SYSTEMATIC REVIEW AND META-ANALYSIS

Relation of Different Fruit and Vegetable Sources With Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies

Andreea Zurbau (D), PhD, RD; Fei Au-Yeung, MSc; Sonia Blanco Mejia (D), MD, MSc; Tauseef A. Khan, PhD; Vladimir Vuksan, PhD; Elena Jovanovski, PhD; Lawrence A. Leiter, MD; Cyril W. C. Kendall, PhD; David J. A. Jenkins, MD, PhD; John L. Sievenpiper (iD, MD, PhD

Abstract

BACKGROUND: Public health policies reflect concerns that certain fruit sources may not have the intended benefits and that vegetables should be preferred to fruit. We assessed the relation of fruit and vegetable sources with cardiovascular outcomes using a systematic review and meta-analysis of prospective cohort studies.

METHODS AND RESULTS: MEDLINE, EMBASE, and Cochrane were searched through June 3, 2019. Two independent reviewers extracted data and assessed study quality (Newcastle-Ottawa Scale). Data were pooled (fixed effects), and heterogeneity (Cochrane-Q and 1^{12}) and certainty of the evidence (Grading of Recommendations Assessment, Development, and Evaluation) were assessed. Eighty-one cohorts involving 4031896 individuals and 125112 cardiovascular events were included. Total fruit and vegetables, fruit, and vegetables were associated with decreased cardiovascular disease (risk ratio, 0.93 [$95 \% \mathrm{Cl}$, $0.89-0.96] ; 0.91$ [0.88-0.95]; and 0.94 [0.90-0.97], respectively), coronary heart disease (0.88 [0.83-0.92]; 0.88 [0.84-0.92]; and 0.92 [$0.87-0.96$], respectively), and stroke (0.82 [$0.77-0.88$], 0.82 [$0.79-0.85$]; and 0.88 [$0.83-0.93$], respectively) incidence. Total fruit and vegetables, fruit, and vegetables were associated with decreased cardiovascular disease (0.89 [0.85$0.93]$; 0.88 [0.86-0.91]; and 0.87 [$0.85-0.90]$], respectively), coronary heart disease (0.81 [0.72-0.92]; 0.86 [$0.82-0.90$]; and 0.86 [$0.83-0.89$], respectively), and stroke (0.73 [$0.65-0.81]$; 0.87 [$0.84-0.91$]; and 0.94 [$0.90-0.99$], respectively) mortality. There were greater benefits for citrus, 100% fruit juice, and pommes among fruit sources and allium, carrots, cruciferous, and green leafy among vegetable sources. No sources showed an adverse association. The certainty of the evidence was "very low" to "moderate," with the highest for total fruit and/or vegetables, pommes fruit, and green leafy vegetables.

CONCLUSIONS: Fruits and vegetables are associated with cardiovascular benefit, with some sources associated with greater benefit and none showing an adverse association.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03394339.

Key Words: cardiovascular outcomes ■ cohort \square fruit ■ nutrition ■ vegetables
ncreased fruit and vegetable consumption is the cornerstone of dietary guidance for cardiovascular disease (CVD) prevention. Their benefit as part of heart healthy diets is balanced against an increasing concern of their contribution to an excess
intake of sugars., ${ }^{1,2}$ Some influential commentators have even questioned the value of the proverbial "apple a day." ${ }^{3}$ Public health outlets are emphasizing vegetables before fruit intake and discouraging the intake of certain sources of fruit, such as fruit

[^0]
CLINICAL PERSPECTIVE

What Is New?

- Public health policies discourage the consumption of certain fruit sources (eg, 100\% fruit juice, dried fruit, and tropical fruit) because of their sugar content and emphasize vegetable consumption before fruit.
- We examined the relation of fruit and vegetable sources with cardiovascular disease outcomes.

What Are the Clinical Implications?

- In this systematic review and meta-analysis of 81 unique cohorts, we identified that fruits and vegetables are associated with cardiovascular benefit and no fruit or vegetable sources are associated with cardiovascular harm.
- Certain fruit and vegetable sources showed greater associations with cardiovascular benefit, including citrus, 100\% fruit juice, and pommes fruit and allium, carrots, and cruciferous and green leafy vegetables.

Nonstandard Abbreviations and Acronyms
GRADE Grading of Recommendations
Assessment, Development, and
Evaluation,
Newcastle-Ottawa Scale

juice and dried, tropical, and canned fruit, some of which have been reflected in health policies. ${ }^{4-8}$

Given the longstanding perceived value of fruit and vegetables in reducing global CVD morbidity and mortality ${ }^{9}$ and in light of developing efforts to limit dietary sugars, there is a need to reassess the role of different fruit and vegetable sources in CVD prevention. Whether different fruit and vegetable sources show comparable CVD risk reduction is unclear. Systematic reviews and meta-analyses of prospective cohort studies have shown evidence of a cardiovascular benefit of broad categories of fruits and vegetables, ${ }^{10-16}$ but the relative contributions of specific fruit and vegetable sources and the certainty of the estimates for these sources are underexplored. We, therefore, conducted a systematic review and meta-analysis of prospective cohort studies using Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the role of different fruit and vegetable sources in CVD risk reduction and to quantify the certainty of the evidence to inform public health policy.

METHODS

All supporting data are available within the article and its online supplementary files. We followed the Cochrane Handbook for Systematic Reviews and Interventions ${ }^{17}$ and reported results in accordance with Meta-Analysis of Observational Studies in Epidemiology ${ }^{16}$ and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. ${ }^{18}$ The protocol was registered at Clinicaltrials. gov (identifier, NCT03394339).

Search Strategy

We searched MEDLINE, EMBASE, and the Cochrane Library databases through June 3, 2019, using the search strategy presented in Table S1 and restrictions for prospective cohorts. We supplemented the search with manual searches of the references of included studies.

Study Selection

Prospective cohort studies that reported the association of fruit and/or vegetable intake with CVD, coronary heart disease (CHD), or stroke incidence and mortality with a minimum follow-up time of 1 year in individuals free of disease at baseline were included. Cohorts that presented data on exposures to fruits and vegetables within the context of a dietary index were not included unless fruits and/or vegetables were presented separately from the other components of the diet index.

Data Extraction

Two reviewers (A.Z., F.A.) independently extracted relevant information, including study design, sample size, subject characteristics, exposure, outcomes, assessment method, dose for each quantile, number of events, population, person-years of follow-up, duration of follow-up, covariates adjustments, and risk ratios (RRs; or odds ratios or hazard ratios) with 95% Cls for each quantile of exposure. We contacted authors for missing data. Data on CVD outcomes were extracted for exposures to total fruits and vegetables, fruits, vegetables, and their sources. Potatoes were not included in the present analysis as they are nutritionally classified as a starchy food and are largely omitted in quantifications of exposure to vegetables.

Outcomes

Outcomes were CVD, CHD, and stroke incidence and mortality.

Risk of Bias

Included studies were assessed for risk of bias with the Newcastle-Ottawa Scale (NOS), ${ }^{19}$ which awards
up to 9 points based on cohort selection (up to 4 points), outcome ascertainment (up to 3 points), and degree of covariate adjustments (up to 2 points with adjustment for age as the primary confounding variable awarded 1 point and adjustment for $\geq 7 / 9$ secondary confounding variables, including sex, family history, smoking, markers of adiposity, energy intake, physical activity, presence of diabetes mellitus, hypertension [or related medications], and dyslipidemia [or related medications]). Studies achieving ≥ 7 points were considered high quality. Disagreements in NOS score between the 2 reviewers were resolved by a third reviewer (J.L.S.).

Statistical Analysis

Review Manager version 5.3 (The Nordic Cochrane Centre, Denmark) and STATA version 13.0 (StataCorp, TX) were used to conduct all analyses. We prespecified in our analysis plan the use of the generic inverse variance method with DerSimonian and Laird random effects models to pool the natural log-transformed RRs of extreme quantiles, comparing the highest versus the lowest (reference) exposures. ${ }^{20}$ On the basis of a deviation from our prespecified analysis plan requested by the statistical reviewer, we present the generic inverse variance with fixed effects models as the primary analysis and the DerSimonian and Laird random effects models as a secondary analysis in the Supplemental Material. Hazard ratios and odds ratios (as cumulative incidence $<10 \%)$ were considered equivalent to RR. ${ }^{21}$ Studies that provided RR on a continuous scale (ie, per dose increment) were scaled to the highest quantile reported for the exposure in the respective cohort as necessary. Test for differences between fruit and vegetable categories were conducted in RevMan, with a test for subgroup differences, with $P<0.05$ indicating a significant difference between fruit categories or vegetable categories on a given outcome. We also conducted a dose-response analysis. A random-effects linear dose-response was modeled using a generalized least square trend (g/st) for estimation of summarized dose-response data, as per Greenland and Longnecker ${ }^{22}$ and Orsini. ${ }^{23}$ A 2-stage multivariate random-effects method was used to model a nonlinear association using restricted cubic splines with 3 knots. ${ }^{23}$ A Wald test was used to evaluate linear and nonlinear dose-response trends. The median dose of each quantile was used, and when not provided we chose the midpoint of the upper and lower boundaries for each quantile as the assigned dose. For open-ended lower and upper quantiles, we defined lowest and highest boundary as the same as the adjacent category cutoff. Servings per day were calculated, with one serving defined as 80 g of fruits and/or vegetables and their categories, with the exception of citrus fruit (122 g), fruit juice (125 g), and green leafy vegetables (88 g), or unless otherwise specified. ${ }^{24}$

Heterogeneity was assessed by the Cochran Q statistic and quantified by the I^{2} statistic. An $I^{2} \geq 50 \%$ and $P_{Q}<0.1$ was considered evidence of substantial heterogeneity. ${ }^{25,26}$ Sensitivity analyses and a priori subgroup analyses were used to explore sources of heterogeneity. We performed sensitivity analyses by systematically removing each study with recalculation of the summary estimates. A priori subgroup analyses were conducted for all comparisons with ≥ 10 observations. Subgroup analyses included age (less than median versus median or greater), sex (males, females, and mixed), follow-up years (less than median versus median or greater), number of covariates in extracted model (<8 versus ≥ 8 covariates), exposure assessment tool (validated Food Frequency Questionnaire [FFQ], unvalidated FFQ, and food record), risk of bias score (<6 versus ≥ 6), and country of data collection. Wald test in metaregression was used to assess differences within each subgroup. Because of the exploratory intent of our subgroup analyses, we did not prespecify adjustment for the false discovery rate in our prespecified analysis plan. On the basis of a deviation from our prespecified analysis plan requested by the statistical reviewer, we adjust for the false discovery rate in our subgroup analyses using the Holm-Bonferroni procedure. If ≥ 10 cohort comparisons were available, then publication bias was assessed by visual inspection of funnel plots for asymmetry and formal testing with the Begg and Egger tests. If publication bias was suspected ($P<0.10$), the Duval and Tweedie trim and fill method imputed missing study data in attempt to adjust for funnel plot asymmetry. ${ }^{27}$

Grading the Evidence

The GRADE method was used to assess the certainty of the evidence for each comparison on a 4-point scale, ranging from "very low" to "high." ${ }^{28-40}$ Because of their inherent limitations, observational studies start at a "low" certainty of evidence that can be downgraded or upgraded based on established criteria. Criteria to downgrade included risk of bias (weight of studies shows high risk of bias by NOS), inconsistency (substantial unexplained heterogeneity, $I^{2}>50 \%$, and $P_{Q}<0.10$), indirectness (presence of factors that limit generalizability based on populations, exposures, and outcomes), imprecision (95\% Cls cross minimally important difference of 5\% [RR, 0.95-1.05]), and publication bias (significant evidence of small study effects). Criteria to upgrade included a large risk estimate ($R \mathrm{R}<0.5$ or >2 in the absence of plausible confounders), a dose-response gradient, and attenuation by plausible confounders.

RESULTS

Flow of the Literature

Figure 1 illustrates a flow of the literature. Of 4271 reports, we included a total of 117 publications $41-156$ of 81
unique prospective cohort studies of 4031896 individuals and 125112 cardiovascular events.

Study Characteristics

The Table shows the characteristics of the included studies. ${ }^{41-156}$ Participants were from 69 countries with cohorts distributed worldwide (36 from Europe, 23 from North America, 1 from South America, 17 from Asia, 4 from Australia, and 1 large global cohort including 18 countries worldwide). The median participant age at baseline was 55 (range, 7-90) years with a median follow-up of 11 (range, 2-37) years. Median (range) intakes in servings per day in the highest quantiles were 7.4 (2.6-10.4) fruits and vegetables, 2.6 (0.29-11.0) fruits, 2.85 (0.74-11.0) vegetables, 0.4 (0.3-0.5) bananas, 0.27 ($0.13-0.7$) berries, 0.71 (0.22-2.2) citrus fruit, 0.82 ($0.4-2.28$) fruit juice, 0.95 (0.29-2.0) pommes, 2.37 (2.1-2.65) watermelon,
0.54 (0.07-2) allium vegetables, 9.5 (5-14) carrots, 0.43 (0.1-3.0) cruciferous vegetables, 0.71 (0.25-1.5) green leafy vegetables, and 0.63 (0.29-2.0) tomatoes. Doses were not available for apricots and celery. Dietary intake was assessed by self-administered validated food frequency questionnaire (54\%), interview administered validated FFQ (10\%), unvalidated FFQ (19\%), or 24 -hour recalls/food records (17\%).

Table S2 lists the variables that were statistically adjusted in the included studies. Age, the prespecified primary confounding variable, was adjusted for in 95% of included studies, of which 55% also adjusted for all 9 of the prespecified secondary confounding variables.

Study Quality

Table S3 summarizes the NOS assessment of included studies. There was a high risk of bias in associations

Figure 1. Summary of evidence search and selection.
CV indicates cardiovascular.
Table. Table of Study Characteristics

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Adriouch, $2018{ }^{41}$	NutriNet-Sante	France	$\begin{gathered} 84158 \\ (17931: 66227) \end{gathered}$	44.1 ± 14.5	4.9 ± 1.6	24-h recall	Fruit category	3	CVD incidence CHD incidence Stroke incidence	$\begin{aligned} & 602 \\ & 309 \\ & 293 \end{aligned}$
Appleby, 200242	Health Food Shoppers	United Kingdom	$\begin{gathered} 10741 \\ (4325: 6416) \end{gathered}$	16-89	18-24	Unvalidated FFQ	Fruit	2	CVD mortality CHD mortality Stroke mortality	$\begin{aligned} & 1202 \text { (591:611) } \\ & 605(347: 258) \\ & 356(142: 214) \end{aligned}$
Atkins, $2014{ }^{43}$	British Regional Heart	England	$\begin{gathered} 3328 \\ (3328: 0) \end{gathered}$	60-79	11.3	Validated FFQ	Fruit and/or vegetable	2	CVD incidence CVD mortality CHD incidence	$\begin{aligned} & 582 \\ & 327 \\ & 307 \end{aligned}$
Bahadoran, 201744	Theran Lipid and Glucose	Iran	$\begin{gathered} 2369 \\ (1047: 1322) \end{gathered}$	≥ 19	6	Validated FFQ	Vegetable categories	3	CVD risk	79
Bazzano, 200245	National Health and Nutrition Examination Survey Epidemiologic Follow-up Study	United States	9608	25-74	19	Unvalidated FFQ	Fruit and vegetable	4	CVD mortality CVD incidence IHD mortality IHD incidence Stroke mortality Stroke incidence	1145 N/A 639 1786 218 888
Belin, 201146	WHI-OS (Women's Health Initiative Observational Study)	United States	$\begin{gathered} 93676 \\ (0: 93676) \end{gathered}$	50-79	10	Self-administered validated FFQ	Fruit, vegetable	2	CVD incidence	6006
Bendinelli, 201147	EPIC	Italy	$\begin{gathered} 29689 \\ (0: 29689) \end{gathered}$	50.0 ± 7.9	7.85	Validated FFQ	Fruit, vegetable, categories	4	CHD incidence	144
Berard, $2017{ }^{48}$	MONICA	France	1311	35-64	16-18	Food recall	Fruit, vegetable	5	CVD mortality	41
Bhupathiraju, 2013^{49}	NHS (Nurses' Health Study) and HPFS (Health Professionals Follow-Up Study)	United States	$\begin{gathered} 113276 \\ (42135: 71141) \end{gathered}$	40-75 (men) 30-55 (women)	22 (men) 24 (women)	Validated FFQ	Fruit and/ or vegetable, categories	5	CHD incidence	$\begin{gathered} 6189 \\ (3607: 2582) \end{gathered}$
Bingham, 2008 ${ }^{50}$	EPIC	United Kingdom	11134	45-75	4	Validated FFQ	Fruit and vegetable	5	IHD risk	678
Blekkenhorst, $2017{ }^{51}$	PLSAW (Perth Longitudinal Study of Aging Women)	Australia	$\begin{gathered} 1226 \\ (0: 1226) \end{gathered}$	75.1 ± 2.7	15	Validated FFQ	Vegetable, categories	Per 5-75 g/d	CVD mortality IHD mortality Stroke mortality	$\begin{aligned} & 238 \\ & 128 \\ & 92 \end{aligned}$
Bos, $2014{ }^{52}$	Rotterdam Study	The Netherlands	$\begin{gathered} 3570 \\ (1405: 2165) \end{gathered}$	69.4 ± 6.3	12.9	Unvalidated FFQ	Fruit and vegetable	3	Stroke risk	545
Buijsse, 2008 ${ }^{53}$	Zutphen Elderly Study	The Netherlands	$\begin{gathered} 559 \\ (559: 0) \\ \hline \end{gathered}$	65-84	15	Unvalidated FFQ	Vegetable category	Per 1-SD increase	CVD mortality	197

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
$\begin{array}{\|l} \hline \text { Buil-Cosiales, } \\ 2016^{55} \end{array}$	PREDIMED (Prevención con Dleta Mediterránea)	Spain	7216	55-80	6	Validated FFQ	Fruit, vegetable, categories	5	CVD composite score CVD mortality Ml incidence Stroke incidence	$\begin{aligned} & 342 \\ & 104 \\ & 118 \\ & 169 \end{aligned}$
$\begin{aligned} & \text { Buil-Cosiales, } \\ & 2017^{54} \end{aligned}$	SUN (Seguimiento University of Navarra)	Spain	$\begin{gathered} 17007 \\ (6633: 10374) \end{gathered}$	38	10.3	Validated FFQ	Fruit, vegetable, categories	5	CVD incidence	112
Cassidy, 2012^{56}	NHS	United States	$\begin{gathered} 69622 \\ (0: 69622) \end{gathered}$	30-55	14	Validated FFQ	Fruit, vegetable	5	Stroke incidence	1803
Collin, 2019 ${ }^{57}$	REGARDS (Reasons for Geographic and Racial Differences in Stroke)	United States	$\begin{gathered} 13440 \\ (7972: 5469) \end{gathered}$	≥ 45	6 ± 1.8	Validated FFQ	Fruit category	$12 \mathrm{oz} / \mathrm{d}$	CHD mortality	168
Conrad, 2018 ${ }^{58}$	NHANES	United States	$\begin{gathered} 29133 \\ (13926: 15 \text { 207) } \end{gathered}$	$\begin{gathered} 46.3(95 \% \mathrm{Cl}, \\ 45.8-46.7) \end{gathered}$	6.5	24-h recall	Vegetable	3	CVD mortality CHD mortality	$\begin{aligned} & 726 \\ & 556 \end{aligned}$
Dauchet, 2004 ${ }^{59}$	PRIME	France, North Ireland	$\begin{gathered} 8087 \\ (8087: 0) \\ \hline \end{gathered}$	50-59	5	Interview	Fruit category	3	CHD event	133
Dauchet, 2010 ${ }^{60}$	PRIME	France, North Ireland	$\begin{gathered} 8060 \\ (8060: 0) \end{gathered}$	50-59	10	Interviewvalidated FFQ	Fruit and/or vegetable	3	CVD risk Acute coronary syndrome	$\begin{aligned} & 612 \\ & 367 \end{aligned}$
Du, 2016 ${ }^{61}$	China Kadoorie Biobank	China	$\begin{gathered} 451665 \\ (186086: 265579) \end{gathered}$	50.5 ± 10.4	N/A, 7.14 y	Interview unvalidated FFQ	Fruit	5	Acute coronary event Hemorrhagic stroke event Other CeVD events Ischemic stroke	$\begin{gathered} 2551 \\ 14579 \\ 11054 \\ 3523 \end{gathered}$
Du, 2017 ${ }^{62}$	China Kadoorie Biobank	China	$\begin{gathered} 462342 \\ (189560: 272782) \end{gathered}$	51 ± 10.5	≈ 7	Interview unvalidated FFQ	Fruit	4	CVD mortality IHD mortality Ischemic stroke mortality Hemorrhagic stroke mortality	$\begin{gathered} 6166 \\ 2038 \\ 585 \\ 2351 \end{gathered}$
Elwood, 2013 ${ }^{63}$	Carphilly Cohort Study	United Kingdom	$\begin{gathered} 2235 \\ (2235: 0) \end{gathered}$	45-59	30	Unvalidated FFQ	Fruit and vegetable	2	CVD incidence	N/A
Eriksen, 2015^{64}	SABRE (Southhall and Brent Revised)	United Kingdom	2096	40-69	21	Validated FFQ	Fruit, vegetable	2	CVD incidence CHD incidence	$\begin{aligned} & 571 \\ & 520 \end{aligned}$
Fitzgerald, $2012{ }^{65}$	Women's Health Study	United States	$\begin{gathered} 34827 \\ (0: 34827) \end{gathered}$	$\begin{gathered} 55(46-68) \\ \text { (mean }[95 \% \mathrm{C}] \text {) } \end{gathered}$	14.6	Validated FFQ	Fruit, vegetable	5	CVD risk	1094

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Fraser, $1992{ }^{66}$	Adventis Health Study	United States	$\begin{gathered} 26473 \\ (10003: 16740) \end{gathered}$	Men: 51.3 ± 16.0 Women: 53.2 ± 16.6 (mean \pm SD)	6	Validated FFQ	Fruit	3	CHD mortality CHD event	$\begin{aligned} & 463 \\ & 134 \end{aligned}$
Gardener, 2011 ${ }^{67}$	NOMAS (Northern Manhattan Study)	United States	$\begin{gathered} 2568 \\ (924: 1644) \end{gathered}$	$\begin{gathered} 69 \pm 10 \\ (M e a n \pm S D) \end{gathered}$	9	Interview validated FFQ	Fruit, vegetable	Continuous	CVD mortality CVD incidence Ml incidence Ischemic stroke incidence	$\begin{aligned} & 314 \\ & 518 \\ & 133 \\ & 171 \end{aligned}$
Gaziano, 1995 ${ }^{68}$	Massachusetts Health Care Panel Study	United States	$\begin{gathered} 1299 \\ (494: 805) \end{gathered}$	≥ 66	4.75	Unvalidated FFQ	Fruit and vegetable categories	2	CVD mortality	161
Genkinger, 2004^{69}	Odyssey	United States	$\begin{gathered} 6151 \\ (2276: 3875) \end{gathered}$	30-93	13	Validated FFQ	Fruit, vegetable categories	5	CVD mortality	378
Gillman, 1995 ${ }^{70}$	Framingham Study	United States	$\begin{gathered} 832 \\ (832: 0) \end{gathered}$	45-65	18-22	24-h recall	Fruit and vegetable	5	Stroke mortality Stroke incidence	$\begin{aligned} & 14 \\ & 97 \end{aligned}$
Goetz, 2016 ${ }^{71}$	REGARDS	United States	16678	≥ 45	6.0 ± 1.9	Validated FFQ	Fruit categories	5	CHD events	589
Goetz, 2016 ${ }^{\text {² }}$	REGARDS	United States	$\begin{gathered} 20024 \\ (9011: 11013) \end{gathered}$	≥ 45	6.5	Validated FFQ	Fruit, vegetable	5	Stroke incidence	524
Gunge, 2017 ${ }^{73}$	Danish Diet, Cancer and Health Cohort	Denmark	$\begin{gathered} 57053 \\ (25759: 28809) \end{gathered}$	50-64	13.6	Validated FFQ	Fruit and vegetable categories	2	Ml incidence	$\begin{gathered} 2322 \\ (1669: 653) \end{gathered}$
Gunnell, 2013 ${ }^{74}$	Health and Wellbeing Surveillance System	Australia	$\begin{gathered} 14890 \\ (6114: 8776) \end{gathered}$	45-97	6	Validated FFQ	Fruit and vegetable	2	IHD hospitalization	538
Hansen, 2010 ${ }^{76}$	Danish Diet, Cancer and Health	Denmark	$\begin{gathered} 53383 \\ (25065: 28318) \end{gathered}$	50-64	7.7	Validated FFQ	Fruit, vegetable categories	4	Acute coronary syndrome	1075 (820:255)
Hansen, $2017{ }^{75}$	Danish Diet, Cancer and Health	Denmark	55338	50-64	13.5	Validated FFQ	Fruit and vegetable categories	2	Stroke incidence	2283
Harriss, 2007 ${ }^{77}$	Melbourne Collaborative	Australia	$\begin{gathered} 40653 \\ 16673: 23980 \end{gathered}$	40-69	10.4	Validated FFQ	Fruit, vegetable	4	CVD mortality IHD mortality	$\begin{aligned} & 697 \\ & 407 \end{aligned}$
Hertog, 1997 ${ }^{78}$	Caerphilly Prospective Study	South Wales	$\begin{gathered} 1900 \\ (1900: 0) \end{gathered}$	45-59	14.6	Validated FFQ	Vegetable categories	4	IHD mortality	131
Hirvonen, 2000 ${ }^{\text {80 }}$	Finnish Male Smokers in the ATBC Study	Finland	$\begin{gathered} 26497 \\ (26497: 0) \end{gathered}$	50-69	6.1	Validated FFQ	Fruit category	4	Cerebral infarction Subarachnoid hemorrhage Intracerebral hemorrhage	$\begin{gathered} 736 \\ 83 \\ 95 \end{gathered}$

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Hirvonen, 2001 ${ }^{79}$	Finnish Male Smokers in the ATBC Study	Finland	$\begin{gathered} 25,373 \\ (25,373: 0) \end{gathered}$	50-69	6.1	Validated FFQ	Fruit, vegetable, categories	5	CHD mortality MI event	$\begin{gathered} 815 \\ 1122 \end{gathered}$
Hjartaker, 2015 ${ }^{81}$	Migrant Study	Norway	$\begin{gathered} 9766 \\ (9766: 0) \end{gathered}$	42-73	20.3	Unvalidated FFQ	Fruit and/ or vegetable, categories	4	CVD mortality CHD mortality Stroke mortality	$\begin{aligned} & 4595 \\ & 2386 \\ & 1034 \end{aligned}$
Hodgson, $2016{ }^{82}$	Australian Women aged 70-85 y	Australia	$\begin{gathered} 1456 \\ 0: 1456 \end{gathered}$	>70	15	Validated FFQ	Fruit category	3	CVD mortality	235
Holmberg, 2009^{83}	Swedish National Farm Register	Sweden	$\begin{gathered} 1738 \\ (1738: 0) \end{gathered}$	50 ± 6.0	12	Unvalidated FFQ	Fruit and vegetable	2	CHD incidence	138
Iso, 2007 ${ }^{84}$	Japan Collaborative Cohort	Japan	N/A	40-79	N/A	Validated FFQ	Fruit or vegetable categories	3	IHD mortality CeVD mortality	N/A N/A
Jacques, $2015{ }^{85}$	Framingham Offspring	United States	$\begin{gathered} 2880 \\ (1302: 1578) \end{gathered}$	28-62 (mean=54)	14.9	Validated FFQ	Fruit categories	3	CVD incidence CHD incidence	$\begin{aligned} & 518 \\ & 261 \end{aligned}$
Johnsen, 2003 ${ }^{86}$	Danish Diet, Cancer and Health	Denmark	54506	50-64	3.09	Validated FFQ	Fruit and/or vegetable	5	Stroke incidence	266
Joshipura, 1999^{87}	NHS and HPFS cohorts	United States	$\begin{gathered} 114279 \\ (38683: 75596) \end{gathered}$	30-55 (men) 40-75 (women)	8 (men) 14 (women)	Validated FFQ	Fruit and/ or vegetable, categories	5	Ischemic stroke incidence	$\begin{gathered} 570 \\ (366: 204) \end{gathered}$
Joshipura, 2009^{88}	NHS and HPFS cohorts	United States	$\begin{gathered} 109788 \\ (38918: 70870) \end{gathered}$	30-55 (men) 40-75 (women)	14-16	Validated FFQ	Fruit and/ or vegetable, categories	5	CVD incidence	3892
Keli, 1996 ${ }^{89}$	Zutphen Elderly	The Netherlands	$\begin{gathered} 552 \\ (552: 0) \end{gathered}$	50-69	15	Interview	Fruit, vegetable categories	3	Stroke risk	42
Kim, 2013^{90}	British Women's Heart and Health Study	United Kingdom	$\begin{gathered} 3080 \\ (0: 3080) \end{gathered}$	60-79	7	Unvalidated FFQ	Fruit	2	CVD incidence	329
Knekt, 1994 ${ }^{\text {3 }}$	Finnish Mobile Clinic Health	Finland	5133 $(2748: 2385)$	30-69	14	Interview unvalidated FFQ	Fruit, vegetable	3	CHD mortality	244 (186:58)
Knekt, 1996 ${ }^{92}$	Finnish Mobile Clinic Health	Finland	5133 $(2748: 2385)$	30-69	26	Interview unvalidated FFQ	Fruit or vegetable categories	4	CHD death	473 (324:149)
Knekt, 2000 ${ }^{91}$	Finnish Mobile Clinic Health	Finland	9208	≥ 15	28	Interview unvalidated FFQ	Fruit or vegetable categories	5	CeVD incidence	824
Kobylecki, $2015{ }^{94}$	Copenhagen City Heart	Denmark	78527	20-100	10	Self-reported unvalidated FFQ	Fruit and vegetable	3	IHD incidence	2823
Kondo, 2019 ${ }^{95}$	NIPPON DATA80	Japan	$\begin{gathered} 9115 \\ (4002: 5113) \end{gathered}$	30-79	29	3-d food record	Fruit or vegetable	3	CVD mortality	1070
Kvaavik, 2010^{96}	Health and Lifestyle Survey	United Kingdom	$\begin{gathered} 4866 \\ (2509: 2377) \end{gathered}$	43.7 ± 16.3	20	Interview Unvalidated FFQ	Fruit and vegetable	2	CVD mortality	431

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Lai, $2015{ }^{97}$	UK Women's Cohort	United Kingdom	$\begin{gathered} 30458 \\ (0: 30458) \end{gathered}$	35-69	16.7	Validated FFQ	Fruit, categories	5-6	CVD mortality CHD mortality Stroke mortality	$\begin{aligned} & 286 \\ & 138 \\ & 148 \end{aligned}$
Larsson, 2009 ${ }^{98}$	Finnish Male Smokers in the ATBC Study	Finland	$\begin{gathered} 26556 \\ (26556: 0) \end{gathered}$	50-69	13.6	Validated FFQ	Fruit, vegetable	5	Stroke incidence	2702
Larsson, $2013{ }^{99}$	Swedish Mammography and Swedish Men Cohorts	Sweden	$\begin{gathered} 74961 \\ 40291: 34670 \end{gathered}$	45-83	10.2	Validated FFQ	Fruit and/ or vegetable, categories	5	Stroke incidence	4089
$\begin{aligned} & \text { Leenders, } \\ & 2013^{101} \end{aligned}$	EPIC	Europe (10 countries)*	$\begin{gathered} 451151 \\ 129882: 321269 \end{gathered}$	25-70	$\begin{gathered} 12.8 \\ \text { (median) } \end{gathered}$	Validated FFQ and 7 -d food record	Fruit and/or vegetable	4	CVD mortality	5125
Leenders, 2014^{100}	EPIC	Europe (10 countries)*	451151 $(129882: 321$ 269)	25-70	13	Validated FFQ and 7 -d food record	Fruit and/or vegetable	4	CHD mortality Stroke mortality	$\begin{aligned} & 2139 \\ & 1291 \end{aligned}$
Lin, 2007 ${ }^{102}$	NHS	United States	$\begin{gathered} 66360 \\ (0: 66360) \end{gathered}$	30-55	12	Validated FFQ	Fruit, vegetable, categories	5	CHD mortality Ml event	$\begin{aligned} & 324 \\ & 938 \end{aligned}$
Lin, 2017 ${ }^{103}$	Survey of Health \& Living Status of the Elderly	Taiwan	4176	≥ 50	11	Interview FFQ	Fruit and vegetable	2	CVD mortality	N/A
Liu, 2000 ${ }^{105}$	Women's Health Study	United States	$\begin{gathered} 39127 \\ (0: 39127) \end{gathered}$	45-89	5	Validated FFQ	Fruit and/or vegetable	5	CVD incidence MI event	$\begin{aligned} & 418 \\ & 126 \end{aligned}$
Liu, 2001 ${ }^{104}$	The Physician's Health Study	United States	$\begin{gathered} 15520 \\ (15520: 0) \end{gathered}$	40-84	6	Validated FFQ	Vegetable	5	CHD incidence	1148
Mann, 1997 ${ }^{106}$	The Oxford Vegetarian Study	United Kingdom	$\begin{gathered} 10802 \\ (4102: 6700) \end{gathered}$	16-79	13.3	Validated FFQ	Fruit, vegetable, categories	3	IHD mortality	64
Manuel, 2015 ${ }^{107}$	Canadian Community Health Survey	Canada	$\begin{gathered} 82259 \\ (37483: 44746) \end{gathered}$	$\begin{aligned} & \text { 20-83 (men: } \\ & \text { 48.2; } \\ & \text { women: } 49.4 \text {) } \end{aligned}$	8.6	Interview FFQ	Fruit and vegetable	3	Stroke incidence	1551
Miller, $2017{ }^{108}$	PURE (Prospective Urban and Rural Epidemiology)	18 Countries \dagger	135335	35-70	7.4 (Median)	Validated FFQ	Fruit and/or vegetable	4	CVD events MI Stroke Cardiovascular mortality	4784 N/A N/A N/A
Mink, 2007 ${ }^{109}$	Iowa Women's Health	United States	$\begin{gathered} 34492 \\ (0: 34492) \end{gathered}$	55-69	16	Validated FFQ	Fruit or vegetable categories	3	CVD mortality CHD mortality Stroke mortality	$\begin{gathered} 2316 \\ 1329 \\ 469 \end{gathered}$

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Mizrahi, $2009{ }^{110}$	Finnish Mobile Clinic Health Examination Survey	Finland	3932	40-74	24	Interview	Fruit, vegetable, categories	4	Stroke risk	625
Mori, 2018 ${ }^{111}$	Japan Public Health Center Based Prospective Study	Japan	$\begin{gathered} 88184 \\ (40622: 47562) \end{gathered}$	45-74	16.9	Validated FFQ	Vegetable categories	5	CHD mortality Stroke mortality	$\begin{aligned} & 1968 \text { (1192:776) } \\ & 1470(856: 614) \end{aligned}$
Mytton, 2018 ${ }^{112}$	EPIC-Norfolk	England	$\begin{gathered} 22992 \\ (10 \text { 002:12 990) } \end{gathered}$	40-79	16.4	7-d food record	Fruit and vegetable	5	CVD incidence	4965
Nagura, 2009 ${ }^{113}$	Japan Collaborative	Japan	$\begin{gathered} 59485 \\ (25206: 34279) \end{gathered}$	40-79	12.7	Validated FFQ	Fruit, vegetable	4	CVD mortality CHD mortality Stroke mortality	$\begin{gathered} 2243 \text { (1207:1036) } \\ 452(258: 194) \\ 1053(559: 494) \end{gathered}$
Nakamura, 2008^{114}	Takayama	Japan	$\begin{gathered} 29079 \\ (13355: 15724) \end{gathered}$	$\begin{aligned} & \geq 35 \text { (men: 54.0; } \\ & \text { women: 55.1) } \end{aligned}$	7.33	Validated FFQ	Fruit, vegetable	4	CVD mortality	$\begin{gathered} 384 \\ (200: 184) \\ \hline \end{gathered}$
Nechuta, 2010 ${ }^{115}$	Shanghai Women's Health	China	$\begin{gathered} 71243 \\ (0: 71243) \end{gathered}$	40-70	9	Interview Validated FFQ	Fruit and vegetable	Daily	CVD mortality	775
Neelakantan, $2018{ }^{116}$	Singapore Chinese Health Study	China	57078	45-74	17	Validated FFQ	Fruit or vegetable	1 Serving/d	CVD mortality	4871
Ness, 2005 ${ }^{117}$	Boyd Orr Cohort	United Kingdom (England and Scotland)	$\begin{gathered} 4028 \\ (1995: 2033) \end{gathered}$	3.5-11.2	37	Household survey	Fruit, vegetable	4	CHD mortality Stroke mortality	$\begin{gathered} 298 \\ 83 \end{gathered}$
Nothlings, 2008^{118}	EPIC	Europe $(10 \text { countries })^{\dagger}$	10262	35-70	9	Validated FFQ	Fruit or vegetable	$80 \mathrm{~g} / \mathrm{d}$	CVD mortality	517
Okuda, $2015{ }^{119}$	NIPPON DATA80	Japan	$\begin{gathered} 9112 \\ (4000: 5112) \end{gathered}$	30-79	24	Household survey	Fruit and/or vegetable	4	CVD mortality CHD mortality Stroke mortality	$\begin{aligned} & 823 \\ & 165 \\ & 385 \end{aligned}$
Oude Griep, 2010^{120}	MORGEN	The Netherlands	19819	20-59	10.5	Validated FFQ	Fruit, vegetable	4	CHD incidences	245
Oude Griep, $2011{ }^{122}$	MORGEN	The Netherlands	$\begin{gathered} 20069 \\ (8988: 11081) \end{gathered}$	20-68	10.3	Validated FFQ	Fruit and vegetable	4	Stroke incidence	233
Oude Griep, 2011^{121}	MORGEN	The Netherlands	$\begin{gathered} 20069 \\ (8989: 11081) \end{gathered}$	42 ± 11	10.5	Validated FFQ	Fruit or vegetable categories	3-4	CHD incidence	245
Oyebode, 2014 ${ }^{123}$	HSE (Health Survey for England)	England	$\begin{gathered} 65226 \\ (28960: 36266) \end{gathered}$	56.6 ± 14.3	7.7	24-h recall	Fruit and/or vegetable	4	CVD mortality	1554
Pham, 2007 ${ }^{124}$	Miyako Study	Japan	$\begin{gathered} 9651 \\ (4254: 5397) \end{gathered}$	Men: 56.5 ± 10.63; women: 57.4 ± 10.89 (mean \pm SD)	13.8	Questionnaire	Fruit, vegetable	2	Stroke mortality	226
Rebello, 2014 ${ }^{125}$	Singapore Chinese Health Study	China	$\begin{gathered} 53469 \\ (23501: 29968) \end{gathered}$	45-7	15	Interview validated FFQ	Fruit and vegetable	5	IHD mortality	1660 (1022:638)

