high and low-expressing tumors in (A) ACC, (B) BLCA, (C) KICH, (D) KIRC, (E) 
KIRP, (F) LGG, (G) LIHC, (H) MESO, (I) PAAD, (J) PCPG, (K) PRAD, (L) SKCM, (M) THCA and (N) UVM. KM, Kaplan-Meier; PFS, 
progression-free survival; PKMYT1, protein kinase membrane associated tyrosine/threonine 1; ACC, adrenocortical carcinoma; BLCA, 
bladder urothelial carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 
carcinoma; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; MESO, mesothelioma; PAAD, pancreatic adenocarcinoma; 
PRAD, prostate adenocarcinoma; SKCM, skin cutaneous melanoma; THCA, thyroid carcinoma; UVM, uveal melanoma.

20 tumors, and CD40 ligand (CD40LG) in 19 tumors. We 
also found expression of 47/60 immune checkpoints in OV, 
35 in bladder urothelial carcinoma (BLCA), and 25 in LUAD 
which were positively related to PKMYT1, while 40 immune 

checkpoints in PRAD and 25 in rectum adenocarcinoma 
(READ) negatively correlated with PKMYT1 mRNA 
expression (Figure 8A). These findings indicate that PKMYT1 
may influence immunity by regulating these specific immune 
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checkpoints. Furthermore, we obtained the number of 
neoantigens in each cancer type, with results showing positive 
correlations between PKMYT1 mRNA expression and 
LUAD, BRCA, UCEC, READ, stomach adenocarcinoma 
(STAD), LGG, and PRAD (Figure 8B). 

Correlation analysis of PKMYT1 mRNA expression levels 
with TMB and MSI

Next, we analyzed the correlation between PKMYT1 mRNA 
expression status and TMB and MSI (34). Results revealed 
that PKMYT1 mRNA was positively associated with MSI-H 
in STAD, DLBC, KICH, and uterine carcinoma (UCS) 
(Figure 9A) and positively correlated with TMB-H in ACC, 

STAD, UCEC, KICH, and LUAD (Figure 9B).

Functional effects of PKMYT1 associated with immunity, 
metabolism, and proliferation 

To better understand the underlying mechanisms of 
PKMYT1 mRNA expression in tumors, protein-protein 
interaction (PPI) analysis was carried out (Figure 10A). 
Using String analysis, PKMYT1 was shown to be largely 
related to cell cycle proteins, including CCNA1, CCNA2, 
CCNB1, CCNB2, CDC20, CDC25A, CDC25B, CDC25C, 
CDK1, and PLK1. PKMYT1 was further stratified into high 
and low-expressing groups based on the median mRNA 
expression level. GSEA analysis was then performed in 
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both groups to evaluate the possible biological processes in 
which PKMYT1 may be involved in tumors. Data show that 
PKMYT1 is highly expressed in KEGG_CELL_CYCLE 
(P<0.001), HALLMARK_MYC_TARGETS_V2 (P<0.001), 
KEGG_MISMATCH_REPAIR (P<0.001), HALLMARK_
DNA_REPAIR (P<0.001), thereby identifying a possible 
role for PKMYT1 in tumor immunity and proliferation 
(Figure 10B-10E).

Discussion

Cancer is the second leading cause of death globally (1). 
Thus, there is an urgent need to explore the underlying 
mechanisms of cancer and seek effective therapeutic 
approaches. With the advent of precision medicine and 
immuno therapies, immune checkpoint inhibitor strategies 
have been approved and demonstrated improved response 
and survival in subsets of cancer patients (2). However, 

there remains a significant unmet need for alternative 
therapies in a larger number of patients with cancer (3). 
Recently, the application of WEE1/PKMYT1 inhibitors 
such as adavosertib, in the treatment of solid tumors such 
as sarcoma, glioma, head & neck and ovarian cancers has 
gained considerable interest (35).

