SYSTEMATIC REVIEW AND META-ANALYSIS

Relation of Different Fruit and Vegetable Sources With Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies

Andreea Zurbau , PhD, RD; Fei Au-Yeung, MSc; Sonia Blanco Mejia , MD, MSc; Tauseef A. Khan, PhD; Vladimir Vuksan, PhD; Elena Jovanovski, PhD; Lawrence A. Leiter, MD; Cyril W. C. Kendall, PhD; David J. A. Jenkins, MD, PhD; John L. Sievenpiper , MD, PhD

BACKGROUND: Public health policies reflect concerns that certain fruit sources may not have the intended benefits and that vegetables should be preferred to fruit. We assessed the relation of fruit and vegetable sources with cardiovascular outcomes using a systematic review and meta-analysis of prospective cohort studies.

METHODS AND RESULTS: MEDLINE, EMBASE, and Cochrane were searched through June 3, 2019. Two independent reviewers extracted data and assessed study quality (Newcastle-Ottawa Scale). Data were pooled (fixed effects), and heterogeneity (Cochrane-Q and I²) and certainty of the evidence (Grading of Recommendations Assessment, Development, and Evaluation) were assessed. Eighty-one cohorts involving 4 031 896 individuals and 125 112 cardiovascular events were included. Total fruit and vegetables, fruit, and vegetables were associated with decreased cardiovascular disease (risk ratio, 0.93 [95% Cl, 0.89–0.96]; 0.91 [0.88–0.95]; and 0.94 [0.90–0.97], respectively), coronary heart disease (0.88 [0.83–0.92]; 0.88 [0.84–0.92]; and 0.92 [0.87–0.96], respectively), and stroke (0.82 [0.77–0.88], 0.82 [0.79–0.85]; and 0.88 [0.83–0.93], respectively) incidence. Total fruit and vegetables, fruit, and vegetables were associated with decreased cardiovascular disease (0.89 [0.85–0.93]; 0.88 [0.86–0.91]; and 0.87 [0.85–0.90], respectively), coronary heart disease (0.81 [0.72–0.92]; 0.86 [0.82–0.90]; and 0.86 [0.83–0.89], respectively), and stroke (0.73 [0.65–0.81]; 0.87 [0.84–0.91]; and 0.94 [0.90–0.99], respectively) mortality. There were greater benefits for citrus, 100% fruit juice, and pommes among fruit sources and allium, carrots, cruciferous, and green leafy among vegetable sources. No sources showed an adverse association. The certainty of the evidence was "very low" to "moderate," with the highest for total fruit and/or vegetables, pommes fruit, and green leafy vegetables.

CONCLUSIONS: Fruits and vegetables are associated with cardiovascular benefit, with some sources associated with greater benefit and none showing an adverse association.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03394339.

Key Words: cardiovascular outcomes
Cohort
fruit
nutrition
vegetables

ncreased fruit and vegetable consumption is the cornerstone of dietary guidance for cardiovascular disease (CVD) prevention. Their benefit as part of heart healthy diets is balanced against an increasing concern of their contribution to an excess intake of sugars.^{1,2} Some influential commentators have even questioned the value of the proverbial "apple a day."³ Public health outlets are emphasizing vegetables before fruit intake and discouraging the intake of certain sources of fruit, such as fruit

JAHA is available at: www.ahajournals.org/journal/jaha

Correspondence to: John L. Sievenpiper, MD, PhD, 6138-61 Queen St E, Toronto, Ontario, Canada M5C 2T2. E-mail: john.sievenpiper@utoronto.ca Supplementary Materials for this article are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.017728

For Sources of Funding and Disclosures, see page 21.

^{© 2020} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

CLINICAL PERSPECTIVE

What Is New?

- Public health policies discourage the consumption of certain fruit sources (eg, 100% fruit juice, dried fruit, and tropical fruit) because of their sugar content and emphasize vegetable consumption before fruit.
- We examined the relation of fruit and vegetable sources with cardiovascular disease outcomes.

What Are the Clinical Implications?

- In this systematic review and meta-analysis of 81 unique cohorts, we identified that fruits and vegetables are associated with cardiovascular benefit and no fruit or vegetable sources are associated with cardiovascular harm.
- Certain fruit and vegetable sources showed greater associations with cardiovascular benefit, including citrus, 100% fruit juice, and pommes fruit and allium, carrots, and cruciferous and green leafy vegetables.

Nonstandard Abbreviations and Acronyms

GRADE Grading of Recommendations Assessment, Development, and Evaluation **NOS** Newcastle-Ottawa Scale

juice and dried, tropical, and canned fruit, some of which have been reflected in health policies.⁴⁻⁸

Given the longstanding perceived value of fruit and vegetables in reducing global CVD morbidity and mortality⁹ and in light of developing efforts to limit dietary sugars, there is a need to reassess the role of different fruit and vegetable sources in CVD prevention. Whether different fruit and vegetable sources show comparable CVD risk reduction is unclear. Systematic reviews and meta-analyses of prospective cohort studies have shown evidence of a cardiovascular benefit of broad categories of fruits and vegetables,¹⁰⁻¹⁶ but the relative contributions of specific fruit and vegetable sources and the certainty of the estimates for these sources are underexplored. We, therefore, conducted a systematic review and meta-analysis of prospective cohort studies using Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the role of different fruit and vegetable sources in CVD risk reduction and to quantify the certainty of the evidence to inform public health policy.

METHODS

All supporting data are available within the article and its online supplementary files. We followed the *Cochrane Handbook for Systematic Reviews and Interventions*¹⁷ and reported results in accordance with Meta-Analysis of Observational Studies in Epidemiology¹⁶ and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.¹⁸ The protocol was registered at Clinicaltrials. gov (identifier, NCT03394339).

Search Strategy

We searched MEDLINE, EMBASE, and the Cochrane Library databases through June 3, 2019, using the search strategy presented in Table S1 and restrictions for prospective cohorts. We supplemented the search with manual searches of the references of included studies.

Study Selection

Prospective cohort studies that reported the association of fruit and/or vegetable intake with CVD, coronary heart disease (CHD), or stroke incidence and mortality with a minimum follow-up time of 1 year in individuals free of disease at baseline were included. Cohorts that presented data on exposures to fruits and vegetables within the context of a dietary index were not included unless fruits and/or vegetables were presented separately from the other components of the diet index.

Data Extraction

Two reviewers (A.Z., F.A.) independently extracted relevant information, including study design, sample size, subject characteristics, exposure, outcomes, assessment method, dose for each quantile, number of events, population, person-years of follow-up, duration of follow-up, covariates adjustments, and risk ratios (RRs; or odds ratios or hazard ratios) with 95% Cls for each quantile of exposure. We contacted authors for missing data. Data on CVD outcomes were extracted for exposures to total fruits and vegetables, fruits, vegetables, and their sources. Potatoes were not included in the present analysis as they are nutritionally classified as a starchy food and are largely omitted in quantifications of exposure to vegetables.

Outcomes

Outcomes were CVD, CHD, and stroke incidence and mortality.

Risk of Bias

Included studies were assessed for risk of bias with the Newcastle-Ottawa Scale (NOS),¹⁹ which awards

up to 9 points based on cohort selection (up to 4 points), outcome ascertainment (up to 3 points), and degree of covariate adjustments (up to 2 points with adjustment for age as the primary confounding variable awarded 1 point and adjustment for \geq 7/9 secondary confounding variables, including sex, family history, smoking, markers of adiposity, energy intake, physical activity, presence of diabetes mellitus, hypertension [or related medications], and dyslipidemia [or related medications]). Studies achieving \geq 7 points were considered high quality. Disagreements in NOS score between the 2 reviewers were resolved by a third reviewer (J.L.S.).

Statistical Analysis

Review Manager version 5.3 (The Nordic Cochrane Centre, Denmark) and STATA version 13.0 (StataCorp, TX) were used to conduct all analyses. We prespecified in our analysis plan the use of the generic inverse variance method with DerSimonian and Laird random effects models to pool the natural log-transformed RRs of extreme quantiles, comparing the highest versus the lowest (reference) exposures.²⁰ On the basis of a deviation from our prespecified analysis plan requested by the statistical reviewer, we present the generic inverse variance with fixed effects models as the primary analysis and the DerSimonian and Laird random effects models as a secondary analysis in the Supplemental Material. Hazard ratios and odds ratios (as cumulative incidence <10%) were considered equivalent to RR.²¹ Studies that provided RR on a continuous scale (ie, per dose increment) were scaled to the highest quantile reported for the exposure in the respective cohort as necessary. Test for differences between fruit and vegetable categories were conducted in RevMan, with a test for subgroup differences, with P<0.05 indicating a significant difference between fruit categories or vegetable categories on a given outcome. We also conducted a dose-response analysis. A random-effects linear dose-response was modeled using a generalized least square trend (glst) for estimation of summarized dose-response data, as per Greenland and Longnecker²² and Orsini.²³ A 2-stage multivariate random-effects method was used to model a nonlinear association using restricted cubic splines with 3 knots.²³ A Wald test was used to evaluate linear and nonlinear dose-response trends. The median dose of each quantile was used, and when not provided we chose the midpoint of the upper and lower boundaries for each quantile as the assigned dose. For open-ended lower and upper quantiles, we defined lowest and highest boundary as the same as the adjacent category cutoff. Servings per day were calculated, with one serving defined as 80 g of fruits and/or vegetables and their categories, with the exception of citrus fruit (122 g), fruit juice (125 g), and green leafy vegetables (88 g), or unless otherwise specified.²⁴

Heterogeneity was assessed by the Cochran Q statistic and quantified by the I² statistic. An I² \ge 50% and P₀<0.1 was considered evidence of substantial heterogeneity.^{25,26} Sensitivity analyses and a priori subgroup analyses were used to explore sources of heterogeneity. We performed sensitivity analyses by systematically removing each study with recalculation of the summary estimates. A priori subgroup analyses were conducted for all comparisons with ≥10 observations. Subgroup analyses included age (less than median versus median or greater), sex (males, females, and mixed), follow-up years (less than median versus median or greater), number of covariates in extracted model (<8 versus ≥8 covariates), exposure assessment tool (validated Food Frequency Questionnaire [FFQ], unvalidated FFQ, and food record), risk of bias score (<6 versus \geq 6), and country of data collection. Wald test in metaregression was used to assess differences within each subgroup. Because of the exploratory intent of our subgroup analyses, we did not prespecify adjustment for the false discovery rate in our prespecified analysis plan. On the basis of a deviation from our prespecified analysis plan requested by the statistical reviewer, we adjust for the false discovery rate in our subgroup analyses using the Holm-Bonferroni procedure. If ≥10 cohort comparisons were available, then publication bias was assessed by visual inspection of funnel plots for asymmetry and formal testing with the Begg and Egger tests. If publication bias was suspected (P<0.10), the Duval and Tweedie trim and fill method imputed missing study data in attempt to adjust for funnel plot asymmetry.²⁷

Grading the Evidence

The GRADE method was used to assess the certainty of the evidence for each comparison on a 4-point scale, ranging from "very low" to "high."28-40 Because of their inherent limitations, observational studies start at a "low" certainty of evidence that can be downgraded or upgraded based on established criteria. Criteria to downgrade included risk of bias (weight of studies shows high risk of bias by NOS), inconsistency (substantial unexplained heterogeneity, l^2 >50%, and P_o<0.10), indirectness (presence of factors that limit generalizability based on populations, exposures, and outcomes), imprecision (95% Cls cross minimally important difference of 5% [RR, 0.95-1.05]), and publication bias (significant evidence of small study effects). Criteria to upgrade included a large risk estimate (RR <0.5 or >2 in the absence of plausible confounders), a dose-response gradient, and attenuation by plausible confounders.