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Rissanen, 2003^{126}	Kuopio Ischaemic Heart Disease Risk Factor	Finland	$\begin{gathered} 1950 \\ (1950: 0) \end{gathered}$	42-60	12.8	4-d food record	Fruit and vegetable	5	CVD mortality	115
Saglimbene, 2017^{127}	DIET-HD	Europe and South America	9757	N/A	1.5	Validated FFQ	Fruit, categories	2	CVD mortality	N/A
Sahyoun, 1996 ${ }^{128}$	Nutrition Status Study	United States	680	60-101	9-12	3-d food record	Fruit, vegetable, categories	3	CHD mortality	101
Sauvaget, 2003^{129}	Life Span Study	Japan	$\begin{gathered} 39337 \\ (14966: 23471) \end{gathered}$	34-103	16	Validated FFQ	Fruit, vegetable, categories	3	Stroke mortality	$\begin{gathered} 1926 \\ (692: 1234) \end{gathered}$
Scheffers, $2019{ }^{130}$	EPIC Netherlands and MORGEN	The Netherlands	$\begin{gathered} 34560 \\ (25574: 8986) \end{gathered}$	20-69	14.6	Validated FFQ	Fruit and categories	5	CVD incidence CHD incidence Stroke incidence	$\begin{aligned} & 3801 \\ & 2135 \\ & 1135 \end{aligned}$
Sesso, 2003 ${ }^{131}$	WHS (Women's Health Study)	United States	$\begin{gathered} 38445 \\ (0: 38445) \end{gathered}$	45-89	6.9	Validated FFQ	Fruit or vegetable categories	4	CVD incidence	729
Sesso, 2003 ${ }^{133}$	WHS	United States	$\begin{gathered} 38445 \\ (0: 38445) \end{gathered}$	≥ 45	7.2	Validated FFQ	Vegetable categories	5	CVD incidence MI incidence Stroke incidence	$\begin{aligned} & 729 \\ & 201 \\ & 247 \end{aligned}$
Sesso, 2007 ${ }^{132}$	WHS	United States	$\begin{gathered} 38176 \\ (0: 38176) \end{gathered}$	54.5	10.1	Validated FFQ	Fruit category	4	CVD mortality CVD incidence Ml incidence Stroke incidence	$\begin{gathered} 204 \\ 1004 \\ 289 \\ 339 \end{gathered}$
Shah, $2018{ }^{134}$	Cooper Center Longitudinal Study	United States	$\begin{gathered} 11376 \\ (8577: 2799) \end{gathered}$	47	18	3-d food record	Fruit or vegetable	Continuous	CVD mortality	249
Sharma, 2013 ${ }^{135}$	Multi Ethnic Cohort	United States	$\begin{gathered} 174028 \\ (78410: 95618) \end{gathered}$	45-75	7.5	Validated FFQ	Fruit, vegetable	5	Stroke mortality	860 (434:426)
Sharma, 2014 ${ }^{136}$	Multi Ethnic Cohort	United States	$\begin{gathered} 164617 \\ (72866: 91751) \end{gathered}$	45-75	5-8	Validated FFQ	Fruit, vegetable	5	IHD mortality	$\begin{gathered} 1951 \\ (1140: 811) \end{gathered}$
Simila, 2013 ${ }^{137}$	ATBC	Finland	$\begin{gathered} 21955 \\ (21955: 0) \end{gathered}$	50-69	19	Validated FFQ	Fruit, fruit juices	Daily	CHD risk	4379
Sonestedt, $2015{ }^{138}$	Malmo Diet and Cancer	Sweden	$\begin{gathered} 26445 \\ (10048: 16397) \end{gathered}$	44-74	14	Validated FFQ	Fruit, vegetable	5	CVD incidence CHD incidence Stroke incidence	$\begin{gathered} 2921 \\ \text { N/A } \\ \text { N/A } \end{gathered}$
Sotomayor, 2018^{139}	Renal Transplant Recipients	The Netherlands	$\begin{gathered} 400 \\ (217: 183) \end{gathered}$	52 ± 12	7.2	Unvalidated FFQ	Fruit	3	CVD mortality	49
Steffen, 2003 ${ }^{140}$	ARIC (Atherosclerosis Risk in Communities)	United States	$\begin{gathered} 11940 \\ (5271: 6669) \end{gathered}$	$\begin{gathered} 45-64 \\ \text { (men: } 54.4 \pm 5.7 \text {; } \\ \text { women: } 54.1 \pm 5.7 \text {) } \end{gathered}$	11	Interview validated FFQ	Fruit and vegetable	5	CHD incidence Ischemic stroke incidence	$\begin{aligned} & 535 \\ & 214 \end{aligned}$

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Stefler, 2016 ${ }^{141}$	HAPIEE (Health, Alcohol and Psychosocial Factors in Eastern Europe)	Poland, Russia, Czech Republic	19263	57	7.1	Validated FFQ	Fruit and/or vegetable	4	CVD mortality CHD mortality Stroke mortality	$\begin{aligned} & 438 \\ & 226 \\ & 109 \end{aligned}$
Strandhagen, $2000{ }^{142}$	Men Born in 1913	Sweden	$\begin{gathered} 730 \\ (730: 0) \end{gathered}$	54	26	Interview unvalidated FFQ	Fruit, vegetable	5	CVD mortality CVD incidence	$\begin{aligned} & 226 \\ & 209 \end{aligned}$
Takachi, 2008 ${ }^{143}$	Japan Public Health Center Based Prospective Study	Japan	$\begin{gathered} 77891 \\ (35909: 41982) \end{gathered}$	45-74	5.9	Validated FFQ	Fruit and/ or vegetable, categories	4	CVD incidence	1386 (830:556)
Tanaka, 2013 ${ }^{144}$	Japan Diabetes Complications Study	Japan	1414	40-70	8.1 (Median)	Validated FFQ	Fruit and vegetable	4	CHD incidence Stroke incidence	$\begin{aligned} & 96 \\ & 68 \end{aligned}$
Tognon, 2014 ${ }^{145}$	MONICA	Denmark	$\begin{gathered} 1849 \\ (901: 948) \end{gathered}$	30-59	11	Food record	Fruit, vegetable	2	CVD mortality CVD incidence MI mortality MI incidence Stroke mortality Stroke incidence	$\begin{gathered} 223 \\ 755 \\ 64 \\ 161 \\ 40 \\ 167 \end{gathered}$
Tucker, $2005{ }^{146}$	Baltimore Longitudinal Study of Aging	United States	$\begin{gathered} 501 \\ (501: 0) \end{gathered}$	34-80	18	7-d food record	Fruit and/or vegetable	2	CHD mortality	71
Von Ruesten, $2013{ }^{147}$	EPIC	Germany	$\begin{gathered} 23531 \\ (9098: 14433) \end{gathered}$	35-65	8	Validated FFQ	Fruit, vegetable, categories	Daily	CVD incidence	363
Vormund, $2015{ }^{148}$	MONICA	Switzerland	$\begin{gathered} 17861 \\ (8663: 9198) \end{gathered}$	16-92	21.4 (Mean)	24-h recall	Fruit, vegetable	Daily	CVD mortality	1385
Wang, 2016 ${ }^{149}$	Linxian Nutrition Intervention Trials	China	$\begin{gathered} 2455 \\ (1105: 1340) \end{gathered}$	40-69	19-26	Unvalidated FFQ	Fruit and/ or vegetable, categories	2	CHD mortality Stroke mortality	355 (men) 452 (women)
Watkins, 2000 ${ }^{150}$	CPS-11 (Cancer Prevention Study 11)	United States	$\begin{gathered} 1063023 \\ (453962: 609061) \end{gathered}$	≥ 30	7	Unvalidated FFQ	Vegetable		CHD mortality	$\begin{gathered} 13761 \\ (9156: 4605) \end{gathered}$
Whiteman, $1999{ }^{151}$	OXCHECK	United Kingdom	$\begin{gathered} 10522 \\ (4929: 5593) \end{gathered}$	35-64	9	Unvalidated FFQ	Fruit, green vegetables	2-3	IHD mortality	144
Yamada, 2011 ${ }^{152}$	Jidni Medical School Cohort	Japan	$\begin{gathered} 10623 \\ (4147: 6476) \end{gathered}$	N/A	10.7	Validated FFQ	Fruit category	5	CVD event MI event Stroke event	$\begin{gathered} 758 \text { (270:488) } \\ 565 \text { (383:182) } \\ 99(76: 23) \\ \hline \end{gathered}$
Yokoyama, 2000^{153}	Shibata Study	Japan	$\begin{gathered} 2121 \\ (880: 1241) \end{gathered}$	≥ 40	20	Unvalidated FFQ	Fruit, vegetable	3	Stroke incidence	196 (91:105)

Table. Continued

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Yoshizaki, $2019{ }^{154}$	Japan Public Health Centre Based Prospective Study	Japan	$\begin{gathered} 16498 \\ (7726: 8772) \end{gathered}$	45-74	14	Validated FFQ	Fruit and/or vegetable	3	CHD incidence Stroke incidence	$\begin{aligned} & 839 \\ & 197 \end{aligned}$
Yu, $2014{ }^{155}$	Shanghai Men and Women's Health Study	China	$\begin{gathered} 122635 \\ (55424: 67 \text { 211) } \end{gathered}$	40-74	5.4-9.8	Interview validated FFQ	Fruit and/ or vegetable, categories	4	CHD incidence	365 (217:148)
Zhang, 2011 ${ }^{156}$	Shanghai Men and Women's Health Study	China	134796 $(61436: 73360)$	$\begin{aligned} & 40-74 \\ & 40-70 \end{aligned}$	$\begin{gathered} 4.5 \\ 10.2 \end{gathered}$	Interview validated FFQ	Fruit, vegetable, and categories	5	CVD mortality	5393 (1951:3442)
Zhang, 2011 ${ }^{157}$	MONICA	Finland	$\begin{gathered} 36686 \\ (17287: 19399) \\ \hline \end{gathered}$	25-74	13.7	24-h recall	Fruit, veg	4	Stroke incidence	1478

 infarction; MONICA, monitoring of trends and determinants in cardiovascular disease; MORGEN, monitoring project on risk factors for chronic diseases; N/A, Not Available; NHANES, National Health and *The EPIC cohort represented the following countries: France, Germany, Greece, Italy, the Netherlands, Spain, United Kingdom, Sweden, Denmark, and Norway. Occupied Palestinian Territory; low income: Bangladesh, India, Pakistan, Zimbabwe.
between fruit juice, cruciferous, green leafy, and tomato vegetables, and CHD and stroke mortality and citrus and stroke mortality as $>35 \%$ of the pooled risk estimate was derived from Iso et al, ${ }^{84}$ which was scored 5 on the NOS. The association between apricots and CVD mortality was derived from one study, Saglimbene et al, ${ }^{158}$ which was scored 1 on the NOS. Although most studies had scores reduced because of self-administered ascertainment of exposure, 88% of studies received a total score ≥ 6, which was considered high quality.

Cardiovascular Disease CVD Incidence

Figure 2 and Figures S1 through S11 show the relation of total and specific fruit and vegetables with CVD incidence. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.93 [$95 \% \mathrm{Cl}, 0.89-0.96]$, no significant heterogeneity), fruits (RR, 0.91 [$95 \% \mathrm{Cl}, 0.88-0.95]$, no significant heterogeneity), and vegetables (RR, 0.94 [$95 \% \mathrm{Cl}, 0.90-0.97]$, no significant heterogeneity). Figures S 12 and S 13 summarize the relation of sources of fruit or vegetables with CVD incidence. A significant interaction by fruit source was observed ($P<0.001$), with significant associations with lower risk limited to citrus (RR, $0.88[95 \% \mathrm{Cl}, 0.80-$ $0.86]$, no significant heterogeneity) and pommes (RR, 0.76 [$95 \% \mathrm{Cl}, 0.66-0.88$], no significant heterogeneity). We found no significant associations from the highest versus lowest intakes of berries (RR, 1.27 [$95 \% \mathrm{Cl}, 0.95-$ 1.71], heterogeneity not applicable) and juice (RR, 1.00 [$95 \% \mathrm{Cl}, 0.93-1.07$], no significant heterogeneity) fruit. No interaction by vegetable source was observed ($P=0.227$).

CVD Mortality

Figure 3 and Figures S14 through S30 show the relation of total and specific fruit and vegetables with CVD mortality. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.89 [$95 \% \mathrm{Cl}, 0.85-0.93]$, substantial heterogeneity $\left[l^{2}=68 \%, P<0.001\right]$), fruits (RR, 0.88 [95\% $\mathrm{Cl}, 0.86-0.91]$, substantial heterogeneity $\left[l^{2}=79 \%\right.$, $P<0.001]$), and vegetables (RR, 0.87 [$95 \% \mathrm{Cl}, 0.85-$ $0.90]$, substantial heterogeneity $\left[l^{2}=59 \%, P<0.001\right]$). Figures S31 and S32 summarize the association of sources of fruits or vegetables with CVD mortality. A significant interaction by fruit ($P=0.001$) and vegetable sources ($P<0.001$) was observed with significant associations with lower risk limited to pommes fruit (RR, 0.86 [$95 \% \mathrm{Cl}, 0.80-0.92$], no significant heterogeneity) and to allium (RR, 0.33 [$95 \% \mathrm{Cl}, 0.22-0.49$], heterogeneity not applicable), cruciferous (RR, $0.85[95 \% \mathrm{Cl}$, $0.82-0.89$], no significant heterogeneity), and green leafy (RR, 0.87 [$95 \% \mathrm{Cl}, 0.81-0.94]$, substantial heterogeneity $\left[l^{2}=88 \%, P<0.001\right]$) vegetables. There was

Figure 2. Relation between intake of fruits and vegetables and total incident cardiovascular disease (CVD) (highest vs lowest level of intake).
Pooled risk estimates are represented by the black diamond, with principal exposures highlighted in bold. Principal exposures (fruits and vegetables, fruits, and vegetables) represent the pooled data of the risk estimates reported for these exposures and were not tabulated by pooling fruit and vegetable varieties. Values of $\mathrm{I}^{2} \geq 50 \%$ indicate substantial heterogeneity, with significance at $P>0.10$. The mean important difference of 5% change in relative risk, indicating a clinically relevant association with lower or higher risk, is indicated by the dashed gray lines. CHD indicates coronary heart disease; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; and RR, risk ratio.

Figure 3. Relation between intake of fruits and vegetables and cardiovascular mortality (highest vs lowest level of intake). Pooled risk estimates are represented by the black diamond, with principal exposures highlighted in bold. Principal exposures (fruits and vegetables, fruits, and vegetables) represent the pooled data of the risk estimates reported for these exposures and were not tabulated by pooling fruit and vegetable varieties. Values of $\mathrm{I}^{2} \geq 50 \%$ indicate substantial heterogeneity, with significance at $P>0.10$. The mean important difference of 5% change in relative risk, indicating a clinically relevant association with lower or higher risk, is indicated by the dashed gray lines. CHD indicates coronary heart disease; CVD, cardiovascular disease; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; and RR, risk ratio.
a significant increased risk with CVD mortality from the highest versus lowest intake of apricots (RR, 1.84 [$95 \% \mathrm{Cl}, 1.27-2.67]$, heterogeneity not applicable). We found no significant associations from the highest versus lowest intakes of bananas (RR, $1.06[95 \% \mathrm{Cl}$, $0.87-1.29]$, heterogeneity not applicable), berries (RR, 0.97 [95\% CI, 0.92-1.03], no significant heterogeneity), citrus (RR, 0.95 [$95 \% \mathrm{Cl}, 0.90-1.02$], substantial heterogeneity $\left[l^{2}=62 \%, P=0.049\right]$) juice (RR, $0.81[95 \% \mathrm{Cl}$, $0.58-1.13]$, heterogeneity not applicable), and grapes (RR, 0.90 [$95 \% \mathrm{Cl}, 0.81-1.01]$, substantial heterogeneity $\left[l^{2}=61 \%, P=0.077\right.$) fruit and carrots (RR, $0.92[95 \%$ $\mathrm{Cl}, 0.85-1.01]$, no significant heterogeneity), celery (RR, 0.91 [$95 \% \mathrm{Cl}, 0.83-1.01]$, heterogeneity not applicable), and tomato (RR, 0.98 [$95 \% \mathrm{Cl}, 0.93-1.04]$, no significant heterogeneity) vegetables.
Figures S33 through S55 show the dose-response analyses for total and specific fruit and vegetables and CVD incidence and mortality. A nonlinear model best fit the data for citrus fruit and incident CVD ($P=0.033$), with a plateau at 0.5 servings/day, total fruits and vegetables with CVD mortality ($P<0.001$), with a plateau at 4 daily servings, and fruits and CVD mortality ($P=0.003$), with a plateau in risk reduction after 2 daily servings. An inverse dose-response gradient was found for the following associations: total fruits and vegetables (RR, 0.97 [$95 \% \mathrm{Cl}, 0.96-0.99$] per serving/day), fruits (RR, 0.97 [$95 \% \mathrm{Cl}, 0.95-0.99$] per serving/day), pommes (RR, 0.87 [$95 \% \mathrm{Cl}, 0.75-0.99$] per serving/day), and green leafy vegetables (RR, 0.72 [$95 \% \mathrm{Cl}, 0.56-0.93]$) with CVD incidence and total fruits and vegetables (RR, 0.72 [$95 \% \mathrm{Cl}, 0.56-0.93$] per serving/day), fruits (RR, 0.92 [$95 \% \mathrm{Cl}, 0.89-0.96$] per serving/day), and vegetables (RR, 0.94 [$95 \% \mathrm{Cl}, 0.92-0.97$] per serving/ day) with CVD mortality.

Coronary Heart Disease CHD Incidence

Figure 2 and Figures S56 through S69 show the relation of total and specific fruit and vegetables with CHD incidence. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.88 [$95 \% \mathrm{Cl}, 0.83-0.92$], no significant heterogeneity), fruits (RR, $0.88[95 \% \mathrm{Cl}$, $0.84-0.92$], no significant heterogeneity), and vegetables (RR, 0.92 [$95 \% \mathrm{Cl}, 0.87-0.96]$, substantial heterogeneity $\left.\left[1^{2}=53 \%, P=0.002\right]\right)$. Figures $S 70$ and S71 summarize the relation of sources of fruits or vegetables with CHD incidence. No interaction by fruit source was observed ($P=0.375$). A significant interaction by vegetable sources was seen ($P<0.001$) with significant associations with lower risk limited to green leafy vegetables (RR, 0.82 [$95 \% \mathrm{Cl}, 0.76-0.89]$, no significant heterogeneity). We found no significant associations from the highest versus lowest intakes
of allium (RR, 0.93 [$95 \% \mathrm{Cl}, 0.80-1.09$], no significant heterogeneity), cruciferous (RR, $1.01[95 \% \mathrm{Cl}$, 0.95-1.07], no significant heterogeneity), and tomato (RR, 0.80 [$95 \% \mathrm{Cl}, 0.57-1.13]$, no significant heterogeneity) vegetables.

CHD Mortality

Figure 3 and Figures S72 through S87 show the relation of total and specific fruit and vegetables with CHD mortality. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.81 [$95 \% \mathrm{Cl}, 0.72-0.92$], no significant heterogeneity), fruits (RR, $0.86[95 \% \mathrm{Cl}, 0.82-$ $0.90]$, substantial heterogeneity $\left[l^{2}=62 \%, P<0.001\right]$), and vegetables (RR, 0.86 [$95 \% \mathrm{Cl}, 0.83-0.89$], no significant heterogeneity). Figures S 88 and S 89 summarize the relation of sources of fruits or vegetables with CHD mortality. No significant interaction was found by fruit sources ($P=0.144$). A significant interaction by vegetable source was seen ($P=0.023$), with significant associations with lower risk limited to allium (RR, 0.67 [$95 \% \mathrm{Cl}, 0.57-0.79]$, substantial heterogeneity [$\left.l^{2}=88 \%, P<0.001\right]$), cruciferous (RR, 0.91 [$95 \% \mathrm{Cl}, 0.85-0.98$], substantial heterogeneity $\left[1^{2}=88 \%, P<0.001\right]$), and green leafy (RR, 0.86 [95% $\mathrm{Cl}, 0.78-0.94]$, no significant heterogeneity) vegetables. We found no significant associations from the highest versus lowest intakes of carrots (RR, 0.76 [$95 \% \mathrm{Cl}, 0.37-1.58]$, heterogeneity not applicable), celery (RR, 0.92 [$95 \% \mathrm{Cl}, 0.80-1.06$], heterogeneity not applicable), and tomato (RR, $0.92[95 \% \mathrm{Cl}$, 0.82-1.04], no significant heterogeneity) vegetables.

Figures S90 through S116 show the dose-response analyses for fruit and vegetables and CHD incidence and mortality. A nonlinear model best fit the data for citrus fruit ($P=0.005$) and green leafy vegetables ($P=0.004$) and incident CHD and total fruits and vegetables and CHD mortality ($P=0.044$), with plateaus in risk reductions following $0.5,0.5$, and 3 daily servings, respectively. An inverse dose-response was found in the associations between total fruits and vegetables (RR, 0.97 [$95 \% \mathrm{Cl}, 0.96-0.98$] per serving/day), fruits (RR, 0.96 [$95 \% \mathrm{Cl}, 0.93-0.99$] per serving/day), vegetables (RR, 0.98 [$95 \% \mathrm{Cl}, 0.95-0.99$] per serving/ day), and green leafy vegetables (RR, $0.85[95 \% \mathrm{Cl}$, $0.76-0.94]$ per serving/day) with CHD incidence and fruits (RR, 0.94 [$95 \% \mathrm{Cl}, 0.90-0.97$] per serving/day) and vegetables (RR, 0.89 [$95 \% \mathrm{Cl}, 0.83-0.96$] per serving/day) with CHD mortality.

Stroke

Stroke Incidence

Figure 2 and Figures S117 through S127 show the relation of total and specific fruit and vegetables with
stroke incidence. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.82 [$95 \% \mathrm{Cl}, 0.77-0.88$], no significant heterogeneity), fruits (RR, 0.82 [$95 \% \mathrm{Cl}, 0.79-$ $0.85]$, no significant heterogeneity), and vegetables (RR, 0.88 [$95 \% \mathrm{Cl}, 0.83-0.93$], substantial heterogeneity $\left[I^{2}=50 \%, P=0.006\right]$). Figures S 128 and S 129 summarize the relation of sources of fruits or vegetables with stroke incidence. A significant interaction by fruit ($P=0.017$) and vegetable sources ($P=0.044$) was observed with significant associations with lower risk limited to citrus (RR, 0.88 [$95 \% \mathrm{Cl}, 0.82-0.94]$, substantial heterogeneity $\left[{ }^{2}=51 \%, P=0.04\right]$), juice (RR, 0.82 [$95 \% \mathrm{Cl}, 0.68-0.99]$, substantial heterogeneity $\left[l^{2}=73 \%, P=0.02\right]$), and pommes (RR, 0.89 [95\% CI, $0.84-0.95]$, no significant heterogeneity) fruit and to allium (RR, 0.89 [$95 \% \mathrm{Cl}, 0.80-0.99$], no significant heterogeneity), green leafy (RR, 0.88 [$95 \% \mathrm{Cl}, 0.79-$ 0.98], no significant heterogeneity), and tomato (RR, 0.20 [$95 \% \mathrm{Cl}, 0.05-0.82$], heterogeneity not applicable) vegetables. We found no significant associations from the highest versus lowest intakes of berries (RR, 1.03 [$95 \% \mathrm{Cl}, 0.94-1.13]$, substantial heterogeneity $\left[1^{2}=50 \%, P=0.078\right]$) fruit and cruciferous (RR, 0.98 [$95 \% \mathrm{Cl}, 0.91-1.05]$, substantial heterogeneity $\left[1^{2}=62 \%, P=0.022\right]$) vegetables.

Stroke Mortality

Figure 3 and Figures S130 through S144 show the relation of total and specific fruits and vegetables with stroke mortality. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.73 [$95 \% \mathrm{Cl}, 0.65-0.81]$, no significant heterogeneity), fruits (RR, 0.87 [95\% $\mathrm{Cl}, 0.84-0.91]$, substantial heterogeneity $\left[l^{2}=75 \%\right.$, $P<0.001]$), and vegetables (RR, 0.94 [$95 \% \mathrm{Cl}, 0.90-$ $0.99]$, substantial heterogeneity $\left[l^{2}=62 \%, P=0.001\right]$). Figures S145 and S146 summarize the relation of sources of fruit or vegetables with stroke mortality. A significant interaction by fruit ($P<0.001$) and vegetable sources ($P<0.001$) was observed with significant associations, with lower risk limited to citrus (RR, 0.90 [$95 \% \mathrm{Cl}, 0.86-0.95]$, substantial heterogeneity $\left[l^{2}=82 \%, P<0.001\right]$) and juice (RR, $0.67[95 \% \mathrm{Cl}$, $0.60-0.76]$, no significant heterogeneity) fruit and carrots (RR, 0.54 [$95 \% \mathrm{Cl}, 0.48-0.61$], heterogeneity not applicable) and green leafy (RR, 0.90 [95\% $\mathrm{Cl}, 0.83-0.97]$, substantial heterogeneity $\left[l^{2}=50 \%\right.$, $P=0.09]$) vegetables. We found no significant associations from the highest versus lowest intakes of bananas (RR, 1.04 [$95 \% \mathrm{Cl}, 0.70-1.54]$, heterogeneity not applicable), berries (RR, 0.97 [$95 \% \mathrm{Cl}$, $0.82-1.15]$, no significant heterogeneity), grapes (RR, 0.74 [$95 \% \mathrm{Cl}, 0.53-1.02]$, no significant heterogeneity), and pommes (RR, 0.91 [$95 \% \mathrm{Cl}, 0.77-1.09$],
no significant heterogeneity) fruit and allium (RR, 0.99 [$95 \% \mathrm{Cl}, 0.79-1.24]$, substantial heterogeneity $\left[l^{2}=96 \%, P<0.001\right]$), cruciferous (RR, 0.92 [$95 \% \mathrm{Cl}$, $0.85-1.01]$, no significant heterogeneity), and tomato (RR, 1.03 [95\% CI, 0.94-1.12], no significant heterogeneity) vegetables.

Figures S147 through S171 show the dose-response analyses for fruit and vegetables and stroke mortality and incidence. A nonlinear model best fit the data for citrus fruit ($P=0.039$) and vegetables ($P=0.012$) and stroke incidence and fruit ($P<0.001$) and green leafy ($P=0.043$) vegetables and stroke mortality, with plateaus in risk reductions following $0.5,1,2$, and >0.7 daily servings, respectively. An inverse dose-response gradient was found in the associations between total fruits and vegetables (RR, 0.95 [$95 \% \mathrm{Cl}, 0.92-0.98$] per serving/day), fruits (RR, 0.92 [$95 \% \mathrm{Cl}, 0.88-0.96$] per serving/day), citrus fruit (RR, 0.83 [$95 \% \mathrm{Cl}, 0.69-0.98$] per serving/ day), pommes (RR, 0.87 [$95 \% \mathrm{Cl}, 0.79-0.96$] per serving/day), green leafy vegetables (RR, 0.88 [95% $\mathrm{Cl}, 0.79-0.97]$ per serving/day), and tomatoes (RR, 0.67 [$95 \% \mathrm{Cl}, 0.52-0.87$] per serving/day) with stroke incidence and fruits and vegetables (RR, 0.93 [95\% $\mathrm{Cl}, 0.88-0.98$] per serving/day), fruits (RR, 0.85 [95\% $\mathrm{Cl}, 0.78-0.92$] per serving/day), vegetables (RR, 0.93 [$95 \% \mathrm{Cl}, 0.87-0.99$] per serving/day), citrus fruit (RR, 0.67 [$95 \% \mathrm{Cl}, 0.57-0.80$] per serving/day), fruit juice (RR, 0.54 [$95 \% \mathrm{Cl}, 0.36-0.89]$ per serving/day), carrots (RR, 0.44 [$95 \% \mathrm{Cl}, 0.28-0.69]$ per serving/day), and green leafy vegetables (RR, 0.85 [$95 \% \mathrm{Cl}, 0.73-$ 0.98] per serving/day) with stroke mortality.

Sensitivity Analyses

The systematic removal of each study did not modify the direction or significance of the association estimates or the evidence for heterogeneity (data not shown).

Subgroup Analyses

Figures S172 through S188 illustrate a priori categorical subgroup analyses. There were no statistically significant subgroup differences. Inverse associations were predominately limited to studies with statistical adjustments of ≥ 8 potential confounders. Confining analyses to studies using validated exposure assessment techniques did not alter the associations. No effect modification was seen by sex, age, follow-up duration, NOS, or study location.

Publication Bias

Figures S189 through S205 illustrate publication bias analyses for comparisons with at least 10 observations. Visual inspection and formal analysis with the Begg and Egger test did not show evidence of
publication bias in any comparison, except for vegetable intake with CVD ($P_{\text {Begg }}=0.015, P_{\text {Egger }}=0.004$), CHD ($P_{\text {Begg }}=0.018, P_{\text {Egger }}=0.004$), and stroke ($P_{\text {Begg }}=0.545$, $P_{\text {Egger }}=0.018$) mortality and fruit intake with stroke mortality $\left(P_{\text {Begg }}=0.820, P_{\text {Egger }}=0.031\right)$, which were subsequently unsupported by the trim and fill test.

GRADING OF RECOMMENDATIONS ASSESSMENT, DEVELOPMENT, AND EVALUATION

Figures 2 and 3 and Tables S4 through S9 summarize the GRADE assessments. The certainty of the evidence was rated as "moderate" for 11, "low" for 21, and "very low" for 52 of the exposure-outcome relationships. Our certainty in the evidence was strongest for the associations of total fruits and vegetables with lower risks of CHD incidence and CHD and stroke mortality; fruits with lower risks of CVD, CHD, and stroke incidence; vegetables with lower risks of CHD mortality and stroke incidence; pommes fruit with lower risks of stroke incidence; and green leafy vegetables with lower risks of CHD incidence. The evidence was rated as "moderate" in each case, because of an upgrade for dose-response gradient in the absence of any downgrades. The associations for specific types of fruits and vegetables were rated largely as "very low," because of downgrades for imprecision, risk of bias, indirectness, and/or inconsistency. The fixed effects model improved our certainty in the evidence for fruit and CVD incidence by improving precision of the pooled risk estimate. There were no other marked differences between the random effects and fixed effects models.

DISCUSSION

We conducted a systematic review and meta-analysis of 81 unique prospective cohorts involving 4031896 individuals and 125112 cardiovascular events to assess the relation of total and specific fruit and vegetable consumption on CVD incidence and mortality outcomes. Pooled analyses of highest versus lowest consumption illustrate a lower risk in CVD, CHD, and stroke incidence or mortality by 7% to 27% from total fruit and vegetable intake, 9\% to 18\% from fruit intake, and 5% to 14% from vegetable intake. Of the specific fruit sources, highest versus lowest intakes of citrus and pommes fruit showed significant risk reductions in most CVD outcomes, from 9\% to 12% and from 10% to 24%, respectively, and fruit juice showed a significant risk reduction in stroke incidence and mortality by 18% and 33%, respectively. Most notably of the vegetable categories, one daily serving of green leafy vegetables was associated
with 12% to 18% risk reduction in CVD, CHD, and stroke incidence and CHD mortality. There was a consistent linear dose-response between fruits and vegetables and CHD, with a maximum daily intake of 7 fruit and 7 vegetable servings showing a risk reduction of $\approx 20 \%$ and $\approx 30 \%$ in CHD incidence and mortality, respectively.

Findings in the Context of Existing Literature

Our findings are consistent with those of previous systematic review and meta-analyses, which also detected inverse associations between fruits and/ or vegetables and CVD mortality and incident outcomes. ${ }^{10,14,159}$ Our analyses were in line with those reported most recently by Aune et al, who observed the lowest risk on CVD, CHD, and stroke from maximum intakes of total fruits and vegetables. ${ }^{10}$ This is despite our division of CVD outcomes differing significantly, with the present study distinguishing between mortality and incidence data. Our findings on individual fruits and vegetables were also relatively consistent, highlighting a high versus low intake of citrus and pommes fruit, fruit juice, and green leafy vegetables as protective on CVD outcomes, suggesting they may independently play a valuable role in the diet. Nonetheless, the current study benefited from the inclusion of updated and novel large prospective cohorts, namely, the SUN (Seguimiento University of Navarra) ${ }^{160}$ and PURE (Prospective Urban and Rural Epidemiology) ${ }^{161}$ cohorts, which combined contributed an additional 152342 individuals and 4896 events to our analyses.

Numerous mechanisms have been proposed to explain the benefits of fruit and vegetable consumption on the cardiovascular system. Perhaps the most supported hypothesis is through their essential contribution to total dietary fiber, an established modifier of CVD risk factors. ${ }^{162,163}$

Fruits with highlighted benefits in the present review tend to be of low glycemic index, a characteristic with demonstrated CVD risk factor reductions. ${ }^{164}$ Their consumption has also been associated with improved weight management ${ }^{165}$ and decreased prevalence of obesity, ${ }^{166}$ a risk factor attributed to 7% to 44% of CVD incidence, ${ }^{167}$ likely because of their low energy density and displacement of high calorie foods in the diet. The relationships between the extensive list of micronutrients offered by fruits and vegetables and CVD risk reduction has also been widely explored. They are a key source of antioxidants in the diet, necessary for eradicating free radicals, and may defend against damaging lipid oxidation. ${ }^{168}$ Individual sources may offer distinct benefits, such as green leafy vegetables, which are dense in dietary nitrates, a compound linked to reductions in early prognostic
markers of CVD. ${ }^{169-171}$ Interestingly, however, we did not observe a benefit from high consumption of berries as the most concentrated fruit source of antioxidants. Several vasoactive minerals, such as potassium, magnesium, and calcium, are also obtained from fruits and vegetables in the diet. ${ }^{172-174}$ Although each mechanism may be individually biologically plausible, the complexity of the nutrient combinations cannot be underestimated. A whole food approach is necessary to evaluate their efficacy in CVD risk reduction as it can account for additive and multiplicative mechanisms.

Strengths and Limitations

Our systematic review and meta-analysis has several strengths. It provides a comprehensive synthesis of the available knowledge on consumption of fruits, vegetables, and their varieties and CVD outcomes of importance to public health and clinical practice. We included a systematic search strategy to ensure all published prospective cohort data were identified and used a priori established approaches to explore the pooled risk estimates, including dose-response analyses. Finally, the certainty of the evidence was assessed using the GRADE approach with the evidence upgraded in several cases for the presence of a protective inverse dose-response gradient for the association of total fruits and vegetables, fruits, vegetables, and green leafy vegetables with CVD outcomes.

There are also several limitations of our systematic review and meta-analysis. Although $\approx 90 \%$ of the included prospective cohort studies were of high quality, residual confounding (measured and unmeasured) cannot be ruled out in observational studies. This issue is addressed in the GRADE assessment, which starts observational studies as "low" certainty. We downgraded the certainty of evidence because of imprecision in 55 of the 84 associations as the upper $95 \% \mathrm{Cl}$ crossed the minimal clinically important difference of a 5% reduction in relative risk, from which evidence of harm could not be excluded in 30 associations. Because of limited number of observations, indirectness was also present in several cases and the lack of reported exposures for different tropical fruit limited our exploration of this fruit category. Another source of uncertainty leading to downgrades in the evidence was the presence of high risk of bias in several of the studies that presented data on specific sources of fruits and vegetables. Last, the evidence was downgraded for inconsistency based on the presence of substantial unexplained heterogeneity in 19 of the 84 associations.

Balancing the strengths and limitations, the certainty of the evidence was rated as "very low" to "low" for most of the exposure-outcome relationships for the association of fruits and vegetables with cardiovascular
outcomes. The highest ("moderate") rated evidence was for the cardiovascular benefit of total fruits and vegetables, fruits, vegetables, pommes fruit, and green leafy vegetables. The least certainty was for other specific fruit and vegetable sources.

Implications

Addressing the low prevalence of adequate fruit and vegetable consumption remains an important global health target. ${ }^{175}$ With average intakes of 1 and 1.7 servings of fruit and vegetables per day, respectively, in developed countries, such as the United States, ${ }^{150}$ there is an opportunity to increase intakes to meet the established minimum recommendations of 5 daily servings and realize the cardiovascular benefits. ${ }^{176} \mathrm{We}$ observed a linear dose relationship between fruits and vegetables and CHD and stroke risk, suggesting an increased cardiovascular benefit with additional servings and that targets beyond " 5 a day" should also be considered. Successful strategies for increasing fruit and vegetable intake, nevertheless, are lacking and may benefit from emphasizing a larger variety of sources. Our synthesis highlighted that different sources of fruit, including 100% fruit juice, are associated with comparable CVD risk reduction as that of vegetables. Public health guidance to limit the intake of certain fruit sources because of concerns related to their contribution to sugars may have unintended harm in preventing people from meeting fruit and vegetable targets for CVD risk reduction.