The MYT1 kinase PKMYT1and WEE1 play a vital role 
in cell cycle regulation (15). As reported in previous studies, 
PKMYT1/WEE1 control the G2/M phase transition via 
phosphorylation of the MPF-CDK1/Cyclin B complex (16).  
Similar to other DDR-related kinases, if cells entering 
mitosis have no DNA damages detected, phosphorylation 
of PKMYT1/WEE1 was eliminated. This function role of 
PKMYT1/WEE1 is essential for normal cells to control DNA 
damage during mitosis (tumor-suppressor) and for malignant 
cells to prevent excessive accumulation of DNA damages 
(pseudo-oncogene) (18). As WEE1 inhibitors continue to 
be successful in clinical trials, the application of PKMYT1 

Figure 8 Correlation analysis between PKMYT1 expression and immune checkpoints and neoantigens. (A) Correlation analysis across 
pan-cancer between PKMYT1 expression and 60 common immune checkpoints; (B) correlation analysis between PKMYT1 expression and 
number of neoantigens across pan-cancer. PKMYT1, protein kinase membrane associated tyrosine/threonine 1.
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Figure 9 Correlation analysis between PKMYT1 expression and TMB and MSI. Bubble chart of correlation between PKMYT1 expression 
and (A) MSI and (B) TMB. PKMYT1, protein kinase membrane associated tyrosine/threonine 1; TMB, tumor mutational burden; MSI, 
microsatellite instability. 

inhibitor has come to the fore (36), however, the underlying 
mechanisms have remained unclear. 

We therefore analyzed the mRNA expression of PKMYT1  
and prognosis in 34 common tumors. Among normal 
tissues, PKMYT1 was expressed at the lowest level in testis. 
Considering the high rate of cell proliferation in testis, 
high PKMYT1 mRNA expression may be linked to cell 
cycle regulation and prevention of DNA damages during 
meiosis (37). Moreover, PKMYT1 mRNA expression 
in TGCT was lower compared to that in normal testis 
tissues, of which the underlying mechanisms remain 
obscure and warrant further study. With the exception of 
TGCT, the mRNA expression of PKMYT1 was upregulated 
in all additional 33 other tumors compared to normal tissues. 
Previous studies have reported high PKMYT1 expression 
in ESCA (19), NSCLC (20), BRCA (21), GC (22),  
OV (23), KIRC (24), hepatocellular carcinoma (HCC) (25), 
NB (26), and PRAD (27), which is in line in part with our 
findings. Within these studies, PKMYT1 could promote 
cancer progression by facilitating the growth, migration 
and epithelial mesenchymal transition (EMT) and elevated 
PKMYT1 mRNA expression was reported to be related 
to negative prognostic factors including lymph node 
metastasis, clinical stage, and differentiation in ESCA (19), 
NSCLC (20), and PRAD (27). Furthermore, this expression 
was also associated with relapse in PRAD (27) and triple-
negative BRCA (21). Similar to the abovementioned studies, 
survival analysis in our study determined that upregulated 

PKMYT1 mRNA expression was correlated to inferior 
outcomes (OS, DSS, DFS, PFS) in a series of tumors, 
suggesting a prognostic role for PKMYT1 in cancer. 
We then evaluated the role of PKMYT1 in immune cells 
infiltration and correlation with TME. Heterogeneous 
cells, including cancer cells, infiltrating immune cells and 
stromal cells, comprised the TME (5). Immune cells such 
as effector T cells (including CD8+ cytotoxic T cells and 
effector CD4+ T cells), natural killer (NK) cells, DCs, 
macrophages, and B cells infiltrate the TME where they 
play a role in immunosurveillance and modulation of tumor  
progression (38). Our results revealed, depending on the 
tumor entity, a positive/negative correlation of PKMYT1 
mRNA expression and immune cells. Interestingly, 
PKMYT1 mRNA expression was positively related with 
CD4+ T cells, CD8+ T cells, and DC in THYM, and 
we suspected that this may account for the significant 
association of high PKMYT1 mRNA expression with longer 
OS. Moreover, negative correlations of PKMYT1 mRNA 
expression and stromal score were observed in LUSC, in 
line with recent improvements in immune therapies in lung 
cancer and other cancer types which have been shown to 
enhance the immune response and eliminate cancer cells 
(39). Although the role of stromal cells remains uncertain 
(40,41), our findings indicate the need for further studies to 
explore the potential of PKMYT1 as a therapeutic target in 
immune-oncology setting, particularly in LUAD, LUSC, 
and THYM.
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Immune checkpoints, including but not confined to 