RESULTS

Flow of the Literature

Figure 1 illustrates a flow of the literature. Of 4271 reports, we included a total of 117 publications $^{41-156}$ of 81

unique prospective cohort studies of 4 031 896 individuals and 125 112 cardiovascular events.

Study Characteristics

The Table shows the characteristics of the included studies.⁴¹⁻¹⁵⁶ Participants were from 69 countries with cohorts distributed worldwide (36 from Europe, 23 from North America, 1 from South America, 17 from Asia, 4 from Australia, and 1 large global cohort including 18 countries worldwide). The median participant age at baseline was 55 (range, 7–90) years with a median follow-up of 11 (range, 2–37) years. Median (range) intakes in servings per day in the highest quantiles were 7.4 (2.6–10.4) fruits and vegetables, 2.6 (0.29–11.0) fruits, 2.85 (0.74–11.0) vegetables, 0.4 (0.3–0.5) bananas, 0.27 (0.13–0.7) berries, 0.71 (0.22–2.2) citrus fruit, 0.82 (0.4–2.28) fruit juice, 0.95 (0.29–2.0) pommes, 2.37 (2.1–2.65) watermelon,

0.54 (0.07–2) allium vegetables, 9.5 (5–14) carrots, 0.43 (0.1–3.0) cruciferous vegetables, 0.71 (0.25–1.5) green leafy vegetables, and 0.63 (0.29–2.0) tomatoes. Doses were not available for apricots and celery. Dietary intake was assessed by self-administered validated food frequency questionnaire (54%), interview administered validated FFQ (10%), unvalidated FFQ (19%), or 24-hour recalls/food records (17%).

Table S2 lists the variables that were statistically adjusted in the included studies. Age, the prespecified primary confounding variable, was adjusted for in 95% of included studies, of which 55% also adjusted for all 9 of the prespecified secondary confounding variables.

Study Quality

Table S3 summarizes the NOS assessment of included studies. There was a high risk of bias in associations

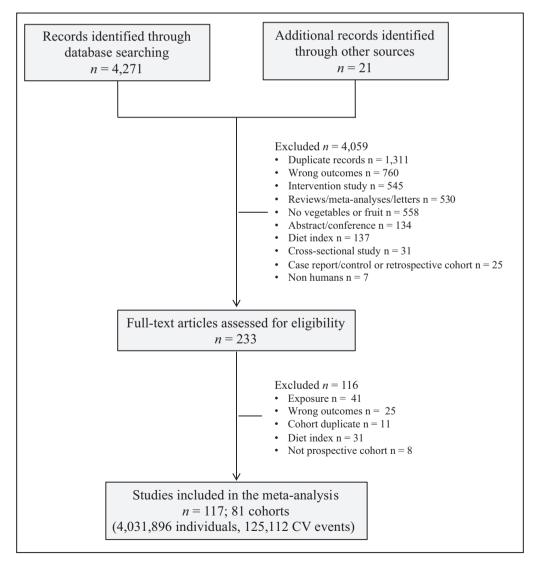


Figure 1. Summary of evidence search and selection. CV indicates cardiovascular.

	Outcomes (Men:Women)	CVD incidence 602 CHD incidence 309 Stroke incidence 293	CVD mortality 1202 (591:611) CHD mortality 605 (347:258) Stroke mortality 356 (142:214)	CVD incidence 582 CVD mortality 327 CHD incidence 307	CVD risk 79	CVD mortality 1145 CVD incidence N/A IHD mortality 639 IHD incidence 1786 Stroke mortality 218 Stroke incidence 888	CVD incidence 6006	CHD incidence 144	CVD mortality 41	CHD incidence 6189 (3607:2582)	IHD risk 678	CVD mortality 238 IHD mortality 128 Stroke mortality 92	Stroke risk 545	CVD mortality 197
	Quantiles	3 CVI CHI	2 CHI	2 CVI	ю г	4 CVI	2 CVI	4 CHC	5 CVI	5 CHI	_ ي	Per 5-75 g/d CVI IHE Strol	S Ю	Per 1-SD CVI
	Exposure	Fruit category	Fruit	Fruit and/or vegetable	Vegetable categories	Fruit and vegetable	Fruit, vegetable	Fruit, vegetable, categories	Fruit, vegetable	Fruit and/ or vegetable, categories	Fruit and vegetable	Vegetable, categories	Fruit and vegetable	Vegetable
	Dietary Assessment	24-h recall	Unvalidated FFQ	Validated FFQ	Validated FFQ	Unvalidated FFQ	Self-administered validated FFQ	Validated FFQ	Food recall	Validated FFQ	Validated FFQ	Validated FFQ	Unvalidated FFQ	Unvalidated FFQ
	Follow-Up, y	4.9±1.6	18–24	11.3	Q	19	10	7.85	16–18	22 (men) 24 (women)	4	15	12.9	15
	Age, y	44.1±14.5	16–89	60-79	10	25-74	50-79	50.0±7.9	35-64	40–75 (men) 30–55 (women)	45–75	75.1±2.7	69.4±6.3	65-84
	Participants (Men:Women)	84 158 (17 931:66 227)	10 741 (4325:6416)	3328 (3328:0)	2369 (1047:1322)	9608	93 676 (0:93 676)	29 689 (0:29 689)	1311	113 276 (42 135:71 141)	11 134	1226 (0:1226)	3570 (1405:2165)	559
istics	Country	France	United Kingdom	England	Iran	United States	United States	Italy	France	United States	United Kingdom	Australia	The Netherlands	The Netherlands
Table of Study Characteristics	Cohart	NutriNet-Sante	Health Food Shoppers	British Regional Heart	Theran Lipid and Glucose	National Health and Nutrition Examination Survey Epidemiologic Follow-up Study	WHI-OS (Women's Health Initiative Observational Study)	EPIC	MONICA	NHS (Nurses' Health Study) and HPFS (Health Professionals Follow-Up Study)	EPIC	PLSAW (Perth Longitudinal Study of Aging Women)	Rotterdam Study	Zutphen Elderly
Table. Table of	Study	Adriouch, 2018 ⁴¹	Appleby, 2002 ⁴²	Atkins, 2014 ⁴³	Bahadoran, 2017 ⁴⁴	Bazzano, 2002 ⁴⁵	Belin, 2011 ⁴⁶	Bendinelli, 2011 ⁴⁷	Berard, 2017 ⁴⁸	Bhupathiraju, 2013 ⁴⁹	Bingham, 2008 ⁵⁰	Blekkenhorst, 2017 ⁵¹	Bos, 2014 ⁵²	Buijsse, 2008 ⁵³

(Continued)

J Am Heart Assoc. 2020;9:e017728. DOI: 10.1161/JAHA.120.017728

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Buil-Cosiales, 2016 ⁵⁵	PREDIMED (Prevención con Dleta Mediterránea)	Spain	7216	55-80	Q	Validated FFQ	Fruit, vegetable, categories	م	CVD composite score CVD mortality MI incidence Stroke incidence	342 104 118
Buil-Cosiales, 2017 ⁵⁴	SUN (Seguimiento University of Navarra)	Spain	17 007 (6633:10 374)	œ	10.3	Validated FFQ	Fruit, vegetable, categories	Q	CVD incidence	112
Cassidy, 2012 ⁵⁶	NHS	United States	69 622 (0:69 622)	30–55	14	Validated FFQ	Fruit, vegetable	Q	Stroke incidence	1803
Collin, 2019 ⁵⁷	REGARDS (Reasons for Geographic and Racial Differences in Stroke)	United States	13 440 (7972:5469)	≥45	6±1.8	Validated FFQ	Fruit category	12 oz/d	CHD mortality	168
Conrad, 2018 ⁵⁸	NHANES	United States	29 133 (13 926:15 207)	46.3 (95% Cl, 45.8-46.7)	6.5	24-h recall	Vegetable	e	CVD mortality CHD mortality	726 556
Dauchet, 2004 ⁵⁹	PRIME	France, North Ireland	8087 (8087:0)	50-59	IJ	Interview	Fruit category	3	CHD event	133
Dauchet, 2010 ⁶⁰	PRIME	France, North Ireland	8060 (8060:0)	50-59	10	Interview- validated FFQ	Fruit and/or vegetable	3	CVD risk Acute coronary syndrome	612 367
Du, 2016 ⁶¹	China Kadoorie Biobank	China	451 665 (186 086:265 579)	50.5±10.4	N/A, ≈7.14 y	Interview unvalidated FFQ	Fruit	ט	Acute coronary event Hemorrhagic stroke event Other CeVD events Ischemic stroke	2551 14 579 11 054 3523
Du, 2017 ⁶²	China Kadoorie Biobank	China	462 342 (189 560:272 782)	51±10.5	Γž	Interview unvalidated FFQ	Fruit	4	CVD mortality IHD mortality Ischemic stroke mortality Hemorrhagic stroke mortality	6166 2038 585 2351
Elwood, 2013 ⁶³	Carphilly Cohort Study	United Kingdom	2235 (2235:0)	45-59	30	Unvalidated FFQ	Fruit and vegetable	2	CVD incidence	N/A
Eriksen, 2015 ⁶⁴	SABRE (Southhall and Brent Revised)	United Kingdom	2096	40-69	21	Validated FFQ	Fruit, vegetable	2	CVD incidence CHD incidence	571 520
Fitzgerald, 2012 ⁶⁵	Women's Health Study	United States	34 827 (0:34 827)	55 (46-68) (mean [95% Cl])	14.6	Validated FFQ	Fruit, vegetable	Q	CVD risk	1094

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Fraser, 1992 ⁶⁶	Adventis Health Study	United States	26 473 (10 003:16 740)	Men: 51.3±16.0 Vvomen: 53.2±16.6 (mean±SD)	۵	Validated FFQ	Fruit	ო	CHD mortality CHD event	463 134
Gardener, 2011 ⁶⁷	NOMAS (Northern Manhattan Study)	United States	2568 (924:1644)	69±10 (Mean±SD)	o	Interview validated FFQ	Fruit, vegetable	Continuous	CVD mortality CVD incidence MI incidence Ischemic stroke incidence	314 518 133 171
Gaziano, 1995 ⁶⁸	Massachusetts Health Care Panel Study	United States	1299 (494:805)	266	4.75	Unvalidated FFQ	Fruit and vegetable categories	N	CVD mortality	161
Genkinger, 2004 ⁶⁹	Odyssey	United States	6151 (2276:3875)	30–93	13	Validated FFQ	Fruit, vegetable categories	Q	CVD mortality	378
Gillman, 1995 ⁷⁰	Framingham Study	United States	832 (832:0)	45-65	18–22	24-h recall	Fruit and vegetable	Q	Stroke mortality Stroke incidence	14 97
Goetz, 2016^{71}	REGARDS	United States	16 678	≥45	6.0±1.9	Validated FFQ	Fruit categories	5	CHD events	589
Goetz, 2016 ⁷²	REGARDS	United States	20 024 (9011:11 013)	≥45	6.5	Validated FFQ	Fruit, vegetable	Q	Stroke incidence	524
Gunge, 2017 ⁷³	Danish Diet, Cancer and Health Cohort	Denmark	57 053 (25 759:28 809)	50-64	13.6	Validated FFQ	Fruit and vegetable categories	2	MI incidence	2322 (1669:653)
Gunnell, 2013 ⁷⁴	Health and Wellbeing Surveillance System	Australia	14 890 (6114:8776)	45-97	Q	Validated FFQ	Fruit and vegetable	5	IHD hospitalization	538
Hansen, 2010 ⁷⁶	Danish Diet, Cancer and Health	Denmark	53 383 (25 065:28 318)	50-64	7.7	Validated FFQ	Fruit, vegetable categories	4	Acute coronary syndrome	1075 (820:255)
Hansen, 2017 ⁷⁵	Danish Diet, Cancer and Health	Denmark	55 338	50-64	13.5	Validated FFQ	Fruit and vegetable categories	0	Stroke incidence	2283
Harriss, 200777	Melbourne Collaborative	Australia	40 653 16 673:23 980	40-69	10.4	Validated FFQ	Fruit, vegetable	4	CVD mortality IHD mortality	697 407
Hertog, 1997 ⁷⁸	Caerphilly Prospective Study	South Wales	1900 (1900:0)	45-59	14.6	Validated FFQ	Vegetable categories	4	IHD mortality	131
Hirvanen, 2000 ⁹⁰	Finnish Male Smokers in the ATBC Study	Finland	26 497 () (26 497 :0)	50-69	6.1	Validated FFQ	Fruit category	4	Cerebral infarction Subarachnoid hemorrhage Intracerebral hemorrhage	736 83 95