CONCLUSIONS

Current evidence supports the role of a variety of fruits and vegetables for CVD prevention. Higher intakes of fruits and/or vegetables are associated with improvements in all CVD outcomes, with fruit associated with the largest risk reductions. Greater benefits may be seen for some fruits, including citrus, pommes, and 100\% fruit juice, and vegetables, including allium, cruciferous, and green leafy vegetables, supporting recommendations for emphasizing specific fruit and vegetable sources in dietary guidelines. No fruit and vegetable sources were adversely associated with CVD, including fruit sources of concern, such as 100\% fruit juice and dried fruit. Our certainty in the evidence ranges from "very low" to "moderate," with the least certainty for specific sources of fruits and vegetables and the highest certainty for broad categories. More research of specific food sources of fruits and vegetables is needed to improve our estimates.

ARTICLE INFORMATION

Received September 25, 2020; accepted July 21, 2020.

Affiliations

From the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., T.A.K., V.V., E.J., L.A.L., C.W.K., D.J.J., J.L.S.); Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., V.V., E.J., L.A.L., C.W.K., D.J.J., J.L.S.); Toronto 3D Knowledge Synthesis and Clinical Trial Unit, Toronto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., T.A.K., L.A.L., C.W.K., D.J.J., J.L.S.); Li Ka Shing Knowledge Institute (V.V., L.A.L., D.J.J., J.L.S.) and Division of Endocrinology and Metabolism (V.V., L.A.L., D.J.J., J.L.S.), St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada (V.V., L.A.L., D.J.J., J.L.S.); and College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (C.W.K.).

Sources of Funding

This work was funded by the Canadian Institutes of Health Research (funding reference number, 129920). The Diet, Digestive Tract, and Disease Centre, funded through the Canada Foundation for Innovation and the Ministry of Research and Innovation's Ontario Research Fund, provided the infrastructure for the conduct of this project. Zurbau was funded by the Banting \& Best Diabetes Centre Tamarack Graduate Award. Sievenpiper was funded by a PSI Graham Farquharson Knowledge Translation Fellowship, Diabetes Canada Clinician Scientist Award, Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes (INMD) and the Canadian Nutrition Society (CNS) New Investigator Partnership Prize, and Banting \& Best Diabetes Centre Sun Life Financial New Investigator Award.

Disclosures

Zurbau is a part-time employee at INQUIS Clinical Research Ltd., a contract research organization. Khan reports he has received research support from the Canadian Institutes of Health Research (CIHR), the International Life Science Institute (ILSI), and National Honey Board. He has been an invited speaker at the Calorie Control Council Annual meeting for which he has received an honorarium. Vuksan has a Canadian (2410556) and American (7326.404) patent on the medical use of viscous fiber blend for reducing blood glucose for treatment of diabetes mellitus, increasing insulin sensitivity, and reduction in systolic blood pressure and blood lipids issued. Kendall has received grants or research support from the Advanced Food Materials Network, Agriculture and Agri-Foods Canada, Almond Board of California, American Peanut Council, Barilla, CIHR, Canola Council of Canada, International Nut and Dried Fruit Council, International Tree Nut Council Research and Education Foundation, Loblaw Brands Ltd, Pulse Canada, and Unilever. He has received in-kind research support from the Almond Board of California, American Peanut Council, Barilla, California Walnut Commission, Kellogg Canada, Loblaw Companies, Quaker (Pepsico), Primo, Unico, Unilever, and White Wave Foods/Danone. He has received travel support and/or honoraria from the American Peanut Council, Barilla, California Walnut Commission, Canola Council of Canada, General Mills, International Nut and Dried Fruit Council, International Pasta Organization, Loblaw Brands Ltd, Nutrition Foundation of Italy, Oldways Preservation Trust, Paramount Farms, Peanut Institute, Pulse Canada, Sun-Maid, Tate \& Lyle, Unilever, and White Wave Foods. He has served on the scientific advisory board for the International Tree Nut Council, International Pasta Organization, McCormick Science Institute, and Oldways Preservation Trust. He is a member of the International Carbohydrate Quality Consortium, Executive Board Member of the Diabetes and Nutrition Study Group of the European Association for the Study of Diabetes (EASD), is on the Clinical Practice Guidelines Expert Committee for Nutrition Therapy of the EASD, and is a Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. Jenkins has received research grants from Saskatchewan Pulse Growers, the Agricultural Bioproducts Innovation Program through the Pulse Research Network, the Advanced Foods and Material Network, Loblaw Companies Ltd, Unilever, Barilla, the Almond Board of California, Agriculture and Agri-food Canada, Pulse Canada, Kellogg's Company, Canada, Quaker Oats, Canada, Procter \& Gamble Technical Centre Ltd, Bayer Consumer Care, Springfield, NJ, Pepsi/Quaker, International Nut \& Dried Fruit (INC), Soy Foods Association of North America, the Coca-Cola Company (investigator-initiated, unrestricted grant), Solae, Haine Celestial, the Sanitarium Company, Orafti, the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, Soy Nutrition Institute, the Canola and Flax Councils of Canada, the Calorie Control

Council, the CIHR, the Canada Foundation for Innovation, and the Ontario Research Fund. He has received in-kind supplies for trials as a research support from the Almond Board of California, Walnut Council of California, American Peanut Council, Barilla, Unilever, Unico, Primo, Loblaw Companies, Quaker (Pepsico), Pristine Gourmet, Bunge Limited, Kellogg Canada, and White Wave Foods. He has been on the speaker's panel, served on the scientific advisory board, and/or received travel support and/ or honoraria from the Almond Board of California, Canadian Agriculture Policy Institute, Loblaw Companies Ltd, the Griffin Hospital (for the development of the NuVal scoring system), the Coca-Cola Company, EPICURE, Danone, Diet Quality Photo Navigation, Better Therapeutics (FareWell), Verywell, True Health Initiative, Institute of Food Technologists, Soy Nutrition Institute, Herbalife Nutrition Institute, Saskatchewan Pulse Growers, Sanitarium Company, Orafti, the Almond Board of California, the American Peanut Council, the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, Herbalife International, Pacific Health Laboratories, Nutritional Fundamentals for Health, Barilla, Metagenics, Bayer Consumer Care, Unilever Canada and Netherlands, Solae, Kellogg, Quaker Oats, Procter \& Gamble, the Coca-Cola Company, the Griffin Hospital, Abbott Laboratories, the Canola Council of Canada, Dean Foods, the California Strawberry Commission, Haine Celestial, PepsiCo, the Alpro Foundation, Pioneer Hi-Bred International, DuPont Nutrition and Health, Spherix Consulting and White Wave Foods, the Advanced Foods and Material Network, the Canola and Flax Councils of Canada, the Nutritional Fundamentals for Health, Agri-Culture and AgriFood Canada, the Canadian Agri-Food Policy Institute, Pulse Canada, the Saskatchewan Pulse Growers, the Soy Foods Association of North America, the Nutrition Foundation of Italy, Nutra-Source Diagnostics, the McDougall Program, the Toronto Knowledge Translation Group (St. Michael's Hospital), the Canadian College of Naturopathic Medicine, The Hospital for Sick Children, the Canadian Nutrition Society, the American Society of Nutrition, Arizona State University, Paolo Sorbini Foundation, and the Institute of Nutrition, Metabolism and Diabetes. He received an honorarium from the US Department of Agriculture to present the 2013 W.O. Atwater Memorial Lecture. He received the 2013 Award for Excellence in Research from the International Nut and Dried Fruit Council. He received funding and travel support from the Canadian Society of Endocrinology and Metabolism to produce mini cases for the Canadian Diabetes Association. He is a member of the International Carbohydrate Quality Consortium. His wife, Alexandra L Jenkins, is a director and partner of INQUIS Clinical Research for the Food Industry, his 2 daughters, Wendy Jenkins and Amy Jenkins, have published a vegetarian book that promotes the use of the low glycemic index plant foods advocated here, The Portfolio Diet for Cardiovascular Risk Reduction (Academic Press/Elsevier 2020 ISBN:978-$0-12-810510-8$) and and his sister, Caroline Brydson, received funding through a grant from the St. Michael's Hospital Foundation to develop a cookbook for one of his studies. Sievenpiper has received research support from the Canadian Foundation for Innovation, Ontario Research Fund, Province of Ontario Ministry of Research and Innovation and Science, Canadian Institutes of health Research (CIHR), Diabetes Canada, PSI Foundation, Banting and Best Diabetes Centre (BBDC), American Society for Nutrition (ASN), INC International Nut and Dried Fruit Council Foundation, National Dried Fruit Trade Association, National Honey Board, International Life Sciences Institute (ILSI), The Tate and Lyle Nutritional Research Fund at the University of Toronto, The Glycemic Control and Cardiovascular Disease in Type 2 Diabetes Fund at the University of Toronto (a fund established by the Alberta Pulse Growers), and the Nutrition Trialists Fund at the University of Toronto (a fund established by an inaugural donation from the Calorie Control Council). He has received in-kind food donations to support a randomized controlled trial from the Almond Board of California, California Walnut Commission, American Peanut Council, Barilla, Unilever, Upfield, Unico/Primo, Loblaw Companies, Quaker, Kellogg Canada, WhiteWave Foods, and Nutrartis. He has received travel support, speaker fees and/or honoraria from Diabetes Canada, Dairy Farmers of Canada, FoodMinds LLC, International Sweeteners Association, Nestlé, Pulse Canada, Canadian Society for Endocrinology and Metabolism (CSEM), GI Foundation, Abbott, Biofortis, ASN, Northern Ontario School of Medicine, INC Nutrition Research \& Education Foundation, European Food Safety Authority (EFSA), Comité Européen des Fabricants de Sucre (CEFS), and Physicians Committee for Responsible Medicine. He has or has had ad hoc consulting arrangements with Perkins Coie LLP, Tate \& Lyle, Wirtschaftliche Vereinigung Zucker e.V., and Inquis Clinical Research. He is a member of the European Fruit Juice Association Scientific Expert Panel and Soy

Nutrition Institute (SNI) Scientific Advisory Committee. He is on the Clinical Practice Guidelines Expert Committees of Diabetes Canada, European Association for the study of Diabetes (EASD), Canadian Cardiovascular Society (CCS), and Obesity Canada. He serves or has served as an unpaid scientific advisor for the Food, Nutrition, and Safety Program (FNSP) and the Technical Committee on Carbohydrates of ILSI North America. He is a member of the International Carbohydrate Quality Consortium (ICQC), Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD, and Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. His wife is an employee of $A B \operatorname{InBev}$. The remaining authors have no disclosures to report.

Supplementary Materials
 Tables S1-S9
 Figures S1-S205

REFERENCES

1. Lustig RH. Fructose: it's "alcohol without the buzz." Adv Nutr. 2013;4:226-235.
2. Lustig R, Schmidt L, Brindis C. Public health: the toxic truth about sugar. Nature. 2012;482:27-29.
3. Zurger A. A diet manifesto: drop the apple and walk away. The New York Times. 6. 2010. Accessed December 27.
4. Government of Canada. Canada's food guide consultations: guiding principles. Government of Canada; 2017. https://www.foodguidec onsultation.ca/guiding-principles-detailed. Accessed August 5, 2020.
5. International Diabetes Federation. International Diabetes Federation framework for action on sugar. 2015. https://www.idf.org/images/site1/ content/Framework-for-Action-on-Sugar-010615.pdf. Accessed April 24, 2018.
6. Mcmurray S. Sugar content in fruit: is it damaging to your health and waistline? 2018. University Health News Daily. Available at: https:// universityhealthnews.com/daily/nutrition/high-sugar-content-fruit -damaging-health-waistline/. Accessed August 31, 2020.
7. World Health Organization. Guideline: Sugars Intake for Adults and Children. 2015. Available at: https://www.who.int/publications/i/item/97892 41549028. Accessed August 16, 2019.
8. Villines Z, Butler N. What to know about sugar in fruit. 2019.
9. Law MR, Morris JK. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? Eur J Clin Nutr. 1998;52:549-556.
10. World Health Organization. The world health report: reducing risks, promoting healthy life. 2002. Available at: https://www.who.int/dietp hysicalactivity/publications/f\&v_promotion_initiative_report.pdf?ua=1. Accessed August 31, 2020.
11. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46:1029-1056.
12. Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136:2588-2593.
13. Gan Y, Tong X, Li L, Cao S, Yin X, Gao C, Herath C, Li W, Jin Z, Chen Y , et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. Int J Cardiol. 2015;183:129-137.
14. He FJ, Nowson CA, Lucas M, Macgregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens. 2007;21:717-728.
15. Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke. 2014;45:1613-1619.
16. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349: g4490.
17. Zhan J, Liu YJ, Cai LB, Xu FR, Xie T, He QQ. Fruit and vegetable consumption and risk of cardiovascular disease: a meta-analysis
of prospective cohort studies. Crit Rev Food Sci Nutr. 2017;57: 1650-1663.
18. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions. Cochrane Collaboration; 2011. https://training.cochrane. org/handbook/archive/v5.1/. Accessed October 10, 2016.
19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264-269; w264.
20. Wells G, Shea B, O'connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. Available at: http:// www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed August 31, 2020.
21. Dersimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-188.
22. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280:1690-1691.
23. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301-1309.
24. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2011;175:66-73.
25. Lee JE, Mannisto S, Spiegelman D, Hunter DJ, Bernstein L, Van Den Brandt PA, Buring JE, Cho E, English DR, Flood A, et al. Intakes of fruit, vegetables, and carotenoids and renal cell cancer risk: a pooled analysis of 13 prospective studies. Cancer Epidemiol Biomarkers Prev. 2009;18:1730-1739.
26. Deeks J, Higgins J, Altman D. Chapter 10: analysing data and undertaking meta-analyses. 2011. http://handbook.cochrane.org. Accessed September 25, 2014.
27. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, et al. Grade guidelines: 7: rating the quality of evidence-inconsistency. J Clin Epidemiol. 2011;64:1294-1302.
28. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455-463.
29. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, et al. Grade guidelines 6: rating the quality of evidence-imprecision. J Clin Epidemiol. 2011;64:1283-1293.
30. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, Debeer H, et al. GRADE guidelines: 1: intro-duction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383-394.
31. Guyatt GHO, Kunz AD, Atkins R, Brozek D, Vist J, Alderson G, Glasziou P, Falck-Ytter P, Schunemann HJ. GRADE guidelines: 2: framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64:395-400.
32. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, et al. GRADE guidelines: 3: rating the quality of evidence. J Clin Epidemiol. 2011;64:401-406.
33. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, et al. GRADE guidelines: 4: rating the quality of evidence-study limitations (risk of bias). J Clin Epidemiol. 2011;64:407-415.
34. Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, AlonsoCoello P, Djulbegovic B, Atkins D, Falck-Ytter Y, et al. GRADE guidelines: 5: rating the quality of evidence-publication bias. J Clin Epidemiol. 2011;64:1277-1282.
35. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, et al. GRADE guidelines: 7: rating the quality of evidence-inconsistency. J Clin Epidemiol. 2011;64:1294-1302.
36. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Falck-Ytter Y, Jaeschke R, Vist G, et al. GRADE guidelines: 8: rating the quality of evidence-indirectness. J Clin Epidemiol. 2011;64:1303-1310.
37. Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, Atkins D, Kunz R, Brozek J, Montori V, et al. GRADE guidelines: 9: rating up the quality of evidence. J Clin Epidemiol. 2011;64:1311-1316.
38. Brunetti M, Shemilt I, Pregno S, Vale L, Oxman AD, Lord J, Sisk J, Ruiz F, Hill S, Guyatt GH, et al. GRADE guidelines: 10: considering resource use and rating the quality of economic evidence. J Clin Epidemiol. 2013;66:140-150.
39. Guyatt G, Oxman AD, Sultan S, Brozek J, Glasziou P, Alonso-Coello P Atkins D, Kunz R, Montori V, Jaeschke R, et al. GRADE guidelines: 11: making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J Clin Epidemiol. 2013;66:151-157.
40. Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, Brozek J, Norris S, Meerpohl J, Djulbegovic B, et al. GRADE guidelines: 12: preparing summary of findings tables-binary outcomes. J Clin Epidemiol. 2013;66:158-172.
41. Guyatt GH, Thorlund K, Oxman AD, Walter SD, Patrick D, Furukawa TA, Johnston BC, Karanicolas P, AkI EA, Vist G, et al. GRADE guidelines: 13: preparing summary of findings tables and evidence pro-files-continuous outcomes. J Clin Epidemiol. 2013;66:173-183.
42. Adriouch S, Lampure A, Nechba A, Baudry J, Assmann K, KesseGuyot E, Hercberg S, Scalbert A, Touvier M, Fezeu LK. Prospective association between total and specific dietary polyphenol intakes and cardiovascular disease risk in the Nutrinet-Sante French cohort. Nutrients. 2018;10:1587.
43. Appleby PN, Key TJ, Burr ML, Thorogood M. Mortality and fresh fruit consumption. IARC Sci Publ. 2002;156:131-133.
44. Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. High diet quality is associated with a lower risk of cardiovascular disease and all-cause mortality in older men. J Nutr. 2014;144:673-680.
45. Bahadoran Z, Mirmiran P, Momenan AA, Azizi F. Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults: a longitudinal follow-up study. J Hypertens. 2017;35:1909-1916.
46. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-Up Study. Am J Clin Nutr. 2002;76:93-99.
47. Belin RJ, Greenland P, Allison M, Martin L, Shikany JM, Larson J, Tinker L, Howard BV, Lloyd-Jones D, Van Horn L. Diet quality and the risk of cardiovascular disease: the Women's Health Initiative (WHI). Am J Clin Nutr. 2011;94:49-57.
48. Bendinelli B, Masala G, Saieva C, Salvini S, Calonico C, Sacerdote C, Agnoli C, Grioni S, Frasca G, Mattiello A, et al. Fruit, vegetables, and olive oil and risk of coronary heart disease in Italian women: the EPICOR study. Am J Clin Nutr. 2011;93:275-283.
49. Berard E, Bongard V, Haas B, Dallongeville J, Moitry M, Cottel D, Ruidavets JB, Ferrieres J. Score of adherence to 2016 European cardiovascular prevention guidelines is an independent determinant of cardiovascular and all-cause mortality in a French general population. Eur Heart J. 2017;38:1064. Conference: European Society of Cardiology, ESC congress. Spain.
50. Bhupathiraju SN, Wedick NM, Pan A, Manson JE, Rexrode KM, Willett WC, Rimm EB, Hu FB. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr. 2013;98:1514-1523.
51. Bingham S, Luben R, Welch A, Low YL, Khaw KT, Wareham N, Day N. Associations between dietary methods and biomarkers, and between fruits and vegetables and risk of ischaemic heart disease, in the EPIC Norfolk Cohort Study. Int J Epidemiol. 2008;37:978-987.
52. Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Zhu K, Lim WH, Woodman RJ, Beilin LJ, Prince RL, Hodgson JM. Cruciferous and allium vegetable intakes are inversely associated with 15-year atherosclerotic vascular disease deaths in older adult women. J Am Heart Assoc. 2017;6:e006558. DOI: 10.1161/JAHA.117.006558.
53. Bos MJ, Koudstaal PJ, Hofman A, Ikram MA. Modifiable etiological factors and the burden of stroke from the Rotterdam study: a popula-tion-based cohort study. PLoS Med. 2014;11:e1001634.
54. Buijsse B, Feskens EJ, Kwape L, Kok FJ, Kromhout D. Both alpha- and beta-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in Dutch elderly men. J Nutr. 2008;138:344-350
55. Buil-Cosiales P, Martinez-Gonzalez MA, Ruiz-Canela M, Diez-Espino J, Garcia-Arellano A, Toledo E. Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a Mediterranean young cohort. Nutrients. 2017;9:17.
56. Buil-Cosiales P, Toledo E, Salas-Salvado J, Zazpe I, Farras M, Basterra-Gortari FJ, Diez-Espino J, Estruch R, Corella D, Ros E, et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the prevencion con dieta Mediterranea (PREDIMED) trial. Br J Nutr. 2016;116:534-546.
57. Cassidy A, Rimm EB, O'Reilly EJ, Logroscino G, Kay C, Chiuve SE, Rexrode KM. Dietary flavonoids and risk of stroke in women. Stroke. 2012;43:946-951.
58. Collin LJ, Judd S, Safford M, Vaccarino V, Welsh JA. Association of sugary beverage consumption with mortality risk in US adults: a secondary analysis of data from the REGARDS study. JAMA Netw Open. 2019;2:19193121.
59. Conrad Z, Thomson J, Jahns L. Prospective analysis of vegetable amount and variety on the risk of all-cause and cause-specific mortality among US adults, 1999-2011. Nutrients. 2018;10:27.
60. Dauchet L, Ferrieres J, Arveiler D, Yarnell JW, Gey F, Ducimetiere P, Ruidavets JB, Haas B, Evans A, Bingham A, et al. Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: the PRIME study. Br J Nutr. 2004;92:963-972.
61. Dauchet L, Montaye M, Ruidavets JB, Arveiler D, Kee F, Bingham A, Ferrieres J, Haas B, Evans A, Ducimetiere P, et al. Association between the frequency of fruit and vegetable consumption and cardiovascular disease in male smokers and non-smokers. Eur J Clin Nutr. 2010;64:578-586.
62. Du H, Li L, Bennett D, Guo Y, Key TJ, Bian Z, Sherliker P, Gao H, Chen Y, Yang L, et al. Fresh fruit consumption and major cardiovascular disease in China. N Engl J Med. 2016;374:1332-1343.
63. Du H, Li L, Bennett D, Yang L, Guo Y, Key TJ, Bian Z, Chen Y, Walters RG, Millwood IY, et al. Fresh fruit consumption and all-cause and cause-specific mortality: findings from the China Kadoorie Biobank. Int J Epidemiol. 2017;46:1444-1455.
64. Elwood P, Galante J, Pickering J, Palmer S, Bayer A, Ben-Shlomo Y, Longley M, Gallacher J. Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the caerphilly cohort study. PLoS One. 2013;8:e81877.
65. Eriksen A, Tillin T, O'Connor L, Brage S, Hughes A, Mayet J, McKeigue P, Whincup P, Chaturvedi N, Forouhi NG. The impact of health behaviours on incident cardiovascular disease in Europeans and South Asians-a prospective analysis in the UK SABRE study. PLoS One. 2015;10:e0117364.
66. Fitzgerald KC, Chiuve SE, Buring JE, Ridker PM, Glynn RJ. Comparison of associations of adherence to a Dietary Approaches to Stop Hypertension (DASH)-style diet with risks of cardiovascular disease and venous thromboembolism. J Thromb Haemost. 2012;10:189-198.
67. Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease: the Adventist Health Study. Arch Intern Med. 1992;152:1416-1424.
68. Gardener H, Wright CB, Gu Y, Demmer RT, Boden-Albala B, Elkind MSV, Sacco RL, Scarmeas N. Mediterranean-style diet and risk of ischemic stroke, myocardial infarction, and vascular death: the Northern Manhattan Study. Am J Clin Nutr. 2011;94:1458-1464.
69. Gaziano JM, Manson JE, Branch LG, Colditz GA, Willett WC, Buring JE. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann Epidemiol. 1995;5:255-260.
70. Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol. 2004;160:1223-1233.
71. Gillman MW, Cupples LA, Gagnon D, Posner BM, Ellison RC, Castelli WP, Wolf PA. Protective effect of fruits and vegetables on development of stroke in men. JAMA. 1995;273:1113-1117.
72. Goetz ME, Judd SE, Safford MM, Hartman TJ, Mcclellan WM, Vaccarino V. Dietary flavonoid intake and incident coronary heart disease: the reasons for geographic and racial differences in stroke (REGARDS) study. Am J Clin Nutr. 2016;104:1236-1244.
73. Goetz ME, Judd SE, Hartman TJ, Mcclellan W, Anderson A, Vaccarino V. Flavanone intake is inversely associated with risk of incident ischemic stroke in the reasons for geographic and racial differences in stroke (REGARDS) study. J Nutr. 2016;146:2233-2243.
74. Gunge VB, Andersen I, Kyro C, Hansen CP, Dahm CC, Christensen J, Tjonneland A, Olsen A. Adherence to a healthy Nordic food index and risk of myocardial infarction in middle-aged Danes: the diet, cancer and health cohort study. Eur J Clin Nutr. 2017;71:652-658.
75. Gunnell AS, Einarsdottir K, Galvao DA, Joyce S, Tomlin S, Graham V, Mcintyre C, Newton RU, Briffa T. Lifestyle factors, medication use and risk for ischaemic heart disease hospitalisation: a longitudinal popula-tion-based study. PLoS One. 2013;8:e77833.
76. Hansen CP, Overvad K, Kyro C, Olsen A, Tjonneland A, Johnsen SP, Jakobsen MU, Dahm CC. Adherence to a healthy Nordic diet and risk of stroke: a Danish cohort study. Stroke. 2017;48:259-264.
77. Hansen L, Dragsted LO, Olsen A, Christensen J, Tjønneland A Schmidt EB, Overvad K. Fruit and vegetable intake and risk of acute coronary syndrome. Br J Nutr. 2010;104:248-255.
78. Harriss LR, English DR, Powles J, Giles GG, Tonkin AM, Hodge AM, Brazionis L, O'Dea K. Dietary patterns and cardiovascular mortality in the Melbourne Collaborative Cohort Study. Am J Clin Nutr. 2007;86:221-229.
79. Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr. 1997;65:1489-1494.
80. Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Hakkinen S, Albanes D, Virtamo J. Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Epidemiology. 2001;12:62-67.
81. Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P. Intake of flavonoids, carotenoids, vitamins C and E , and risk of stroke in male smokers. Stroke. 2000;31:2301-2306.
82. Hjartaker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54:599-608.
83. Hodgson JM, Prince RL, Woodman RJ, Bondonno CP, Ivey KL, Bondonno N, Rimm EB, Ward NC, Croft KD, Lewis JR. Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women. Br J Nutr. 2016;115:860-867.
84. Holmberg S, Thelin A, Stiernstrom EL. Food choices and coronary heart disease: a population based cohort study of rural Swedish men with 12 years of follow-up. Int J Environ Res Public Health. 2009;6:2626-2638.
85. Iso H, Kubota Y; Japan Collaborative Cohort Study for Evaluation of Cancer. Nutrition and disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev. 2007;8(suppl):35-80.
86. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Dwyer JT. Dietary flavonoid intakes and CVD incidence in the Framingham Offspring Cohort. Br J Nutr. 2015;114:1496-1503.
87. Johnsen SP, Overvad K, Stripp C, Tjonneland A, Husted SE, Sorensen HT. Intake of fruit and vegetables and the risk of ischemic stroke in a cohort of Danish men and women. Am J Clin Nutr. 2003;78:57-64.
88. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282:1233-1239.
89. Joshipura KJ, Hung HC, Li TY, Hu FB, Rimm EB, Stampfer MJ, Colditz G, Willett WC. Intakes of fruits, vegetables and carbohydrate and the risk of CVD. Public Health Nutr. 2009;12:115-121.
90. Keli SO, Hertog MG, Feskens EJ, Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med. 1996;156:637-642.
91. Kim LG, Adamson J, Ebrahim S. Influence of life-style choices on locomotor disability, arthritis and cardiovascular disease in older women: prospective cohort study. Age Ageing. 2013;42:696-701.
92. Knekt P, Isotupa S, Rissanen H, Heliovaara M, Jarvinen R, Hakkinen S, Aromaa A, Reunanen A. Quercetin intake and the incidence of cerebrovascular disease. Eur J Clin Nutr. 2000;54:415-417.
93. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ. 1996;312:478-481.
94. Knekt P, Reunanen A, Jarvinen R, Seppanen R, Heliovaara M, Aromaa A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol. 1994;139:1180-1189.
95. Kobylecki CJ, Afzal S, Davey Smith G, Nordestgaard BG. Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality: a Mendelian randomization study. Am J Clin Nutr. 2015;101:1135-1143.
96. Kondo K, Miura K, Tanaka-Mizuno S, Kadota A, Arima H, Okuda N, Fujiyoshi A, Miyagawa N, Yoshita K, Okamura T, et al. Cardiovascular
risk assessment chart by dietary factors in Japan - NIPPON DATA80. Circ J. 2019;83:1254-1260.
97. Kvaavik E, Batty GD, Ursin G, Huxley R, Gale CR. Influence of individual and combined health behaviors on total and cause-specific mortality in men and women: the United Kingdom Health and Lifestyle Survey [erratum appears in Arch Intern Med. 2010;170:998]. Arch Intern Med. 2010;170:711-718.
98. Lai HT, Threapleton DE, Day AJ, Williamson G, Cade JE, Burley VJ. Fruit intake and cardiovascular disease mortality in the UK Women's Cohort Study. Eur J Epidemiol. 2015;30:1035-1048.
99. Larsson SC, Mannisto S, Virtanen MJ, Kontto J, Albanes D, Virtamo J. Dietary fiber and fiber-rich food intake in relation to risk of stroke in male smokers. Eur J Clin Nutr. 2009;63:1016-1024.
100. Larsson SC, Virtamo J, Wolk A. Total and specific fruit and vegetable consumption and risk of stroke: a prospective study. Atherosclerosis. 2013;227:147-152.
101. Leenders M, Boshuizen HC, Ferrari P, Siersema PD, Overvad K, Tjonneland A, Olsen A, Boutron-Ruault MC, Dossus L, Dartois L, et al. Fruit and vegetable intake and cause-specific mortality in the EPIC study. Eur J Epidemiol. 2014;29:639-652.
102. Leenders M, Sluijs I, Ros MM, Boshuizen HC, Siersema PD, Ferrari P, Weikert C, Tjonneland A, Olsen A, Boutron-Ruault MC, et al. Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. Am J Epidemiol. 2013;178:590-602.
103. Lin J, Rexrode KM, Hu F, Albert CM, Chae CU, Rimm EB, Stampfer MJ, Manson JE. Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am J Epidemiol. 2007;165:1305-1313.
104. Lin YH, Ku PW, Chou P. Lifestyles and mortality in Taiwan: an 11-year follow-up study. Asia Pac J Public Health. 2017;29:259-267.
105. Liu S, Lee IM, Ajani U, Cole SR, Buring JE, Manson JEP; Physicians' Health Study. Intake of vegetables rich in carotenoids and risk of coronary heart disease in men: the Physicians' Health Study. Int J Epidemiol. 2001;30:130-135.
106. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. Am J Clin Nutr. 2000;72:922-928.
107. Mann JI, Appleby PN, Key TJ, Thorogood M. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart. 1997;78:450-455.
108. Manuel DG, Tuna M, Perez R, Tanuseputro P, Hennessy D, Bennett C, Rosella L, Sanmartin C, Van Walraven C, Tu JV. Predicting stroke risk based on health behaviours: development of the stroke population risk tool (SPoRT). PLoS One. 2015;10:e0143342.
109. Miller V, Mente A, Dehghan M, Rangarajan S, Zhang X, Swaminathan S, Dagenais G, Gupta R, Mohan V, Lear S, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet. 2017;390:2037-2049.
110. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs DR. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr. 2007;85:895-909.
111. Mizrahi A, Knekt P, Montonen J, Laaksonen MA, Heliovaara M, Jarvinen R. Plant foods and the risk of cerebrovascular diseases: a potential protection of fruit consumption. Br J Nutr. 2009;102:1075-1083.
112. Mori N, Shimazu T, Charvat H, Mutoh M, Sawada N, Iwasaki M, Yamaji T, Inoue M, Goto A, Takachi R, et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. Clin Nutr. 2018;24:24.
113. Mytton OT, Forouhi NG, Scarborough P, Lentjes M, Luben R, Rayner M, Khaw KT, Wareham NJ, Monsivais P. Association between intake of less-healthy foods defined by the United Kingdom's nutrient profile model and cardiovascular disease: a population-based cohort study. PLoS Med. 2018;15:e1002484.
114. Nagura J, Iso H, Watanabe Y, Maruyama K, Date C, Toyoshima H, Yamamoto A, Kikuchi S, Koizumi A, Kondo T, et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC study. $\mathrm{Br} J$ Nutr. 2009;102:285-292.
115. Nakamura K, Nagata C, Oba S, Takatsuka N, Shimizu H. Fruit and vegetable intake and mortality from cardiovascular disease are inversely associated in Japanese women but not in men. J Nutr. 2008;138:1129-1134.
116. Nechuta SJ, Shu XO, Li HL, Yang G, Xiang YB, Cai H, Chow WH, Ji B, Zhang X, Wen W, et al. Combined impact of lifestyle-related factors on total and cause-specific mortality among Chinese women: prospective cohort study. PLoS Med. 2010;7:e1000339.
117. Neelakantan N, Koh WP, Yuan JM, Van Dam RM. Diet-quality indexes are associated with a lower risk of cardiovascular, respiratory, and allcause mortality among Chinese adults. J Nutr. 2018;148:1323-1332.
118. Ness AR, Maynard M, Frankel S, Smith GD, Frobisher C, Leary SD, Emmett PM, Gunnell D. Diet in childhood and adult cardiovascular and all cause mortality: the Boyd Orr cohort. Heart. 2005;91:894-898.
119. Nothlings U, Schulze MB, Weikert C, Boeing H, Van Der Schouw YT, Bamia C, Benetou V, Lagiou P, Krogh V, Beulens JW, et al. Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. J Nutr. 2008;138:775-781.
120. Okuda N, Miura K, Okayama A, Okamura T, Abbott RD, Nishi N, Fujiyoshi A, Kita Y, Nakamura Y, Miyagawa N, et al. Fruit and vegetable intake and mortality from cardiovascular disease in Japan: a 24 -year follow-up of the NIPPON DATA80 study. Eur J Clin Nutr. 2015;69:482-488.
121. Oude Griep LM, Geleijnse JM, Kromhout D, Ocke MC, Verschuren WM. Raw and processed fruit and vegetable consumption and 10year coronary heart disease incidence in a population-based cohort study in the Netherlands. PLoS One. 2010;5:e13609.
122. Oude Griep LM, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM. Colours of fruit and vegetables and 10-year incidence of $\mathrm{CHD} . \mathrm{Br}$ J Nutr. 2011:106:1562-1569.
123. Oude Griep LM, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM. Raw and processed fruit and vegetable consumption and 10year stroke incidence in a population-based cohort study in the Netherlands. Eur J Clin Nutr. 2011;65:791-799.
124. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014;68:856-862.
125. Pham TM, Fujino Y, Tokui N, Ide R, Kubo T, Shirane K, Mizoue T, Ogimoto I, Yoshimura T. Mortality and risk factors for stroke and its subtypes in a cohort study in Japan. Prev Med. 2007;44:526-530,
126. Rebello SA, Koh H, Chen C, Naidoo N, Odegaard AO, Koh WP, Butler LM, Yuan JM, Van Dam RM. Amount, type, and sources of carbohydrates in relation to ischemic heart disease mortality in a Chinese population: a prospective cohort study. Am J Clin Nutr. 2014;100:53-64.
127. Rissanen TH, Voutilainen S, Virtanen JK, Venho B, Vanharanta M, Mursu J, Salonen JT. Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. J Nutr. 2003;133:199-204.
128. Saglimbene V, Wong G, Bondonno N, Ruospo M, Palmer SC, Campbell K, Garcia Larsen V, Natale P, Teixeirapinto A, Gargano L, et al. Fruit intake and cardiovascular and all-cause mortality in adults on hemodialysis: the DIET-HD multinational cohort study. Nephrology. 2017;22(suppl 3):25.
129. Sahyoun NR, Jacques PF, Russell RM. Carotenoids, vitamins C and E , and mortality in an elderly population. Am J Epidemiol. 1996;144:501-511.
130. Sauvaget C, Nagano J, Allen N, Kodama K. Vegetable and fruit intake and stroke mortality in the Hiroshima/Nagasaki Life Span Study. Stroke. 2003;34:2355-2360.
131. Scheffers FR, Boer JMA, Verschuren WMM, Verheus M, Van Der Schouw YT, Sluijs I, Smit HA, Wijga AH. Pure fruit juice and fruit consumption and the risk of CVD: the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. Br J Nutr. 2019:121:351-359.
132. Sesso HD, Gaziano JM, Liu S, Buring JE. Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr. 2003;77:1400-1408.
133. Sesso HD, Gaziano JM, Jenkins DJ, Buring JE. Strawberry intake, lipids, C-reactive protein, and the risk of cardiovascular disease in women. J Am Coll Nutr. 2007;26:303-310.
134. Sesso HD, Liu S, Gaziano JM, Buring JE. Dietary lycopene, toma-to-based food products and cardiovascular disease in women. J Nutr. 2003;133:2336-2341.
135. Shah NS, Leonard D, Finley CE, Rodriguez F, Sarraju A, Barlow CE, Defina LF, Willis BL, Haskell WL, Maron DJ. Dietary patterns and
long-term survival: a retrospective study of healthy primary care patients. Am J Med. 2018;131:48-55
136. Sharma S, Cruickshank JK, Green DM, Vik S, Tome A, Kolonel LN. Impact of diet on mortality from stroke: results from the U.S. multiethnic cohort study. J Am Coll Nutr. 2013;32:151-159.
137. Sharma S, Vik S, Kolonel LN. Fruit and vegetable consumption, ethnicity and risk of fatal ischemic heart disease. J Nutr Health Aging. 2014;18:573-578.
138. Simila ME, Kontto JP, Mannisto S, Valsta LM, Virtamo J. Glycaemic index, carbohydrate substitution for fat and risk of CHD in men. Br J Nutr. 2013;110:1704-1711.
139. Sonestedt E, Hellstrand S, Schulz CA, Wallstrom P, Drake I, Ericson U, Gullberg B, Hedblad B, Orho-Melander M. The association between carbohydrate-rich foods and risk of cardiovascular disease is not modified by genetic susceptibility to dyslipidemia as determined by 80 validated variants. PLoS One. 2015;10:e0126104.
140. Sotomayor CG, Gomes-Neto AW, Eisenga MF, Nolte IM, Anderson JLC, De Borst MH, Oste MCJ, Rodrigo R, Gans ROB, Berger SP, et al. Consumption of fruits and vegetables and cardiovascular mortality in renal transplant recipients: a prospective cohort study. Nephrol Dial Transplant. 2018;27:27.
141. Steffen LM, Jacobs DR Jr, Stevens J, Shahar E, Carithers T, Folsom AR. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78:383-390.
142. Stefler D, Pikhart H, Kubinova R, Pajak A, Stepaniak U, Malyutina S, Simonova G, Peasey A, Marmot MG, Bobak M. Fruit and vegetable consumption and mortality in Eastern Europe: longitudinal results from the Health, Alcohol and Psychosocial Factors in Eastern Europe study. Eur J Prev Cardiol. 2016;23:493-501.
143. Strandhagen E, Hansson PO, Bosaeus I, Isaksson B, Eriksson H. High fruit intake may reduce mortality among middle-aged and elderly men: the Study of Men Born in 1913. Eur J Clin Nutr. 2000;54:337-341.
144. Takachi R, Inoue M, Ishihara J, Kurahashi N, Iwasaki M, Sasazuki S, Iso H, Tsubono Y, Tsugane S; JPHC Study Group. Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. Am J Epidemiol. 2008;167:59-70.
145. Tanaka S, Yoshimura Y, Kamada C, Tanaka S, Horikawa C, Okumura R, Ito H, Ohashi Y, Akanuma Y, Yamada N, et al. Intakes of dietary fiber, vegetables, and fruits and incidence of cardiovascular disease in Japanese patients with type 2 diabetes. Diabetes Care. 2013;36:3916-3922.
146. Tognon G, Lissner L, Saebye D, Walker KZ, Heitmann BL. The Mediterranean diet in relation to mortality and CVD: a Danish cohort study. Br J Nutr. 2014;111:151-159.
147. Tucker KL, Hallfrisch J, Qiao N, Muller D, Andres R, Fleg JL. The combination of high fruit and vegetable and low saturated fat intakes is more protective against mortality in aging men than is either alone: the Baltimore Longitudinal Study of Aging. J Nutr. 2005;135:556-561.
148. Von Ruesten A, Feller S, Bergmann MM, Boeing H. Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPICPotsdam study. Eur J Clin Nutr. 2013;67:412-419.
149. Vormund K, Braun J, Rohrmann S, Bopp M, Ballmer P, Faeh D. Mediterranean diet and mortality in Switzerland: an alpine paradox? Eur J Nutr. 2015;54:139-148.
150. Wang JB, Fan JH, Dawsey SM, Sinha R, Freedman ND, Taylor PR, Qiao YL, Abnet CC. Dietary components and risk of total, cancer and cardiovascular disease mortality in the Linxian Nutrition Intervention Trials cohort in China. Sci Rep. 2016;6:22619.
151. Watkins ML, Erickson JD, Thun MJ, Mulinare J, Heath CW Jr. Multivitamin use and mortality in a large prospective study. Am J Epidemiol. 2000;152:149-162.
152. Whiteman D, Muir J, Jones L, Murphy M, Key T. Dietary questions as determinants of mortality: the OXCHECK experience. Public Health Nutr. 1999;2:477-487.
153. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, Ishikawa S, Nakamura Y, Kayaba K; Jichi Medical School Cohort Study Group. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School Cohort Study. J Epidemiol. 2011;21:169-175.
154. Yokoyama T, Date C, Kokubo Y, Yoshiike N, Matsumura Y, Tanaka H. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community: the Shibata study. Stroke. 2000;31:2287-2294.
155. Yoshizaki T, Ishihara J, Kotemori A, Yamamoto J, Kokubo Y, Saito I, Yatsuya H, Yamagishi K, Sawada N, Iwasaki M, et al. Association of vegetable, fruit, and okinawan vegetable consumption with incident stroke and coronary heart disease. J Epidemiol. 2019;12:12
156. Yu D, Zhang X, Gao YT, Li H, Yang G, Huang J, Zheng W, Xiang YB, Shu XO. Fruit and vegetable intake and risk of CHD: results from prospective cohort studies of Chinese adults in Shanghai. Br J Nutr. 2014;111:353-362.
157. Zhang X, Shu XO, Xiang YB, Yang G, Li H, Gao J, Cai H, Gao YT, Zheng W. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94:240-246.
158. Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, Hu G. Lifestyle factors on the risks of ischemic and hemorrhagic stroke. Arch Intern Med. 2011;171:1811-1818.
159. Saglimbene VW, Bondonno G, Ruospo N, Palmer M, Campbell SC, Garcia Larsen K, Natale V, Teixeirapinto P, Gargano A, Murgo L, et al. Fruit intake and cardiovascular and all-cause mortality in adults on hemodialysis: the DIET-HD multinational cohort study. Nephrology. 2017;22(suppl 3):25.
160. Gan YT, Li X, Cao L, Yin S, Gao X, Herath C, Li C, Jin W, Chen Z, Lu Y, et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. Int J Cardiol. 2015;183:129-137.
161. Buil-Cosiales P, Martinez-Gonzalez M, Ruiz-Canela M, Díez-Espino J, García-Arellano A, Toledo E. Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a Mediterranean young cohort. Nutrients. 2017;9:17.
162. Miller V, Mente A, Dehghan M, Rangarajan S, Zhang X, Swaminathan S, Dagenais G, Gupta R, Mohan V, Lear S, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet. 2017;390:2037-2049.
163. Hartley L, May MD, Loveman E, Colquitt JL, Rees K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2016;2016:Cd011472.
164. Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016;109:39-54.
165. Jenkins DJ, Srichaikul K, Kendall CW, Sievenpiper JL, Abdulnour S, Mirrahimi A, Meneses C, Nishi S, He X, Lee S, et al. The relation of
low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes. Diabetologia. 2011;54:271-279
166. Mytton OT, Nnoaham K, Eyles H, Scarborough P, Ni MC. Systematic review and meta-analysis of the effect of increased vegetable and fruit consumption on body weight and energy intake. BMC Public Health. 2014;14:886.
167. Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72:741-762.
168. Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to quantify the health burden of obesity. Ann Epidemiol. 2015;25:201-207.
169. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994;344:793-795.
170. Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens. 2017;35:1353-1359.
171. Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Woodman RJ, Croft KD, Lim WH, Wong G, Beilin LJ, Prince RL, et al. Association of dietary nitrate with atherosclerotic vascular disease mortality: a prospective cohort study of older adult women. Am J Clin Nutr. 2017;106:207-216.
172. Jovanovski E, Bosco L, Khan K, Au-Yeung F, Ho H, Zurbau A, Jenkins AL, Vuksan V. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: a randomized, controlled trial in healthy adults. Clin Nutr Res. 2015;4:160-167.
173. Filippini T, Violi F, D’Amico R, Vinceti M. The effect of potassium supplementation on blood pressure in hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2017;230:127-135.
174. Van Mierlo LA, Arends LR, Streppel MT, Zeegers MP, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2006;20:571-580.
175. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, Song Y. Effects of magnesium supplementation on blood pressure: a me-ta-analysis of randomized double-blind placebo-controlled trials. Hypertension. 2016;68:324-333.
176. World Heath Organization. Fruit and vegetable promotion initiative-report of the meeting. 2003. Available at: https://www.who.int/dietphysicalact ivity/publications/\&\&v_promotion_initiative_report.pdf?ua=1. Accessed August 31, 2020.
177. World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation. Geneva: WHO Technical Report Series; 2003.