PD-1, PD-L1, CTLA4, and LAG3, are molecules that 

directly affect the function of immune cells (particularly 

T cells) and immune response to malignant cells (42). For 

further understanding the role of PKMYT1 in immune 

microenvironment, we performed a correlation analysis 

of PKMYT1 mRNA expression with 60 common immune 

checkpoints. The expression levels of PKMYT1 were 

positively related to LAG3, CD276 TNFRSF18 and CD70 in 

a significant number of tumors. Among these checkpoints: 
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(I) LAG3 was reported to be expressed on activated T cells 
and exert suppressive effect (43,44); (II) CD276 was recently 
reported to be involved in T cells inhibition (45); (III) in 
contrast, CD70 and TNFRSF18 could boost the immune 
response to cancer (46,47). Conversely, we identified 
negative correlations of PKMYT1 mRNA expression and 
a series of immune checkpoints. Among these immune 
checkpoints: (I) TLR4 was identified as a promoter of innate 
immunity (48); (II) CD28, an archetypal co-stimulatory 
molecule, was reported to activate T cells by binding to 
either CD80 or CD86 (49); (III) CD40LG/CD40 interaction 
was reported to promote the cross-presentation of antigen 
to DC and T cells activation (50); (IV) conversely, EDNRB 
was shown to suppress tumor immune therapy by preventing 
T cells homing (51,52). Taken together, PKMYT1 may be 
an immune regulator and targeting PKMYT1 may be an 
effective therapeutic strategy for enhancing the anti-cancer 
immune response.

We further performed PPI analysis and GSEA analysis to 
confirm the role of PKMYT1 in the cell function network. 
The PKMYT1 protein co-expression network revealed 
that 10 related proteins all play an important role in cell 
cycle progression. This conclusion was verified by the 
results of GSEA analysis. The MYC gene family consists 
of 3 main members: C-MYC, N-MYC, and L-MYC and 
is one of the most amplified genes in human tumors (53). 
Previous studies have reported that MYC mainly acts as 
a transcription factor and is involved in cell cycle, DNA 
repair, cell growth, differentiation, apoptosis, angiogenesis, 
metabolism, protein translation, and immune response (54). 
In cell cycle, MYC was indicated as a promoter of Cyclin 
D1, CDK4, and CDK6 in early G1 phase to enhance cell 
proliferation (10). In addition, in an MYCN amplified 
neuroblastoma model, PKMYT1 could stabilize MYCN 
protein by phosphorylating and inhibiting CDK1/Cyclin 
B complex (26). Taken together, targeting PKMYT1-Myc-
CDK may be a novel therapeutic strategy worthy of further 
confirmation. Moreover, we also found that high PKMYT1 
is involved in the positive regulation of DDR and MMR. 
DDR pathways consisted of cell cycle arrest and replication 
of DNA and defect in DDR genes could lead to genome 
instability, carcinogenesis, and tumor growth (55,56). 
Previous studies have demonstrated that PKMYT1 is a 
regulator of DDR that may prevent replication of cells with 
damaged DNA (16). Additionally, in cancer immunotherapy, 
defects in DDR lead to somatic mutations which may give 
rise to neoantigens and enhance the effect (13). Considering 

that the defect in DDR could also improve the effect of 
radiotherapy and chemotherapy (57) together with our 
findings that PKMYT1 was positively related to DDR, we 
propose that targeting PKMYT1-DDR may hold potential 
as a strategy for improving the effects of immunotherapies. 

In conclusion, our study revealed the differential mRNA 
expression status of PKMYT1 in various malignancies and 
its potential as a therapeutic and prognostic biomarker. 
However, there are still limitations to our work. Only 
bioinformatical analyses of open accessible databases were 
performed with no further validations available. Thus, 
further studies are needed to verify our findings.
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