7

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Hirvonen, 2001 ⁷⁹	Finnish Male Smokers in the ATBC Study	Finland	25, 373 (25, 373:0)	50-69	6.1	Validated FFQ	Fruit, vegetable, categories	ى	CHD mortality MI event	815 1122
Hjartaker, 2015 ⁸¹	Migrant Study	Norway	9766 (9766:0)	42–73	20.3	Unvalidated FFQ	Fruit and/ or vegetable, categories	4	CVD mortality CHD mortality Stroke mortality	4595 2386 1034
Hodgson, 2016 ⁸²	Australian Women aged 70–85 y	Australia	1456 0:1456	>70	15	Validated FFQ	Fruit category	m	CVD mortality	235
Holmberg, 2009 ⁸³	Swedish National Farm Register	Sweden	1738 (1738:0)	50±6.0	12	Unvalidated FFQ	Fruit and vegetable	2	CHD incidence	138
lso, 2007 ⁸⁴	Japan Collaborative Cohort	Japan	N/A	40–79	N/A	Validated FFQ	Fruit or vegetable categories	e	IHD mortality CeVD mortality	N/A N/A
Jacques, 2015 ⁸⁵	Framingham Offspring	United States	2880 (1302:1578)	28–62 (mean=54)	14.9	Validated FFQ	Fruit categories	m	CVD incidence CHD incidence	518 261
Johnsen, 2003 ⁸⁶	Danish Diet, Cancer and Health	Denmark	54 506	50-64	3.09	Validated FFQ	Fruit and/or vegetable	5	Stroke incidence	266
Joshipura, 1999 ⁸⁷	NHS and HPFS cohorts	United States	114 279 (38 683:75 596)	30–55 (men) 40–75 (women)	8 (men) 14 (women)	Validated FFQ	Fruit and/ or vegetable, categories	IJ	Ischemic stroke incidence	570 (366:204)
Joshipura, 2009 ⁸⁸	NHS and HPFS cohorts	United States	109 788 (38 918:70 870)	30–55 (men) 40–75 (women)	14–16	Validated FFQ	Fruit and/ or vegetable, categories	ы	CVD incidence	3892
Keli, 1996 ⁸⁹	Zutphen Elderly	The Netherlands	552 (552:0)	50-69	15	Interview	Fruit, vegetable categories	ю	Stroke risk	42
Kim, 2013 ⁹⁰	British Women's Heart and Health Study	United Kingdom	3080 (0:3080)	60-79	7	Unvalidated FFQ	Fruit	5	CVD incidence	329
Knekt, 1994 ⁹³	Finnish Mobile Clinic Health	Finland	5133 (2748:2385)	30-69	14	Interview unvalidated FFQ	Fruit, vegetable	e	CHD mortality	244 (186:58)
Knekt, 1996 ⁹²	Finnish Mobile Clinic Health	Finland	5133 (2748:2385)	30-69	26	Interview unvalidated FFQ	Fruit or vegetable categories	4	CHD death	473 (324:149)
Knekt, 2000 ⁹¹	Finnish Mobile Clinic Health	Finland	9208	≥15	28	Interview unvalidated FFQ	Fruit or vegetable categories	Q	CeVD incidence	824
Kobylecki, 2015 ⁹⁴	Copenhagen City Heart	Denmark	78 527	20-100	10	Self-reported unvalidated FFQ	Fruit and vegetable	ю	IHD incidence	2823
Kondo, 2019 ⁹⁵	NIPPON DATA80	Japan	9115 (4002:5113)	30–79	29	3-d food record	Fruit or vegetable	υ	CVD mortality	1070
Kvaavik, 2010 ⁹⁶	Health and Lifestyle Survey	United Kingdom	4866 (2509:2377)	43.7±16.3	20	Interview Unvalidated FFQ	Fruit and vegetable	2	CVD mortality	431

[~													
	Incidence (Men:Women)	286 138 148	2702	4089	5125	2139 1291	324 938	N/A	418 126	1148	64	1551	4784 N/A N/A N/A	2316 1329 469
	Outcomes	CVD mortality CHD mortality Stroke mortality	Stroke incidence	Stroke incidence	CVD mortality	CHD mortality Stroke mortality	CHD mortality MI event	CVD mortality	CVD incidence MI event	CHD incidence	IHD mortality	Stroke incidence	CVD events MI Stroke Cardiovascular mortality	CVD mortality CHD mortality Stroke mortality
	Quantiles	5-6	Q	Q	4	4	Q	N	Q	Q	n	n	4	ю
	Exposure	Fruit, categories	Fruit, vegetable	Fruit and/ or vegetable, categories	Fruit and/or vegetable	Fruit and/or vegetable	Fruit, vegetable, categories	Fruit and vegetable	Fruit and/or vegetable	Vegetable	Fruit, vegetable, categories	Fruit and vegetable	Fruit and/or vegetable	Fruit or vegetable categories
	Dietary Assessment	Validated FFQ	Validated FFQ	Validated FFQ	Validated FFQ and 7-d food record	Validated FFQ and 7-d food record	Validated FFQ	Interview FFQ	Validated FFQ	Validated FFQ	Validated FFQ	Interview FFQ	Validated FFQ	Validated FFQ
	Follow-Up, y	16.7	13.6	10.2	12.8 (median)	13	12	£	ŝ	Q	13.3	8.6	7.4 (Median)	16
	Age, y	35-69	50-69	45-83	25-70	25-70	30–55	≥50	45-89	40-84	16–79	20–83 (men: 48.2; women: 49.4)	35-70	55-69
-	Participants (Men:Women)	30 458 (0:30 458)	26 556 (26 556:0)	74 961 40 291:34 670	451 151 129 882:321 269	451 151 (129 882:321 269)	66 360 (0:66 360)	4176	39 127 (0:39 127)	15 520 (15 520:0)	10 802 (4102:6700)	82 259 (37 483:44 746)	135 335	34 492 (0:34 492)
	Country	United Kingdom	Finland	Sweden	Europe (10 countries)*	Europe (10 countries)*	United States	Taiwan	United States	United States	United Kingdom	Canada	18 Countries†	United States
	Cohort	UK Women's Cohort	Finnish Male Smokers in the ATBC Study	Swedish Mammography and Swedish Men Cohorts	EPIC	EPIC	SHN	Survey of Health & Living Status of the Elderly	Women's Health Study	The Physician's Health Study	The Oxford Vegetarian Study	Canadian Community Health Survey	PURE (Prospective Urban and Rural Epidemiology)	lowa Women's Health
	Study	Lai, 2015 ⁹⁷	Larsson, 2009 ⁹⁸	Larsson, 2013 ⁹⁹	Leenders, 2013 ¹⁰¹	Leenders, 2014 ¹⁰⁰	Lin, 2007 ¹⁰²	Lin, 2017 ¹⁰³	Liu, 2000 ¹⁰⁵	Liu, 2001 ¹⁰⁴	Mann, 1997 ¹⁰⁶	Manuel, 2015 ¹⁰⁷	Miller, 2017 ¹⁰⁸	Mink, 2007 ¹⁰⁹

J Am Heart Assoc. 2020;9:e017728. DOI: 10.1161/JAHA.120.017728

Examination Survey

Japan Public

Mori, 2018¹¹¹

Finnish Mobile Clinic Health

Mizrahi, 2009110

Cohort

Study

Health Center Based Prospective

J Am Heart Assoc.	2020;9:e017728.	. DOI: 10.1161/JAHA.120.017728	

Japan Collaborative

Nagura, 2009¹¹³

EPIC-Norfolk

Mytton, 2018¹¹²

Study

	Incidence (Men:Women)	625	1968 (1192:776) 1470 (856:614)	4965	2243 (1207:1036) 452 (258:194) 1053 (559:494)	384 (200:184)	775	4871	298 83	517	823 165 385	245	233
	Outcomes	Stroke risk	CHD mortality Stroke mortality	CVD incidence	CVD mortality CHD mortality Stroke mortality	CVD mortality	CVD mortality	CVD mortality	CHD mortality Stroke mortality	CVD mortality	CVD mortality CHD mortality Stroke mortality	CHD incidences	Stroke incidence
	Quantiles	4	Q	QJ	4	4	Daily	1 Serving/d	4	80 g/d	4	4	4
	Exposure	Fruit, vegetable, categories	Vegetable categories	Fruit and vegetable	Fruit, vegetable	Fruit, vegetable	Fruit and vegetable	Fruit or vegetable	Fruit, vegetable	Fruit or vegetable	Fruit and/or vegetable	Fruit, vegetable	Fruit and vegetable
-	Dietary Assessment	Interview	Validated FFQ	7-d food record	Validated FFQ	Validated FFQ	Interview Validated FFQ	Validated FFQ	Household survey	Validated FFQ	Household survey	Validated FFQ	Validated FFQ
	Follow-Up, y	24	16.9	16.4	12.7	7.33	o	17	37	o	24	10.5	10.3
	Age, y	40-74	45-74	40–79	40-79	≥35 (men: 54.0; women: 55.1)	40–70	45-74	3.5–11.2	35–70	30-79	20-59	20–68
	Participants (Men:Women)	3932	88 184 (40 622:47 562)	22 992 (10 002:12 990)	59 485 (25 206:34 279)	29 079 (13 355:15 724)	71 243 (0:71 243)	57 078	4028 (1995:2033)	10 262	9112 (4000:5112)	19 819	20 069 (8988:11 081)
	Country	Finland	Japan	England	Japan	Japan	China	China	United Kingdom (England and Scotland)	Europe (10 countries) [†]	Japan	The Netherlands	The Netherlands

Singapore Chinese

Neelakantan,

2018¹¹⁶

Health Study

Boyd Orr Cohort

Ness, 2005¹¹⁷

NIPPON DATA80

Okuda, 2015¹¹⁹

EPIC

Nothlings,

2008¹¹⁸

Shanghai Women's Health

Nechuta, 2010¹¹⁵

Takayama

Nakamura,

2008¹¹⁴

1554

CVD mortality

4

Fruit and/or

24-h recall

7.7

56.6±14.3

65 226 (28 960:36 266)