Supplemental Material

Table S1. Search Strategy.

Search \#	Medline 1946 to June 03, 2019	Embase 1946 to June 03, 2019
$\mathbf{1}$	Cochrane Thegetables/	Through to June 03, 2019

Table S2. Confounding Variables Among 117 Studies of Fruit and Vegetables and Cardiovascular Disease Outcomes.

Study	Adriouch, 2018^{42}	Appleby, 2002^{43}	Atkins, 2014^{44}	Bahadoran, 2017^{45}	$\begin{gathered} \text { Bazzano, } \\ 2002^{46} \\ \hline \end{gathered}$	Belin, 2011^{47}	$\begin{gathered} \text { Bendinelli, } \\ 2011^{48} \\ \hline \end{gathered}$	Berard, 2017^{49}	Bhupathiraju, 2013^{50}	Bingham, 2008^{51}	Blekkenhorst, 2017^{52}
No. of variables fully adjusted model	13	3	8	2	10	10	12	5	13	9	10
No. of multivariable models presented	1	1	2	2	2	1	2	1	2	1	8
Timing of measurement of confounding variables	BL	BL	BL	BL	$\begin{gathered} \mathrm{BL}, 1982-84, \\ 86,87,92 \\ \hline \end{gathered}$	BL	BL	BL	1984-86, q2y	BL	BL
Pre-specified primary confounding varia											
Age	\checkmark	\checkmark	\checkmark		\checkmark						
Pre-specified secondary confounding variables											
Sex		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	N/A
Smoking	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
BMI	\checkmark		\checkmark			\checkmark			\checkmark		\checkmark
Physical activity	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Alcohol	\checkmark				\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
Blood pressure	\checkmark					\checkmark	\checkmark			\checkmark	
Energy	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Diabetes					\checkmark	\checkmark	\checkmark				\checkmark
Cholesterol						\checkmark	\checkmark			\checkmark	\checkmark
Other Confounding variables											
Education	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark			
Socioeconomic status			\checkmark								\checkmark
Menopause and/or hormone Use	\checkmark						\checkmark		\checkmark		
Region/location											
Randomization treatment											\checkmark
Ethnicity/nationality	\checkmark				\checkmark	\checkmark					
Marital status											
Study center								\checkmark			
Survey season	\checkmark										
Employment status											
Follow-up duration											
Dietary Intake											
Vitamin/supplement					\checkmark				\checkmark		
Fruit and/or vegetable	\checkmark										
Saturated fat											
Whole grains											
Fish/shellfish									\checkmark		
Meat							\checkmark				
Red meat									\checkmark		
Dietary pattern score			\checkmark	\checkmark							
Processed meat											
Coffee											
Fibre											
Folate											
Sodium											
Vitamin E											
Disease History											
MI or family history of MI									\checkmark		
CHD or family history of CHD											
CVD or family history of CVD				\checkmark							
Medications											
ASA											\checkmark
Other confounding variables not listed:	Sleep, WC								Cereal fibre, Trans fat	Weight	GFR

Table S2. Page 2/11

Study	Bos, $2014{ }^{53}$	Buijsse, 2008^{54}	$\begin{gathered} \text { BuilCosiales, } \\ 2016^{56} \\ \hline \end{gathered}$	$\begin{gathered} \text { BuilCosiales, } \\ 2017^{55} \\ \hline \end{gathered}$	Cassidy, 2012^{57}	$\begin{aligned} & \text { Collin, } \\ & 2019^{58} \end{aligned}$	$\begin{gathered} \text { Conrad, } \\ 2018^{59} \\ \hline \end{gathered}$	Dauchet, 2004^{60}	Dauchet, 2010^{61}	Du, 2016^{62}
No. of variables fully adjusted model	7	15	17	14	13	12	10	10	12	13
No. of multivariable models presented	1	4	1	3	1	4	1	1		2
Timing of measurement of confounding variables	BL	BL	BL	1999, 42 y	1976, q2y	BL	BL	BL	BL	BL
Pre-specified primary confounding variables										
Age	\checkmark									
Pre-specified secondary confounding variables										
Sex	\checkmark			\checkmark						
Smoking	\checkmark									
BMI	\checkmark									
Physical activity		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Alcohol		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
Blood pressure	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
Energy		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Diabetes	\checkmark		\checkmark		\checkmark			\checkmark	\checkmark	
Cholesterol					\checkmark			\checkmark	\checkmark	
Other Confounding variables										
Education			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Socioeconomic status		\checkmark				\checkmark	\checkmark			\checkmark
Menopause and/or hormone Use					\checkmark					
Region/location						\checkmark				\checkmark
Randomization treatment			\checkmark							
Ethnicity/nationality							\checkmark			
Marital status				\checkmark						
Study center			\checkmark					\checkmark	\checkmark	
Survey season										\checkmark
Employment status								\checkmark	\checkmark	
Follow-up duration										
Dietary Intake										
Vitamin/supplement					\checkmark				\checkmark	
Fruit and/or vegetable			\checkmark							
Saturated fat		\checkmark				\checkmark				
Whole grains			\checkmark	\checkmark						
Fish/shellfish										
Meat										\checkmark
Red meat										
Dietary pattern score										
Processed meat										
Coffee										
Fibre		\checkmark				\checkmark				
Folate		\checkmark								
Sodium										
Vitamin E										
Disease History										
MI or family history of MI										
CHD or family history of CHD	\checkmark		\checkmark	\checkmark						
CVD or family history of CVD										
Medications										
ASA					\checkmark					
Other confounding variables not listed:		Vitamin C, trans/PUFA, α-tocopherol	Olive oil, Statins	Dyslipidemia, Legumes, Olive oil			Cardiometabolic meds, added sugar, SFA:M/PUFA		Dyslipidemi	Dairy, Preserved vegetables

Table S2. Page 3/11

Study	Du, $2017{ }^{63}$	$\begin{aligned} & \text { Elwood, } \\ & 2013^{64} \end{aligned}$	Eriksen, 2015^{65}	$\begin{gathered} \text { Fitzgerald, } \\ 2012^{66} \\ \hline \end{gathered}$	Fraser, 1992^{67}	Gardener, 2011^{68}	$\begin{gathered} \text { Gaziano, } \\ 1995^{69} \end{gathered}$	Genkinger, 2004^{70}	$\begin{gathered} \text { Gillman, } \\ 1995^{71} \end{gathered}$	Goetz, 2016 ${ }^{72}$	$\begin{aligned} & \text { Goetz, } \\ & 2016^{73} \end{aligned}$
No. of variables fully adjusted model	12	3	9	10	6	7	6	6	7	12	10
No. of multivariable models presented	14	1	1	1	1	1	1	2	1	1	1
Timing of measurement of confounding variables	BL	1979, q5y	BL	BL	BL	qy.	1976, qy	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	\checkmark										
Pre-specified secondary confounding variables											
Sex	\checkmark										
Smoking	\checkmark		\checkmark								
BMI	\checkmark		\checkmark					\checkmark	\checkmark		
Physical activity	\checkmark			\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Alcohol	\checkmark		\checkmark	\checkmark						\checkmark	
Blood pressure			\checkmark								
Energy				\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
Diabetes				\checkmark			\checkmark		\checkmark		
Cholesterol			\checkmark				\checkmark	\checkmark	\checkmark		
Other Confounding variables											
Education	\checkmark			\checkmark		\checkmark				\checkmark	\checkmark
Socioeconomic status	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark
Menopause and/or hormone Use				\checkmark							
Region/location	\checkmark									\checkmark	\checkmark
Randomization treatment				\checkmark							
Ethnicity/nationality						\checkmark					\checkmark
Marital status											
Study center											
Survey season	\checkmark										
Employment status			\checkmark								
Follow-up duration											
Dietary Intake											
Vitamin/supplement											
Fruit and/or vegetable											
Saturated fat											
Whole grains											
Fish/shellfish											
Meat	\checkmark										
Red meat											
Dietary pattern score											\checkmark
Processed meat											
Coffee											
Fibre											
Folate											
Sodium											
Vitamin E											
Disease History											
MI or family history of MI											
CHD or family history of CHD											
CVD or family history of CVD											
Medications											
ASA											
Other confounding variables not listed:	Preserved vegetables				Weight		Functional status			Trans FA MUFA:SFA, $\% \mathrm{E}$ sweets	

Table S2. Page 4/11

Study	Gunge, 2017^{74}	Gunnell, 2013 ${ }^{75}$	Hansen, 2010^{77}	Hansen, 2017^{76}	Harriss, 2007^{78}	Hertog, 1997^{79}	$\begin{gathered} \text { Hirvonen, } \\ 2000^{81} \\ \hline \end{gathered}$	Hirvonen, 2001^{80}	Hjartaker, 2015^{82}	$\begin{gathered} \text { Hodgson, } \\ 2016^{83} \\ \hline \end{gathered}$	Holmberg, 2009^{84}
No. of variables fully adjusted model	18	10	11	13	15	13	10	11	9	15	0
No. of multivariable models presented	4	1	2	2	2	1	1	1	1	2	0
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL, q5y	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	\checkmark										
Pre-specified secondary confounding variables											
Sex	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	
Smoking	\checkmark										
BMI	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Physical activity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Alcohol	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	
Blood pressure	\checkmark		\checkmark								
Energy	\checkmark			\checkmark	\checkmark	\checkmark				\checkmark	
Diabetes				\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	
Cholesterol	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	
Other Confounding variables											
Education	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			
Socioeconomic status						\checkmark			\checkmark	\checkmark	
Menopause and/or hormone Use	\checkmark										
Region/location					\checkmark						
Randomization treatment							\checkmark	\checkmark		\checkmark	
Ethnicity/nationality					\checkmark						
Marital status								\checkmark			
Study center											
Survey season		\checkmark		\checkmark							
Employment status											
Follow-up duration	\checkmark										
Dietary Intake											
Vitamin/supplement									\checkmark		
Fruit and/or vegetable	\checkmark				\checkmark						
Saturated fat			\checkmark								
Whole grains	\checkmark		\checkmark								
Fish/shellfish	\checkmark										
Meat					\checkmark						
Red meat	\checkmark										
Dietary pattern score					\checkmark						
Processed meat	\checkmark										
Coffee									\checkmark		
Fibre											
Folate											
Sodium											
Vitamin E						\checkmark					
Disease History											
MI or family history of MI											
CHD or family history of CHD				\checkmark		\checkmark	\checkmark	\checkmark			
CVD or family history of CVD					\checkmark					\checkmark	
Medications											
ASA										\checkmark	
Other confounding variables not listed:	WC	Charlson index, DM hospitalization		Weight		Vitamin C, B-carotene, Dietary fat				Cancer	

Table S2. Page 5/l1

Study	$\begin{gathered} \text { Iso, } \\ 2007^{85} \\ \hline \end{gathered}$	Jacques, 2015^{86}	Johnsen, 2003^{87}	Joshipura, 1999^{88}	Joshipura, 2009^{89}	Keli, $1996{ }^{\text {90 }}$	$\begin{gathered} \text { Kim, } \\ 2013^{91} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Knekt, } \\ & 1994^{94} \\ & \hline \end{aligned}$	Knekt, 1996^{93}	Knekt, 2000 ${ }^{92}$	Kobylecki, 2015^{95}
No. of variables fully adjusted model	3	5	13	12	14	7	0	5	6	17	12
No. of multivariable models presented	1	2	2	1	198-86, q2y	1	0	2	1	1	3
Timing of measurement of confounding variables	BL	1991, q3-4y	BL	1980-6, q2y	1980-6, q2y	1960-73, 77, 85	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Pre-specified secondary confounding variables											
Sex	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark		\checkmark
Smoking		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
BMI		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
Physical activity			\checkmark	\checkmark	\checkmark						\checkmark
Alcohol			\checkmark	\checkmark	\checkmark	\checkmark					\checkmark
Blood pressure			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Energy		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
Diabetes			\checkmark		\checkmark					\checkmark	
Cholesterol			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Other Confounding variables											
Education			\checkmark								
Socioeconomic status											\checkmark
Menopause and/or hormone Use				\checkmark	\checkmark						
Region/location	\checkmark									\checkmark	
Randomization treatment											
Ethnicity/nationality											
Marital status											
Study center											
Survey season											
Employment status											
Follow-up duration											
Dietary Intake											
Vitamin/supplement				\checkmark	\checkmark						\checkmark
Fruit and/or vegetable											
Saturated fat										\checkmark	
Whole grains					\checkmark						
Fish/shellfish						\checkmark					
Meat											
Red meat			\checkmark								
Dietary pattern score											
Processed meat											
Coffee											
Fibre										\checkmark	
Folate											
Sodium											
Vitamin E										\checkmark	
Disease History											
MI or family history of MI				\checkmark							
CHD or family history of CHD					\checkmark						
CVD or family history of CVD											
Medications											
ASA					\checkmark						
Other confounding variables not listed:			Ω-3-FA							Occupation, Vit C/E,Querc P/MUFA	Maximal oxygen intake, CRP

Table S2. Page 6/11

Study	Kondo, 2019^{96}	Kvaavik, 2010^{97}	Lai, 2015 ${ }^{98}$	$\begin{gathered} \hline \text { Larsson, } \\ 2009^{99} \\ \hline \end{gathered}$	Larsson, 2013^{100}	Leenders, 2013^{102}	Leenders, 2014^{101}	Lin, $2007{ }^{103}$	Lin, $2017{ }^{104}$	Liu, 2000 ${ }^{106}$
No. of variables fully adjusted model	7	8	8	14	16	11	11	13	6	8
No. of multivariable models presented	1	2	2	2	2	1	1	2	1	3
Timing of measurement of confounding variables	BL	1990, q2y	BL	BL						
Pre-specified primary confounding variables										
Age	\checkmark									
Pre-specified secondary confounding variables										
Sex	\checkmark		\checkmark							
Smoking	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BMI		\checkmark								
Physical activity			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Alcohol	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Blood pressure		\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Energy	\checkmark			\checkmark	\checkmark			\checkmark		
Diabetes		\checkmark		\checkmark						
Cholesterol				\checkmark				\checkmark		\checkmark
Other Confounding variables										
Education					\checkmark	\checkmark	\checkmark		\checkmark	
Socioeconomic status		\checkmark	\checkmark							
Menopause and/or hormone Use								\checkmark		
Region/location										
Randomization treatment				\checkmark						\checkmark
Ethnicity/nationality										
Marital status										
Study center						\checkmark	\checkmark			
Survey season										
Employment status										
Follow-up duration										
Dietary Intake										
Vitamin/supplement								\checkmark		\checkmark
Fruit and/or vegetable	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			
Saturated fat										
Whole grains										
Fish/shellfish	\checkmark									
Meat						\checkmark	\checkmark			
Red meat					\checkmark					
Dietary pattern score										
Processed meat					\checkmark					
Coffee					\checkmark					
Fibre										
Folate				\checkmark						
Sodium	\checkmark									
Vitamin E								\checkmark		
Disease History										
MI or family history of MI					\checkmark					
CHD or family history of CHD		\checkmark								
CVD or family history of CVD				\checkmark					\checkmark	
Medications										
ASA					\checkmark			\checkmark		
Other confounding variables not listed:		Respiratory diseases		Magnesium						

Table S2. Page 7/11

Study	Liu, $2001{ }^{105}$	Mann, 1997^{107}	Manuel, 2015^{108}	Miller, 2017^{109}	Mink, 2007^{110}	Mizrahi, 2009^{111}	Mori, 2018^{112}	Mytton, 2018^{113}	Nagura, 2009^{114}	$\begin{aligned} & \text { Nakamura, } \\ & 2008^{115} \\ & \hline \end{aligned}$
No. of variables fully adjusted model	11	5	1	17	11	8	16	16	16	15
No. of multivariable models presented	2	1	1	1	2	1	3	2	3	3
Timing of measurement of confounding variables	BL									
Pre-specified primary confounding variables										
Age	\checkmark									
Pre-specified secondary confounding variables										
Sex	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Smoking	\checkmark	\checkmark		\checkmark						
BMI	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Physical activity	\checkmark			\checkmark						
Alcohol	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark
Blood pressure	\checkmark			\checkmark						
Energy				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Diabetes	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Cholesterol	\checkmark			\checkmark		\checkmark		\checkmark		
Other Confounding variables										
Education				\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Socioeconomic status		\checkmark								
Menopause and/or hormone Use					\checkmark					\checkmark
Region/location				\checkmark						
Randomization treatment	\checkmark									
Ethnicity/nationality										
Marital status					\checkmark					\checkmark
Study center				\checkmark			\checkmark			
Survey season										
Employment status							\checkmark			
Follow-up duration										
Dietary Intake										
Vitamin/supplement	\checkmark						\checkmark			
Fruit and/or vegetable				\checkmark			\checkmark		\checkmark	
Saturated fat									\checkmark	\checkmark
Whole grains										
Fish/shellfish										
Meat										
Red meat				\checkmark						
Dietary pattern score										
Processed meat										
Coffee							\checkmark			
Fibre				\checkmark						
Folate										
Sodium							\checkmark		\checkmark	\checkmark
Vitamin E										
Disease History										
MI or family history of MI								\checkmark		
CHD or family history of CHD										
CVD or family history of CVD										
Medications										
ASA										
Other confounding variables not listed:				Waist:hip, bread, white meat	Waist:hip		Green tea	Family hx of diabetes/ stroke	Sleep, stress, $\Omega-3$ FA, diet cholesterol	Dietary protein

Table S2. Page 8/11

Study	Nechuta, 2010^{116}	$\begin{gathered} \text { Neelakantan, } \\ 2018^{117} \end{gathered}$	$\begin{gathered} \text { Ness, } \\ 2005^{118} \end{gathered}$	$\begin{gathered} \text { Nothlings, } \\ 2008^{119} \end{gathered}$	Okuda, 2015^{120}	Oude Griep, 2010^{121}	Oude Griep, 2011^{123}	Oude Griep, 2011^{122}	Oyebode, 2014^{124}	Pham, 2007^{125}
No. of variables fully adjusted model	7	12	8	11	11	12	15	15	8	9
No. of multivariable models presented	2	1	2	2	3	3	3	3	2	1
Timing of measurement of confounding variables	BL	2001, qy	BL							
Pre-specified primary confounding variables										
Age	\checkmark									
Pre-specified secondary confounding variables										
Sex	\checkmark									
Smoking		\checkmark		\checkmark						
BMI	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Physical activity	\checkmark	\checkmark							\checkmark	
Alcohol				\checkmark						
Blood pressure		\checkmark		\checkmark						\checkmark
Energy		\checkmark								
Diabetes		\checkmark		\checkmark			\checkmark	\checkmark		\checkmark
Cholesterol							\checkmark	\checkmark		
Other Confounding variables										
Education	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	
Socioeconomic status	\checkmark		\checkmark						\checkmark	
Menopause and/or hormone Use						\checkmark	\checkmark	\checkmark		
Region/location			\checkmark							
Randomization treatment										
Ethnicity/nationality		\checkmark								
Marital status	\checkmark									
Study center										
Survey season			\checkmark							
Employment status										
Follow-up duration										
Dietary Intake										
Vitamin/supplement						\checkmark	\checkmark	\checkmark		
Fruit and/or vegetable		\checkmark								\checkmark
Saturated fat										
Whole grains		\checkmark				\checkmark	\checkmark	\checkmark		
Fish/shellfish		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		
Meat					\checkmark					
Red meat										
Dietary pattern score										
Processed meat						\checkmark	\checkmark	\checkmark		
Coffee										
Fibre										
Folate										
Sodium					\checkmark					
Vitamin E										
Disease History										
MI or family history of MI				\checkmark		\checkmark	\checkmark	\checkmark		
CHD or family history of CHD										
CVD or family history of CVD										
Medications										
ASA										
Other confounding variables not listed:		Sleep, nuts, legumes, dairy	Child food expenditure, Townsend	Cancer hx, insulin tx, Waist:Hip	Dairy, soy					Blood transfusion

Table S2. Page 9/11

Study	Rebello, 2014^{126}	$\begin{gathered} \text { Rissanen, } \\ 2003^{127} \\ \hline \end{gathered}$	$\begin{gathered} \text { Saglimbene, } \\ 2017^{128} \end{gathered}$	Sahyoun, $1996{ }^{129}$	Sauvaget, 2003^{130}	Scheffers, 2019^{131}	$\begin{gathered} \text { Sesso, } \\ 2003^{132} \\ \hline \end{gathered}$	Sesso, $2003{ }^{134}$	$\begin{gathered} \hline \text { Sesso, } \\ 20077^{133} \\ \hline \end{gathered}$	$\begin{gathered} \text { Shah, } \\ 2018^{135} \end{gathered}$	Sharma, $2013{ }^{136}$
No. of variables fully adjusted model	20	10	N/A	4	13	12	16	16	18	10	7
No. of multivariable models presented	3	4	N/A	3	4	4	2	2	4	2	1
Timing of measurement of confounding variables	BL	BL	N/A	BL							
Pre-specified primary confounding variables											
Age	\checkmark	\checkmark		\checkmark							
Pre-specified secondary confounding variables											
Sex		\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	
Smoking	\checkmark	\checkmark			\checkmark						
BMI	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Physical activity	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Alcohol	\checkmark				\checkmark						
Blood pressure	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Energy	\checkmark							\checkmark	\checkmark		\checkmark
Diabetes		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Cholesterol		\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Other Confounding variables											
Education	\checkmark				\checkmark	\checkmark					\checkmark
Socioeconomic status											
Menopause and/or hormone Use	\checkmark						\checkmark	\checkmark	\checkmark		
Region/location					\checkmark						
Randomization treatment							\checkmark	\checkmark	\checkmark		
Ethnicity/nationality	\checkmark										\checkmark
Marital status											
Study center											
Survey season	\checkmark										
Employment status											
Follow-up duration		\checkmark									\checkmark
Dietary Intake											
Vitamin/supplement		\checkmark									
Fruit and/or vegetable							\checkmark	\checkmark	\checkmark		
Saturated fat	\checkmark						\checkmark	\checkmark			
Whole grains											
Fish/shellfish											
Meat											
Red meat	\checkmark										
Dietary pattern score						\checkmark					
Processed meat											
Coffee											
Fibre							\checkmark	\checkmark	\checkmark		
Folate							\checkmark	\checkmark	\checkmark		
Sodium											
Vitamin E							\checkmark				
Disease History											
MI or family history of MI					\checkmark		\checkmark	\checkmark	\checkmark		
CHD or family history of CHD											
CVD or family history of CVD										\checkmark	
Medications											
ASA											
Other confounding variables not listed:	Sleep, bread, legumes, soy egg, PUFA	Maximal oxygen		Functional status, Health	Birth cohort, animal prod, radiation				Vitamin C, flavonoid, potassium		

Table S2. Page 10/11

Study	Sharma, 2014^{137}	$\begin{aligned} & \text { Simila, } \\ & 2013^{138} \\ & \hline \end{aligned}$	Sonestedt, 2015^{139} 2015^{139}	Sotomayer, 2019^{140}	Steffen, 2003^{141}	Stefler, 2016^{142}	Strandhagen , 2000^{143}	Takachi, 2008^{144}	Tanaka, 2013^{145}	Tucker, $2005{ }^{147}$	Tognon, 2014^{146}
No. of variables fully adjusted model	5	2	14	16	12	12	5	11	21	10	6
No. of multivariable models presented	1	1	3	4	3	1	2	2	3	3	1
Timing of measurement of confounding variables	BL	1961, biennially	BL								
Pre-specified primary confounding variables											
Age		\checkmark									
Pre-specified secondary confounding variables											
Sex			\checkmark								
Smoking	\checkmark		\checkmark								
BMI	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
Physical activity	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Alcohol	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Blood pressure				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Energy			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Diabetes	\checkmark			\checkmark				\checkmark	\checkmark		
Cholesterol				\checkmark	\checkmark		\checkmark		\checkmark		
Other Confounding variables											
Education			\checkmark	\checkmark	\checkmark	\checkmark					\checkmark
Socioeconomic status				\checkmark							
Menopause and/or hormone Use											
Region/location											
Randomization treatment		\checkmark									
Ethnicity/nationality					\checkmark						
Marital status						\checkmark					
Study center								\checkmark			
Survey season			\checkmark								
Employment status											
Follow-up duration				\checkmark						\checkmark	
Dietary Intake											
Vitamin/supplement						\checkmark		\checkmark		\checkmark	
Fruit and/or vegetable			\checkmark			\checkmark					
Saturated fat									\checkmark	\checkmark	
Whole grains			\checkmark								
Fish/shellfish											
Meat			\checkmark								
Red meat											
Dietary pattern score					\checkmark						
Processed meat											
Coffee			\checkmark								
Fibre											
Folate											
Sodium									\checkmark		
Vitamin E											
Disease History											
MI or family history of MI											
CHD or family history of CHD											
CVD or family history of CVD											
Medications											
ASA											
Other confounding variables not listed:			Fermented milk	eGFR, proteinuria, primary renal disease, hsCRP		Birth cohort, house score			\dagger		

Table S2. Page 11/11

Study	$\begin{gathered} \hline \text { Von Ruesten, } \\ 2013^{148} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Vormund, } \\ 2015^{149} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Wang, } \\ 2016^{150} \\ \hline \end{gathered}$	Watkins, 2000^{151}	Whiteman, 1999^{152}	Yamada, 2011^{153} 2011^{153}	Yokoyama, $2000{ }^{154}$	$\begin{gathered} \text { Yoshizaki, } \\ 2019^{155} \\ \hline \end{gathered}$	Yu, 2014 ${ }^{156}$	Zhang, 2011^{157}	Zhang, 2011^{158}
No. of variables fully adjusted model	11	8	7	17	3	11	9	17	13	17	11
No. of multivariable models presented	2	3	1	1	1	2	1	3	2	1	1
Timing of measurement of confounding variables	BL, q2-3y	BL									
Pre-specified primary confounding variables											
Age	\checkmark										
Pre-specified secondary confounding variables											
Sex	\checkmark		\checkmark	\checkmark							
Smoking	\checkmark										
BMI	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Physical activity	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Alcohol	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Blood pressure	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Energy								\checkmark	\checkmark	\checkmark	
Diabetes				\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
Cholesterol	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Other Confounding variables											
Education	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	
Socioeconomic status									\checkmark	\checkmark	
Menopause and/or hormone Use										\checkmark	
Region/location		\checkmark	\checkmark			\checkmark					
Randomization treatment											
Ethnicity/nationality		\checkmark		\checkmark							
Marital status		\checkmark		\checkmark		\checkmark					
Study center							\checkmark				
Survey season		\checkmark	\checkmark								
Employment status				\checkmark			\checkmark				
Follow-up duration											
Dietary Intake											
Vitamin/supplement	\checkmark								\checkmark	\checkmark	
Fruit and/or vegetable	\checkmark							\checkmark			\checkmark
Saturated fat										\checkmark	
Whole grains											
Fish/shellfish								\checkmark	\checkmark		
Meat								\checkmark			
Red meat				\checkmark					\checkmark		
Dietary pattern score											
Processed meat											
Coffee				\checkmark							
Fibre											
Folate											
Sodium								\checkmark			
Vitamin E											
Disease History											
MI or family history of MI											
CHD or family history of CHD							\checkmark			\checkmark	
CVD or family history of CVD											
Medications											
ASA				\checkmark							
Other confounding variables not listed:				Stroke, Diuretics				$\begin{gathered} \hline \text { Mental } \\ \text { stress } \\ \hline \end{gathered}$		Occupation, stroke	Stroke

ASA - acetylsalicylic acid; BL - baseline; CHD - coronary heart disease; CRP - C-reactive protein; CVD - cardiovascular disease; GFR - glomerular filtration rate; FA - fatty acid; MI - myocardial infarction; M/PUFA - mono/poly-unsaturated fatty acids; Querc - quercetin supplement; qXy - confounding variables measured once every X years; WC waist circumference.
*Tanaka et al. (2013) adjusted for the following additional confounding variables: dyslipidemia, HbA1c, oral antihyperglycemic agents, insulin, retinopathy, dietary cholesterol, dietary fat and $\Omega-3$ and $\Omega-6$ FA.

Table S3: Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Cohort Studies

Study	Selection*	Outcome ${ }^{\dagger}$	Comparability ${ }^{\ddagger}$	Total§
Adriouch, 2018 ${ }^{42}$	3	2	2	7
Appleby, 2002 ${ }^{43}$	1	1	1	3
Atkins, $2014{ }^{44}$	3	3	1	7
Bahadoran, $2017{ }^{45}$	2	1	0	3
Bazzano, 2002 ${ }^{46}$	2	3	1	6
Belin, $2011{ }^{47}$	3	3	2	8
Bendinelli, $2011{ }^{48}$	3	3	2	8
Berard, 2017 ${ }^{49}$	3	3	1	7
Bhupathiraju, 2013 ${ }^{50}$	2	2	1	5
Bingham, 2008 ${ }^{51}$	2	0	2	4
Blekkenhorst, $2017{ }^{52}$	2	3	2	7
Bos, $2014{ }^{53}$	2	3	2	7
Buijsse, 2008 ${ }^{54}$	3	3	1	7
Buil-Cosiales, 2016 ${ }^{56}$	3	3	2	8
Buil-Cosiales, $2017{ }^{55}$	3	1	2	6
Cassidy, 2012 ${ }^{57}$	2	2	2	6
Collin, $2019{ }^{58}$	3	3	1	7
Conrad, 2018 ${ }^{59}$	3	3	1	7
Dauchet, 2004 ${ }^{60}$	3	3	2	8
Dauchet, 2010 ${ }^{61}$	4	3	2	9
Du, 2016 ${ }^{62}$	4	3	1	8
Du, $2017{ }^{63}$	4	3	1	8
Elwood, $2013{ }^{64}$	3	3	1	7
Eriksen, $2015{ }^{65}$	3	3	2	8
Fitzgerald, $2012{ }^{66}$	2	2	1	5
Fraser, 1992 ${ }^{67}$	2	3	2	7
Gardener, 2011 ${ }^{68}$	4	2	1	7
Gaziano, 1995 ${ }^{69}$	2	3	1	6
Genkinger, 2004 ${ }^{70}$	3	3	1	7
Gillman, 1995 ${ }^{71}$	3	3	2	8
Goetz, 2016 ${ }^{72}$	3	2	1	6
Goetz, 2016 ${ }^{73}$	3	3	1	7
Gunge, 2017 ${ }^{74}$	3	3	2	8

Study	Selection*	Outcome ${ }^{+}$	Comparability ${ }^{\ddagger}$	Total ${ }^{\text {8 }}$
Gunnell, 2013 ${ }^{75}$	3	1	2	6
Hansen, 2010^{77}	3	3	2	8
Hansen, 2017^{76}	2	3	2	7
Harriss, 2007^{78}	3	3	2	8
Hertog, 1997 ${ }^{79}$	2	3	2	7
Hirvonen, 2000 ${ }^{81}$	2	3	2	7
Hirvonen, 2001 ${ }^{80}$	2	3	2	7
Hjartaker, $2015{ }^{82}$	2	3	1	6
Hodgson, 2016^{83}	2	3	2	7
Holmberg, $2009{ }^{84}$	2	3	0	5
Iso, 2007^{85}	2	2	1	5
Jacques, 2015^{86}	3	3	1	7
Johnsen, $2003{ }^{87}$	3	2	2	7
Joshipura, $1999{ }^{88}$	2	2	2	6
Joshipura, 2009 ${ }^{89}$	2	3	2	7
Keli, 1996 ${ }^{90}$	4	3	1	8
Kim, $2013{ }^{91}$	1	3	0	4
Knekt, 1994 ${ }^{94}$	4	3	1	8
Knekt, 199693	2	3	2	7
Knekt, 2000 ${ }^{92}$	4	3	2	9
Kobylecki, 2015 ${ }^{95}$	3	3	2	8
Kondo, 2019^{96}	3	3	1	7
Kvaavik, 2010 ${ }^{97}$	4	3	1	8
Lai, $2015{ }^{98}$	3	3	1	7
Larsson, 2009 ${ }^{99}$	2	3	2	7
Larsson, $2013{ }^{100}$	3	3	2	8
Leenders, $2013{ }^{102}$	3	3	2	8
Leenders, $2014{ }^{101}$	3	3	2	8
Lin, $2007{ }^{103}$	2	2	2	6
Lin, $2017{ }^{104}$	3	3	1	7
Liu, 2000 ${ }^{106}$	2	3	2	7
Liu, 2001 ${ }^{105}$	2	3	2	7
Mann, 1997 ${ }^{107}$	2	3	1	6
Manuel, 2015 ${ }^{108}$	4	3	1	8
Miller, $2017{ }^{109}$	3	3	2	8

Study	Selection*	Outcome ${ }^{+}$	Comparability ${ }^{\ddagger}$	Total ${ }^{8}$
Mink, 2007 ${ }^{110}$	3	3		8
Mizrahi, $2009{ }^{111}$	4	3	2	9
Mori, 2018 ${ }^{112}$	3	3	2	8
Mytton, 2018 ${ }^{113}$	3	3	2	8
Nagura, 2009 ${ }^{114}$	3	3	2	8
Nakamura, 2008 ${ }^{115}$	2	3	2	7
Nechuta, $2010{ }^{116}$	3	3	1	7
Neelakantan, $2018{ }^{117}$	3	3	2	8
Ness, $2005{ }^{118}$	3	3	1	7
Nothlings, 2008 ${ }^{119}$	2	3	1	6
Okuda, 2015 ${ }^{120}$	3	3	1	7
Oude Griep, 2010 ${ }^{121}$	3	3	1	7
Oude Griep, $2011{ }^{123}$	2	3	2	7
Oude Griep, 2011 ${ }^{122}$	2	3	2	7
Oyebode, 2014 ${ }^{124}$	3	3	1	7
Pham, $2007{ }^{125}$	3	3	2	8
Rebello, $2014{ }^{126}$	3	3	1	7
Rissanen, 2003 ${ }^{127}$	2	3	2	7
Saglimbene, $2017{ }^{128}$	1	0	0	1
Sahyoun, 1996 ${ }^{129}$	1	3	1	5
Sauvaget, 2003 ${ }^{130}$	2	3	2	7
Scheffers, 2019^{131}	3	3	2	8
Sesso, $2003{ }^{132}$	2	3	2	7
Sesso, 2003 ${ }^{134}$	2	3	2	7
Sesso, 2007 ${ }^{133}$	3	2	2	7
Shah, 2018 ${ }^{135}$	3	3	2	8
Sharma, 2013 ${ }^{136}$	3	2	0	5
Sharma, 2014 ${ }^{137}$	3	2	0	5
Simila, $2013{ }^{138}$	2	3	1	6
Sonestedt, 2015 ${ }^{139}$	4	3	2	9
Sotomayer, $2019{ }^{140}$	1	3	2	6
Steffen, $2003{ }^{141}$	4	3	2	9
Stefler, 2016 ${ }^{142}$	2	3	1	6
Strandhagen, 2000 ${ }^{143}$	2	3	1	6
Takachi, $2008{ }^{144}$	3	3	2	8

Study	Selection*	Outcome ${ }^{+}$	Comparability ${ }^{\ddagger}$	Total ${ }^{\text {8 }}$
Tanaka, 2013 ${ }^{145}$	2	3	2	7
Tognon, 2014^{146}	3	3	1	7
Tucker, 2005 ${ }^{147}$	2	3	1	6
Von Ruesten, $2013{ }^{148}$	3	2	2	7
Vormund, 2015 ${ }^{149}$	3	3	1	7
Wang, 2016 ${ }^{150}$	1	3	1	5
Watkins, 2000 ${ }^{151}$	3	3	2	8
Whiteman, 19999 ${ }^{152}$	3	3	1	7
Yamada, 2011 ${ }^{153}$	2	3	2	7
Yokoyama, 2000 ${ }^{154}$	2	3	2	7
Yoshizaki, 2019 ${ }^{155}$	3	3	2	8
Yu, $2014{ }^{156}$	3	3	2	8
Zhang, $2011{ }^{157}$	3	3	2	8
Zhang, 2011 ${ }^{158}$	3	2	2	7

*Maximum 4 points awarded for representativeness of exposed cohort, selection of non-exposed cohort, exposure assessment, and demonstration outcome not present at baseline.
\dagger Maximum 3 points awarded for outcome assessment, follow-up length, and adequacy of follow-up.
\ddagger Maximum 2 points awarded for adjusting for the pre-specified primary confounding variable (age) and 5 of the 7 pre-specified secondary confounding variables (sex, family history of CVD, smoking, body mass index, blood pressure (or hypertension/medications), cholesterol (or dyslipidemia/medications) and presence of diabetes mellitus.
§A maximum of 9 points could be awarded.

Table S4. GRADE Assessment for Fruits and Vegetables and Cardiovascular Disease Incidence

Quality Assessment								Study Event Rates (\%)	Relative Risk (95% CI)	Certainty
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other			
Fruit and Vegetable Consumption on Cardiovascular Disease Incidence (follow-up median 10 years)										
12	observational	not serious	not serious	not serious	serious ${ }^{1}$	undetected	dose-response gradient ${ }^{2}$	$\begin{gathered} 24,310 / 501,744 \\ (4.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.93 \\ (0.89,0.96) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ф@О〇 } \\ \text { LOW } \end{gathered}$
Fruit Consumption on Cardiovascular Disease Incidence (follow-up median 10 years)										
16	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ${ }^{3}$	$\begin{gathered} 27,204 / 577,323 \\ (4.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.91 \\ (0.88,0.95) \end{gathered}$	$\begin{gathered} \bigoplus \bigoplus O \bigcirc \\ \text { LOW } \end{gathered}$
Vegetable Consumption on Cardiovascular Disease Incidence (follow-up median 11 years)										
14	observational	not serious	not serious	not serious	serious ${ }^{4}$	undetected	none	$\begin{gathered} 22,810 / 539,683 \\ (4.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.90,0.97) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Berries Consumption on Cardiovascular Disease Incidence (follow-up median 10 years)										
1	observational	not serious	not serious ${ }^{5}$	serious ${ }^{6}$	serious ${ }^{7}$	undetected ${ }^{8}$	none	$\begin{gathered} \hline 1,004 / 38,176 \\ (2.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.95,1.71) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Citrus Fruit Consumption on Cardiovascular Disease Incidence (follow-up median 10 years)										
6	observational	not serious	not serious	not serious	serious ${ }^{9}$	undetected ${ }^{8}$	dose-response gradient ${ }^{10}$	$\begin{gathered} 6,220 / 222,525 \\ (2.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \\ (0.80,0.96) \\ \hline \end{gathered}$	Ф®OO LOW
Fruit Juice Consumption on Cardiovascular Disease Incidence (follow-up median 15 years)										
5	observational	not serious	not serious	not serious	serious ${ }^{11}$	undetected ${ }^{8}$	none	$\begin{gathered} 8,056 / 167,879 \\ (4.8 \%) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.93,1.07) \end{gathered}$	$\oplus 000$ VERY LOW
Pommes Consumption on Cardiovascular Disease Incidence (follow-up median 8 years)										
5	observational	not serious	not serious	serious ${ }^{12}$	not serious	undetected ${ }^{8}$	dose-response gradient ${ }^{13}$	$\begin{gathered} 2,578 / 149,437 \\ (1.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.76 \\ (0.66,0.88) \end{gathered}$	(1)OOO LOW
Allium Vegetables Consumption on Cardiovascular Disease Incidence (follow-up median 7 years)										
2	observational	not serious	serious 14	serious ${ }^{15}$	serious ${ }^{16}$	undetected ${ }^{8}$	none	$\begin{gathered} 808 / 40,814 \\ (2.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.79 \\ (0.57,1.10) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Cruciferous Vegetables Consumption on Cardiovascular Disease Incidence (follow-up median 9 years)										
7	observational	not serious	serious ${ }^{17}$	not serious	serious ${ }^{18}$	undetected ${ }^{8}$	none	$\begin{gathered} 6,824 / 273,878 \\ (2.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.99 \\ (0.90,1.08) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Green Leafy Vegetables Consumption on Cardiovascular Disease Incidence (follow-up median 7 years)										
5	observational	not serious	not serious	not serious	serious ${ }^{19}$	undetected ${ }^{8}$	dose-response gradient ${ }^{20}$	$\begin{gathered} 5,732 / 211,902 \\ (2.7 \%) \end{gathered}$	$\begin{gathered} \hline 0.87 \\ (0.76,0.99) \end{gathered}$	$\oplus \Theta O O$ LOW
Tomatoes Consumption on Cardiovascular Disease Incidence (follow-up median 9 years)										
2	observational	not serious	not serious	serious ${ }^{21}$	serious 22	undetected 8	none	$\begin{gathered} 841 / 55,452 \\ (1.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.97 \\ (0.78,1.20) \\ \hline \end{gathered}$	©000 VERY LOW

[^1]${ }^{2}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between total fruit and vegetable intake and incident CVD ($\mathrm{p}<0.001$).
${ }^{3}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and incident CVD ($\mathrm{p}=0.004$).
${ }^{4}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.90) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.
${ }^{5}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.
${ }^{6}$ Downgrade for serious indirectness as evidence is based on 1 cohort of female health-professionals residing in the USA and may not be generalizable to different populations.
${ }^{7}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($R R, 0.95$ to 1.27) includes both clinically important benefit ($\mathrm{RR} \leq 0.95$) and harm ($\mathrm{R} R \geq 1.05$).
${ }^{8}$ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. < 10 observations available).
${ }^{9}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.80) includes the MID of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.96) \mathrm{crosses}$ the MID.
${ }^{10}$ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between citrus fruit intake and CVD incidence ($\mathrm{p}=0.033$).
${ }^{11}$ Downgrade for serious imprecision, as the lower and upper bound of the $95 \% \mathrm{CIs}(\mathrm{RR}, 0.93$ to 1.07) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($R R \geq 1.05$).
${ }^{12}$ Downgrade for serious indirectness as evidence is based on a predominately ($>78 \%$) female population and may not be generalizable to different populations.
${ }^{13}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between pommes intake and incident CVD ($\mathrm{p}=0.043$).
${ }^{14}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=85 \%, \mathrm{p}=0.01$), which could not be explored through sensitivity due to only 2 observations available.
${ }^{15}$ Downgrade for serious indirectness as evidence is based on a predominately (97%) female populations of which most are health professionals, and may not be generalizable to different populations.
${ }^{16}$ Downgrade for serious imprecision, as the lower bound of the 95% CI ($R R, 0.57$) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.10) crosses the MID.
${ }^{17}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=52 \%, \mathrm{p}=0.04$). Although the removal of Buil-Cosiales et al. 2016 during sensitivity analysis did partially explain the heterogeneity ($\mathrm{I}^{2}=27 \%, \mathrm{p}=0.22$), the presence of residual heterogeneity could not be excluded.
${ }^{18}$ Downgrade for serious imprecision, as the lower and upper bound of the $95 \% \mathrm{CIs}$ ($\mathrm{RR}, 0.90$ to 1.08) includes both clinically important benefit ($\mathrm{RR} \leq 0.95$) and harm ($\mathrm{R} R \geq 1.05$).
${ }^{19}$ Downgrade for serious imprecision, as the lower bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.76)$ includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.
${ }^{20}$ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between green leafy vegetables intake and CVD mortality ($\mathrm{p}=0.01$)
${ }^{21}$ Downgrade for serious indirectness as evidence is based on a predominately (88%) female population and may not be generalizable to different populations.
${ }^{22}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($\mathrm{RR}, 0.78$ to 1.20) includes both clinically important benefit (RR ≤ 0.95) and harm
($\mathrm{R} R \geq 1.05$).

Table S5. GRADE Assessment for Fruits and Vegetables and Cardiovascular Disease Mortality

Quality Assessment								Study Event Rates (\%)	Relative Risk$(95 \% \text { CI) }$	Certainty
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other			
Fruit and Vegetable Consumption on Cardiovascular Disease Mortality (follow-up median 11 years)										
14	observational	not serious	serious ${ }^{1}$	not serious	not serious	undetected	dose-response gradient ${ }^{2}$	$\begin{gathered} \hline 17,439 / 798,391 \\ (2.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.89 \\ (0.85,0.93) \\ \hline \end{gathered}$	$\begin{aligned} & \text { ӨӨOO } \\ & \text { LOW } \end{aligned}$
Fruit Consumption on Cardiovascular Disease Mortality (follow-up median 11 years)										
27	observational	not serious	serious ${ }^{3}$	not serious	not serious	undetected	dose-response gradient ${ }^{4}$	$\begin{gathered} 39,623 / 1,581,506 \\ (2.5 \%) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.86,0.91) \\ \hline \end{gathered}$	Ф〇OO LOW
Vegetable Consumption on Cardiovascular Disease Mortality (follow-up median 10 years)										
21	observational	not serious	serious ${ }^{5}$	not serious	not serious	undetected	dose-response gradient ${ }^{6}$	$\begin{gathered} 33,516 / 1,101,435 \\ (3.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.87 \\ (0.85,0.90) \\ \hline \end{gathered}$	Ф®OO LOW
Apricot Consumption on Cardiovascular Disease Mortality (follow-up median 1.5 years)										
1	observational	serious ${ }^{7}$	not serious ${ }^{8}$	serious ${ }^{9}$	not serious	undetected ${ }^{10}$	none	$\begin{gathered} 515 / 9,757 \\ (5.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.84 \\ (1.27,2.67) \end{gathered}$	0000 VERY LOW
Bananas Consumption on Cardiovacular Disease Mortality 16(follow-up median 20.3 years)										
1	observational	not serious	not serious ${ }^{8}$	serious ${ }^{12}$	serious ${ }^{13}$	undetected ${ }^{10}$	none	$\begin{gathered} 4,595 / 9,766 \\ (47.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.06 \\ (0.87,1.29) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Berries Consumption on Cardiovascular Disease Mortality (follow-up median 16 years)										
4	observational	not serious	not serious	serious ${ }^{14}$	serious ${ }^{15}$	undetected ${ }^{10}$	none	$\begin{gathered} 7,401 / 112,892 \\ (6.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.97 \\ (0.92,1.03) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Citrus Fruit Consumption on Cardiovascular Disease Mortality (follow-up median 17 years)										
3	observational	not serious	not serious ${ }^{16}$	serious ${ }^{17}$	serious ${ }^{18}$	undetected ${ }^{10}$	none	$\begin{gathered} \hline 7,197 / 74,716 \\ (9.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.95 \\ (0.90,1.02) \end{gathered}$	అOOO VERY LOW
Dried Fruit Consumption on Cardiovascular Disease Mortality (follow-up median 17 years)										
2	observational	not serious	not serious	not serious	serious ${ }^{19}$	undetected ${ }^{10}$	none	$\begin{gathered} 447 / 31,757 \\ (1.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.93 \\ (0.63,1.37) \end{gathered}$	$\oplus 000$ VERY LOW
Fruit Juice Consumption on Cardiovascular Disease Mortality (follow-up median 17 years)										
1	observational	not serious	not serious ${ }^{8}$	serious ${ }^{20}$	serious ${ }^{21}$	undetected ${ }^{10}$	none	$\begin{gathered} \hline 286 / 30,458 \\ (0.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.81 \\ (0.58,1.13) \end{gathered}$	అOOO VERY LOW
Grapes Consumption on Cardiovascular Disease Mortality (follow-up median 16.7 years)										
3	observational	not serious	not serious ${ }^{22}$	serious ${ }^{23}$	serious ${ }^{24}$	undetected ${ }^{10}$	none	$\begin{gathered} \hline 7,197 / 74,716 \\ (9.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.90 \\ (0.81,1.01) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Pommes Consumption on Cardiovascular Disease Mortality (follow-up median 16 years)										
5	observational	not serious	not serious	serious ${ }^{25}$	not serious	undetected ${ }^{10}$	none	$\begin{gathered} 7,947 / 85,929 \\ (9.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.86 \\ (0.80,0.92) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Allium Vegetables Consumption on Cardiovascular Disease Mortality (follow-up median 15 years)										
1	observational	not serious	not serious ${ }^{8}$	serious ${ }^{26}$	not serious	undetected ${ }^{10}$	none	$\begin{gathered} \hline 238 / 1,226 \\ (19.4 \%) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.22,0.49) \end{gathered}$	$\oplus 000$ VERY LOW
Carrots Consumption on Cardiovacular Disease Mortality (follow-up median 18 years)										

2	observational	not serious	not serious	serious ${ }^{27}$	serious ${ }^{28}$	undetected ${ }^{10}$	none	$\begin{gathered} \hline 4,792 / 10,325 \\ (46.4 \%) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.85,1.01) \end{gathered}$	$\begin{gathered} \text { ĐOOO } \\ \text { VERY LOW } \end{gathered}$
Celery Consumption on Cardiovascular Disease Mortality (follow-up median 16 years)										
1	observational	not serious	not serious ${ }^{8}$	serious ${ }^{29}$	serious ${ }^{30}$	undetected ${ }^{10}$	none	$\begin{gathered} 2,316 / 34,492 \\ (6.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.91 \\ (0.83,1.01) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ө〇OO } \\ & \text { VERY LOW } \end{aligned}$
Cruciferous Vegetables Consumption on Cardiovascular Disease Mortality (follow-up median 12 years)										
7	observational	not serious	serious ${ }^{31}$	not serious	not serious	undetected ${ }^{10}$	none	$\begin{gathered} 13,081 / 187,730 \\ (7.0 \%) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.82,0.89) \end{gathered}$	$\oplus 000$ VERY LOW
Green Leafy Vegetables Consumption on Cardiovascular Disease Mortality (follow-up median 21 years)										
5	observational	not serious	serious ${ }^{32}$	not serious	not serious	undetected ${ }^{10}$	none	$\begin{gathered} \hline 6,661 / 40,893 \\ (16.3 \%) \end{gathered}$	$\begin{gathered} 0.87 \\ (0.81,0.94) \end{gathered}$	$\begin{aligned} & \text { Ф@OO } \\ & \text { LOW } \end{aligned}$
Tomatoes Consumption on Cardiovascular Disease Mortality (follow-up median 16 years)										
3	observational	not serious	not serious	serious ${ }^{33}$	serious ${ }^{34}$	undetected ${ }^{9}$	none	$\begin{gathered} 7,072 / 45,557 \\ (15.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.98 \\ (0.93,1.04) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW

${ }^{1}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=68 \%$, $\mathrm{p}<0.001$) which could not be explained by sensitivity analyses.
${ }^{2}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and CVD mortality ($\mathrm{p}<0.011$). The MKSPLINE procedure indicated a departure from linearity ($\mathrm{p}<0.001$) at a threshold of 4 servings/day as observed by visual inspection.
${ }^{3}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=79 \%$, $\mathrm{p}<0.001$), which could not be explained by sensitivity analyses.
${ }^{4}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality ($\mathrm{p}=0.005$).
${ }^{5}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=59 \%$, $\mathrm{p}<0.001$), which could not be explained by sensitivity analyses.
${ }^{6}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p<0.001).
${ }^{7}$ Downgrade for serious risk of bias as the effect estimate is based on Saglimbene et al. 2017, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)
${ }^{8}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available
${ }^{9}$ Downgrade for serious indirectness as evidence is based on 1 cohort of patients receiving hemodialysis and may not be generalizable to different populations.
${ }^{10}$ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).
${ }^{11}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available
${ }^{12}$ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations
${ }^{13}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.87 to 1.29) includes both clinically important benefit (RR<0.95) and harm ($R R \geq 1.05$).
${ }^{14}$ Downgrade for serious indirectness as evidence is based on a predominately (91%) female population and may not be generalizable to different populations.
${ }^{15}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.92) includes the minimally important difference (MID) of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 1.03)$ crosses the MID.
${ }^{16}$ No downgrade for inconsistency as the presence of inter-study heterogeneity $\left(\mathrm{I}^{2}=62 \%, \mathrm{p}=0.05\right)$ was explained by the removal of Lai et al. $2015\left(\mathrm{I}^{2}=0 \%, \mathrm{p}=0.63\right)$ during sensitivity analysis.
${ }^{17}$ Downgrade for serious indirectness as the evidence is based on a predominately (87%) female population and may not be generalizable to different populations.
${ }^{18}$ Downgrade for serious imprecision, as upper bound of the 95% CIs (RR 1.02) crosses the MID (RR<0.95).
${ }^{19}$ Downgrade for serious imprecision, as upper bound of the 95% CIs (RR 1.37) crosses the MID (RR<0.95).
${ }^{20}$ Downgrade for serious indirectness as evidence is based on 1 female cohort residing in the United Kingdom and may not be generalizable to different populations.
${ }^{21}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($R R, 0.58$ to 1.13) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($R R \geq 1.05$)
${ }^{22}$ No downgrade for inconsistency as the presence of inter-study heterogeneity $\left(\mathrm{I}^{2}=61 \%, \mathrm{p}=0.08\right)$ was explained by the removal of Lai et al. $2015\left(\mathrm{I}^{2}=0 \%, \mathrm{p}=0.93\right)$ during sensitivity analysis.
${ }^{23}$ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.
${ }^{24}$ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.01) crosses the MID (RR<0.95).
${ }^{25}$ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.
${ }^{26}$ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.
${ }^{27}$ Downgrade for serious indirectness as evidence is based on 2 male cohorts and may not be generalizable to different populations.
${ }^{28}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.01) crosses the MID.
${ }^{29}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available
${ }^{30}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.76) includes the minimally important difference (MID) of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.99)$ crosses the MID.
${ }^{31}$ Downgrade for serious inconsistency as there was evidence for substantial inter-study heterogeneity ($\mathrm{I}^{2}=86 \%, \mathrm{p}<0.00001$), which could not be explained by sensitivity analyses.
${ }^{32}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=88 \%, \mathrm{p}<0.00001$), which could not be explained by sensitivity analyses.
${ }^{33}$ Downgrade for serious indirectness as evidence is based on only 3 isolated geographical regions (Norway and Massachusetts and Iowa, USA) and may not be generalizable to different populations.
${ }^{34}$ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.04) includes crosses the MID (RR<0.95).

Table S6．GRADE Assessment for Fruits and Vegetables and Coronary Heart Disease Incidence

Quality Assessment								Study Event Rates（\％）	Relative Risk （ $95 \% \mathrm{CI}$ ）	Certainty
No．of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other			

Fruit and Vegetable Consumption on Coronary Heart Disease Incidence（follow－up median 10 years）

Fruit an	le	pt	nary Hea	ease Inci	（follow－u	dian 10 ye				
19	observational	not serious	not serious	not serious	not serious	undetected	dose－response gradient ${ }^{1}$	$\begin{gathered} 17,987 / 619,182 \\ (2.9 \%) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.83,0.92) \end{gathered}$	ӨФ〇〇 MODERATE
Fruit	ption on	nary He	ase Inci	follow－	lian 10					
20	observational	not serious	not serious	not serious	not serious	undetected	dose－response gradient ${ }^{2}$	$\begin{gathered} \hline 23,856 / 1,170,021 \\ (2.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \\ (0.84,0.92) \end{gathered}$	
Vegetab	Consumption	Coronary	rt Disease I	idence（follo	median	ears）				
18	observational	not serious	not serious ${ }^{3}$	not serious	serious ${ }^{4}$	undetected	dose－response gradient ${ }^{5}$	$\begin{gathered} 17,172 / 696,330 \\ (2.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.92 \\ (0.87,0.96) \end{gathered}$	$\begin{aligned} & \text { ӨӨОО } \\ & \text { LOW } \end{aligned}$
Bananas	onsumption 0	Coronary	t Disease I	ence（follow	median 7					
1	observational	not serious	not serious ${ }^{6}$	serious ${ }^{7}$	serious ${ }^{8}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 365 / 122,635 \\ (0.3 \%) \end{gathered}$	$\begin{gathered} 0.76 \\ (0.56,1.02) \end{gathered}$	$\oplus 000$ VERY LOW
Berries	sumption on	oronary H	Disease In	ce（follow	edian 8					
4	observational	not serious	serious ${ }^{10}$	not serious	serious ${ }^{11}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 2,233 / 100,296 \\ (2.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.82,1.09) \\ \hline \end{gathered}$	$\begin{gathered} \text { ӨОO〇 } \\ \text { VERY LOW } \end{gathered}$
Citrus F	t Consumpti	on Coronar	eart Diseas	ncidence（fol	－up median	years）				
10	observational	not serious	not serious	not serious	serious ${ }^{12}$	undetected	dose－response gradient ${ }^{12}$	$\begin{gathered} \hline 8,333 / 364,978 \\ (2.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.91 \\ (0.85,0.98) \\ \hline \end{gathered}$	（1）OOO LOW

Fruit Juice Consumption on Coronary Heart Disease Incidence（follow－up median 15 years）

4	observational	not serious	not serious	not serious	serious ${ }^{14}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 7,589 / 109,898 \\ (6.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.99 \\ (0.92,1.07) \end{gathered}$	$\begin{gathered} \text { ӨOOO } \\ \text { VERY LOW } \end{gathered}$
Grapes Consumption on Coronary Heart Disease Incidence（follow－up median 12 years）										
1	observational	not serious	not serious ${ }^{6}$	serious ${ }^{15}$	serious ${ }^{16}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 8,333 / 364,978 \\ (2.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.91 \\ (0.85,0.98) \\ \hline \end{gathered}$	$\oplus \bigcirc \bigcirc$ VERY LOW
Pommes Consumption on Coronary Heart Disease Incidence（follow－up median 8 years）										
8	observational	not serious	not serious	not serious	serious ${ }^{17}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 4,886 / 371,684 \\ (1.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.84,0.97) \end{gathered}$	$\begin{gathered} \text { ӨOOO } \\ \text { VERY LOW } \end{gathered}$
Watermelon Consumption on Coronary Heart Disease Incidence（follow－up median 7．6 years）										
1	observational	not serious	not serious	serious ${ }^{16}$	serious ${ }^{19}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 365 / 122,635 \\ (0.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.87 \\ (0.64,1.18) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Allium Vegetables Consumption on Coronary Heart Disease Incidence（follow－up median 10 years）										
5	observational	not serious	not serious	not serious	serious ${ }^{20}$	undetected ${ }^{9}$	none	$\begin{gathered} 1,734 / 210,964 \\ (0.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.93 \\ (0.80,1.09) \\ \hline \end{gathered}$	9000 VERY LOW
Cruciferous Vegetables Consumption on Coronary Heart Disease Incidence（follow－up median 11 years）										
8	observational	not serious	not serious	not serious	not serious	undetected ${ }^{9}$	none	$\begin{gathered} 9,383 / 347,453 \\ (2.7 \%) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.95,1.07) \end{gathered}$	Ш®OO LOW

Green Leafy Vegetables Consumption on Coronary Heart Disease Incidence(follow-up median 16 years)										
5	observational	not serious	not serious	not serious	not serious	undetected ${ }^{9}$	dose-response gradient ${ }^{21}$	$\begin{gathered} 6,696 / 170,250 \\ (3.9 \%) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.76,0.89) \end{gathered}$	OODO MODERATE
Tomatoes Consumption on Coronary Heart Disease Incidence(follow-up median 8 years)										
3	observational	not serious	not serious	serious ${ }^{22}$	serious ${ }^{23}$	undetected ${ }^{9}$	none	$\begin{gathered} \hline 1,283 / 134,494 \\ (1.0 \%) \end{gathered}$	$\begin{gathered} 0.80 \\ (0.57,1.13) \\ \hline \end{gathered}$	0000 VERY LOW

${ }^{1}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and coronary heart disease incidence (CHD) ($\mathrm{p}<0.001$).
${ }^{2}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CHD ($\mathrm{p}=0.005$).
${ }^{3}$ No downgrade for inconsistency as the presence of inter-study heterogeneity $\left(\mathrm{I}^{2}=53 \%, \mathrm{p}=0.002\right)$ was explained by the removal of Dauchet et al. 2010 $\left(\mathrm{I}^{2}=0 \%\right.$, $\left.\mathrm{p}=0.5\right)$
${ }^{4}$ Downgrade for serious imprecision, as the lower bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.87)$ includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.
${ }^{5}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and CHD (p<0.001).
${ }^{6}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to < 2 observations available
${ }^{7}$ Downgrade for serious indirectness as evidence is based on only 1 geographical regions (China) and may not be generalizable to different populations.
${ }^{8}$ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.02) crosses the MID (RR<0.95).
${ }^{9}$ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).
${ }^{10}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=74 \%$, $\mathrm{p}=0.008$), which could not be explained by sensitivity analyses.
${ }^{11}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.82 to 1.09) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{12}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.
${ }^{13}$ Upgrade for a dose-response gradient, as the MKSPLINE analysis indicated a significant non-linear inverse relationship between citrus intake and incident CHD ($\mathrm{p}=0.005$).
${ }^{14}$ Downgrade for serious imprecision, as the lower and upper bound of the $95 \% \mathrm{CIs}$ ($\mathrm{RR}, 0.92$ to 1.07) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{15}$ Downgrade for serious indirectness as evidence is based on 1 female cohort of health professionals and may not be generalizable to different populations.
${ }^{16}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.98)$ crosses the MID.
${ }^{17}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.84) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.
${ }^{18}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($R R, 0.64$ to 1.18) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{19}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($\mathrm{RR}, 0.80$ to 1.09) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{20}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality ($\mathrm{p}=0.002$). The MKSPLINE procedure indicated a departure from linearity $(\mathrm{p}=0.004)$ at threshold of 0.5 servings/day as observed by visual inspection.
${ }^{21}$ Downgrade for serious indirectness as the evidence is based only on female populations, predominately (77.9%) of which reside in USA, and may not be generalizable to different populations.
${ }^{22}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.57 to 1.13) includes both clinically important benefit (RR<0.95) and harm ($\mathrm{RR} \geq 1.05$)

Table S7．GRADE Assessment for Fruits and Vegetables and Coronary Heart Disease Mortality

Quality Assessment								Study Event Rates（\％）	Relative Risk$(95 \% \mathrm{CI})$	Certainty
No．of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other			
Fruit and Vegetable Consumption on Coronary Heart Disease Mortality（follow－up median 18 years）										
5	observational	not serious	not serious	not serious	not serious	undetected 1	dose－response gradient ${ }^{2}$	$\begin{gathered} 3,240 / 489,635 \\ (0.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.81 \\ (0.72,0.92) \end{gathered}$	$\begin{gathered} \text { Ө@〇〇 } \\ \text { MODERATE } \end{gathered}$
Fruit Consumption on Coronary Heart Disease Mortality（follow－up median 13 years）										
21	observational	not serious	serious ${ }^{3}$	not serious	not serious	undetected	dose－response gradient ${ }^{4}$	$\begin{gathered} \hline 14,786 / 1,398,863 \\ (1.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.86 \\ (0.82,0.90) \end{gathered}$	0000 LOW
Vegetable Consumption on Coronary Heart Disease Mortality（follow－up median 13 years）										
18	observational	not serious	not serious	not serious	not serious	undetected	dose－response gradient ${ }^{5}$	$\begin{gathered} 26,007 / 1,968,325 \\ (1.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.86 \\ (0.83,0.89) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ө@〇 } \\ \text { MODERATE } \end{gathered}$
Bananas Consumption on Coronary Heart Disease Mortality（follow－up median 20 years）										
1	observational	not serious	not serious ${ }^{6}$	serious ${ }^{7}$	serious ${ }^{8}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 2,384 / 9,964 \\ (4.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.04 \\ (0.81,1.34) \end{gathered}$	$\begin{gathered} \text { ĐOOO } \\ \text { VERY LOW } \end{gathered}$
Berries Consumption on Coronary Heart Disease Mortality（follow－up median 17 years）										
5	observational	not serious	not serious	not serious	serious ${ }^{9}$	undetected ${ }^{1}$	none	$\begin{gathered} 5,141 / 105,420 \\ (4.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.98 \\ (0.91,1.05) \\ \hline \end{gathered}$	$\begin{gathered} \text { అOOO } \\ \text { VERY LOW } \end{gathered}$
Citrus Fruit Consumption on Coronary Heart Disease Mortality（follow－up median 16 years）										
6	observational	not serious	not serious	serious ${ }^{10}$	serious ${ }^{11}$	undetected ${ }^{1}$	none	$\begin{gathered} 5,309 / 180,574 \\ (2.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.91 \\ (0.85,0.96) \end{gathered}$	©OOO VERY LOW
Dried Fruit Consumption on Coronary Heart Disease Mortality（follow－up median 17 years）										
1	observational	not serious	not serious ${ }^{6}$	serious ${ }^{12}$	serious ${ }^{13}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 38 / 30,458 \\ (0.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.79 \\ (0.47,1.31) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Fruit Juice Consumption on Coronary Heart Disease Mortality（follow－up median 17 years）										
3	observational	serious ${ }^{14}$	not serious	not serious ${ }^{15}$	serious ${ }^{16}$	undetected ${ }^{1}$	none	$\begin{gathered} 1,249 / 141,170 \\ (0.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.87 \\ (0.75,1.01) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Grapes Consumption on Coronary Heart Disease Mortality（follow－up median 17 years）										
3	observational	not serious	not serious	serious ${ }^{17}$	serious ${ }^{18}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 2,846 / 106,782 \\ (2.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.97 \\ (0.77,1.21) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Pommes Consumption on Coronary Heart Disease Mortality（follow－up median 19 years）										
5	observational	not serious	not serious	serious ${ }^{19}$	not serious	undetected ${ }^{1}$	none	$\begin{gathered} 4,650 / 146,407 \\ (3.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.84 \\ (0.76,0.92) \\ \hline \end{gathered}$	©OOO VERY LOW
Allium Vegetables Consumption on Coronary Heart Disease Mortality（follow－up median 15 years）										
4	observational	not serious	serious ${ }^{20}$	serious 21	not serious	undetected 1	none	$\begin{gathered} \hline 1,280 / 75,434 \\ (1.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.67 \\ (0.57,0.79) \end{gathered}$	ӨOOO VERY LOW
Carrots Consumption on Coronary Heart Disease Mortality（follow－up median 13years）										

1	observational	not serious	not serious ${ }^{6}$	serious ${ }^{22}$	serious ${ }^{23}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 64 / 10,802 \\ (0.6 \%) \end{gathered}$	$\begin{gathered} 0.76 \\ (0.37,1.58) \end{gathered}$	$\begin{gathered} \text { అOOO } \\ \text { VERY LOW } \end{gathered}$
Celery Consumption on Coronary Heart Disease Mortality (follow-up median 16 years)										
1	observational	not serious	not serious ${ }^{24}$	serious ${ }^{25}$	serious ${ }^{26}$	undetected ${ }^{1}$	none	$\begin{gathered} 1,329 / 34,492 \\ (3.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.92 \\ (0.80,1.06) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Cruciferous Vegetables Consumption on Coronary Heart Disease Mortality (follow-up median 16 years)										
6	observational	serious ${ }^{27}$	serious ${ }^{28}$	not serious	serious ${ }^{29}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 7,420 / 296,772 \\ (2.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.91 \\ (0.85,0.98) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Green Leafy Vegetables Consumption on Coronary Heart Disease Mortality (follow-up median 17 years)										
5	observational	serious ${ }^{30}$	not serious	not serious	not serious	undetected ${ }^{1}$	none	$\begin{gathered} \hline 4,591 / 148,133 \\ (3.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.86 \\ (0.78 .0 .94) \\ \hline \end{gathered}$	©000 VERY LOW
Tomatoes Consumption on Coronary Heart Disease Mortality (follow-up median 16 years)										
3	observational	serious ${ }^{31}$	not serious	not serious	serious ${ }^{32}$	undetected 1	none	$\begin{gathered} 3,657 / 175,088 \\ (2.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.92 \\ (0.82,1.04) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW

${ }^{1}$ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).
${ }^{2}$ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between fruit and vegetable intake and CHD mortality ($\mathrm{p}=0.044$)
${ }^{3}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=62 \%, \mathrm{p}<0.0001$). Although heterogeneity could be partially explained by the removal of Du et al. $2017\left(\mathrm{I}^{2}=44 \%, \mathrm{p}=0.01\right)$ and Hjartaker et al. $2015\left(\mathrm{I}^{2}=46 \%, \mathrm{p}=0.007\right)$ during sensitivity analyses, the presence of residual heterogeneity could not be excluded.
${ }^{4}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CHD mortality ($\mathrm{p}<0.001$).
${ }^{5}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and CHD mortality ($\mathrm{p}=0.005$).
${ }^{6}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.
${ }^{7}$ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations.
${ }^{8}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.81 to 1.34) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{9}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.91 to 1.05) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{10}$ Downgrade for serious indirectness as evidence is based on a predominately ($\geq 69.6 \%$) female populations and may not be generalizable to different populations.
${ }^{11}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.96)$ crosses the MID.
${ }^{12}$ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.
${ }^{13}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.47 to 1.31) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{14}$ Downgrade for serious risk of bias as 56% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).
${ }^{15}$ No downgrade for inconsistency as the presence of inter-study heterogeneity ($\mathrm{I}^{2}=71 \%, \mathrm{p}=0.02$) was explained by the removal of Collin et al. 2019 $\left(\mathrm{I}^{2}=0 \%, \mathrm{p}=0.45\right)$.
${ }^{16}$ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.01) crosses the MID (RR<0.95).
${ }^{17}$ Downgrade for serious indirectness as evidence is based on a predominately (91%) female population of which the majority are health professionals and may not be generalizable to different populations.
${ }^{18}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.77 to 1.21) includes both clinically important benefit (RR<0.95) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{19}$ Downgrade for serious indirectness as evidence is based on a predominately (82.1%) female populations and may not be generalizable to different populations.
${ }^{20}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=88 \%, \mathrm{p}<0.00001$). Although heterogeneity could be partially explained by the removal of Blekkenhorst et al. $2017\left(I^{2}=47 \%, \mathrm{p}=0.13\right)$ during sensitivity analyses, the presence of residual heterogeneity could not be excluded.
${ }^{21}$ Downgrade for serious indirectness as evidence is based on a predominately (95.4%) female populations and may not be generalizable to different populations.
${ }^{22}$ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.
${ }^{23}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($\mathrm{RR}, 0.37$ to 1.58) includes both clinically important benefit (RR<0.95) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{24}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.
${ }^{25}$ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.
${ }^{26}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($R R, 0.80$ to 1.06) includes both clinically important benefit (RR<0.95) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{27}$ Downgrade for serious risk of bias as 39.3% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9).
${ }^{28}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=88 \%$, $\mathrm{p}<0.00001$) which could not be explained by sensitivity analyses.
${ }^{29}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.98)$ crosses the MID.
${ }^{30}$ Downgrade for serious risk of bias as 36.8% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)
${ }^{31}$ Downgrade for serious risk of bias as 48.0% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)
${ }^{32}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.82) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.04) crosses the MID.