England

HSE (Health Survey

Oyebode, 2014¹²³

Oude Griep, 2011¹²¹ for England)

vegetable

226

Stroke mortality

 \sim

Fruit, vegetable

Questionnaire

13.8

Men: 56.5±10.63; women: 57.4±10.89 (mean±SD)

9651 (4254:5397)

Japan

Miyako Study

Pham, 2007¹²⁴

245

CHD incidence

3-4

Fruit or vegetable

Validated FFQ

10.5

42±11

20 069 (8989:11 081)

The Netherlands

MORGEN

MORGEN

Oude Griep, 2011¹²²

MORGEN

Oude Griep, 2010¹²⁰ categories

(Continued)

1660 (1022:638)

IHD mortality

ß

Fruit and vegetable

Interview validated FFQ

15

45-7

53 469 (23 501:29 968)

China

Singapore Chinese Health Study

Rebello, 2014¹²⁵

Follow-Up	12.8	1.5	9-12	16	14.6	6.9	7.2	10.1	18	7.5	5-8	19	4	C r
Age, y	42-60	N/A	60-101	34-103	20-69	45-89	≥45	54.5	47	45-75	45-75	50-69	44-74	
Participants (Men:Women)	1950 (1950:0)	9757	680	39 337 (14 966:23 471)	34 560 (25 574:8986)	38 445 (0:38 445)	38 445 (0:38 445)	38 176 (0:38 176)	11 376 (8577:2799)	174 028 (78 410:95 618)	164 617 (72 866:91 751)	21 955 (21 955:0)	26 445 (10 048:16 397)	
Country	Finland	Europe and South America	United States	Japan	The Netherlands	United States	United States	United States	United States	United States	United States	Finland	Sweden	
Cohort	Kuopio Ischaemic Heart Disease Risk Factor	DIET-HD	Nutrition Status Study	Life Span Study	EPIC Netherlands and MORGEN	WHS (Women's Health Study)	SHW	SHW	Cooper Center Longitudinal Study	Multi Ethnic Cohort	Multi Ethnic Cohort	ATBC	Malmo Diet and Cancer	
Study	Rissanen, 2003 ¹²⁶	Saglimbene, 2017 ¹²⁷	Sahyoun, 1996 ¹²⁸	Sauvaget, 2003 ¹²⁹	Scheffers, 2019 ¹³⁰	Sesso, 2003 ¹³¹	Sesso, 2003 ¹³³	Sesso, 2007 ¹³²	Shah, 2018 ¹³⁴	Sharma, 2013 ¹³⁵	Sharma, 2014 ¹³⁶	Simila, 2013 ¹³⁷	Sonestedt, 2015 ¹³⁸	

(Men:Women)

Outcomes

Quantiles

Exposure

Assessment

v-Up, y

Dietary

115

CVD mortality

LΩ

Fruit and vegetable

4-d food record

A/A

CVD mortality

 \sim

Fruit, categories

Validated FFQ

101

CHD mortality

ო

Fruit, vegetable,

3-d food record

categories

Incidence

1926 (692:1234)

Stroke mortality

co

Fruit, vegetable, categories

Validated FFQ

3801 2135 1135

CVD incidence CHD incidence

ß

Fruit and categories

Validated FFQ

Stroke incidence

CVD incidence

4

Fruit or vegetable

Validated FFQ

categories

729

49

CVD mortality

ന

Fruit

Unvalidated FFQ

535 214

CHD incidence Ischemic stroke

ŝ

Fruit and vegetable

Interview validated FFQ

÷

(men: 54.4±5.7; women: 54.1±5.7) 45-64

11 940 (5271:6669)

United States

ARIC

Steffen, 2003¹⁴⁰

Risk in Communities) (Atherosclerosis

incidence

860 (434:426)

Stroke mortality

ß

Fruit, vegetable

Validated FFQ

249

CVD mortality

Continuous

Fruit or vegetable

3-d food record

204 1004 289 339

MI incidence Stroke incidence

729 201 247

MI incidence Stroke incidence

CVD mortality CVD incidence

4

Fruit category

Validated FFQ

CVD incidence

ŝ

Vegetable categories

Validated FFQ

1951 (1140:811)

IHD mortality

ŝ

Fruit, vegetable

Validated FFQ

4379

CHD risk

Daily

Fruit, fruit juices

Validated FFQ

2921 N/A N/A

CVD incidence CHD incidence Stroke incidence

ß

Fruit, vegetable

Validated FFQ

7
2
ω.
-
2
0
+
0
\geq
0
()
\cup
\sim

	5									
Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Stefler, 2016 ¹⁴¹	HAPIEE (Health, Alcohol and Psychosocial Factors in Eastern Europe)	Poland, Russia, Czech Republic	19 263	57	7,1	Validated FFQ	Fruit and/or vegetable	4	CVD mortality CHD mortality Stroke mortality	438 226 109
Strandhagen, 2000 ¹⁴²	Men Born in 1913	Sweden	730 (730:0)	54	26	Interview unvalidated FFQ	Fruit, vegetable	Ω	CVD mortality CVD incidence	226 209
Takachi, 2008 ¹⁴³	Japan Public Health Center Based Prospective Study	Japan	77 891 (35 909:41 982)	45-74	0. 0	Validated FFQ	Fruit and/ or vegetable, categories	4	CVD incidence	1386 (830:556)
Tanaka, 2013 ¹⁴⁴	Japan Diabetes Complications Study	Japan	1414	40-70	8.1 (Median)	Validated FFQ	Fruit and vegetable	4	CHD incidence Stroke incidence	90 88
Tognon, 2014 ¹⁴⁵	MONICA	Denmark	1849 (901:948)	30-59	1	Food record	Fruit, vegetable	2	CVD mortality CVD incidence MI mortality MI incidence Stroke mortality Stroke incidence	223 755 64 161 40
Tucker, 2005 ¹⁴⁶	Baltimore Longitudinal Study of Aging	United States	501 (501:0)	34-80	18	7-d food record	Fruit and/or vegetable	5	CHD mortality	71
Von Ruesten, 2013 ¹⁴⁷	EPIC	Germany	23 531 (9098:14 433)	35–65	ø	Validated FFQ	Fruit, vegetable, categories	Daily	CVD incidence	363
Vormund, 2015 ¹⁴⁸	MONICA	Switzerland	17 861 (8663:9198)	16–92	21.4 (Mean)	24-h recall	Fruit, vegetable	Daily	CVD mortality	1385
Wang, 2016 ¹⁴⁹	Linxian Nutrition Intervention Trials	China	2455 (1105:1340)	40-69	19–26	Unvalidated FFQ	Fruit and/ or vegetable, categories	5	CHD mortality Stroke mortality	355 (men) 452 (women)
Watkins, 2000 ¹⁵⁰	CPS-11 (Cancer Prevention Study 11)	United States	1 063 023 (453 962:609 061)	≥30	7	Unvalidated FFQ	Vegetable		CHD mortality	13 761 (9156:4605)
Whiteman, 1999 ¹⁵¹	OXCHECK	United Kingdom	10 522 (4929:5593)	35-64	O	Unvalidated FFQ	Fruit, green vegetables	2-3	IHD mortality	144
Yamada, 2011 ¹⁵²	Jidni Medical School Cohort	Japan	10 623 (4147:6476)	N/A	10.7	Validated FFQ	Fruit category	Q	CVD event MI event Stroke event	758 (270:488) 565 (383:182) 99 (76:23)
Yokoyama, 2000 ¹⁵³	Shibata Study	Japan	2121 (880:1241)	≥40	20	Unvalidated FFQ	Fruit, vegetable	σ	Stroke incidence	196 (91:105)

Study	Cohort	Country	Participants (Men:Women)	Age, y	Follow-Up, y	Dietary Assessment	Exposure	Quantiles	Outcomes	Incidence (Men:Women)
Yoshizaki, 2019 ¹⁵⁴	Japan Public Health Centre Based Prospective Study	Japan	16 498 (7726:8772)	45-74	4	Validated FFQ	Fruit and/or vegetable	n	CHD incidence Stroke incidence	839 197
Yu, 2014 ¹⁵⁵	Shanghai Men and Women's Health Study	China	122 635 (55 424:67 211)	40–74	5.4–9.8	Interview validated FFQ	Fruit and/ or vegetable, categories	4	CHD incidence	365 (217:148)
Zhang, 2011 ¹⁵⁶	Shanghai Men and Women's Health Study	China	134 796 (61 436:73 360)	40–74 40–70	4.5 10.2	Interview validated FFQ	Fruit, vegetable, and categories	a	CVD mortality	5393 (1951:3442)
Zhang, 2011 ¹⁵⁷	MONICA	Finland	36 686 (17 287:19 399)	25-74	13.7	24-h recall	Fruit, veg	4	Stroke incidence	1478

infarction; MONICA, monitoring of trends and determinants in cardiovascular disease; MORGEN, monitoring project on risk factors for chronic diseases; N/A, Not Available; NHANES, National Health and Nutrition adult with early stage kidney disease treated with hemodialysis; EPIC, European Prospective Investigation Into Cancer and Nutrition; FFQ, Food Frequency Questionnaire; IHD, ischemic heart disease; MI, myocardial Turkey, Brazil, Chile, China, Colombia, Iran, Malaysia, Poland, South Africa, Oxford and Collaborators health check Examination Survey; NIPPON DATA80, National Integrated Project for Prospective Observation of non-communicable disease and its trends in aged; and OXCHECK, and Norway Denmark, Emirates; middle income: Argentina, Sweden, Spain, United Kingdom, Italy, the Netherlands, countries: high income: Canada, Sweden, United Arab France, Germany, Greece, Pakistan, Zimbabwe India, *The EPIC cohort represented the following countries: Bangladesh, The PURE cohort represented the following Occupied Palestinian Territory; low income: between fruit juice, cruciferous, green leafy, and tomato vegetables, and CHD and stroke mortality and citrus and stroke mortality as >35% of the pooled risk estimate was derived from Iso et al,⁸⁴ which was scored 5 on the NOS. The association between apricots and CVD mortality was derived from one study, Saglimbene et al,¹⁵⁸ which was scored 1 on the NOS. Although most studies had scores reduced because of self-administered ascertainment of exposure, 88% of studies received a total score ≥6, which was considered high quality.

Cardiovascular Disease CVD Incidence

Figure 2 and Figures S1 through S11 show the relation of total and specific fruit and vegetables with CVD incidence. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.93 [95% Cl. 0.89-0.96], no significant heterogeneity), fruits (RR, 0.91 [95% CI, 0.88-0.95], no significant heterogeneity), and vegetables (RR, 0.94 [95% Cl, 0.90-0.97], no significant heterogeneity). Figures S12 and S13 summarize the relation of sources of fruit or vegetables with CVD incidence. A significant interaction by fruit source was observed (P<0.001), with significant associations with lower risk limited to citrus (RR, 0.88 [95% CI, 0.80-0.86], no significant heterogeneity) and pommes (RR, 0.76 [95% Cl, 0.66-0.88], no significant heterogeneity). We found no significant associations from the highest versus lowest intakes of berries (RR, 1.27 [95% CI, 0.95-1.71], heterogeneity not applicable) and juice (RR, 1.00 [95% CI, 0.93–1.07], no significant heterogeneity) fruit. No interaction by vegetable source was observed (P=0.227).