Table S8. GRADE Assessment for Fruits and Vegetables and Stroke Incidence

Quality Assessment								Study Event Rates (\%)	Relative Risk$(95 \% \text { CI) }$	Certainty
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other			
Fruit and Vegetable Consumption on Stroke Incidence (follow-up median 9 years)										
14	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ${ }^{1}$	$\begin{gathered} 11,091 / 532,667 \\ (2.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.82 \\ (0.77,0.88) \\ \hline \end{gathered}$	ODO MODERATE
Fruit Consumption on Stroke Incidence (follow-up median 14 years)										
17	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ${ }^{2}$	$\begin{gathered} 43,702 / 987,983 \\ (4.4 \%) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.79,0.85) \end{gathered}$	ODOO MODERATE
Vegetable Consumption on Stroke Incidence (follow-up median 14 years)										
16	observational	not serious	serious ${ }^{3}$	not serious	not serious	undetected	dose-response gradient ${ }^{4}$	$\begin{gathered} 13,607 / 564,531 \\ (2.4 \%) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.83,0.93) \end{gathered}$	ODOO MODERATE
Berries Consumption on Stroke Incidence (follow-up median 10 years)										
4	observational	not serious	not serious ${ }^{5}$	not serious	serious ${ }^{6}$	undetected ${ }^{7}$	none	$\begin{gathered} \hline 5,967 / 143,662 \\ (4.2 \%) \end{gathered}$	$\begin{gathered} \hline 1.03 \\ (0.94,1.13) \end{gathered}$	$\oplus 000$ VERY LOW
Citrus Fruit Consumption on Stroke Incidence (follow-up median 11 years)										
8	observational	not serious	serious ${ }^{8}$	not serious	not serious	undetected 7	dose-response gradient ${ }^{9}$	$\begin{gathered} 7,142 / 225,613 \\ (3.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ (0.82,0.94) \\ \hline \end{gathered}$	$0 \oplus 00$ LOW
Fruit Juice Consumption on Stroke Incidence (follow-up median 11 years)										
4	observational	not serious	not serious ${ }^{10}$	not serious	serious ${ }^{11}$	undetected ${ }^{7}$	none	$\begin{gathered} 1,705 / 148,839 \\ (1.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.82 \\ (0.68,0.99) \\ \hline \end{gathered}$	0000 VERY LOW
Pommes Consumption on Stroke Incidence (follow-up median 14 years)										
5	observational	not serious	not serious	not serious	not serious	undetected ${ }^{7}$	dose-response gradient ${ }^{12}$	$\begin{gathered} \hline 7,364 / 146,723 \\ (5.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.89 \\ (0.84,0.95) \\ \hline \end{gathered}$	©®OO MODERATE
Allium Vegetables Consumption on Stroke Incidence (follow-up median 28 years)										
2	Observational	not serious	not serious	serious ${ }^{13}$	serious ${ }^{14}$	undetected ${ }^{7}$	none	$\begin{gathered} 4,912 / 84,169 \\ (5.8 \%) \end{gathered}$	$\begin{gathered} 0.89 \\ (0.80,0.99) \end{gathered}$	$\oplus 000$ VERY LOW
Cruciferous Vegetables Consumption on Stroke Incidence (follow-up median 12 years)										
6	observational	not serious	serious ${ }^{15}$	not serious	serious ${ }^{16}$	undetected 7	none	$\begin{gathered} \hline 7,706 / 255,726 \\ (3.0 \%) \end{gathered}$	$\begin{gathered} \hline 0.98 \\ (0.91,1.05) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Green Leafy Vegetables Consumption on Stroke Incidence (follow-up median 9 years)										
4	observational	not serious	not serious	not serious	serious ${ }^{17}$	undetected ${ }^{7}$	dose-response gradient ${ }^{18}$	$\begin{gathered} 4,798 / 196,456 \\ (2.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \\ (0.79,0.98) \\ \hline \end{gathered}$	ФOOO LOW
Tomatoes Consumption on Stroke Incidence (follow-up median 7 years)										
1	observational	not serious	not serious ${ }^{19}$	serious ${ }^{20}$	not serious	undetected 7	dose-response gradient ${ }^{21}$	$\begin{gathered} 247 / 38,445 \\ (0.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.20 \\ (0.05,0.82) \\ \hline \end{gathered}$	ФЮО○ LOW

${ }^{1}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and stroke incidence ($\mathrm{p}=0.002$).
${ }^{2}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and stroke incidence ($\mathrm{p}<0.001$).
${ }^{3}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=50 \%, \mathrm{p}=0.006$) that could not be explained during sensitivity analysis.
${ }^{4}$ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between vegetable intake and stroke incidence with a departure from linearity at 1.5 servings/day ($\mathrm{p}=0.012$)
${ }^{5}$ No downgrade for inconsistency as the presence of inter-study heterogeneity ($\mathrm{I}^{2}=50 \%, \mathrm{p}=0.08$) was explained by the removal of Hirvonen et al. 2000 - cerebral infraction ($\mathrm{I}^{2}=0 \%, \mathrm{p}=0.41$)
during sensitivity analysis.
${ }^{6}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.94 to 1.13) includes both clinically important benefit (RR<0.95) and harm ($\mathrm{R} R \geq 1.05$)
${ }^{7}$ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).
${ }^{8}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=51 \%$, $\mathrm{p}=0.04$). Although the removal of Larsson et al. 2013 ($\mathrm{I}^{2}=37 \%$, $\mathrm{p}=0.14$) or Yamada et al. $2011\left(\mathrm{I}^{2}=39 \%, \mathrm{p}=0.12\right)$ during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.
${ }^{9}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between citrus fruit intake and stroke incidence ($\mathrm{p}=0.033$) and an MKSPLINE analysis revealed a significant non-linear inverse relationship between citrus fruit intake and stroke incidence ($p=0.039$).
${ }^{10}$ No downgrade for inconsistency as the presence of inter-study heterogeneity $\left(I^{2}=73 \%, p=0.02\right)$ was explained by the removal of Scheffers et al. 2019 ($I^{2}=0 \%$, $p=0.47$)
${ }^{11}$ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 0.99) crosses the MID (RR<0.95).
${ }^{12}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between pommes intake and stroke incidence ($\mathrm{p}=0.003$).
MKSPLINE analyses could not be conducted due to small sample size.
${ }^{13}$ Downgrade for serious indirectness as evidence is based on cohorts residing in Northern Europe and may not be generalizable to different populations.
${ }^{14}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.80) includes the MID of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.99) \mathrm{crosses}$ the MID.
${ }^{15}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=62 \%$, $\mathrm{p}=0.02$). Although the removal of Larsson et al. 2013 (during sensitivity analysis did partially explain the heterogeneity ($\mathrm{I}^{2}=40 \%, \mathrm{p}=0.16$), the presence of residual heterogeneity could not be excluded.
${ }^{16}$ Downgrade for serious imprecision, as the lower and upper bound of the $95 \% \mathrm{CIs}(\mathrm{RR}, 0.91$ to 1.05) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{16}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.79) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.
${ }^{17}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between green leafy vegetable intake and stroke incidence ($\mathrm{p}=0.008$). MKSPLINE analyses could not be conducted due to small sample size.
${ }^{18}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.
${ }^{19}$ Downgrade for serious indirectness as evidence is based on only 1 cohort of females for USA and may not be generalizable to different populations.
${ }^{20}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between tomato intake and stroke incidence ($\mathrm{p}=0.002$). MKSPLINE analyses could not be conducted due to small sample size.

Table S9. GRADE Assessment for Fruits and Vegetables and Stroke Mortality

Quality Assessment								Study Event Rates (\%)	Relative Risk$(95 \% \mathrm{CI})$	Certainty
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other			
Fruit and Vegetable Consumption on Stroke Mortality (follow-up median 19 years)										
6	observational	not serious	not serious	not serious	not serious	undetected 1	dose-response gradient ${ }^{2}$	$\begin{gathered} 3,051 / 499,732 \\ (0.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.73 \\ (0.65,0.81) \end{gathered}$	©ODO MODERATE
Fruit Consumption on Stroke Mortality (follow-up median 20 years)										
14	observational	not serious	serious ${ }^{3}$	not serious	not serious	undetected	dose-response gradient ${ }^{4}$	$\begin{gathered} \hline 10,899 / 1,282,756 \\ (0.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.87 \\ (0.84,0.91) \end{gathered}$	0000 LOW
Vegetable Consumption on Stroke Mortality (follow-up median 15 years)										
12	observational	not serious	serious ${ }^{5}$	not serious	serious ${ }^{6}$	undetected	dose-response gradient ${ }^{7}$	$\begin{gathered} 7,551 / 780,441 \\ (1.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.90,0.99) \\ \hline \end{gathered}$	$\oplus \oplus 0 \bigcirc$ LOW
Bananas Consumption on Stroke Mortality (follow-up median 20 years)										
1	observational	not serious	not serious ${ }^{8}$	serious ${ }^{9}$	serious ${ }^{10}$	undetected ${ }^{1}$	none	$\begin{gathered} 1, .34 / 9,766 \\ (10.6 \%) \end{gathered}$	$\begin{gathered} 1.04 \\ (0.70,1.54) \end{gathered}$	$\oplus 000$ VERY LOW
Berries Consumption on Stroke Mortality (follow-up median 19 years)										
2	observational	not serious	not serious	serious ${ }^{11}$	serious ${ }^{12}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 1,182 / 40,224 \\ (2.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.97 \\ (0.82,1.15) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Citrus Fruit Consumption on Stroke Mortality (follow-up median 20 years)										
4	observational	serious ${ }^{13}$	serious ${ }^{14}$	not serious	not serious	undetected ${ }^{1}$	dose-response gradient ${ }^{15}$	$\begin{gathered} \hline 3,869 / 145,204 \\ (2.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.86,0.95) \end{gathered}$	©®OO LOW
Dried Fruit Consumption on Stroke Mortality (follow-up median 17 years)										
1	observational	not serious	not serious	serious ${ }^{16}$	serious ${ }^{17}$	undetected ${ }^{1}$	none	$\begin{gathered} 152 / 30,458 \\ (0.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.95 \\ (0.80,1.13) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Fruit Juice Consumption on Stroke Mortality (follow-up median 17 years)										
2	observational	serious ${ }^{18}$	not serious	not serious	not serious	undetected ${ }^{1}$	dose-response gradient ${ }^{19}$	$\begin{gathered} 2,232 / 128,270 \\ (1.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.67 \\ (0.60,0.76) \end{gathered}$	(1000 LOW
Grapes Consumption on Stroke Mortality (follow-up median 19 years)										
2	observational	not serious	not serious	serious ${ }^{20}$	serious ${ }^{21}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 1,182 / 40224 \\ (2.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.74 \\ (0.53,1.02) \end{gathered}$	$\oplus 000$ VERY LOW
Pommes Consumption on Stroke Mortality (follow-up median 17 years)										
3	observational	not serious	not serious	serious ${ }^{22}$	serious ${ }^{23}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 1,651 / 74,716 \\ (2.2 \%) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.77,1.09) \\ \hline \end{gathered}$	0000 VERY LOW
\|Allium Vegetable Consumption on Stroke Mortality (follow-up median 19 years)										
2	observational	not serious	serious ${ }^{24}$	not serious	serious ${ }^{25}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 544 / 3,671 \\ (14.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.99 \\ (0.79,1.24) \\ \hline \end{gathered}$	$\oplus 000$ VERY LOW
Carrots Consumption on Stroke Mortality (follow-up median 20 years)										
1	observational	not serious	not serious ${ }^{8}$	serious ${ }^{9}$	not serious	undetected ${ }^{1}$	dose-response gradient ${ }^{26}$	$\begin{gathered} 1,034 / 9,766 \\ (10.6 \%) \end{gathered}$	$\begin{gathered} 0.54 \\ (0.48,0.61) \end{gathered}$	$\begin{aligned} & \text { అ〇OO } \\ & \text { LOW } \end{aligned}$

Cruciferous Vegetables Consumption on Stroke Mortality (follow-up median 20 years)										
5	observational	serious ${ }^{27}$	not serious	not serious	serious ${ }^{28}$	undetected ${ }^{1}$	none	$\begin{gathered} \hline 5,065 / 195,452 \\ (2.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.92 \\ (0.85,1.01) \end{gathered}$	0000 VERY LOW
Green Leafy Vegetables Consumption on Stroke Mortality (follow-up median 21 years)										
4	observational	serious ${ }^{29}$	serious ${ }^{30}$	not serious	serious ${ }^{31}$	undetected ${ }^{1}$	dose-response gradient ${ }^{32}$	$\begin{gathered} \hline 4,103 / 126,971 \\ (3.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.83,0.97) \end{gathered}$	ӨӨОО LOW
Tomatoes Consumption on Stroke Mortality (follow-up median 20 years)										
2	observational	serious ${ }^{33}$	not serious	not serious	serious ${ }^{33}$	undetected ${ }^{1}$	none ${ }^{34}$	$\begin{gathered} 3,107 / 108,260 \\ (2.9 \%) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.94,1.12) \end{gathered}$	$\oplus 000$ VERY LOW

${ }^{1}$ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. < 10 observations available).
${ }^{2}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and stroke mortality ($\mathrm{p}=0.005$).
${ }^{3}$ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=75 \%, \mathrm{p}<0.00001$) which could not be explained by sensitivity analyses.
${ }^{4}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and stroke mortality ($\mathrm{p}<0.001$) and an
MKSPLINE analysis revealed a significant non-linear inverse relationship between fruit intake and stroke mortality ($\mathrm{p}<0.001$)
${ }^{5}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity $\left(\mathrm{I}^{2}=62 \%, \mathrm{p}=0.0010\right)$. Although the removal of Wang et al. 2013 ($\mathrm{I}^{2}=43 \%$, $\mathrm{p}=0.05$) or Leeanders et al. $2014\left(\mathrm{I}^{2}=48 \%, \mathrm{p}=0.02\right)$ during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.
${ }^{6}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.90) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.
${ }^{7}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and stroke mortality ($\mathrm{p}=0.025$).
${ }^{8}$ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.
${ }^{9}$ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations
${ }^{10}$ Downgrade for serious imprecision, as the lower and upper bound of the $95 \% \mathrm{CIs}$ ($\mathrm{RR}, 0.70$ to 1.54) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($R R \geq 1.05$).
${ }^{11}$ Downgrade for serious indirectness as evidence is based on a predominately (76%) female population and may not be generalizable to different populations.
${ }^{12}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.82) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.15) crosses the MID.
${ }^{13}$ Downgrade for serious risk of bias as 75.3% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).
${ }^{14}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity $\left(\mathrm{I}^{2}=82 \%, \mathrm{p}=0.0001\right)$. Although the removal of Wang et al. $2016\left(\mathrm{I}^{2}=40 \%\right.$, $\mathrm{p}=0.17$) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.
${ }^{15}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between citrus fruit intake and stroke mortality ($\mathrm{p}<0.001$).
${ }^{16}$ Downgrade for serious indirectness as evidence is based on one female population and may not be generalizable to different populations.
${ }^{17}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.13) includes both clinically important benefit (RR<0.95) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{18}$ Downgrade for serious risk of bias as 62% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).
${ }^{19}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit juice intake and CHD mortality ($\mathrm{p}=0.002$). MKSPLINE analyses could not be conducted due to small sample size.
${ }^{20}$ Downgrade for serious indirectness as evidence is based on a predominately (76%) female population and may not be generalizable to different populations.
${ }^{21}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($\mathrm{RR}, 0.53$ to 1.02) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{22}$ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.
${ }^{23}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.77) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.09) crosses the MID.
${ }^{24}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($\mathrm{I}^{2}=96 \%, \mathrm{p}<0.00001$).
${ }^{25}$ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs ($R R, 0.79$ to 1.24) includes both clinically important benefit ($\mathrm{RR}<0.95$) and harm ($\mathrm{RR} \geq 1.05$).
${ }^{26}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between carrots intake and stroke mortality ($\mathrm{p}<0.001$).
${ }^{27}$ Downgrade for serious risk of bias as 79.4% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).
${ }^{28}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.01) crosses the MID.
${ }^{29}$ Downgrade for serious risk of bias as 50.0% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).
${ }^{30}$ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity $\left(\mathrm{I}^{2}=50 \%, \mathrm{p}=0.09\right)$. Although the removal of Appleby et al. 2002 ($\mathrm{I}^{2}=36 \%$, $\mathrm{p}=0.20$) or Wang et al. $2016\left(\mathrm{I}^{2}=25 \%, \mathrm{p}=0.05\right)$ during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.
${ }^{31}$ Downgrade for serious imprecision, as the lower bound of the 95% CI ($\mathrm{RR}, 0.83$) includes the MID of 5% while the upper bound of the $95 \% \mathrm{CI}(\mathrm{RR}, 0.97)$ crosses the MID.
${ }^{32}$ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between green leafy vegetable intake and CHD mortality ($\mathrm{p}=0.032$). MKSPLINE analyses could not be conducted due to small sample size.
${ }^{33}$ Downgrade for serious risk of bias as 60.4% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).
${ }^{34}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.94) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.12) crosses the MID.
${ }^{35}$ Dose-response gradient could not be assessed due to insufficient dose ranges available to determine the presence of a linear/non-linear dose response.

Figure S1. Relation between total fruit and vegetable intake and cardiovascular disease incidence (highest vs. lowest level of intake).

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, \mathbf{N}	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\%	CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	226	0.7\%	0.74 [0.47, 1.16]		
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.8\%	0.77 [0.59, 1.01]		
Japan Public Health Center - Takachi 2008 - M	35,909	830	2.1\%	0.83 [0.64, 1.07]		
NHS \& HPFS - Joshipura 2009-High CHO	109,788	3,892	1.1\%	1.25 [0.88, 1.77]		
NHS \& HPFS -Joshipura 2009 - Mod. CHO	-	-	5.4\%	0.81 [0.69, 0.95]		
NHS \& HPFS - Joshipura 2009-Low CHO	-	-	1.1\%	1.11 [0.78, 1.57]		
PRIME - Dauchet 2010 - current smokers	2,297	230	1.1\%	0.82 [0.58, 1.17]		
PRIME - Dauchet 2010 - never smokers	2,410	145	0.7\%	1.45 [0.94, 2.23]		
PRIME - Dauchet 2010 - former smokers	3,353	237	1.4\%	1.06 [0.78, 1.45]		
WHI-OS - Belin 2011	93,676	6,006	38.6\%	0.91 [0.86, 0.97]	-	
WHS - Fitzgerald 2012	34,827	1,094	3.5\%	0.82 [0.67, 1.00]		
British Women's Heart \& Health - Kim 2013	3,080	329	0.5\%	1.09 [0.66, 1.82]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	7.1\%	1.14 [0.99, 1.31]		
British Regional Heart - Atkins 2014	3,328	582	1.1\%	0.90 [0.63, 1.27]		
MONICA Danish - Tognon 2014	1,849	755	7.1\%	0.86 [0.75, 0.99]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	5.4\%	0.95 [0.81, 1.11]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	3.5\%	$0.99[0.81,1.20]$		
PREDIMED- Buil-Cosiales 2016	7,216	342	1.0\%	0.76 [0.53, 1.11]		
SUN - Buil-Cosiales - 2017	17,007	112	0.3\%	0.51 [0.27, 0.96]		
PURE - Miller 2017	135,335	4,784	7.1\%	0.89 [0.77, 1.02]		
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	9.7\%	0.87 [0.77, 0.98]	-	
Total (95\% CI)	577,323	27,205	100.0\%	0.91 [0.88, 0.95]	-	
Heterogeneity: $\mathrm{Chi}^{2}=\mathbf{3 3 . 1 2}, \mathrm{df}=\mathbf{2 0}(\mathrm{P}=0.03) ; \mathrm{I}^{\mathbf{2}}=\mathbf{4 0 \%}$ Test for overall effect: $\mathrm{Z}=4.88$ ($\mathrm{P}<\mathbf{0 . 0 0 0 0 1 \text {) }) ~}$					$\begin{array}{cc}1 & 1 \\ 0.5 & 0.7\end{array}$	$1.5 \quad 2$
					wer Risk	Higher Risk

B. Random Effects

Figure S2. Relation between fruit intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S3. Relation between vegetable intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BERRIES AND CARDIOVASCULAR DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)		Relative Risk (95\% CI) for Incident CVD			
WHS - Sesso 2007	38,176	1,004	100.00\%	1.27 [0.95, 1.71]					
Total (95\% Cl)	38,176	1,004	100.0\%	1.27 [0.95, 1.71]					
Heterogeneity: Not applicable					${ }_{0}^{1} 5$	${ }_{0}^{1} 7$		1.5	2
Test for overall effect: $\mathrm{Z}=1.60$ ($\mathrm{P}=0.11$)							Protective Association Adverse Association		

Figure S4. Relation between intake of berries and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CITRUS FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S5. Relation between citrus fruit intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT JUICE AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S6. Relation between fruit juice intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

POMMES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk ($95 \% \mathrm{Cl}$) for Incident CVD				
WHS - Sesso 2003 (a)	38,176	1,004	14.5\%	0.78 [0.53, 1.15]					
Framingham Offspring Study - Jacques 2015	2,880	518	14.5\%	0.74 [0.50, 1.10]					
PREDIMED- Buil-Cosiales 2016	7,216	342	16.1\%	0.70 [0.48, 1.01]					
SUN - Buil-Cosiales - 2017	17,007	112	6.9\%	0.65 [0.37, 1.15]					
NutriNet-Sante - Adriouch 2018	84,158	602	48.0\%	0.80 [0.65, 1.00]					
Total ($95 \% \mathrm{Cl}$) [Random Effects]	149,437	2,578	100.0\%	0.76 [0.66, 0.88]					
Heterogeneity: $\mathrm{Tau}^{2}=0.00 \mathrm{Chi}^{2}=0.77, \mathrm{df}=4(\mathrm{P}=0.94) ; \mathrm{I}^{2}=0 \%$					0.5	0.7		1.5	2
Test for overall effect: $\mathrm{Z}=3.58(\mathrm{P}=\mathbf{0 . 0 0 0 3})$									
					Lower Risk				

Figure S7. Relation between pommes intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk ($95 \% \mathrm{CI}$) for Incident CVD			
WHS - Sesso 2003 (a)	38,445	729	77.2\%	1.00 [0.69, 1.45]			-	
Theran Lipid and Glucose - Bahadoran 2017	2,369	79	22.8\%	0.36 [0.18, 0.72]				
Total (95\% CI)	40,814	808	100.0\%	0.79 [0.57, 1.10]				
Heterogeneity: $\mathrm{Chi}^{2}=6.56, \mathrm{df}=1(\mathrm{P}=0.01)$;					0.2	0.5	2	5
					Lower Risk		Higher Risk	

B. Random Effects

Figure S8. Relation between intake of allium vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\%	CI) for Incident CVD
WHS - Sesso 2003 (a)	38,445	729	3.5\%	0.71 [0.44, 1.16]		
Japan Public Health Center - Takachi 2008	77,891	1,386	34.4\%	1.11 [0.94, 1.29]		\square
NHS \& HPFS - Joshipura 2009-Low CHO	109,788	3,892	15.3\%	1.05 [0.83, 1.33]		
NHS \& HPFS - Joshipura 2009-High CHO	-	-	15.3\%	0.89 [0.70, 1.12]		
NHS \& HPFS -Joshipura 2009 - Mod. CHO	-	-	22.0\%	1.05 [0.86, 1.28]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	1.4\%	1.36 [0.62, 2.99]		
PREDIMED- Buil-Cosiales 2016	7,216	342	6.1\%	0.62 [0.43, 0.90]		
SUN - Buil-Cosiales - 2017	17,007	112	1.9\%	0.56 [0.29, 1.09]		
Total (95\% CI)	273,878	6,824	100.0\%	0.99 [0.90, 1.08]		
Heterogeneity: Chi $^{2}=14.65, \mathrm{df}=7(\mathrm{P}=0.04) ; \mathrm{I}^{\mathbf{2}}=52 \%$ Test for overall effect: $\mathrm{Z}=\mathbf{0 . 2 8}(\mathrm{P}=0.78)$					$\begin{array}{ll}1 & 1 \\ 0.5 & 0.7\end{array}$	1.52
					Lower Risk Higher Risk	

B. Random Effects

Figure S9. Relation between intake of cruciferous vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S10. Relation between intake of green leafy vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOMATOES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S11. Relation between tomato intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	for Incident CVD
Berries						
WHS - Sesso 2007	38,176	1,004	3.1\%	1.27 [0.95, 1.71]		
Subtotal (95\% CI)	38,176	1,004	3.1\%	1.27 [0.95, 1.71]		
Heterogeneity: Not applicable						
Test for overall effect: $\mathrm{Z}=1.60$ ($\mathrm{P}=0.11$)						
Citrus						
Japan Public Health Center - Takachi 2008	77,891	1,386	8.5\%	0.80 [0.67, 0.96]		
NHS \& HPFS - Joshipura 2009-Low CHO	109,788	3,892	2.7\%	0.92 [0.67, 1.26]		
NHS \& HPFS -Joshipura 2009 - Mod. CHO	-	-	14.1\%	0.92 [0.80, 1.06]		
NHS \& HPFS - Joshipura 2009 - High CHO	-	-	4.1\%	1.05 [0.81, 1.36]		
Jidni Medical School - Yamada 2011 - M	4,147	270	0.8\%	0.57 [0.32, 1.01]		
Jidni Medical School - Yamada 2011 - F	6,476	218	0.9\%	0.51 [0.30, 0.89]		
PREDIMED- Buil-Cosiales 2016	7,216	342	2.1\%	0.93 [0.66, 1.33]		
SUN - Buil-Cosiales - 2017	17,007	112	0.7\%	0.65 [0.35, 1.19]		
Subtotal (95\% CI)	222,525	6,220	33.9\%	0.88 [0.80, 0.96]	\checkmark	
Heterogeneity: $\mathrm{Chi}^{2}=10.49, \mathrm{df}=7(\mathrm{P}=0.16) ; \mathrm{I}^{\mathbf{2}}=33 \%$						
Test for overall effect: $\mathrm{Z}=2.95$ ($\mathrm{P}=0.003$)						
Fruit juice						
NHS \& HPFS - Joshipura 2009-Low CHO	109,788	3,892	3.1\%	1.07 [$0.80,1.44]$		
NHS \& HPFS -Joshipura 2009 - Mod. CHO	-	-	19.2\%	0.96 [0.85, 1.08]	\cdots	
NHS \& HPFS - Joshipura 2009-High CHO	-	-	4.1\%	1.25 [0.97, 1.61]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	10.8\%	1.01 [0.86, 1.18]		
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	14.1\%	$0.96[0.84,1.10]$		
Subtotal (95\% CI)	167,879	8,056	51.2\%	1.00 [0.93, 1.07]		
Heterogeneity: $\mathrm{Chi}^{2}=3.86, \mathrm{df}=4(P=0.42) ;{ }^{2}=0 \%$						
Test for overall effect: $\mathrm{Z}=0.06(\mathrm{P}=0.95)$						
Pommes						
WHS - Sesso 2003 (a)	38,176	1,004	1.7\%	0.78 [0.53, 1.15]		
Framingham Offspring Study - Jacques 2015	2,880	518	1.7\%	0.74 [0.50, 1.10]		
PREDIMED- Buil-Cosiales 2016	7,216	342	1.9\%	0.70 [0.48, 1.01]		
SUN - Buil-Cosiales - 2017	17,007	112	0.8\%	0.65 [0.37, 1.15]		
NutriNet-Sante - Adriouch 2018	84,158	602	5.7\%	0.80 [0.65, 1.00]		
Subtotal (95\% CI)	149,437	2,578	11.9\%	0.76 [0.66, 0.88]		
Heterogeneity: $\mathrm{Chi}^{2}=0.77, \mathrm{df}=4(P=0.94) ; \mathrm{I}^{2}=0 \%$						
Test for overall effect: $\mathrm{Z}=3.58(\mathrm{P}=0.0003)$						
Test for subgroup differences: $\mathrm{Chi}^{2}=16.75, \mathrm{df}=3(\mathrm{P}=0.0008), \mathrm{I}^{2}=82.1 \%$ L						
					Lower Risk	Higher Risk

B. Random Effects

Figure S12. Relation between sources of fruit and CVD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S13. Relation between sources of vegetables and CVD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY
A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	D Mortality
National Health \& Nutrition - Bazzano 2002	9,608	1,145	8.0\%	0.73 [0.58, 0.93]		
Kuopio IHD Risk - Rissanen 2003	1,950	115	1.3\%	0.66 [0.28, 1.56]		
Odyssey - Genkinger 2004	6,151	378	5.7\%	1.35 [0.97, 1.88]		
Shanghai Women Health - Nechuta 2010	71,243	755	9.7\%	0.84 [0.71, 1.01]		
Health and Lifestyle Survey - Kvaavik 2010	4,866	431	8.6\%	1.19 [0.96, 1.47]		
EPIC - Leenders 2013	451,151	5,125	12.0\%	0.85 [0.77, 0.94]	--	
British Regional Heart - Atkins 2014	3,328	327	5.7\%	0.92 [0.66, 1.29]		
Health Survey of England - Oyebode 2014	65,226	1,554	7.5\%	0.69 [0.54, 0.89]		
Migrant Study - Hjartaker 2015	9,766	4,595	12.5\%	0.99 [0.92, 1.07]		
NIPPON DATA80-Okuda 2015	9,112	823	9.1\%	0.74 [0.61, 0.90]		
HAPIEE - Stefler 2016	19,263	438	6.1\%	0.74 [0.54, 1.01]		
PREDIMED- Buil-Cosiales 2016	7,216	104	0.9\%	0.37 [0.12, 1.11]		
PURE - Miller 2017	135,335	1,649	5.0\%	0.69 [0.48, 1.00]		
Health and Living Status of Elderly - Lin 2017	4,176	-	8.0\%	0.70 [0.55, 0.88]		
Total (95\% CI) [Random Effects]	798,391	17,439	100.0\%	0.84 [0.76, 0.94]		
Heterogeneity: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Chi}^{2}=40.92, \mathrm{df}=13(\mathrm{P}<0.0001) ; \mathrm{I}^{2}=68 \%$ Test for overall effect: $\mathrm{Z}=3.17$ ($\mathrm{P}=0.002$)					0.50 .7	1.52
Test for overall effect: $Z=3.17$ ($P=0.002$)					Lower Risk	Higher Risk

Figure S14. Relation between total fruit and vegetable intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT AND CARDIOVASCULAR DISEASE MORTALITY
A. Fixed Effects

B. Random Effect

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)		Relative Risk (95\% CI) for	for CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	1.8\%	0.66 [0.42, 1.03]			
Health Food Shoppers - Appleby 2002 - F	6,416	611	4.2\%	0.70 [0.57, 0.85]		-	
Health Food Shoppers - Appleby 2002 - M	4,325	591	4.5\%	0.95 [0.80, 1.13]			
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	3.0\%	0.69 [0.51, 0.93]			
EPIC Diabetes - Nothlings 2008	10,262	517	3.7\%	0.61 [0.48, 0.78]			
Takayama Study - Nakamura 2008 - F	15,724	184	1.6\%	0.83 [0.51, 1.35]			
Takayama Study - Nakamura 2008 - M	13,355	200	1.8\%	1.27 [0.81, 2.00]			
JACC - Nagura 2009	59,845	2,243	5.0\%	0.77 [0.67, 0.88]		\cdots	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	3.7\%	0.78 [0.62, 0.99]			
NOMAS - Gardener 2011	2,568	314	4.0\%	1.13 [0.91, 1.40]			
EPIC - Leenders 2013	451,151	5,125	5.5\%	0.96 [0.87, 1.06]			
Health Survey of England - Oyebode 2014	65,226	1,554	4.5\%	0.82 [0.69, 0.98]		\ldots	
British Regional Heart - Atkins 2014	3,328	327	1.7\%	0.95 [0.59, 1.52]			
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	3.0\%	0.63 [0.47, 0.85]			
MONICA Danish - Tognon 2014	1,849	223	3.2\%	0.72 [0.55, 0.95]			
Migrant Study - Hjartaker 2015	9,766	4,595	5.8\%	1.04 [0.96, 1.13]			
UK Women's Cohort - Lai 2015	30,458	286	2.2\%	0.57 [0.39, 0.85]			
MONICA Switzerland - Vormund 2015 - F	9,196	634	3.7\%	0.92 [0.73, 1.17]			
MONICA Switzerland - Vormund 2015 - M	8,665	751	4.5\%	0.87 [0.73, 1.04]			
HAPIEE - Stefler 2016	19,263	438	2.8\%	0.78 [0.57, 1.07]			
PREDIMED- Buil-Cosiales 2016	7,216	104	0.4\%	0.48 [0.16, 1.44]			
China Kadoorie Biobank- Du 2017	462,342	6,166	5.8\%	0.66 [0.61, 0.71]		\cdots	
DIET-HD - Saglimbene 2017	9,757	515	5.8\%	1.00 [0.92, 1.08]			
MONICA France - Berard 2017	1,311	41	1.0\%	0.78 [0.40, 1.52]			
PURE - Miller 2017	135,335	1,649	3.5\%	0.84 [0.65, 1.09]			
Cooper Center - Shah 2018 - DASH	11,376	249	2.2\%	0.86 [0.58, 1.27]			
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	6.1\%	0.92 [0.89, 0.96]		-	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.5\%	0.82 [0.32, 2.10]			
NIPPON DATA80 - Kondo 2019	9,115	1,070	4.8\%	0.84 [0.72, 0.99]		+	
Total (95\% CI) [Random Effects]	1,581,506	39,623	100.0\%	0.83 [0.77, 0.89]		\bullet	
Heterogeneity: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Chi}^{2}=136.43, \mathrm{df}=28(\mathrm{P}<0.00001) ; \mathrm{I}^{2}=79 \%$					0.2	0.5	2
Test for overall effect: Z=5.10 ($\mathrm{P}<\mathbf{0 . 0 0 0 0 1 \text {) }}$						Lower Risk	Higher Risk

Figure S15. Relation between fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S16. Relation between vegetable intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

APRICOTS AND CARDIOVASCULAR DISEASE MORTALITY

Supplementary Figure 17. Relation between intake of apricots and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BANANAS AND CARDIOVASCULAR DISEASE MORTALITY

Figure S18. Relation between intake of bananas and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BERRIES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S19. Relation between intake of berries and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CITRUS FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

B. Random Effects

Figure S20. Relation between citrus fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

DRIED FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S21. Relation between dried fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity

FRUIT JUICE AND CARDIOVASCULAR DISEASE MORTALITY

Figure S22. Relation between fruit juice intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GRAPES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S23. Relation between intake of grapes and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

POMMES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S24. Relation between pommes fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S25. Relation between intake allium vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CARROTS AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI) for CVD Mortality			
Zutphen Elderly - Buijsse 2008- Carrots	559	197	20.0\%	0.83 [0.68, 1.01]				
Miigrant Study - Hjartaker 2015 - carrots	9,766	4,595	80.0\%	0.95 [0.86, 1.05]				
Total (95\% CI)	10,325	4,792	100.0\%	0.92 [0.85, 1.01]				
Heterogeneity: $\mathrm{Chi}^{2}=1.57, \mathrm{df}=1(\mathrm{P}=0.2$)					0.7	0.85	1.2	1.5
Test for overall effect. $2=1.74$ ($p=0.08$)					Lower Risk		Higher Risk	

B. Random Effects

Figure S26. Relation between carrots intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CELERY AND CARDIOVASCULAR DISEASE MORTALITY

Figure S27. Relation between celery intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S28. Relation between intake of cruciferous vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S29. Relation between intake of green leafy vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOMATOES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S30. Relation between tomato intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S31. Relation between sources of fruit and CVD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S32. Relation between sources of vegetables and CVD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi') at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

Figure S33. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Fruit and Incident Cardiovascular Disease

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.97 (0.95-0.99), $\mathrm{p}=0.004$
Departure from linearity $p=0.355$
Random effects dose-response model
Figure S34. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S35. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 1.61 ($0.66-3.95$), $\mathrm{p}=0.295$

Figure S36. Linear dose-response relation between increasing berries intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S37. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.98 ($0.95-1.02$), $\mathrm{p}=0.518$

Figure S38. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S39. Linear dose-response relation between increasing pommes intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S40. Linear dose-response relation between increasing intake of allium vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S41. Linear dose-response relation between increasing intake of cruciferous vegetables and incidence of cardiovascular disease y. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S42. Linear dose-response relation between increasing intake of green leafy vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S43. Linear and cubic-spline dose-response relation between increasing tomato intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S44. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Fruit and Cardiovascular Disesae Mortality

Figure S45. Linear and cubic-spline dose-response relation between increasing fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR (95\% CI) per serving: 0.94 (0.92-0.97), $\mathrm{p}<0.001$
Departure from linearity $p=0.175$
Random effects dose-response model

Figure S46. Linear and cubic-spline dose-response relation between increasing intake of vegetables and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S47. Linear dose-response relation between increasing banana intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S48. Linear and cubic-spline dose-response relation between increasing berry fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S49. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S50. Linear and cubic-spline dose-response relation between increasing dried fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR (95\% CI) per serving: 0.78 (0.55-1.13), $\mathrm{p}=0.186$
Departure from linearity $p=0.871$
Random effects dose-response model

Figure S51. Linear and cubic-spline dose-response relation between increasing grapes intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S52. Linear and cubic-spline dose-response relation between increasing pommes intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.88 ($0.71-1.10$), $\mathrm{p}=0.266$

Figure S53. Linear dose-response relation between increasing fruit juice intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S54. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Tomatoes and Cardiovascular Disease Mortality

Figure S55. Linear dose-response relation between increasing tomato intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\%	CI) for Incident CHD
WHS - Liu 2000	39,127	126	1.2\%	0.63 [0.36, 1.11]		
National Health \& Nutrition - Bazzano 2002	9,608	1,786	9.0\%	1.01 [0.85, 1.20]		
ARIC - Steffen 2003	11,940	535	2.9\%	0.82 [0.58, 1.17]		
EPIC Norway - Bingham 2008	11,134	678	2.0\%	0.90 [0.59, 1.39]		
Swedish National Farm Register - Holmberg 200	1,738	138	2.4\%	0.65 [0.44, 0.96]		
PRIME - Dauchet 2010 - never smokers	2,410	145	1.2\%	1.06 [0.60, 1.87]		
PRIME - Dauchet 2010 - former smokers	3,353	140	2.4\%	0.98 [0.66, 1.45]		
PRIME - Dauchet 2010 - current smokers	2,297	230	1.5\%	0.49 [0.30, 0.80]		
EPIC Italy - Bendinelli 2011	29,689	144	1.3\%	1.11 [0.65, 1.88]		
MORGEN - Oude Griep 2011 (b)	20,069	245	2.4\%	0.70 [0.47, 1.03]		
Japan Diabetes Complications Study - Tanaka 201	1,414	96	1.0\%	1.25 [0.68, 2.29]		
HPFS - Bhupathiraju 2013	42,135	3,607	14.8\%	0.84 [0.75, 0.95]		
Health and Wellbeing Surveillance - Gunnell 2013	14,890	538	5.0\%	0.74 [0.57, 0.96]		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.5\%	0.81 [0.71, 0.93]		
Shanghai Men Health - Yu 2014	67,211	148	2.6\%	0.86 [0.59, 1.25]		
Shanghai Women Health - Yu 2014	55,242	217	1.5\%	0.67 [0.41, 1.09]		
British Regional Heart - Atkins 2014	3,328	307	3.5\%	1.01 [0.74, 1.38]		
SABRE - Eriksen 2015 - European	1,090	207	3.2\%	1.11 [0.79, 1.54]		
SABRE - Eriksen 2015 - South Asian	1,006	313	5.0\%	1.01 [0.78, 1.30]		
CCHS - Kobylecki 2015	78,527	2,823	17.7\%	0.90 [0.81, 0.99]		
PURE - Miller 2017	135,335	2,143	4.5\%	0.95 [0.72, 1.25]		
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.6\%	1.04 [0.72, 1.51]		
Total (95\% CI) [Random Effects]	619,182	17,987	100.0\%	0.88 [0.82, 0.93]		
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=25.25, \mathrm{df}=21(P=0.24) ; \mathrm{I}^{2}=17 \%$Test for overall effect: $\mathrm{Z}=4.11(\mathrm{P}<0.0001)$					$0.5 \quad 0.7$	1.52
					Lower Risk	Higher Risk

Figure S56. Relation between total fruit and vegetables intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S57. Relation between fruit intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	for Incident CHD
WHS - Liu 2000	39,127	126	0.7\%	0.88 [0.50, 1.55]		
Physicians Health Study - Liu 2001	15,520	1,148	3.6\%	0.77 [0.60, 0.99]		
ATBC - Hirvonen 2001	25,373	1,122	6.1\%	0.77 [0.63, 0.94]		
Danish Diet Cancer Health - Hansen 2010 - F	25,065	255	1.5\%	1.09 [0.74, 1.62]		
Danish Diet Cancer Health - Hansen 2010 - M	28,318	820	5.0\%	0.93 [0.75, 1.16]		
PRIME - Dauchet 2010 - never smokers	2,410	79	4.2\%	1.25 [0.98, 1.58]		
PRIME - Dauchet 2010 - former smokers	3,353	140	7.5\%	1.28 [1.08, 1.53]		\cdots
MORGEN - Oude Griep 2010	20,069	245	1.5\%	0.88 [0.59, 1.30]		
PRIME - Dauchet 2010 - current smokers	2,297	148	6.1\%	0.72 [0.59, 0.87]		
EPIC Italy - Bendinelli 2011	29,689	144	0.9\%	0.62 [0.37, 1.03]		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.4\%	0.85 [0.74, 0.98]		
HPFS - Bhupathiraju 2013	42,135	3,607	16.9\%	0.92 [0.82, 1.04]	-	
British Regional Heart - Atkins 2014	3,328	307	0.5\%	1.28 [0.65, 2.55]		
Shanghai Men Health - Yu 2014	55,424	217	1.7\%	1.02 [0.70, 1.48]		
Shanghai Women Health - Yu 2014	67,211	148	1.1\%	0.83 [0.52, 1.32]		
MONICA Danish - Tognon 2014	1,849	161	2.4\%	0.73 [0.54, 1.00]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.1\%	1.22 [0.93, 1.61]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.1\%	0.89 [0.73, 1.08]		
CCHS - Kobylecki 2015	78,527	2,823	9.5\%	0.88 [0.75, 1.03]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.4\%	0.64 [0.30, 1.34]		
PURE - Miller 2017	135,335	2,143	7.5\%	0.91 [0.77, 1.09]	.	
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.5\%	1.07 [0.72, 1.59]		
Total (95\% CI)	696,330	17,172	100.0\%	0.92 [0.87, 0.96]	\bullet	
Heterogeneity: $\mathrm{Chi}^{2}=44.99, \mathrm{df}=21(\mathrm{P}=0.002) ; \mathrm{I}^{2}=53 \%$ Test for overall effect: $\mathrm{Z}=3.59$ ($\mathrm{P}=\mathbf{0 . 0 0 0 3 \text {) }}$					$\begin{array}{cc}1 & 1 \\ 0.5 & 0.7\end{array}$	1.52
					Lower Risk	Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	for Incident CHD
WHS - Liu 2000	39,127	126	1.6\%	0.88 [0.50, 1.55]		
Physicians Health Study - Liu 2001	15,520	1,148	4.9\%	0.77 [0.60, 0.99]		
ATBC - Hirvonen 2001	25,373	1,122	6.3\%	0.77 [0.63, 0.94]		
Danish Diet Cancer Health - Hansen 2010 - F	25,065	255	2.9\%	1.09 [0.74, 1.62]		
Danish Diet Cancer Health - Hansen 2010 - M	28,318	820	5.8\%	0.93 [0.75, 1.16]		
PRIME - Dauchet 2010 - never smokers	2,410	79	5.4\%	1.25 [0.98, 1.58]		
PRIME - Dauchet 2010 - former smokers	3,353	140	6.8\%	1.28 [1.08, 1.53]		
MORGEN - Oude Griep 2010	20,069	245	2.9\%	0.88 [0.59, 1.30]		
PRIME - Dauchet 2010 - current smokers	2,297	148	6.3\%	0.72 [0.59, 0.87]		
EPIC Italy - Bendinelli 2011	29,689	144	1.9\%	0.62 [0.37, 1.03]		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	7.8\%	0.85 [0.74, 0.98]		
HPFS - Bhupathiraju 2013	42,135	3,607	8.3\%	0.92 [0.82, 1.04]		
British Regional Heart - Atkins 2014	3,328	307	1.2\%	1.28 [0.65, 2.55]		
Shanghai Men Health - Yu 2014	55,424	217	3.1\%	1.02 [0.70, 1.48]		
Shanghai Women Health - Yu 2014	67,211	148	2.2\%	0.83 [0.52, 1.32]		
MONICA Danish - Tognon 2014	1,849	161	3.9\%	0.73 [0.54, 1.00]		
CCHS - Kobylecki 2015	78,527	2,823	7.3\%	0.88 [0.75, 1.03]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	4.6\%	1.22 [0.93, 1.61]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.3\%	0.89 [0.73, 1.08]		
PREDIMED- Buil-Cosiales 2016	7,216	118	1.0\%	0.64 [0.30, 1.34]		
PURE - Miller 2017	135,335	2,143	6.8\%	0.91 [0.77, 1.09]		
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.9\%	1.07 [0.72, 1.59]		
Total (95\% CI) [Random Effects]	696,330	17,172	100.0\%	0.92 [0.85, 0.99]	\checkmark	
					$\begin{array}{ll}1 & 1 \\ 0.5 & 0.7\end{array}$	1.51
Test for overall effect: $\mathrm{Z}=2.14(\mathrm{P}=0.03)$					Lower Risk	Higher Risk

Figure S58. Relation between intake of vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BANANAS AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S59. Relation between intake of bananas and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BERRIES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S60. Relation between intake of berries and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CITRUS FRUIT AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S61. Relation between citrus fruit intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT JUICE AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI) for Incident CHD			
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	5.3\%	1.01 [0.72, 1.41]				
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	15.2\%	1.03 [0.85, 1.25]				
ATBC - Simila 2013	21,955	4,379	60.8\%	1.01 [0.92, 1.11]				
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	18.8\%	0.89 [0.74, 1.06]				
Total ($95 \% \mathrm{Cl}$) [Random Effects]	109,898	7,589	100.0\%	0.99 [0.92, 1.07]				
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=1.83, \mathrm{df}=3$	0.61); $1^{2}=0 \%$				0.7	0.85	1.2	1.5
Test for overall effect: $\mathrm{Z}=0.29$ ($\mathrm{P}=0.77$)							Highe	

Figure S62. Relation between intake of fruit juice and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GRAPES AND CORONARY HEART DISEASE INCIDENCE

Figure S63. Relation between intake of grapes and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

POMMES AND CORONARY HEART DISEASE INCIDENCE

B. Random Effects

Figure S64. Relation between intake of pommes fruit and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

WATERMELON AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk ($95 \% \mathrm{Cl}$) for Incident CHD			
Shanghai Men Health - Yu 2014 - Watermelon	55,424	217	66.9\%	0.96 [0.66, 1.39]				
Shanghai Women Health - Yu 2014-Watermelon	67,211	148	33.1\%	0.71 [0.42, 1.21]				
Total (95\% CI)	122,635	365	100.0\%	0.87 [0.64, 1.18]				
Heterogeneity: $\mathrm{Chi}^{2}=0.83, \mathrm{df}=1(\mathrm{P}=0.36) ; \mathrm{I}^{2}=0 \%$ Test for overall effect: $\mathrm{Z}=0.90(\mathrm{P}=0.37)$					0.5	0.7	1.5	2
							Higher R	

B. Random Effects

Figure S65. Relation between watermelon intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% Ci)	dent CHD
Caerphilly Prospective Study - Hertog 1997	1,900	186	9.8\%	0.60 [0.36, 1.00]		
Nurses' Health Study - Lin 2007	66,360	938	33.7\%	0.98 [0.74, 1.29]		
MORGEN - Oude Griep 2011 (b)	20,069	245	25.8\%	0.94 [0.69, 1.29]	-	
Shanghai Men Health - Yu 2014	55,424	217	18.3\%	0.86 [0.59, 1.25]		
Shanghai Women Health - Yu 2014	67,211	148	12.5\%	1.27 [0.81, 2.00]		
Total (95\% CI)	210,964	1,734	100.0\%	0.93 [0.80, 1.09]		
Heterogeneity: $\mathrm{Chi}^{2}=4.99, \mathrm{df}=4(\mathrm{P}=0.29) ; \mathrm{I}^{2}=20 \%$ Test for overall effect: $Z=0.86(P=0.39)$					0.500 .7	1.52
					Lower Risk	Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\%	ident CHD
Caerphilly Prospective Study - Hertog 1997	1,900	186	11.3\%	0.60 [0.36, 1.00]		
Nurses' Health Study - Lin 2007	66,360	938	30.5\%	0.98 [0.74, 1.29]		
MORGEN - Oude Griep 2011 (b)	20,069	245	25.1\%	0.94 [0.69, 1.29]	-	
Shanghai Women Health - Yu 2014	67,211	148	14.0\%	1.27 [0.81, 2.00]		
Shanghai Men Health - Yu 2014	55,424	217	19.2\%	0.86 [0.59, 1.25]		
Total (95\% CI) [Random Effects]	210,964	1,734	100.0\%	0.93 [0.77, 1.11]		
Heterogeneity: $\mathrm{Tau}^{2}=0.01 ; \mathrm{Chi}^{2}=4.99, \mathrm{df}=4(P=0.29) ; \mathrm{I}^{2}=20 \%$					0.500 .7	1.52
					Lower Risk	Higher Risk

Figure S66. Relation between intake of allium vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S67. Relation between intake of cruciferous vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S68. Relation between intake of green leafy vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOMATOES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S69. Relation between intake of tomatoes and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\%	for Incident CHD
Bananas						
Shanghai Men Health - Yu 2014-bananas	55,424	217	1.6\%	0.65 [0.44, 0.96]		
Shanghai Women Health - Yu 2014 - bananas	67,211	148	1.2\%	0.94 [0.59, 1.51]		
Subtotal (95\% CI)	122,635	365	2.8\%	0.76 [0.53, 1.10]		
Heterogeneity: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Chi}^{2}=1.40, \mathrm{df}=1(P=0.24) ; \mathrm{I}^{2}=29 \%$						
Test for overall effect: $\mathrm{Z}=1.47$ ($\mathrm{P}=0.14$)						
Berries						
ATBC - Hirvonen 2001	25,373	1,122	5.2\%	1.05 [0.86, 1.28]		
MORGEN - Oude Griep 2011 (b)	20,069	233	1.5\%	0.80 [0.53, 1.21]		
REGARDS - Goetz 2016 (a)	16,678	589	3.0\%	0.70 [0.53, 0.92]		
WHS - Sesso 2007	38,176	289	0.8\%	1.84 [1.04, 3.25]		
Subtotal (95\% CI)	100,296	2,233	10.5\%	0.97 [0.70, 1.34]		
Heterogeneity: $\mathrm{Tau}^{2}=0.08 ; \mathrm{Chi}^{2}=11.72, \mathrm{df}=3(\mathrm{P}=0.008) ; \mathrm{I}^{2}=74 \%$						
Test for overall effect: $\mathrm{Z}=0.20$ ($\mathrm{P}=0.84$)						
Citrus						
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.6\%	0.85 [0.58, 1.26]		
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.5\%	1.00 [0.81, 1.24]		
EPIC Italy - Bendinelli 2011	29,689	144	1.0\%	1.48 [0.89, 2.46]		
HPFS - Bhupathiraju 2013	42,135	3,607	9.8\%	0.92 [0.82, 1.04]		
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1\%	0.67 [0.11, 4.15]		
Jidni Medical School - Yamada 2011 - M	4,147	53	0.2\%	0.99 [0.34, 2.85]		
MORGEN - Oude Griep 2011 (b)	20,069	233	1.8\%	0.94 [0.65, 1.37]		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	9.8\%	0.89 [0.79, 1.00]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.8\%	1.25 [0.71, 2.20]	-	
PRIME - Dauchet 2004	8,087	133	2.4\%	0.76 [0.56, 1.04]		
Shanghai Men Health - Yu 2014	55,424	217	1.6\%	0.74 [0.50, 1.10]		
Shanghai Women Health - Yu 2014	67,211	148	1.2\%	0.88 [0.56, 1.38]		
Subtotal (95\% CI)	364,978	8,333	35.0\%	0.91 [0.85, 0.98]	\bullet	
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=8.17, \mathrm{df}=11(P=0.70) ; \mathrm{l}^{2}=0 \%$						
Test for overall effect: $\mathrm{Z}=2.60(\mathrm{P}=0.009)$						
Fruit Juice						
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	5.6\%	0.89 [0.74, 1.06]		
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.8\%	1.03 [0.85, 1.25]		
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	2.0\%	1.01 [0.72, 1.41]		
ATBC - Simila 2013	21,955	4,379	10.7\%	1.01 [0.92, 1.11]		
Subtotal (95\% CI)	109,898	7,589	23.0\%	0.99 [0.92, 1.07]		
Heterogeneity: $\mathrm{Tau}^{\mathbf{2}}=0.00 ; \mathrm{Chi}^{2}=1.83, \mathrm{df}=3(\mathrm{P}=0.61) ; \mathrm{I}^{\mathbf{2}}=0 \%$						
Test for overall effect: $\mathrm{Z}=0.29(\mathrm{P}=0.77)$						
Grapes						
Nurses' Health Study - Lin 2007	66,360	938	1.6\%	1.13 [0.78, 1.64]		
Subtotal (95\% CI)	66,360	938	1.6\%	1.13 [0.78, 1.64]		
Heterogeneity: Not applicable						
Test for overall effect: $\mathrm{Z}=0.63$ ($\mathrm{P}=0.53$)						
Pommes						
NutriNet-Sante - Adriouch 2018	84,158	309	2.5\%	0.75 [0.56, 1.00]		
Nurses' Health Study - Lin 2007	66,360	938	1.6\%	1.08 [0.75, 1.57]		
MORGEN - Oude Griep 2011 (b)	20,069	245	1.6\%	1.25 [0.86, 1.81]		
Shanghai Women Health - Yu 2014	67,211	148	1.1\%	0.92 [0.58, 1.48]		
Shanghai Men Health - Yu 2014	55,424	217	1.4\%	0.75 [0.50, 1.13]		
REGARDS - Goetz 2016 (a)	16,678	589	2.5\%	0.74 [0.55, 0.99]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.6\%	0.83 [0.45, 1.52]		
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	10.7\%	0.88 [0.80, 0.97]	\rightarrow	
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.5\%	1.02 [0.87, 1.19]		
Subtotal (95\% CI)	371,684	4,886	28.5\%	0.90 [0.82, 1.00]		
Heterogeneity: $\mathrm{Tau}^{2}=0.01 ; \mathrm{Chi}^{2}=10.63, \mathrm{df}=8(\mathrm{P}=0.22) ; \mathrm{l}^{2}=25 \%$						
Test for overall effect: $\mathrm{Z}=1.95$ ($\mathrm{P}=0.05$)						
Watermelon						
Shanghai Men Health - Yu 2014-Watermelon	55,424	217	1.6\%	0.96 [0.66, 1.39]		
Shanghai Women Health - Yu 2014-Watermel	67,211	148	0.8\%	0.71 [0.42, 1.21]		
Subtotal (95\% CI)	122,635	365	2.5\%	0.87 [0.64, 1.18]		
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=0.83, \mathrm{df}=1(\mathrm{P}=0.36) ; \mathrm{I}^{2}=0 \%$						

Lower Risk Higher Risk
Figure S70. Relation between sources of fruit and CHD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk ($95 \% \mathrm{Cl}$) for Incident CHD						
Allium											
Caerphilly Prospective Study - Hertog 1997	1,900	186	0.8\%	0.60 [0.36, 1.00]							
MORGEN - Oude Griep 2011 (b)	20,069	245	2.1\%	0.94 [0.69, 1.29]							
Nurses' Health Study - Lin 2007	66,360	938	2.7\%	0.98 [0.74, 1.29]							
Shanghai Men Health - Yu 2014	55,424	217	1.5\%	0.86 [0.59, 1.25]							
Shanghai Women Health - Yu 2014	67,211	148	1.0\%	1.27 [0.81, 2.00]							
Subtotal ($95 \% \mathrm{Cl}$)	210,964	1,734	8.0\%	0.93 [0.80, 1.09]							
Heterogeneity: $\mathrm{Chi}^{2}=4.99, \mathrm{df}=4(\mathrm{P}=0.29) ; \mathrm{I}^{2}=20 \%$											
Test for overall effect: $\mathrm{Z}=0.86(\mathrm{P}=0.39)$											
Cruciferous											
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.5\%	1.05 [0.88, 1.25]							
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	14.6\%	1.02 [0.91, 1.15]							
EPIC Italy - Bendinelli 2011	29,689	144	0.8\%	0.88 [0.53, 1.46]							
HPFS - Bhupathiraju 2013	42,135	3,607	14.6\%	0.96 [0.85, 1.08]							
MORGEN - Oude Griep 2011(b)-green cabbage	20,069	245	2.1\%	1.26 [0.92, 1.72]							
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	14.6\%	1.03 [0.92, 1.16]							
PREDIMED- Buil-Cosiales 2016	7,216	118	0.1\%	0.32 [0.09, 1.17]							
Shanghai Men Health - Yu 2014	55,424	217	1.3\%	1.13 [0.76, 1.67]							
Shanghai Women Health - Yu 2014	67,211	148	1.0\%	0.80 [0.51, 1.26]							
Subtotal ($95 \% \mathrm{Cl}$)	347,453	9,383	55.6\%	1.01 [0.95, 1.07]							
Heterogeneity: Chi $^{2}=7.55, \mathrm{df}=8(\mathrm{P}=0.48) ; \mathrm{I}^{2}=0 \%$											
Test for overall effect: $\mathrm{Z}=0.38(\mathrm{P}=0.71)$											
Green leafy											
EPIC Italy - Bendinelli 2011	29,689	144	0.8\%	0.54 [0.32, 0.90]							
HPFS - Bhupathiraju 2013	42,135	3,607	14.6\%	0.88 [0.78, 0.99]				$=$			
MORGEN - Oude Griep 2011(b) -dark green lea	20,069	245	2.1\%	0.94 [0.69, 1.29]							
MORGEN - Oude Griep 2011(b)- lettuce	-	-	2.1\%	0.93 [0.68, 1.28]							
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	14.6\%	0.78 [0.69, 0.88]				-			
PREDIMED- Buil-Cosiales 2016	7,216	118	0.6\%	0.52 [0.29, 0.94]							
Subtotal ($95 \% \mathrm{Cl}$)	170,250	6,696	34.7\%	0.82 [0.76, 0.89]				-			
Heterogeneity: $\mathrm{Chi}^{2}=8.30, \mathrm{df}=5(\mathrm{P}=0.14) ; \mathrm{I}^{2}=40 \%$											
Test for overall effect: $\mathrm{Z}=4.95$ (P < 0.00001)											
Tomatoes											
EPIC Italy - Bendinelli 2011	29,689	144	0.7\%	0.80 [0.47, 1.36]							
Nurses' Health Study - Lin 2007	66,360	938	0.8\%	0.90 [0.55, 1.46]							
WHS - Sesso 2003 (a)	38,445	201	0.1\%	0.39 [0.12, 1.29]							
Subtotal ($95 \% \mathrm{Cl}$)	134,494	1,283	1.7\%	0.80 [0.57, 1.13]							
Heterogeneity: $\mathrm{Chi}^{2}=1.59, \mathrm{df}=2(\mathrm{P}=0.45) ; \mathrm{I}^{2}=0 \%$											
Test for overall effect: $\mathrm{Z}=1.28$ ($\mathrm{P}=0.20)$											
Test for subgroup differences: $\mathrm{Chi}^{2}=17.73$, df = $3\left(P=0.0005\right.$), $\mathrm{I}^{2}=83.1 \%$ +											10
						Low			Higher		

B. Random Effects

Figure S71. Relation between sources of vegetables and CHD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study P	Participants, \mathbf{N}	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	D Mortality
National Health \& Nutrition - Bazzano 2002	9,608	639	15.9\%	0.76 [0.56, 1.04]	-	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	3.0\%	0.62 [0.30, 1.28]		
EPIC - Leenders 2014	451,151	2,139	63.5\%	0.86 [0.74, 1.01]	-	
NIPPON DATA80-Okuda 2015	9,112	165	8.4\%	0.57 [0.37, 0.88]		
HAPIEE - Stefler 2016	19,263	226	9.2\%	0.92 [0.61, 1.39]		
Total (95\% CI)	489,635	3,240	100.0\%	0.81 [0.72, 0.92]		
Heterogeneity: Chi $^{2}=4.15, \mathrm{df}=4(\mathrm{P}=0.39) ; \mathrm{I}^{2}=4 \%$ Test for overall effect: $\mathrm{Z}=\mathbf{3 . 2 4}(\mathrm{P}=\mathbf{0 . 0 0 1})$					$\begin{array}{cc}1 \\ 0.5 & 0.7\end{array}$	$1.5 \quad 2$
					Lower Risk	Higher Risk

B. Random Effects

Figure S72. Relation between total fruit and vegetable intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	or CHD Mortality
Adventis Health Study - Fraser -1992	26,473	463	1.5\%	1.17 [0.81, 1.70]		
Finish Mobile Clinic Health - Knekt 1994 - F	2,748	58	0.6\%	0.77 [0.52, 1.14]		
Finish Mobile Clinic Health - Knekt 1994-M	2,385	186	1.4\%	0.66 [0.36, 1.21]		
Nutrition Status Study - Sahyoun 1996	680	101	0.5\%	0.64 [0.34, 1.19]		
Oxford Vegetarian - Mann 1997	10,802	64	0.4\%	0.89 [0.44, 1.80]		
OXCHECK - Whiteman 1999	10,522	144	0.8\%	0.84 [0.50, 1.43]		
ATBC - Hirvonen 2001	25,373	815	4.6\%	0.87 [0.70, 1.08]		
Health Food Shoppers - Appleby 2002 - M	6,416	258	3.9\%	0.52 [0.39, 0.70]		
Health Food Shoppers - Appleby 2002 - F	4,325	347	2.5\%	0.89 [0.70, 1.12]		
Baltimore Longitudinal Study Aging - Tucker 2005	4,028	298	1.0\%	1.19 [0.76, 1.86]		
Boyd Orr Cohort - Ness 2005	501	71	1.0\%	0.94 [0.60, 1.48]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.3\%	0.76 [0.51, 1.15]		
JACC - Nagura 2009	59,485	452	2.2\%	0.79 [0.57, 1.08]		
EPIC - Leenders 2014	1,849	64	11.3\%	0.85 [0.51, 1.42]		
Singapore Chinese Health - Rebello 2014-F	451,151	2,139	2.5\%	0.85 [0.74, 0.98]		
Singapore Chinese Health - Rebello 2014-M	29,968	638	4.6\%	0.71 [0.53, 0.96]		
Multiethnic Cohort - Sharma 2014 - F	23,501	1,022	4.6\%	0.84 [0.68, 1.05]		
MONICA Danish - Tognon 2014	91,751	811	0.8\%	0.96 [0.77, 1.19]		
Multiethnic Cohort - Sharma 2014-M	72,866	1,140	2.8\%	0.96 [0.73, 1.26]		
UK Women's Cohort - Lai 2015	30,458	138	0.6\%	0.45 [0.25, 0.81]		
NIPPON DATA80 - Okuda 2015	9,112	165	1.1\%	0.89 [0.58, 1.37]		
Migrant Study - Hjartaker 2015	9,766	2,386	15.4\%	1.09 [0.97, 1.23]		
Linxian Nutrition - Wang 2016	2,445	355	22.2\%	0.89 [0.80, 0.98]	-	
HAPIEE - Stefler 2016	19,263	226	1.0\%	0.86 [0.55, 1.35]		
China Kadoorie Biobank- Du 2017	462,342	2,038	11.3\%	0.63 [0.55, 0.72]	-	
Total (95\% CI)	1,398,863	14,786	100.0\%	0.86 [0.82, 0.90]	-	
Heterogeneity: $\mathrm{Chi}^{2}=62.47, \mathrm{df}=24(\mathrm{P}<0.0001) ; \mathrm{I}^{2}=62 \%$ Test for overall effect: $Z=6.52$ ($P<0.00001$)					$\begin{array}{ll} 1.5 & 0^{1} .7 \end{array}$	$1.5 \quad 1$
					Lower Risk	Higer Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk ($95 \% \mathrm{Cl}$)	for CHD Mortality
Adventis Health Study - Fraser -1992	26,473	463	3.4\%	1.17 [0.81, 1.70]		
Finish Mobile Clinic Health - Knekt 1994-M	2,748	58	3.2\%	0.77 [0.52, 1.14]		
Finish Mobile Clinic Health - Knekt 1994-F	2,385	186	1.7\%	0.66 [0.36, 1.21]		
Nutrition Status Study - Sahyoun 1996	680	101	1.6\%	0.64 [0.34, 1.19]		
Oxford Vegetarian - Mann 1997	10,802	64	1.3\%	0.89 [0.44, 1.80]		
OXCHECK - Whiteman 1999	10,522	144	2.1\%	0.84 [0.50, 1.43]		
ATBC - Hirvonen 2001	25,373	815	5.6\%	0.87 [0.70, 1.08]		
Health Food Shoppers - Appleby 2002 - F	6,416	258	4.4\%	0.52 [0.39, 0.70]		
Health Food Shoppers - Appleby 2002 - M	4,325	347	5.3\%	0.89 [0.70, 1.12]		
Boyd Orr Cohort - Ness 2005	4,028	298	2.6\%	1.19 [0.76, 1.86]		
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	2.6\%	0.94 [0.60, 1.48]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	3.0\%	0.76 [0.51, 1.15]		
JACC - Nagura 2009	59,485	452	4.1\%	0.79 [0.57, 1.08]		
MONICA Danish - Tognon 2014	1,849	64	2.2\%	0.85 [0.51, 1.42]		
EPIC - Leenders 2014	451,151	2,139	7.0\%	0.85 [0.74, 0.98]		
Singapore Chinese Health - Rebello 2014 - F	29,968	638	4.4\%	0.71 [0.53, 0.96]		
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	5.6\%	0.84 [0.68, 1.05]		
Multiethnic Cohort - Sharma 2014 - F	91,751	811	5.6\%	0.96 [0.77, 1.19]		
Multiethnic Cohort - Sharma 2014-M	72,866	1,140	4.7\%	0.96 [0.73, 1.26]		
UK Women's Cohort - Lai 2015	30,458	138	1.8\%	0.45 [0.25, 0.81]		
NIPPON DATA80 - Okuda 2015	9,112	165	2.8\%	0.89 [0.58, 1.37]		
Migrant Study - Hjartaker 2015	9,766	2,386	7.4\%	1.09 [0.97, 1.23]		-
Linxian Nutrition - Wang 2016	2,445	355	7.7\%	0.89 [0.80, 0.98]	\cdots	
HAPIEE - Stefler 2016	19,263	226	2.6\%	0.86 [0.55, 1.35]		
China Kadoorie Biobank- Du 2017	462,342	2,038	7.0\%	0.63 [0.55, 0.72]	\cdots	
Total (95\% CI) [Random Effects]	1,398,863	14,786	100.0\%	0.84 [0.76, 0.91]		
Heterogeneity: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Chi}^{2}=62.47, \mathrm{df}=24(\mathrm{P}<0.0001) ; \mathrm{I}^{2}=62 \%$ Test for overall effect: Z = 3.99 ($\mathrm{P}<\mathbf{0 . 0 0 0 1}$)					1 1 0.5 0.7	1.52
					Lower Risk Higer Risk	

Figure S73. Relation between fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996-F	2,385	149	1.1\%	0.77 [0.49, 1.21]		
Nutrition Status Study - Sahyoun 1996	680	101	0.6\%	0.51 [0.27, 0.96]		
Finish Mobile Clinic Health - Knekt 1996-M	29,968	324	2.1\%	0.89 [0.65, 1.21]		
CPS 11 - Watkins $2000-\mathrm{F}$	609,061	4,605	15.8\%	0.84 [0.78, 0.91]	$-$	
CPS 11 - Watkins 2000-M	453,962	9,156	19.5\%	0.90 [0.84, 0.95]	블	
ATBC - Hirvonen 2001	25,373	815	2.1\%	0.68 [0.49, 0.93]		
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	0.5\%	0.49 [0.25, 0.98]		
Boyd Orr Cohort - Ness 2005	4,028	298	1.2\%	1.01 [0.66, 1.55]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.1\%	0.89 [0.57, 1.39]		
JACC - Nagura 2009	59,485	452	2.4\%	0.85 [0.64, 1.14]		
Singapore Chinese Health - Rebello 2014 - F	29,968	638	2.4\%	0.69 [0.51, 0.93]		
EPIC - Leenders 2014	451,151	2,139	6.9\%	0.86 [0.74, 1.01]		
MONICA Danish - Tognon 2014	1,849	64	0.8\%	0.58 [0.35, 0.97]		
Multiethnic Cohort - Sharma 2014 - F	91,751	811	2.7\%	0.95 [0.72, 1.25]		
Multiethnic Cohort - Sharma 2014-M	72,866	1,140	3.5\%	0.73 [0.58, 0.93]		
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	4.1\%	0.84 [0.68, 1.05]		
NIPPON DATA80 - Okuda 2015	9,112	165	1.1\%	0.65 [0.41, 1.02]		
Migrant Study - Hjartaker 2015	9,964	2,386	8.4\%	0.89 [0.77, 1.02]	-	
HAPIEE - Stefler 2016	19,263	225	1.3\%	1.00 [0.66, 1.51]		
Linxian Nutrition - Wang 2016	2,445	355	15.8\%	0.89 [0.82, 0.96]	$-$	
PLSAW - Blekkenhorst 2017	1,226	128	4.8\%	0.82 [0.67, 1.00]		
NHANES - Conrad 2018	29,133	556	2.0\%	0.56 [0.40, 0.78]		
Total (95\% CI)	1,968,325	26,007	100.0\%	0.86 [0.83, 0.89]	\bullet	
Heterogeneity: Chi $^{2}=26.70$, df $=21(P=0.18) ;\left.\right\|^{2}=21 \%$					0.500 .7	$1.5 \quad 1$
Test for overall effect: $\mathrm{Z}=8.79$ ($\mathrm{P}<0.00001$)						

B. Random Effects

Figure S74. Relation between intake of vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BANANAS AND CORONARY HEART DISEASE MORTALITY

Figure S75. Relation between intake of bananas and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BERRIES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Ris	Mortality
Finish Mobile Clinic Health - Knekt 1996-F	2,385	149	5.00\%	0.59 [0.37, 0.94]		
Finish Mobile Clinic Health - Knekt 1996-M	2,748	324	9.50\%	1.21 [0.88, 1.65]		
ATBC - Hirvonen 2001	25,373	815	15.30\%	0.91 [0.74, 1.13]		
Iowa WHS - Mink 2007 - blueberries	34,492	1,329	18.70\%	0.89 [0.74, 1.06]		
Iowa WHS - Mink 2007-strawberries	-	-	22.60\%	0.95 [0.83, 1.09]		
Migrant Study - Hjartaker 2015	9,964	2,386	24.70\%	1.08 [0.96, 1.22]		
UK Women's Cohort - Lai 2015	30,458	138	4.10\%	0.75 [0.44, 1.27]		
Total (95\% CI) [Random Effects]	105,420	5,141	100.00\%	0.95 [0.85, 1.07]		
Heterogeneity: $\mathrm{Tau}^{2}=0.01 ; \mathrm{Chi}^{2}=11.84, \mathrm{df}=6(\mathrm{P}=0.07) ; \mathrm{I}^{2}=49 \%$						
Test for overall effect: $\mathrm{Z}=0.82(\mathrm{P}=0.41)$					$0.5 \quad 0.7$	1.52
					Lower Risk	Higer Risk

Figure S76. Relation between intake of berries and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CITRUS FRUIT AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	D Mortality
Nutrition Status Study - Sahyoun 1996	680	101	0.9\%	0.90 [0.48, 1.68]		
JACC - Iso 2007 - F	59,504	398	5.6\%	0.77 [0.60, 0.99]		
JACC - Iso 2007-M	43,031	602	7.9\%	0.98 [0.79, 1.22]		
lowa WHS - Mink 2007-grapefruit	34,492	1,329	19.5\%	0.85 [0.74, 0.98]		
lowa WHS - Mink 2007 - oranges	-	-	19.5\%	0.96 [0.84, 1.10]		
Migrant Study - Hjartaker 2015	9,964	2,386	7.9\%	0.89 [0.71, 1.10]		
UK Women's Cohort - Lai 2015	30,458	138	0.6\%	0.61 [0.27, 1.37]		
Linxian Nutrition - Wang 2016	2,445	355	38.2\%	0.92 [0.84, 1.02]	-	
Total (95\% CI) [Random Effects]	180,574	5,309	100.0\%	0.91 [0.85, 0.96]		
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=4.61, \mathrm{df}=7(\mathrm{P}=0.71) ; \mathrm{I}^{2}=0 \%$					$\begin{array}{cc}1 \\ 0.5 & 1^{1} .7\end{array}$	$1.5 \quad 2$
Test for overall effect: $\mathrm{Z}=3.20(\mathrm{P}=\mathbf{0 . 0 0 1})$						
					Lower Risk	Higer Risk

Figure S77. Relation between citrus fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