CVD Mortality

Figure 3 and Figures S14 through S30 show the relation of total and specific fruit and vegetables with CVD mortality. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.89 [95% Cl, 0.85-0.93], substantial heterogeneity [I²=68%, P<0.001]), fruits (RR, 0.88 [95% Cl, 0.86–0.91], substantial heterogeneity [I²=79%, P<0.001]), and vegetables (RR, 0.87 [95% Cl, 0.85-0.90], substantial heterogeneity [I²=59%, P<0.001]). Figures S31 and S32 summarize the association of sources of fruits or vegetables with CVD mortality. A significant interaction by fruit (P=0.001) and vegetable sources (P<0.001) was observed with significant associations with lower risk limited to pommes fruit (RR, 0.86 [95% Cl, 0.80–0.92], no significant heterogeneity) and to allium (RR, 0.33 [95% CI, 0.22-0.49], heterogeneity not applicable), cruciferous (RR, 0.85 [95% Cl, 0.82-0.89], no significant heterogeneity), and green leafy (RR, 0.87 [95% CI, 0.81-0.94], substantial heterogeneity [I2=88%, P<0.001]) vegetables. There was

				Pool	ed Effect Estimates	Hetero	ogeneity		
Comparison	Cohorts	N	Events	RR [95% Cls]	RR [95% Cis]	l ²		<i>p</i> -value	GRADE
	0010113	14	LVCIILO	in [5576 Cla]		I	p value	p-value	UNADL
Fruit and Vegetables	12	501,744	24,310	0.93 [0.89, 0.96]	•	26%	0.16	<0.001	●● ○ ○ LOW
Fruit	17	577,323	27,205	0.91 [0.88, 0.95]	•	40%	0.03	<0.001	•••• MODERATE
Apricots	-	-	-	-		-	-	-	
Bananas	-	-	-	-		-	-	-	
Berries	1	38,176	1,004	1.27 [0.95, 1.71]	•	-	-	0.110	●000 VERYLOW
Citrus	6	222,525	6,220	0.88 [0.80, 0.96]	-	33%	0.16	0.003	●●OO LOW
Dried	-	-	-	-		-	-	-	
Grapes	-	-	-	-		-	-	-	
Juice	5	167,879	8,056	1.00 [0.93, 1.07]		0%	0.42	0.950	● OOO VERY LOW
Pommes	5	149,437	2,578	0.76 [0.66, 0.88]	-	0%	0.94	<0.001	●●OO LOW
Watermelon	-	-	-	-	-	-	-	-	
Vegetables	14	539,683	22,810	0.94 [0.90, 0.97]		34%	0.07	<0.001	• 000 VERY LOW
Allium	2	40,814	808	0.79 [0.57, 1.10]		85%	0.01	0.160	●000 VERYLOW
Carrots	-	-	-	-		-	-	-	
Celery	-	-	-	-		-	-	-	
Cruciferous	7	273,878	6,824	0.99 [0.90, 1.08]		52%	0.04	0.780	● OOO VERY LOW
Green Leafy	5	211,902	5,732	0.87 [0.76, 0.99]	1	42%	0.12	0.003	●●OO LOW
Tomatoes	2	55,452	841	0.97 [0.78, 1.20]	-	9%	0.35	0.770	•000 VERYLOW
	-	,	=			2.5			
CHD INCIDENCE									
Fruit and Vegetables	19	619,182	17,987	0.88 [0.83, 0.92]		17%	0.24	<0.001	•••• MODERATE
Fruit	18	1,170,021	23,856	0.88 [0.84, 0.92]	•	12%	0.30	<0.001	•••• MODERATE
Apricots	-	-	-	-	•	-	-		
Bananas	1	122,635	365			29%	0.24	0.070	•000 VERYLOW
				0.76 [0.56, 1.02]					
Berries	4	100,296	2,233	0.94 [0.82, 1.09]		74%	<0.01	0.420	•000 VERYLOW
Citrus	10	364,978	8,333	0.91 [0.85, 0.98]	•	0%	0.70	0.009	••oo LOW
Dried	-	-	-	-		-	-	-	
Grapes	1	66,360	938	1.13 [0.78, 1.64]		-	-	0.530	•ooo VERYLOW
Juice	4	109,898	7,589	0.99 [0.92, 1.07]		0%	0.61	0.770	● OOO VERY LOW
Pommes	8	371,684	4,866	0.90 [0.84, 0.97]	_	25%	0.22	0.005	● OOO VERY LOW
Watermelon	1	122,635	365	0.87 [0.64, 1.18]		0%	0.36	0.370	• 000 VERYLOW
Vegetables	18	696,330	17,172	0.92 [0.87, 0.96]		53%	<0.01	<0.001	●●○○ LOW
Allium	5	210,964	1,734	0.93 [0.80, 1.09]	X.	20%	0.29	0.390	● OOO VERY LOW
Carrots	-	-	-	-		-	-	-	
Celery	-	-	-	-		-	-	-	
Cruciferous	8	347,453	9,383	1.01 [0.95, 1.07]		0%	0.48	0.710	●●OO LOW
Green Leafy	5	170,250	6,696	0.82 [0.76, 0.89]	•	40%	0.14	<0.001	•••• MODERATE
Tomatoes	3	134,494	1,283	0.80 [0.57, 1.13]	*	0%	0.45	0.200	•000 VERYLOW
Tomacoco	0	10 1) 10 1	1,200	0.00 [0.07] 1.10]	•	0,0	0.15	0.200	
STROKE INCIDENCE									
Fruit and Vegetables	14	532,667	11,091	0.82 [0.77, 0.88]		37%	0.07	<0.001	•••• MODERATE
Fruit	18	987,993	43,702	0.82 [0.79, 0.85]	•	34%	0.06	<0.001	•••• MODERATE
Apricots	-	567,555		0.02 [0.7 5, 0.05]	•	-	-		
Bananas	-		-	-		-	-	-	
	4	-		-		- 50%			
Berries		143,662	5,967	1.03 [0.94, 1.13]			0.08	0.470	• 000 VERYLOW
Citrus	8	225,613	7,142	0.88 [0.82, 0.94]	*	51%	0.04	<0.001	●●OO LOW
Dried	-	-	-	-		-	-	-	
Grapes	-	-	-	-		-	-	-	
Juice	4	148,839	1,705	0.82 [0.68, 0.99]		73%	0.02	0.040	●000 VERYLOW
Pommes	5	230,881	7,657	0.89 [0.84, 0.95]	•	0%	0.51	<0.001	•••• MODERATE
Watermelon	-	-	-	-	-	-	-	-	
Vegetables	16	564,531	13,607	0.88 [0.83, 0.93]	•	50%	<0.01	<0.001	•••• MODERATE
Allium	2	84,169	4,912	0.89 [0.80, 0.99]		0%	0.70	0.030	• 000 VERYLOW
Carrots	-	-	-	-		-	-	-	
Celery	_	-					-	-	
-	-	-							
Cruciferous	6	255,726	7,706	0.98 [0.91, 1.05]	.1	62%	0.02	0.490	• 000 VERYLOW
Green Leafy	4	196,456	4,798	0.88 [0.79, 0.98]	-	0%	0.42	0.020	••oo LOW
Tomatoes	1	38,445	247	0.20 [0.05, 0.82]	•	-	-	0.030	●●OO LOW
					0.0 0.5 1.0 1.5	2.0			

Figure 2. Relation between intake of fruits and vegetables and total incident cardiovascular disease (CVD) (highest vs lowest level of intake).

Pooled risk estimates are represented by the black diamond, with principal exposures highlighted in bold. Principal exposures (fruits and vegetables, fruits, and vegetables) represent the pooled data of the risk estimates reported for these exposures and were not tabulated by pooling fruit and vegetable varieties. Values of $l^2 \ge 50\%$ indicate substantial heterogeneity, with significance at P > 0.10. The mean important difference of 5% change in relative risk, indicating a clinically relevant association with lower or higher risk, is indicated by the dashed gray lines. CHD indicates coronary heart disease; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; and RR, risk ratio.

ComparisonCohortsCVD MORTALITYFruit and Vegetables14Fruit and Vegetables1Bananas1Berries4Citrus3Dried2Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5CHD MORTALITY5Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables10Clery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Apricots-Bananas1Berries2Juice2Pommes3Watermelon-Vegetables2Juice2Pommes3Watermelon-Vegetables2 <th>ts N 798,391 1,581,506 9,757 9,766 112,892</th> <th>Events 17,439</th> <th>Pc RR [95% Cls]</th> <th>oled Effect Estimates RR [95% Cis]</th> <th>Hetero</th> <th>peneity</th> <th></th> <th></th> <th></th>	ts N 798,391 1,581,506 9,757 9,766 112,892	Events 17,439	Pc RR [95% Cls]	oled Effect Estimates RR [95% Cis]	Hetero	peneity			
CVD MORTALITY Fruit and Vegetables 14 Fruit 25 Apricots 1 Bananas 1 Berries 4 Citrus 3 Dried 2 Grapes 3 Juice 1 Pommes 5 Watermelon - Vegetables 24 Allium 1 Carrots 2 Celery 1 Cruciferous 7 Green Leafy 5 Tomatoes 3 Dried 1 Apricots - Bananas 1 Berries 5 Citrus 6 Dried 1 Grapes 3 Juice 3 Pommes 5 Watermelon - Vegetables 19 Allium 4 Carrots 1 C	798,391 1,581,506 9,757 9,766		RR [95% CIs]	RR [95% Cis]	1 ²	p-value			
Fruit and Vegetables14Fruit25Apricots1Bananas1Berries4Citrus3Dried2Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3Pruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Clery1Cleiry1Cleiry1Cleiry1Cleiry1Bananas1Berries5Watermelon-Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Dried1Grapes2Juice2Pommes3Watermelon-Vegetables3Watermelon-Vegetables3	1,581,506 9,757 9,766	17.439				P	<i>p-</i> value		GRADE
Fruit25Apricots1Bananas1Berries4Citrus3Dried2Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3Pruit and Vegetables5Citrus6Dried1Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables10Grapes3Juice3Pommes5Watermelon-Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Apricots-Bananas1Berries2Citrus4Dried1Grapes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-<	1,581,506 9,757 9,766	17.439							
Apricots1Bananas1Berries4Citrus3Dried2Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit and Vegetables6Dried1Grapes3Juice3Dried1Grapes3Juice3Pommes5Watermelon-Vegetables10Grapes3Juice3Pormes5Watermelon-Vegetables10Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY5Fruit and Vegetables6Foriots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice2Juice2Pommes3Watermelon-Vegetables3Vegetables3Vegetables3Vegetables3Stroke Mortality-Pormes3A <td>9,757 9,766</td> <td></td> <td>0.89 [0.85, 0.93]</td> <td>•</td> <td>68%</td> <td><0.01</td> <td><0.001</td> <td>••00</td> <td></td>	9,757 9,766		0.89 [0.85, 0.93]	•	68%	<0.01	<0.001	••00	
Bananas1Berries4Citrus3Dried2Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit and Vegetables5Fruit21Apricots6Dried1Grapes3Juice3Juice3Juice3Juice10Celery11Grapes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY5Fruit and Vegetables6Fruit12Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice3Watermelon-Vegetables3Watermelon-Vegetables3Watermelon-Vegetables3Watermelon-Citrus4Citrus	9,766	39,623	0.88 [0.86, 0.91]	•	79%	<0.01	<0.001	••00	
Berries4Citrus3Dried2Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables10Green Leafy5Tomatoes3Juice3Pommes5Watermelon-Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice2Pommes3Watermelon-Vegetables3Vegetables3Pommes3Matermelon-Vegetables3Matermelon-Vegetables3 <td></td> <td>515</td> <td>1.84 [1.27, 2.67]</td> <td></td> <td></td> <td>-</td> <td>0.001</td> <td></td> <td>VERYLOW</td>		515	1.84 [1.27, 2.67]			-	0.001		VERYLOW
Citrus3Dried2Grapes3Juice1Pommes5Watermelon1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit21Apricots5Grapes3Juice3Pommes5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Celery1Grapes3Juice3Pommes5Watermelon-Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Juice3Dried1Grapes2Juice2Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-Pommes3Watermelon-	112,892	4,595	1.06 [0.87, 1.29]		-	-	0.550		VERYLOW
Dried2Grapes3Juice1Pommes5Watermelon-Vegetables2Allium1Carots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Cerous6Green Leafy5Tomatoes3Juice3Pommes5Watermelon-Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice3Watermelon-Pommes3Watermelon-		7,401	0.97 [0.92, 1.03]	*	15%	0.32	0.300	•000	VERY LOW
Grapes3Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY7Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus61Dried1Grapes3Juice3Pommes5Watermelon-Vegetables10Carrots1Celery1Cruciferous61Green Leafy5Tomatoes3STROKE MORTALITY5Fruit and Vegetables6Green Leafy5Tomatoes3STROKE MORTALITY1Fruit and Vegetables6Green Leafy5Juice2Juice2Juice2Juice2Juice2Juice2Juice2Juice3Watermelon-Vegetables3Watermelon-Vegetables3Watermelon-Vegetables3Vegetables3Carrots3Carrots-Fruit4Apricots-Pommes <td>74,716</td> <td>7,197</td> <td>0.95 [0.90, 1.02]</td> <td>•</td> <td>62%</td> <td>0.05</td> <td>0.150</td> <td>•000</td> <td>VERYLOW</td>	74,716	7,197	0.95 [0.90, 1.02]	•	62%	0.05	0.150	•000	VERYLOW
Juice1Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit and Vegetables5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots11Celery1Cerots3Juice3Pommes5Watermelon-Vegetables10Green Leafy5Tomatoes3STROKE MORTALITY5Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Pommes3Watermelon-	31,757	447	0.93 [0.63, 1.37]		0%	0.51	0.720	•000	VERYLOW
Pommes5Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY5Fruit and Vegetables5Gruciferous1Apricots6Dried1Grapes3Juice3Juice1Carrots1Celery1Cerrots1Celery1Cruciferous6Formes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY1Fruit and Vegetables6Fornit1Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice3Watermelon-Vegetables3	74,716	7,197	0.90 [0.81, 1.01]	-	61%	0.08	0.080	•000	VERY LOW
Watermelon-Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY7Fruit and Vegetables5Citrus6Dried1Grapes3Juice3Juice1Carrots1Carrots1Carrots1Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY5Fruit and Vegetables6Fruit14Carrots1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY1Fruit and Vegetables6Fruit1Apricots2Juice2Juice2Juice2Juice2Juice2Juice3Watermelon-	30,458	286	0.81 [0.58, 1.13]		-	-	0.220	•000	VERY LOW
Vegetables24Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY7Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus3Juice3Juice3Juice3Celery1Cruciferous6Green Leafy5Tomatoes3Strocke MORTALITY5Fruit and Vegetables6Fruit and Vegetables1Cruciferous6Green Leafy5Tomatoes3Strocke MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice2Juice3Watermelon-Vegetables3	85,929	7,947	0.86 [0.80, 0.92]	*	25%	0.26	<0.001	•000	VERY LOW
Allium1Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITYFruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon1Grapes2Juice2Pommes3Watermelon-	-	-	-		-	-	-	-	-
Carrots2Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY7Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Cery1Carrots6Green Leafy5Tomatoes3STROKE MORTALITY5Fruit and Vegetables6Fruit 114Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice2Juice3Watermelon-Vegetables6Fruit14Apricots-Pommes3Watermelon-Vegetables3	1,101,435	33,516	0.87 [0.85, 0.90]	•	59%	<0.01	<0.001	••00	LOW
Celery1Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY7Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables10Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice3Watermelon-Vegetables3	1,226	238	0.33 [0.22, 0.49]	→	-	-	<0.001	•000	VERY LOW
Cruciferous7Green Leafy5Tomatoes3CHD MORTALITY7Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots11Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice3Watermelon-Vegetables3	10,325	4,792	0.92 [0.85, 1.01]	•	36%	0.21	0.080	•000	VERY LOW
Green Leafy5Tomatoes3CHD MORTALITYFruit and Vegetables5Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Juice1Carrots1Carrots1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY6Fruit and Vegetables6Fruits1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice2Juice2Juice2Juice2Juice2Juice3Watermelon-Vegetables3	34,492	2,316	0.91 [0.83, 1.01]	-	-	-	0.070	•000	VERY LOW
Green Leafy5Tomatoes3CHD MORTALITY5Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Juice10Carrots11Carrots12Citrus6Green Leafy5Tomatoes3STROKE MORTALITY6Fruit and Vegetables6Fruit14Apricots-Bananas11Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice2Juice2Juice3Watermelon-Yegetables6Fruit14Stroke MORTALITY-Fruit and Vegetables6Furit14Marricots-Stroke MORTALITY-Fruit and Vegetables6Furit14Apricots-Stroke MORTALITY-Fruit and Vegetables6Furit14Apricots-Stroke MORTALITY-Fruit Apricots-Stroke MORTALITY-Stroke MORTALITY-Stroke MORTALITY-Stroke MORTALITY- <td>187,730</td> <td>13,081</td> <td>0.85 [0.82, 0.89]</td> <td>•</td> <td>86%</td> <td>< 0.01</td> <td>< 0.001</td> <td>•000</td> <td>VERY LOW</td>	187,730	13,081	0.85 [0.82, 0.89]	•	86%	< 0.01	< 0.001	•000	VERY LOW
Tomatoes3CHD MORTALITY5Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice2Juice2Juice3Watermelon1Grapes3Marries2Citrus4Dried1Grapes3Watermelon-Vegetables3	40,893	6,661	0.87 [0.81, 0.94]	•	88%	<0.01	<0.001	•000	
CHD MORTALITYFruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon1Grapes3Matermelon1Grapes3Watermelon-Yegetables3	45,557	7,072	0.98 [0.93, 1.04]	*	23%	0.27	0.510		VERYLOW
Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Yegetables6Fruit14Apricots-Bananas1Berries2Juice2Juice3Watermelon-Vegetables3	-,,	,			23/0	5.27	0.010	- 500	
Fruit and Vegetables5Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Yegetables6Fruit14Apricots-Bananas1Berries2Juice2Juice3Watermelon-Vegetables3									
Fruit21Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables3	489,635	3,240	0.81 [0.72, 0.92]	- -	4%	0.39	0.001		MODERATE
Apricots-Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots11Creery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables3	1,398,863	14,786	0.86 [0.82, 0.90]		62%	<0.01	<0.001	••00	
Bananas1Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY1Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables6	_,,	,	-	-	-			-	-
Berries5Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables16	9,964	2,384	1.04 [0.81, 1.34]		-	-	0.760	• 000	VERY LOW
Citrus6Dried1Grapes3Juice3Pommes5Watermelon-Vegetables1Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables6	105,420	5,141	0.98 [0.91, 1.05]		49%	0.07	0.560		VERYLOW
Dried1Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables16	180,574	5,309	0.91 [0.85, 0.96]		0%		0.00		
Grapes3Juice3Pommes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables3					- 0%	0.71			VERY LOW
Juice3Pommes5Watermelon-Vegetables19Allium4Carrots11Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables3	30,458	138	0.79 [0.47, 1.31]				0.360		VERY LOW VERY LOW
Pommes5Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables3	106,782	2,846	0.97 [0.77, 1.21]		41%	0.18	0.770		
Watermelon-Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	141,710	1,249	0.87 [0.75, 1.01]		71%	0.02	0.070		VERYLOW
Vegetables19Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables12	146,407	4,650	0.84 [0.76, 0.92]	T	0%	0.52	<0.001	•000	VERYLOW
Allium4Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITYFruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	-	-	-		-	-	-	-	-
Carrots1Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY6Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	1,968,325	26,007	0.86 [0.83, 0.89]	. *	21%	0.18	<0.001		MODERATE
Celery1Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	75,434	1,280	0.67 [0.57, 0.79]		88%	<0.01	<0.001		VERYLOW
Cruciferous6Green Leafy5Tomatoes3STROKE MORTALITY14Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables12	10,802	64	0.76 [0.37, 1.58]	•	-	-	0.470		VERY LOW
Green Leafy5Tomatoes3STROKE MORTALITY1Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Juice3Watermelon-Vegetables12	34,492	1,329	0.92 [0.80, 1.06]	-	-	-	0.250	•000	VERYLOW
Tomatoes3STROKE MORTALITY6Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus41Dried1Grapes2Juice2Juice3Watermelon-Vegetables12	296,772	7,420	0.91 [0.85, 0.98]		88%	<0.01	0.010	•000	VERY LOW
STROKE MORTALITY Fruit and Vegetables 6 Fruit 14 Apricots - Bananas 1 Berries 2 Citrus 4 Dried 1 Grapes 2 Juice 2 Pommes 3 Watermelon - Vegetables 12	148,133	4,591	0.86 [0.78, 0.94]	-	0%	0.61	0.001	•000	VERY LOW
Fruit and Vegetables6Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	175,088	3,657	0.92 [0.82, 1.04]		0%	0.63	0.180	•000	VERY LOW
Fruit and Vegetables 6 Fruit 14 Apricots - Bananas 1 Berries 2 Citrus 4 Dried 1 Grapes 2 Juice 2 Pommes 3 Watermelon - Vegetables 12									
Fruit14Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12				_					
Apricots-Bananas1Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	499,732	3,051	0.73 [0.65, 0.81]	*.	0%	0.57	<0.001	•••0	MODERATE
Bananas 1 Berries 2 Citrus 4 Dried 1 Grapes 2 Juice 2 Pommes 3 Watermelon - Vegetables 12	1,282,756	10,899	0.87 [0.84, 0.91]	•	75%	<0.01	<0.001	••00	LOW
Berries2Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	-	-	-	_	-	-	-	-	-
Citrus4Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	9,766	1,034	1.04 [0.70, 1.54]		-	-	0.840		VERY LOW
Dried1Grapes2Juice2Pommes3Watermelon-Vegetables12	40,224	1,182	0.97 [0.82, 1.15]		0%	0.66	0.750		VERY LOW
Grapes 2 Juice 2 Pommes 3 Watermelon - Vegetables 12	145,204	3,869	0.90 [0.86, 0.95]	•	82%	<0.01	<0.001	••00	LOW
Juice 2 Pommes 3 Watermelon - Vegetables 12	30,458	152	0.95 [0.80, 1.13]		-	-	0.580	•000	VERYLOW
Pommes 3 Watermelon - Vegetables 12	40,224	1,182	0.74 [0.53, 1.02]		39%	0.2	0.070	•000	VERY LOW
Watermelon - Vegetables 12	128,270	2,232	0.67 [0.60, 0.76]	◆	0%	0.93	<0.001	••00	LOW
Vegetables 12	74,716	1,651	0.91 [0.77, 1.09]	•	0%	0.59	0.310	•000	VERY LOW
	-	-	-		-	-	-	-	-
411:	780,441	7,551	0.94 [0.90, 0.99]	*	62%	<0.01	0.010	••00	LOW
Allium 2	3,671	544	0.99 [0.78, 1.24]		96%	<0.01	0.940	•000	VERY LOW
Carrots 1	9,766	1,034	0.54 [0.48, 0.61]	*	-	-	<0.001	••00	LOW
Celery -	-	-	-		-	-	-	-	-
Cruciferous 5	195,452	5,065	0.92 [0.85, 1.01]	-	18%	0.29	0.080	•000	VERY LOW
Green Leafy 4	126,971	4,103	0.90 [0.83, 0.97]	*	50%	0.09	0.005	••00	
Tomatoes 2	108,260	3,107	1.03 [0.94, 1.12]		0%	0.83	0.540		VERYLOW
					1				
				0.0 0.5 1.0 1.5 2.	.0				
				Lower Risk Higher Risk					