DRIED FRUIT AND CORONARY HEART DISEASE MORTALITY

Figure S78. Relation between dried fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT JUICE AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S79. Relation between intake of fruit juice and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GRAPES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk	CI) for CHD Mortality
Nurses' Health Study - Lin 2007	66,360	324	19.5\%	1.14 [0.55, 2.35]		
UK Women's Cohort - Lai 2015 - grapes	30,458	138	25.0\%	0.57 [0.31, 1.05]		
Migrant Study - Hjartaker 2015	9,964	2,384	55.5\%	1.04 [0.81, 1.34]		
Total (95\% CI) [Random Effects]	106,782	2,846	100.0\%	0.91 [0.63, 1.32]		
Heterogeneity: $\mathrm{Tau}^{2}=0.05 ; \mathrm{Chi}^{2}=3.40, \mathrm{df}=2(\mathrm{P}=0.18) ; \mathrm{I}^{2}=41 \%$ Test for overall effect: $Z=0.49(P=0.63)$					0.50 .7	1.52
					Lower Risk	Higer Risk

Figure S80. Relation between intake of grapes and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

POMMES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\%	Mortality
Finish Mobile Clinic Health - Knekt 1996-F	2,385	149	4.3\%	0.57 [0.36, 0.91]		
Finish Mobile Clinic Health - Knekt 1996-M	2,748	324	10.9\%	0.81 [0.60, 1.09]		
Iowa WHS - Mink 2007	34,492	1,329	50.0\%	0.85 [0.74, 0.98]	+	
Nurses' Health Study - Lin 2007	66,360	324	1.6\%	0.73 [0.34, 1.58]		
UK Women's Cohort - Lai 2015	30,458	138	2.9\%	1.19 [0.67, 2.09]		
Migrant Study - Hjartaker 2015	9,964	2,386	30.3\%	0.85 [0.71, 1.02]		
Total (95\% CI) [Random Effects]	146,407	4,650	100.0\%	0.84 [0.76, 0.92]		
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=4.24, \mathrm{df}=5(\mathrm{P}=0.52) ; \mathrm{I}^{2}=0 \%$						
Test for overall effect: $\mathrm{Z}=3.54(\mathrm{P}=0.0004$)					0.510 .7	1.52
					Lower Risk	Higer Risk

Figure S81. Relation between pommes fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S82. Relation between intake of allium vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CARROTS AND CORONARY HEART DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI) for CHD Mortality	
Oxford Vegetarian - Mann 1997-carrots	10,802	64	100.0\%	0.76 [0.37, 1.58]		
Total (95\% CI)	10,802	64	100.0\%	0.76 [0.37, 1.58]		
Heterogeneity: Not applicable					0.500 .7	1.52
Test for overall effect: $\mathrm{Z}=0.73$ ($\mathrm{P}=0.47$)						

Supplementary Figure 83. Relation between intake of carrots and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CELERY AND CORONARY HEART DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (9	CHD Mortality
Iowa WHS - Mink 2007-celery	34,492	1,329	100.0\%	0.92 [0.80, 1.06]		
Total (95\% Cl)	34,492	1,329	100.0\%	0.92 [0.80, 1.06]		
Heterogeneity: Not applicable					0.85 0.9	1.11 .2
Test for overall effect: $\mathrm{Z}=1.14$ ($\mathrm{P}=0.25$)					Protective Association	Adverse Association

Figure S84. Relation between intake of celery and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S85. Relation between intake of cruciferous vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI) for CHD Mortality	
Oxford Vegetarian - Mann 1997	10,802	64	0.8\%	1.34 [0.46, 3.85]		
OXCHECK - Whiteman 1999	10,522	144	5.0\%	0.63 [0.42, 0.95]		
Health Food Shoppers - Appleby 2002	10,741	605	27.0\%	0.85 [0.71, 1.02]		
JACC - Iso 2007-M	43,850	617	21.9\%	0.87 [0.71, 1.06]		
JACC - Iso 2007-F	59,809	420	12.9\%	0.85 [0.66, 1.10]		
Migrant Study - Hjartaker 2015	9,964	2,386	27.0\%	0.93 [0.78, 1.11]	-	
Linxian Nutrition - Wang 2016	2,445	355	5.5\%	0.72 [0.49, 1.06]		
Total (95\% CI)						
Heterogeneity: Chi $^{2}=4.47, d f=6(P=0.61) ; I^{2}=0 \%$ Test for overall effect: $Z=3.25$ ($\mathrm{P}=\mathbf{0 . 0 0 1 \text {) }}$	148,133	4,591	100.0\%	0.86 [0.78, 0.94]	$\begin{array}{ll}1 & 1 \\ 0.5 & 0.7\end{array}$	1.52
					wer Risk	Higer Risk

B. Random Effects

Figure S86. Relation between intake of green leafy vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOMATOES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI) for CHD Mortality			
JACC - Iso 2007-tomatoes - M	41,547	568	29.7\%	0.85 [0.69, 1.06]				
JACC - Iso 2007-tomatoes - F	56,947	379	18.3\%	1.07 [0.82, 1.41]				
Nurses' Health Study - Lin 2007	66,630	324	16.0\%	0.90 [0.67, 1.20]				
Migrant Study - Hjartaker 2015	9,964	2,386	36.0\%	0.92 [0.76, 1.12]				
Total (95\% CI)	175,088	3,657	100.0\%	0.92 [0.82, 1.04]				
Heterogeneity: $\mathrm{Chi}^{2}=1.72, \mathrm{df}=$	$0.63) ; l^{2}=0 \%$				0.7	0.85	1.2	1.5
st for overall effect: $\mathrm{Z}=1.35$					Lower Risk		Higer Risk	

B. Random Effects

Figure S87. Relation between intake of tomatoes and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S88. Relation between sources of fruit and CHD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)		IV, Random, $95 \% \mathrm{Cl}$			
Allium									
Finish Mobile Clinic Health - Knekt 1996-M	2,748	324	3.6\%	0.74 [0.53, 1.03]					
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	2.5\%	0.50 [0.30, 0.83]					
Nurses' Health Study - Lin 2007	66,630	324	2.6\%	0.90 [0.55, 1.46]					
Linxian Nutrition - Wang 2016	2,445	355	4.0\%	0.98 [0.74, 1.29]					
PLSAW - Blekkenhorst 2017	1,226	128	3.2\%	0.26 [0.18, 0.38]					
Subtotal (95\% CI)	75,434	1,280	15.8\%	0.61 [0.38, 1.00]					
Heterogeneity: Tau $^{2}=0.27 ; \mathrm{Chi}^{2}=32.86, \mathrm{df}=4\left(\mathrm{P}<0.00001\right.$); $\mathrm{I}^{2}=88 \%$									
Test for overall effect: $\mathrm{Z}=1.95$ ($\mathrm{P}=0.05$)									
Carrots									
Oxford Vegetarian - Mann 1997 - carrots	10,802	64	1.6\%	0.76 [0.37, 1.58]					
Subtotal (95\% CI)	10,802	64	1.6\%	0.76 [0.37, 1.58]					
Heterogeneity: Not applicable									
Test for overall effect: $\mathrm{Z}=0.73$ ($\mathrm{P}=0.47$)									
Celery									
Iowa WHS - Mink 2007 - celery	34,492	1,329	5.0\%	0.92 [0.80, 1.06]					
Subtotal (95\% CI)	34,492	1,329	5.0\%	0.92 [0.80, 1.06]					
Heterogeneity: Not applicable									
Test for overall effect: $\mathrm{Z}=1.14$ ($\mathrm{P}=0.25$)									
Cruciferous									
JACC - Iso 2007 - M	39,486	534	4.2\%	0.75 [0.58, 0.97]					
lowa WHS - Mink 2007	34,492	1,329	5.1\%	1.09 [0.97, 1.23]					
JACC - Iso 2007 - F	54,325	396	3.7\%	1.05 [0.77, 1.44]					
Nurses' Health Study - Lin 2007	66,630	324	1.4\%	0.65 [0.30, 1.42]					
Migrant Study - Hjartaker 2015	9,964	2,386	4.5\%	1.23 [0.99, 1.53]				-	
Linxian Nutrition - Wang 2016	2,445	355	3.7\%	0.81 [0.59, 1.11]					
PLSAW - Blekkenhorst 2017	1,226	128	3.9\%	0.35 [0.26, 0.47]					
Japan Public Health Center - Mori 2018 - F	47,562	776	4.2\%	0.73 [0.57, 0.95]					
Japan Public Health Center - Mori 2018-M	40,642	1,192	4.5\%	0.83 [0.67, 1.03]					
Subtotal (95\% CI)	296,772	7,420	35.2\%	0.81 [0.64, 1.02]					
Heterogeneity: Tau $^{2}=0.11$; Chi' $=65.50, \mathrm{df}=8\left(\mathrm{P}<0.00001\right.$); $\mathrm{I}^{2}=88 \%$									
Test for overall effect: $\mathrm{Z}=1.79$ ($\mathrm{P}=0.07$)									
Green leafy									
Oxford Vegetarian - Mann 1997	10,802	64	0.9\%	1.34 [0.46, 3.85]					
OXCHECK - Whiteman 1999	10,522	144	3.0\%	0.63 [0.42, 0.95]					
Health Food Shoppers - Appleby 2002	10,741	605	4.8\%	0.85 [0.71, 1.02]			\square		
JACC - Iso 2007 - F	59,809	420	4.2\%	0.85 [0.66, 1.10]					
JACC - Iso 2007 - M	43,850	617	4.6\%	0.87 [0.71, 1.06]					
Migrant Study - Hjartaker 2015	9,964	2,386	4.8\%	0.93 [0.78, 1.11]					
Linxian Nutrition - Wang 2016	2,445	355	3.2\%	0.72 [0.49, 1.06]					
Subtotal (95\% CI)	148,133	4,591	25.4\%	0.86 [0.78, 0.94]					
Heterogeneity: Tau $^{2}=0.00 ; \mathrm{Chi}^{2}=4.47, \mathrm{df}=6(P=0.61) ; \mathrm{I}^{2}=0 \%$									
Test for overall effect: $\mathrm{Z}=3.25$ ($\mathrm{P}=0.001$)									
Tomatoes									
Nurses' Health Study - Lin 2007	66,630	324	3.9\%	0.90 [0.67, 1.20]					
JACC - Iso 2007-tomatoes - M	41,547	568	4.5\%	0.85 [0.69, 1.06]					
JACC - Iso 2007-tomatoes - F	56,947	379	4.0\%	1.07 [0.82, 1.41]					
Migrant Study - Hjartaker 2015	9,964	2,386	4.6\%	0.92 [0.76, 1.12]					
Subtotal (95\% CI)	175,088	3,657	17.0\%	0.92 [0.82, 1.04]					
Heterogeneity: $\mathrm{Tau}^{2}=0.00$; $\mathrm{Chi}^{2}=1.72, \mathrm{df}=3(\mathrm{P}=0.63) ; \mathrm{I}^{2}=0 \%$									
Test for overall effect: $\mathrm{Z}=1.35$ ($\mathrm{P}=0.18$)									
Test for subgroup differences: $\mathrm{Chi}^{2}=4.09, \mathrm{df}=5(\mathrm{P}=0.54), \mathrm{I}^{2}=0 \%$									
					0.2	0.5		2	5

Figure S89. Relation between sources of vegetables and CHD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

Figure S90. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Fruit and Incident Coronary Heart Disease

Linear RR ($95 \% \mathrm{CI}$) per serving: 0.96 (0.93-0.99), $\mathrm{p}=0.005$
Departure from linearity $p=0.095$
Random effects dose-response model
Figure S91. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S92. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S93. Linear and cubic-spline dose-response relation between increasing berries intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR (95\% CI) per serving: 0.94 ($0.88-1.00$), $\mathrm{p}=0.090$
Departure from linearity $p=0.005$
Random effects dose-response model

Figure S94. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Fruit Juice and Incident Coronary Heart Disease

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.95 ($0.87-1.03$), $\mathrm{p}=0.199$

Figure S95. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S96. Linear and cubic-spline dose-response relation between increasing pommes intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Watermelon and Incident Coronary Heart Disease

Figure S97. Linear dose-response relation between increasing watermelon intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S98. Linear and cubic-spline dose-response relation between increasing intake of allium vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S99. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S100. Linear and cubic-spline dose-response relation between increasing intake of green leafy vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S101. Linear and cubic-spline dose-response relation between increasing tomato intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S102. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S103. Linear and cubic-spline dose-response relation between increasing fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S104. Linear and cubic-spline dose-response relation between increasing intake of vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Banana and Coronary Heart Disease Mortality

$$
\text { Linear RR (} 95 \% \mathrm{Cl}) \text { per serving: } 1.29 \text { (0.77-2.16), } \mathrm{p}=0.327
$$

Figure S105. Linear dose-response relation between increasing banana intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S106. Linear dose-response relation between increasing berries intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S107. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Dried Fruit and Coronary Heart Disease Mortality

Linear RR ($95 \% \mathrm{Cl}$) per serving: 1.00 ($0.95-1.04$), $\mathrm{p}=0.868$
Figure S108. Linear and cubic-spline dose-response relation between increasing dried fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S109. Linear and cubic-spline dose-response relation between increasing fruit juice intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Grapes and Coronary Heart Disease Mortality

Figure S110. Linear dose-response relation between increasing grape intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S111. Linear and cubic-spline dose-response relation between increasing pommes intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S112. Linear dose-response relation between increasing intake of allium vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.85 ($0.30-2.38$), $\mathrm{p}=0.756$

Figure S113. Linear dose-response relation between increasing intake of carrots and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S114. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S115. Linear dose-response relation between increasing intake of green leafy vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S116. Linear dose-response relation between increasing tomato intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S117. Relation between total fruit and vegetables intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S118. Relation between fruit intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S119. Relation between intake of vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BERRIES AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S120. Relation between intake of berries and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CITRUS FRUIT AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S121. Relation between citrus fruit intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT JUICE AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S122. Relation between intake of fruit juice and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

POMMES AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S123. Relation between intake of pommes fruit and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

ALLIUM VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S124. Relation between intake of allium vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects

B. Random Effects

Figure S125. Relation between intake of cruciferous vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects

Figure S126. Relation between intake of green leafy vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOMATOES AND STROKE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI) for Incident Stroke			
WHS - Sesso 2003 (b) - tomato based products	38,445	247	100.0\%	0.20 [0.05, 0.82]				
Total (95\% CI)	38,445	247	100.0\%	0.20 [0.05, 0.82]				
Heterogeneity: Not applicable					0.05	0.2	5	20
Test for overall effect: $\mathrm{Z}=\mathbf{2 . 2 4}(\mathrm{P}=\mathbf{0 . 0 3})$								

Figure S127. Relation between intake of tomatoes and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I , with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S128. Relation between sources of fruit and stoke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S129. Relation between sources of vegetables and stoke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND STROKE MORTALITY

A. Fixed Effects

Cohort and Study P	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	for Stroke Mortality
Framingham - Gillman 1995	832	14	0.90\%	0.45 [0.13, 1.54]		
National Health \& Nutrition - Bazzano 2002	9,608	218	4.10\%	0.58 [0.33, 1.03]		
EPIC - Leenders 2014	451,151	1,291	34.90\%	0.68 [0.56, 0.82]	- -	
NIPPON DATA80 - Okuda 2015	9,112	385	13.60\%	0.80 [0.59, 1.10]		
Migrant Study - Hjartaker 2015	9,766	1,034	43.10\%	0.79 [0.66, 0.94]	-	
HAPIEE - Stefler 2016	19,263	109	3.40\%	0.52 [0.28, 0.98]		
Total (95\% CI)	499,732	3,051	100.0\%	0.73 [0.65, 0.81]		
Heterogeneity: $\mathrm{Chi}^{2}=3.89, \mathrm{df}=5(\mathrm{P}=0.57) ; \mathrm{I}^{2}=0 \%$ Test for overall effect: $Z=5.43$ ($\mathrm{P}<\mathbf{0 . 0 0 0 0 1 \text {) }}$					0.20 .5	25
					Lower Risk	Higher Risk

Figure S130. Relation between total fruit and vegetables intake and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S131. Relation between fruit intake and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

VEGETABLES AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S132. Relation between intake of vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BANANAS AND STROKE MORTALITY

Figure S133. Relation between intake of bananas and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

BERRIES AND STROKE MORTALITY

B. Random Effects

Figure S134. Relation between intake of berries and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $p<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CITRUS FRUIT AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S135. Relation between intake of citrus fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

DRIED FRUIT AND STROKE MORTALITY

Figure S136. Relation between intake of dried fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

FRUIT JUICE AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S137. Relation between intake of fruit juice and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GRAPES AND STROKE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95\% CI)	Relative Risk (95\% CI)	ke Mortality
UK Women's Cohort - Lai 2015 - grapes	30,458	148	30.8\%	0.54 [0.30, 0.97]		
Migrant Study - Hjartaker 2015 - grapes	9,766	1,034	69.2\%	0.85 [0.58, 1.26]		
Total (95\% CI)	40,224	1,182	100.0\%	0.74 [0.53, 1.02]		
Heterogeneity: $\mathrm{Chi}^{2}=1.63, \mathrm{df}=1(\mathrm{P}=0.20) ; \mathrm{I}^{2}=39 \%$					$0.5 \quad 0.7$	1.5
Test for overall effect: $\mathrm{Z}=1.81$ ($\mathrm{P}=0.07$)						
					Lower Risk	Higher Risk

B. Random Effects

Figure S138. Relation between intake of grapes and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

POMMES AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S139. Relation between intake of pommes fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

ALLIUM AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S140. Relation between intake of allium vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95\% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

CARROTS AND STROKE MORTALITY

Figure S141. Relation between intake of carrots and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals ($95 \% \mathrm{CI}$). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $p<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S142. Relation between intake of cruciferous vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Figure S143. Relation between intake of green leafy vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi^{2}) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

TOMATOES AND STROKE MORTALITY

A. Fixed Effects

Figure S144. Relation between intake of tomatoes and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S145. Relation between sources of fruit and stoke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi ${ }^{2}$) at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

A. Fixed Effects

B. Random Effects

Figure S146. Relation between sources of vegetables and stoke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals $(95 \% \mathrm{CI})$. Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic $\left(\mathrm{Chi}^{2}\right)$ at a significance level of $\mathrm{p}<0.10$, and quantified by I^{2}, with values $\geq 50 \%$ indicating substantial heterogeneity.

Figure S147. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S148. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S149. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Berries and Incident Stroke

Figure S150. Linear and cubic-spline dose-response relation between increasing berries intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S151. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S152. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.87 ($0.79-0.96$), $\mathrm{p}=0.003$
Figure S153. Linear dose-response relation between increasing pommes intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95\% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.91 ($0.80-1.02$), $\mathrm{p}=0.113$
Figure S154 Linear dose-response relation between increasing intake of allium vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.73 ($0.32-1.66$), $\mathrm{p}=0.455$
Figure S155. Linear dose-response relation between increasing intake of cruciferous vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.88 ($0.79-0.97$), $\mathrm{p}=0.008$
Figure S156. Linear dose-response relation between increasing intake of green leafy vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Linear RR ($95 \% \mathrm{Cl}$) per serving: $0.67(0.52-0.87)$, $\mathrm{p}=0.002$
Figure S157. Linear dose-response relation between increasing tomato intake and incidence of stroke. Linear doseresponse data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S158. Linear dose-response relation between increasing fruit and vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S159. Linear and cubic-spline dose-response relation between increasing fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S160. Linear and cubic-spline dose-response relation between increasing intake of vegetables and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S161 Linear dose-response relation between increasing banana intake and stroke mortality. Linear doseresponse data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95\% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Berries and Stroke Mortality

Linear RR ($95 \% \mathrm{Cl}$) per serving: 1.03 ($0.61-1.73$), $\mathrm{p}=0.910$
Figure S162. Linear dose-response relation between increasing berries intake and stroke mortality. Linear doseresponse data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S163. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Dried Fruit and Stroke Mortality

Linear RR ($95 \% \mathrm{Cl}$) per serving: 1.00 ($0.96-1.05$), $\mathrm{p}=0.942$

Figure S164. Linear and cubic-spline dose-response relation between increasing dried fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Grapes and Stroke Mortality

Figure S165. Linear dose-response relation between increasing grapes intake and stroke mortality. Linear doseresponse data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Fruit Juice and Stroke Mortality

Linear RR ($95 \% \mathrm{Cl}$) per serving: 0.54 ($0.36-0.89$), $\mathrm{p}=0.002$
Figure S166. Linear dose-response relation between increasing fruit juice intake and stroke mortality. Linear doseresponse data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95\% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S167. Linear and cubic-spline dose-response relation between increasing pomme fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Carrots and Stroke Mortality

Figure S168. Linear dose-response relation between increasing intake of carrots and stroke mortality. Linear doseresponse data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95\% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S169. Linear and cubic-spline dose-response relation between increasing cruciferous vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S170. Linear and cubic-spline dose-response relation between increasing green leafy vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Tomatoes and Stroke Mortality

Figure S171. Linear dose-response relation between increasing intake of tomatoes and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker ${ }^{23}$ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

Figure S172. Categorical subgroup analyses of total fruit and vegetable intake and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CVD cardiovascular disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals. \dagger Europe vs. Asia 0.98 [$0.74,1.31]$; Europe vs. Global 0.99 [$0.64,1.51]$; Europe vs. North America 0.97 [$0.83,1.14]$; Asia vs. Global 0.99 [$0.62,1.60]$; Asia vs. North America 1.00 [0.78, 1.32]; Global vs. North America 1.02 [0.68, 1.53];

FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

Figure S173. Categorical subgroup analyses of fruit intake and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CVD - cardiovascular disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs. Asia 0.85 [$0.65,1.12$]; Europe vs. Global 0.94 [$0.73,1.23$]; Europe vs. North America 0.96 [$0.82,1.13]$; Asia vs. Global 0.90 [0.63 , 1.29]; Asia vs. North America 0.88 [0.67, 1.18]; Global vs. North America 0.98 [0.74, 1.29]

VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

Figure S174. Categorical subgroup analyses of intake of vegetables and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CVD cardiovascular disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals. \dagger Europe vs. Asia 1.03 [$0.79,1.33$]; Europe vs. Global 1.01 [0.76, 1.34]; Europe vs. NA 0.99 [0.84, 1.16]; Asia vs. Global 1.01 [0.71, 1.45]; Asia vs. NA 1.04 [0.79, 1.37]; Global vs. NA 1.03 [0.76, 1.38]

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S175. Categorical subgroup analyses of total fruit and vegetable intake and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CVD cardiovascular disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95% confidence intervals. \dagger Europe vs. Asia 0.87 [0.63, 1.22]; Europe vs. Global 0.79 [0.42, 1.49]; Europe vs. North America 1.09 [0.72, 1.66]; Asia vs. Global 1.10 [0.57, 2.13]; Asia vs. North America 0.80 [0.50, 1.27]; Global vs. North America 0.73 [0.36, 1.47]

FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

Figure S176. Categorical subgroup analyses of fruit intake and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CVD - cardiovascular disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs. Asia 0.96 [$0.83,1.13$]; Europe vs Australia 0.84 [$0.55,1.28]$; Europe vs. Global 1.14 [$0.89,1.47]$; Europe vs. North America 1.25 [$0.92,1.70]$; Asia vs. Australia 1.15 [$0.75,1.77]$; Asia vs. Global 0.85 [$0.65,1.10]$; Asia vs. North America 0.77 [$0.56,1.06]$; Australia vs. Global 0.73 [$0.46,1.18$]; Australia vs. North America 0.67 [$0.41,1.12$]; Global vs. North America 0.92 [0.63, 1.33]

VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S177. Categorical subgroup analyses of intake of vegetables and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CVD cardiovascular disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95% confidence intervals. \dagger Europe vs. Asia 0.99 [$0.82,1.19$]; Europe vs Australia 0.88 [$0.65,1.20$]; Europe vs. Global 1.01 [$0.68,1.52$]; Europe vs. North America 0.90 [0.67 , 1.20]; Asia vs. Australia 1.12 [$0.81,1.56]$; Asia vs. Global 0.98 [$0.64,1.48]$; Asia vs. North America 1.11 [$0.81,1.50]$; Australia vs. Global 0.87 [$0.54,1.41]$; Australia vs. North America 0.98 [0.66, 1.46]; Global vs. North America 1.13 [0.71, 1.81]

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Figure S178. Categorical subgroup analyses of total fruit and vegetable intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals. * Follow-up years incudes 17 cohorts as Bingham et al. 2008 (EPIC Norfolk) did not report follow-up time. \dagger Europe vs. Asia 1.02 [0.77, 1.35]; Europe vs. Australia 0.82 [0.59, 1.14]; Europe vs. Global 1.06 [0.74, 1.51]; Europe vs. North America 0.95 [$0.83,1.10]$; Asia vs. Australia 1.24 [0.82, 1.87]; Asia vs. Global 0.96 [$0.63,1.48]$; Asia vs. North America 1.07 [$0.81,1.42$]; Australia vs. Global 0.78 [$0.49,1.24]$; Australia vs. North America 0.86 [0.62, 1.21]; Global vs. North America 1.11 [0.78, 1.58]

FRUIT AND CORONARY HEART DISEASE INCIDENCE

Figure S179. Categorical subgroup analyses of fruit intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95% confidence intervals. † Europe vs. Asia 0.84 [0.71, $0.99]$; Europe vs. Global 1.01 [$0.79,1.29]$; Europe vs. North America 0.96 [$0.85,1.08$]; Asia vs. Global 0.83 [$0.63,1.10]$; Asia vs. North America 0.87 [$0.73,1.04]$; Global vs. North America 1.05 [0.82, 1.34]

VEGETABLE AND CORONARY HEART DISEASE INCIDENCE

Figure S180. Categorical subgroup analyses of intake of vegetables and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs. Asia 1.07 [0.81, 1.41]; Europe vs. Global 1.02 [0.80, 1.30]; Europe vs. NA 0.96 [$0.85,1.08]$; Asia vs. Global 1.05 [0.74, 1.49]; Asia vs. NA 1.11 [0.84, 1.48]; Global vs. NA 1.07 [0.83, 1.37]

CITRUS FRUIT AND CORONARY HEART DISEASE INCIDENCE

Figure S181. Categorical subgroup analyses of citrus fruit intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.

FRUIT AND CORONARY HEART DISEASE MORTALITY

Figure S182. Categorical subgroup analyses of fruit intake and coronary heart disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs. Asia 0.93 [$0.76,1.14]$; Europe vs. Australia 0.91 [$0.53,1.57]$; Europe vs. North America 1.15 [$0.89,1.47$]; Asia vs. Australia 1.01 [$0.59,1.77]$; Asia vs. North America 0.81 [0.62, 1.06]; Australia vs. North America 0.80 [0.45, 1.41]

VEGETABLES AND CORONARY HEART DISEASE MORTALITY

Subgroup	Level	Cohorts	N	Events	Pooled Effect Estimates				Residual I^{2}	p-value	Adjusted Alpha Level
					RR [95\% CIs] for Vegetables and CHD Mortality						
					Within Subgrou			Between Subgroups			
Total	-	18	1,968,325	26,007	$0.84[0.80,0.8$ i	-		-	-	-	-
Sex	Females	4	704,423	5,693	$0.85[0.76,0.9$.	-		F vs. M: 0.96 [0.88, 1.06]	26.01\%	0.73	0.007
	Males	6	592,634	13,892	0.86 [0.78, 0.9.	\rightarrow		Fvs. Mix: 0.98 [0.89, 1.09]			
	Mxed	12	671,268	6,422	$0.83[0.76,0.9$	$\bullet-$		M vs. Mix: 1.02 [0.93 1.11]			
Age (y)	<56	10	1,054,654	14,251	$0.87[0.83,0.9$	-		1.04 [0.96, 1.13]	20.98\%	0.31	0.008
	≥ 56	10	913,671	11,756	$0.84[0.78,0.8$:	-					
Follow Up (y)	<13	9	1,404,076	18332	0.84 [0.78, 0.91	+		0.98 [0.89, 1.10]	25.06\%	0.73	0.010
	≥ 13	9	564,249	7,675	0.85 [0.79, 0.9 .	\rightarrow					
Statistical Adjustments	<8	5	205,972	3,242	0.86 [0.78, 0.9.			1.01 [0.91, 1.14]	24.96\%	0.81	0.013
	≥ 8	13	1,762,353	22,765	$0.84[0.80,0.91$	$\rightarrow-$					
NOS	<6	3	167,742	2,407	$0.86[0.77,0.91$	-		1.02 [0.90, 1.15]	24.72\%	0.73	0.017
	≥ 6	15	1,800,583	23,600	$0.84[0.80,0.8$:	--					
Exposure Assessment Tool	Validated FFQ	7	814,011	7,649	$0.82[0.75,0.91$	-		vFFQ vs. uFFQ: 1.07 [0.96, 1.18]	0.00\%	0.02	0.025
	Unvalidated FFQ	5	1,109,011	17,103	0.88 [0.84, 0.9	\rightarrow		vFFQ vs. record: 0.77 [0.62, 0.96]			
	Food record	6	45,303	1,255	0.64 [0.52, 0.7]			uFFQ vs. record: 0.72 \{0.59, 0.89]			
Location	Asia	4	124,511	2,632	$0.85[0.74,0.9$.	+		+	32.13\%	0.98	0.050
	Australia	2	41,879	535	$0.83[0.66,1.0$						
	Europe	7	543,981	6,400	$0.85[0.75,0.9]$	\checkmark					
	North America	5	1,257,954	16,440	0.82 [0.75, 0.9	\rightarrow					
						5	1.0 1.5				
						Lower Risk	Higher Risk				

Figure S183. Categorical subgroup analyses of intake of vegetables and coronary heart disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs. Asia 0.98 [0.83, 1.17]; Europe vs. Australia 0.98 [$0.75,1.28]$; Europe vs. North America 0.97 [$0.83,1.14]$; Asia vs. Australia 1.01 [0.77 , 1.32]; Asia vs. North America 1.02 [0.87, 1.19]; Australia vs. North America 1.01 [0.78, 1.30]

TOTAL FRUIT AND VEGETABLES AND STROKE INCIDENCE

Figure S184. Categorical subgroup analyses of total fruit and vegetable intake and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs Asia 1.17 [0.94, 1.47]; Europe vs Global 1.02 [0.70, 1.48]; Europe vs NA 0.81 [0.68, 0.96]; Asia vs Global 1.16 [$0.77,1.72$]; Asia vs NA 1.46 [1.16, 1.84]; Global vs NA 1.27 [0.87, 1.84]

FRUIT AND STROKE INCIDENCE

Subgroup	Level	Cohorts		Events	Pooled Effect Estimates				Residual ${ }^{2}$	p-value	Adjusted Alpha Level
			N			RR [95\% CIs] for Fruit and Incident Stroke					
					Within Subgrou	\rightarrow		Between Subgroups			
Total	-	17		43,702	0.83 [0.78, 0.8i			-	-	-	-
Sex	Females	3	93,234	309	0.86 [0.68, 1.1]			Fvs. M: 1.06 [0.80, 1.41]	39.25\%	0.89	0.007
	Males	6	77,551	3,877	0.81 [0.70, 0.9.			Fvs. Mix: 1.04 [$0.80,1.34]$			
	Mxed	10	817,208	39,516	0.83 [0.77, 0.91			M vs. Mix: 0.97 [0.83, 1.15]			
Age (y)	<56	9	779,138	35,462	0.82 [0.75, 0.8:	+		0.96 [0.84, 1.10]	33.59\%	0.53	0.008
	≥ 56	8	208,855	8,240	0.85 [0.77, 0.9.						
Follow Up (y)	<14	8	827,457	41206	0.82 [0.76, 0.8:	-		0.95 [0.82, 1.09]	33.91\%	0.44	0.010
	≥ 14	9	160,536	2,496	$0.86[0.75,0.9$						
Statistical Adjustments	<8	3	3,233	306	$0.79[0.58,1.0$			0.95 [0.69, 1.31]	36.97\%	0.74	0.013
	≥ 8	14	984,760	43,396	0.83 [0.78, 0.8:	\bigcirc					
nos	<6	-	-	-	-	\rightarrow		-	-	-	0.017
	≥ 6	17	987,993	43,702	$0.83[0.78,0.8$						
Exposure Assessment Tool	Validated FFQ	10	490,356	11,941	0.85 [0.79, 0.9			vFFQ vs. uFFQ: 0.91 [0.79, 1.04]	26.76\%	0.28	0.025
	Unvalidated FFQ	2	453,786	29,352	0.78 [0.70, 0.8			vFFQvs. record: 1.02 [0.85, 1.23]			
	Food record	5	43,851	2,409	0.87 [0.74, 1.0			uFFQvs. record: 1.13 [0.93, 1.37]			
Location	Asia	3	470,284	29,549	0.79 [0.72, 0.8:			+	17.05\%	0.25	0.050
	Europe	10	267,263	11,252	0.86 [0.79, 0.9.						
	North America	3	115,111	667	0.69 \{0.51, 0.9 .						
	Global	1	135335	2234	0.93 [0.72, 1.2						
						1.0	. 0 1.5				
						Lower Risk	Higher Risk				

Figure S185. Categorical subgroup analyses of fruit intake and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95% confidence intervals. \dagger Europe vs. Asia 0.92 [0.81, 1.05$]$; Europe vs. Global 1.09 [$0.82,1.42$]; Europe vs. North America 0.80 [$0.59,1.09$]; Asia vs. Global 0.85 [$0.65,1.12]$; Asia vs. North America 1.15 [0.85, 1.57]; Global vs. North America 1.36 [0.92, 2.01]

VEGETABLES AND STROKE INCIDENCE

Figure S186. Categorical subgroup analyses of intake of vegetables and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. CHD - coronary heart disease; FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95% confidence intervals.
\dagger Europe vs. Asia 1.21 [0.94, 1.56]; Europe vs. Global 1.28 [0.91, 1.81]; Europe vs. NA 0.96 [0.69, 1.33]; Asia vs. Global 0.94 [0.63, 1.40]; Asia vs. NA 1.26 [0.86, 1.86]; Global vs. NA 1.34 [0.85, 2.10]

FRUIT AND STROKE MORTALITY

Figure S187. Categorical subgroup analyses of fruit intake and stroke mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.

VEGETABLES AND STROKE MORTALITY

Figure S188. Categorical subgroup analyses of intake of vegetables and stroke mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^{2} value indicates the inter-study heterogeneity unexplained by the subgroup. FFQ - food frequency questionnaire; NOS - Newcastle-Ottawa Scale; RR - relative risk; 95\% CIs - 95\% confidence intervals.
\dagger Europe vs. Asia 1.20 [0.92, 1.57]; Europe vs. Australia 1.05 [0.66, 1.67]; Europe vs. North America 1.17 [0.76, 1.80]; Asia vs. Australia 1.44 [0.74, 1.77]; Asia vs. North America 1.03 [0.69, 1.53]; Australia vs. North America 0.90 [0.52, 1.55

Figure S189. Funnel plot of natural logarithm relative risk [$\operatorname{Ln}(\mathrm{RR})$] for cardiovascular disease incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Fruit Intake and Incident Cardiovascular Disease

Figure S190. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for cardiovascular disease incidence comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Begg's test $p=0.205$; Egger's Test $p=0.231$

Figure S191. Funnel plot of natural logarithm relative risk [$\operatorname{Ln}(R R)]$ for cardiovascular disease incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Figure S192. Funnel plot of natural logarithm relative risk [$\operatorname{Ln}(R R)]$ for cardiovascular disease mortality comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Fruit Intake and Cardiovasuclar Disease Mortality

Begg's test $\mathrm{p}=0.338$; Egger's Test $\mathrm{p}=0.090$

Figure S193. Funnel plot of natural logarithm relative risk [$\operatorname{Ln}(R R)]$ for cardiovascular disease mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Vegetable Intake and Cardiovascular Disease Mortality

Figure S194. Funnel plot for trim-and-fill analysis for coronary heart disease mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk $[\ln (R R)]$. The diagonal lines represent the pseudo- 95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.

Figure S195. Funnel plot of natural logarithm relative risk [$\operatorname{Ln}(\mathrm{RR})$] for coronary heart disease incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Figure S196. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for coronary heart disease comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Vegetable Intake and Incident Coronary Heart Disease

Begg's test $p=0.843$; Egger's Test $p=1.000$

Figure S197. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for coronary heart disease incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Citrus Fruit Intake and Incident Coronary Heart Disease

Begg's test $p=0.630$; Egger's Test $p=0.675$

Figure S198. Funnel plot of natural logarithm relative risk [$\operatorname{Ln}(R R)]$ for coronary heart disease incidence comparing the highest and lowest quantiles of citrus fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Fruit Intake and Coronary Heart Disease Mortality

Begg's test $\mathrm{p}=0.271$; Egger's Test $\mathrm{p}=0.346$

Figure S199. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for coronary heart disease mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (\mathrm{RR})$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Vegetable Intake and Coronary Heart Disease Mortality

Figure S200. Funnel plot for trim-and-fill analysis for coronary heart disease mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk $[\ln (R R)]$. The diagonal lines represent the pseudo- 95% confidence intervals of the $R R$. The clear circles represent the effect estimates for each included study.

Figure S201. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for stroke incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Fruit Intake and Incident Stroke

Begg's test $\mathrm{p}=0.119$; Egger's Test $\mathrm{p}=1.000$

Figure S202. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for stroke incidence comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Vegetable Intake and Incident Stroke

Figure S203. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for stroke incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo-95\% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Fruit Intake and Stroke Mortality

Imputed RR accounting for publication bias: N/A
P-value: N/A

Figure S204. Funnel plot of natural logarithm relative risk $[\operatorname{Ln}(R R)]$ for stroke mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as $\ln (R R)$. Dashed lines represent pseudo- 95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the $\ln (R R)$.

Vegetable Intake and Stroke Mortality

Figure S205. Funnel plot for trim-and-fill analysis for stroke mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [$\ln (\mathrm{RR})]$. The diagonal lines represent the pseudo- 95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.

[^0]: Correspondence to: John L. Sievenpiper, MD, PhD, 6138-61 Queen St E, Toronto, Ontario, Canada M5C 2T2. E-mail: john.sievenpiper@utoronto.ca Supplementary Materials for this article are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.017728
 For Sources of Funding and Disclosures, see page 21.
 © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

 JAHA is available at: www.ahajournals.org/journal/jaha

[^1]: ${ }^{1}$ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.89) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