Figure 3. Relation between intake of fruits and vegetables and cardiovascular mortality (highest vs lowest level of intake). Pooled risk estimates are represented by the black diamond, with principal exposures highlighted in bold. Principal exposures (fruits and vegetables, fruits, and vegetables) represent the pooled data of the risk estimates reported for these exposures and were not tabulated by pooling fruit and vegetable varieties. Values of $l^2 \ge 50\%$ indicate substantial heterogeneity, with significance at P > 0.10. The mean important difference of 5% change in relative risk, indicating a clinically relevant association with lower or higher risk, is indicated by the dashed gray lines. CHD indicates coronary heart disease; CVD, cardiovascular disease; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; and RR, risk ratio.

a significant increased risk with CVD mortality from the highest versus lowest intake of apricots (RR, 1.84 [95% Cl, 1.27-2.67], heterogeneity not applicable). We found no significant associations from the highest versus lowest intakes of bananas (RR, 1.06 [95% Cl, 0.87-1.29], heterogeneity not applicable), berries (RR, 0.97 [95% CI, 0.92-1.03], no significant heterogeneity), citrus (RR, 0.95 [95% CI, 0.90-1.02], substantial heterogeneity [I²=62%, P=0.049]), juice (RR, 0.81 [95% Cl, 0.58-1.13], heterogeneity not applicable), and grapes (RR, 0.90 [95% Cl, 0.81-1.01], substantial heterogeneity [I²=61%, P=0.077) fruit and carrots (RR, 0.92 [95% Cl, 0.85-1.01], no significant heterogeneity), celery (RR, 0.91 [95% Cl, 0.83-1.01], heterogeneity not applicable), and tomato (RR, 0.98 [95% Cl, 0.93-1.04], no significant heterogeneity) vegetables.

Figures S33 through S55 show the dose-response analyses for total and specific fruit and vegetables and CVD incidence and mortality. A nonlinear model best fit the data for citrus fruit and incident CVD (P=0.033), with a plateau at 0.5 servings/day, total fruits and vegetables with CVD mortality (P<0.001), with a plateau at 4 daily servings, and fruits and CVD mortality (P=0.003), with a plateau in risk reduction after 2 daily servings. An inverse dose-response gradient was found for the following associations: total fruits and vegetables (RR, 0.97 [95% Cl, 0.96-0.99] per serving/day), fruits (RR, 0.97 [95% Cl, 0.95-0.99] per serving/day), pommes (RR, 0.87 [95% Cl, 0.75-0.99] per serving/day), and green leafy vegetables (RR, 0.72 [95% CI, 0.56-0.93]) with CVD incidence and total fruits and vegetables (RR, 0.72 [95% Cl, 0.56-0.93] per serving/day), fruits (RR, 0.92 [95% Cl, 0.89-0.96] per serving/day), and vegetables (RR, 0.94 [95% CI, 0.92-0.97] per serving/ day) with CVD mortality.

Coronary Heart Disease CHD Incidence

Figure 2 and Figures S56 through S69 show the relation of total and specific fruit and vegetables with CHD incidence. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.88 [95% CI, 0.83-0.92], no significant heterogeneity), fruits (RR, 0.88 [95% Cl, 0.84-0.92], no significant heterogeneity), and vegetables (RR, 0.92 [95% CI, 0.87-0.96], substantial heterogeneity [I²=53%, P=0.002]). Figures S70 and S71 summarize the relation of sources of fruits or vegetables with CHD incidence. No interaction by fruit source was observed (P=0.375). A significant interaction by vegetable sources was seen (P < 0.001) with significant associations with lower risk limited to green leafy vegetables (RR, 0.82 [95% CI, 0.76-0.89], no significant heterogeneity). We found no significant associations from the highest versus lowest intakes of allium (RR, 0.93 [95% CI, 0.80–1.09], no significant heterogeneity), cruciferous (RR, 1.01 [95% CI, 0.95–1.07], no significant heterogeneity), and tomato (RR, 0.80 [95% CI, 0.57–1.13], no significant heterogeneity) vegetables.

CHD Mortality

Figure 3 and Figures S72 through S87 show the relation of total and specific fruit and vegetables with CHD mortality. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.81 [95% CI, 0.72-0.92], no significant heterogeneity), fruits (RR, 0.86 [95% CI, 0.82-0.90], substantial heterogeneity [l²=62%, P<0.001]), and vegetables (RR, 0.86 [95% Cl, 0.83-0.89], no significant heterogeneity). Figures S88 and S89 summarize the relation of sources of fruits or vegetables with CHD mortality. No significant interaction was found by fruit sources (P=0.144). A significant interaction by vegetable source was seen (P=0.023), with significant associations with lower risk limited to allium (RR, 0.67 [95% CI, 0.57-0.79], substantial heterogeneity [I²=88%, P<0.001]), cruciferous (RR, 0.91 [95% CI, 0.85-0.98], substantial heterogeneity [I²=88%, P<0.001]), and green leafy (RR, 0.86 [95% CI, 0.78-0.94], no significant heterogeneity) vegetables. We found no significant associations from the highest versus lowest intakes of carrots (RR, 0.76 [95% CI, 0.37-1.58], heterogeneity not applicable), celery (RR, 0.92 [95% Cl, 0.80-1.06], heterogeneity not applicable), and tomato (RR, 0.92 [95% Cl, 0.82–1.04], no significant heterogeneity) vegetables.

Figures S90 through S116 show the dose-response analyses for fruit and vegetables and CHD incidence and mortality. A nonlinear model best fit the data for citrus fruit (P=0.005) and green leafy vegetables (P=0.004) and incident CHD and total fruits and vegetables and CHD mortality (P=0.044), with plateaus in risk reductions following 0.5, 0.5, and 3 daily servings, respectively. An inverse dose-response was found in the associations between total fruits and vegetables (RR, 0.97 [95% Cl, 0.96-0.98] per serving/day), fruits (RR, 0.96 [95% Cl, 0.93-0.99] per serving/day), vegetables (RR, 0.98 [95% CI, 0.95-0.99] per serving/ day), and green leafy vegetables (RR, 0.85 [95% Cl, 0.76-0.94] per serving/day) with CHD incidence and fruits (RR, 0.94 [95% CI, 0.90-0.97] per serving/day) and vegetables (RR, 0.89 [95% Cl, 0.83-0.96] per serving/day) with CHD mortality.

Stroke

Stroke Incidence

Figure 2 and Figures S117 through S127 show the relation of total and specific fruit and vegetables with

stroke incidence. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.82 [95% CI, 0.77-0.88], no significant heterogeneity), fruits (RR, 0.82 [95% CI, 0.79-0.85], no significant heterogeneity), and vegetables (RR, 0.88 [95% CI, 0.83-0.93], substantial heterogeneity [I²=50%, P=0.006]). Figures S128 and S129 summarize the relation of sources of fruits or vegetables with stroke incidence. A significant interaction by fruit (P=0.017) and vegetable sources (P=0.044) was observed with significant associations with lower risk limited to citrus (RR, 0.88 [95% CI, 0.82-0.94], substantial heterogeneity [I²=51%, P=0.04]), juice (RR, 0.82 [95% CI, 0.68-0.99], substantial heterogeneity [I²=73%, P=0.02]), and pommes (RR, 0.89 [95% Cl, 0.84-0.95], no significant heterogeneity) fruit and to allium (RR, 0.89 [95% CI, 0.80-0.99], no significant heterogeneity), green leafy (RR, 0.88 [95% CI, 0.79-0.98], no significant heterogeneity), and tomato (RR, 0.20 [95% CI, 0.05-0.82], heterogeneity not applicable) vegetables. We found no significant associations from the highest versus lowest intakes of berries (RR, 1.03 [95% CI, 0.94-1.13], substantial heterogeneity [I²=50%, P=0.078]) fruit and cruciferous (RR, 0.98 [95% CI, 0.91-1.05], substantial heterogeneity [l²=62%, P=0.022]) vegetables.

Stroke Mortality

Figure 3 and Figures S130 through S144 show the relation of total and specific fruits and vegetables with stroke mortality. We found a lower risk associated with the highest versus the lowest intakes of fruits and vegetables (RR, 0.73 [95% Cl, 0.65-0.81], no significant heterogeneity), fruits (RR, 0.87 [95% CI, 0.84–0.91], substantial heterogeneity [I²=75%, P<0.001]), and vegetables (RR, 0.94 [95% Cl, 0.90-0.99], substantial heterogeneity $[I^2=62\%, P=0.001]$). Figures S145 and S146 summarize the relation of sources of fruit or vegetables with stroke mortality. A significant interaction by fruit (P<0.001) and vegetable sources (P<0.001) was observed with significant associations, with lower risk limited to citrus (RR, 0.90 [95% Cl, 0.86-0.95], substantial heterogeneity [I²=82%, P<0.001]) and juice (RR, 0.67 [95% Cl, 0.60-0.76], no significant heterogeneity) fruit and carrots (RR, 0.54 [95% CI, 0.48-0.61], heterogeneity not applicable) and green leafy (RR, 0.90 [95% CI, 0.83–0.97], substantial heterogeneity [I²=50%, P=0.09]) vegetables. We found no significant associations from the highest versus lowest intakes of bananas (RR, 1.04 [95% CI, 0.70-1.54], heterogeneity not applicable), berries (RR, 0.97 [95% Cl, 0.82-1.15], no significant heterogeneity), grapes (RR, 0.74 [95% CI, 0.53-1.02], no significant heterogeneity), and pommes (RR, 0.91 [95% CI, 0.77-1.09],

no significant heterogeneity) fruit and allium (RR, 0.99 [95% CI, 0.79–1.24], substantial heterogeneity [l^2 =96%, *P*<0.001]), cruciferous (RR, 0.92 [95% CI, 0.85–1.01], no significant heterogeneity), and tomato (RR, 1.03 [95% CI, 0.94–1.12], no significant heterogeneity) vegetables.

Figures S147 through S171 show the dose-response analyses for fruit and vegetables and stroke mortality and incidence. A nonlinear model best fit the data for citrus fruit (P=0.039) and vegetables (P=0.012) and stroke incidence and fruit (P<0.001)and green leafy (P=0.043) vegetables and stroke mortality, with plateaus in risk reductions following 0.5, 1, 2, and >0.7 daily servings, respectively. An inverse dose-response gradient was found in the associations between total fruits and vegetables (RR, 0.95 [95% CI, 0.92-0.98] per serving/day), fruits (RR, 0.92 [95% CI, 0.88-0.96] per serving/day), citrus fruit (RR, 0.83 [95% Cl, 0.69-0.98] per serving/ day), pommes (RR, 0.87 [95% CI, 0.79-0.96] per serving/day), green leafy vegetables (RR, 0.88 [95% CI, 0.79-0.97] per serving/day), and tomatoes (RR, 0.67 [95% CI, 0.52-0.87] per serving/day) with stroke incidence and fruits and vegetables (RR, 0.93 [95% CI, 0.88–0.98] per serving/day), fruits (RR, 0.85 [95% CI, 0.78-0.92] per serving/day), vegetables (RR, 0.93 [95% CI, 0.87-0.99] per serving/day), citrus fruit (RR, 0.67 [95% CI, 0.57-0.80] per serving/day), fruit juice (RR, 0.54 [95% Cl, 0.36-0.89] per serving/day), carrots (RR, 0.44 [95% Cl, 0.28-0.69] per serving/day), and green leafy vegetables (RR, 0.85 [95% Cl, 0.73-0.98] per serving/day) with stroke mortality.

Sensitivity Analyses

The systematic removal of each study did not modify the direction or significance of the association estimates or the evidence for heterogeneity (data not shown).

Subgroup Analyses

Figures S172 through S188 illustrate a priori categorical subgroup analyses. There were no statistically significant subgroup differences. Inverse associations were predominately limited to studies with statistical adjustments of \geq 8 potential confounders. Confining analyses to studies using validated exposure assessment techniques did not alter the associations. No effect modification was seen by sex, age, follow-up duration, NOS, or study location.

Publication Bias

Figures S189 through S205 illustrate publication bias analyses for comparisons with at least 10 observations. Visual inspection and formal analysis with the Begg and Egger test did not show evidence of publication bias in any comparison, except for vegetable intake with CVD (P_{Begg} =0.015, P_{Egger} =0.004), CHD (P_{Begg} =0.018, P_{Egger} =0.004), and stroke (P_{Begg} =0.545, P_{Egger} =0.018) mortality and fruit intake with stroke mortality (P_{Begg} =0.820, P_{Egger} =0.031), which were subsequently unsupported by the trim and fill test.

GRADING OF RECOMMENDATIONS ASSESSMENT, DEVELOPMENT, AND EVALUATION

Figures 2 and 3 and Tables S4 through S9 summarize the GRADE assessments. The certainty of the evidence was rated as "moderate" for 11, "low" for 21, and "very low" for 52 of the exposure-outcome relationships. Our certainty in the evidence was strongest for the associations of total fruits and vegetables with lower risks of CHD incidence and CHD and stroke mortality; fruits with lower risks of CVD, CHD, and stroke incidence; vegetables with lower risks of CHD mortality and stroke incidence; pommes fruit with lower risks of stroke incidence; and green leafy vegetables with lower risks of CHD incidence. The evidence was rated as "moderate" in each case, because of an upgrade for dose-response gradient in the absence of any downgrades. The associations for specific types of fruits and vegetables were rated largely as "very low," because of downgrades for imprecision, risk of bias, indirectness, and/or inconsistency. The fixed effects model improved our certainty in the evidence for fruit and CVD incidence by improving precision of the pooled risk estimate. There were no other marked differences between the random effects and fixed effects models.

DISCUSSION

We conducted a systematic review and meta-analysis of 81 unique prospective cohorts involving 4 031 896 individuals and 125 112 cardiovascular events to assess the relation of total and specific fruit and vegetable consumption on CVD incidence and mortality outcomes. Pooled analyses of highest versus lowest consumption illustrate a lower risk in CVD, CHD, and stroke incidence or mortality by 7% to 27% from total fruit and vegetable intake, 9% to 18% from fruit intake, and 5% to 14% from vegetable intake. Of the specific fruit sources, highest versus lowest intakes of citrus and pommes fruit showed significant risk reductions in most CVD outcomes, from 9% to 12% and from 10% to 24%, respectively, and fruit juice showed a significant risk reduction in stroke incidence and mortality by 18% and 33%, respectively. Most notably of the vegetable categories, one daily serving of green leafy vegetables was associated

with 12% to 18% risk reduction in CVD, CHD, and stroke incidence and CHD mortality. There was a consistent linear dose-response between fruits and vegetables and CHD, with a maximum daily intake of 7 fruit and 7 vegetable servings showing a risk reduction of \approx 20% and \approx 30% in CHD incidence and mortality, respectively.

Findings in the Context of Existing Literature

Our findings are consistent with those of previous systematic review and meta-analyses, which also detected inverse associations between fruits and/ or vegetables and CVD mortality and incident outcomes.^{10,14,159} Our analyses were in line with those reported most recently by Aune et al, who observed the lowest risk on CVD, CHD, and stroke from maximum intakes of total fruits and vegetables.¹⁰ This is despite our division of CVD outcomes differing significantly, with the present study distinguishing between mortality and incidence data. Our findings on individual fruits and vegetables were also relatively consistent, highlighting a high versus low intake of citrus and pommes fruit, fruit juice, and green leafy vegetables as protective on CVD outcomes, suggesting they may independently play a valuable role in the diet. Nonetheless, the current study benefited from the inclusion of updated and novel large prospective cohorts, namely, the SUN (Seguimiento University of Navarra)¹⁶⁰ and PURE (Prospective Urban and Rural Epidemiology)¹⁶¹ cohorts, which combined contributed an additional 152 342 individuals and 4896 events to our analyses.

Numerous mechanisms have been proposed to explain the benefits of fruit and vegetable consumption on the cardiovascular system. Perhaps the most supported hypothesis is through their essential contribution to total dietary fiber, an established modifier of CVD risk factors.^{162,163}

Fruits with highlighted benefits in the present review tend to be of low glycemic index, a characteristic with demonstrated CVD risk factor reductions.¹⁶⁴ Their consumption has also been associated with improved weight management¹⁶⁵ and decreased prevalence of obesity,¹⁶⁶ a risk factor attributed to 7% to 44% of CVD incidence.¹⁶⁷ likely because of their low energy density and displacement of high calorie foods in the diet. The relationships between the extensive list of micronutrients offered by fruits and vegetables and CVD risk reduction has also been widely explored. They are a key source of antioxidants in the diet, necessary for eradicating free radicals, and may defend against damaging lipid oxidation.¹⁶⁸ Individual sources may offer distinct benefits, such as green leafy vegetables, which are dense in dietary nitrates, a compound linked to reductions in early prognostic markers of CVD.¹⁶⁹⁻¹⁷¹ Interestingly, however, we did not observe a benefit from high consumption of berries as the most concentrated fruit source of antioxidants. Several vasoactive minerals, such as potassium, magnesium, and calcium, are also obtained from fruits and vegetables in the diet.¹⁷²⁻¹⁷⁴ Although each mechanism may be individually biologically plausible, the complexity of the nutrient combinations cannot be underestimated. A whole food approach is necessary to evaluate their efficacy in CVD risk reduction as it can account for additive and multiplicative mechanisms.

Strengths and Limitations

Our systematic review and meta-analysis has several strengths. It provides a comprehensive synthesis of the available knowledge on consumption of fruits, vegetables, and their varieties and CVD outcomes of importance to public health and clinical practice. We included a systematic search strategy to ensure all published prospective cohort data were identified and used a priori established approaches to explore the pooled risk estimates, including dose-response analyses. Finally, the certainty of the evidence was assessed using the GRADE approach with the evidence upgraded in several cases for the presence of a protective inverse dose-response gradient for the association of total fruits and vegetables, fruits, vegetables, and green leafy vegetables with CVD outcomes.

There are also several limitations of our systematic review and meta-analysis. Although ≈90% of the included prospective cohort studies were of high guality, residual confounding (measured and unmeasured) cannot be ruled out in observational studies. This issue is addressed in the GRADE assessment, which starts observational studies as "low" certainty. We downgraded the certainty of evidence because of imprecision in 55 of the 84 associations as the upper 95% CI crossed the minimal clinically important difference of a 5% reduction in relative risk, from which evidence of harm could not be excluded in 30 associations. Because of limited number of observations, indirectness was also present in several cases and the lack of reported exposures for different tropical fruit limited our exploration of this fruit category. Another source of uncertainty leading to downgrades in the evidence was the presence of high risk of bias in several of the studies that presented data on specific sources of fruits and vegetables. Last, the evidence was downgraded for inconsistency based on the presence of substantial unexplained heterogeneity in 19 of the 84 associations.

Balancing the strengths and limitations, the certainty of the evidence was rated as "very low" to "low" for most of the exposure-outcome relationships for the association of fruits and vegetables with cardiovascular outcomes. The highest ("moderate") rated evidence was for the cardiovascular benefit of total fruits and vegetables, fruits, vegetables, pommes fruit, and green leafy vegetables. The least certainty was for other specific fruit and vegetable sources.

Implications

Addressing the low prevalence of adequate fruit and vegetable consumption remains an important global health target.¹⁷⁵ With average intakes of 1 and 1.7 servings of fruit and vegetables per day, respectively, in developed countries, such as the United States,¹⁵⁰ there is an opportunity to increase intakes to meet the established minimum recommendations of 5 daily servings and realize the cardiovascular benefits.¹⁷⁶ We observed a linear dose relationship between fruits and vegetables and CHD and stroke risk, suggesting an increased cardiovascular benefit with additional servings and that targets beyond "5 a day" should also be considered. Successful strategies for increasing fruit and vegetable intake, nevertheless, are lacking and may benefit from emphasizing a larger variety of sources. Our synthesis highlighted that different sources of fruit, including 100% fruit juice, are associated with comparable CVD risk reduction as that of vegetables. Public health guidance to limit the intake of certain fruit sources because of concerns related to their contribution to sugars may have unintended harm in preventing people from meeting fruit and vegetable targets for CVD risk reduction.

CONCLUSIONS

Current evidence supports the role of a variety of fruits and vegetables for CVD prevention. Higher intakes of fruits and/or vegetables are associated with improvements in all CVD outcomes, with fruit associated with the largest risk reductions. Greater benefits may be seen for some fruits, including citrus, pommes, and 100% fruit juice, and vegetables, including allium, cruciferous, and green leafy vegetables, supporting recommendations for emphasizing specific fruit and vegetable sources in dietary guidelines. No fruit and vegetable sources were adversely associated with CVD, including fruit sources of concern, such as 100% fruit juice and dried fruit. Our certainty in the evidence ranges from "very low" to "moderate," with the least certainty for specific sources of fruits and vegetables and the highest certainty for broad categories. More research of specific food sources of fruits and vegetables is needed to improve our estimates.

ARTICLE INFORMATION

Received September 25, 2020; accepted July 21, 2020.

Affiliations

From the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., T.A.K., V.V., E.J., L.A.L., C.W.K., D.J.J., J.L.S.); Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., V.V., E.J., L.A.L., C.W.K., D.J.J., J.L.S.); Toronto 3D Knowledge Synthesis and Clinical Trial Unit, Toronto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., T.A.K., L.A.L., C.W.K., D.J.J., J.L.S.); Li Ka Shing Knowledge Institute (V.V., L.A.L., D.J.J., J.L.S.) and Division of Endocrinology and Metabolism (V.V., L.A.L., D.J.J., J.L.S.); Storonto, Ontario, Canada (A.Z., F.A.-Y., S.B.M., T.A.K., L.A.L., C.W.K., D.J.J., J.L.S.); Li Ka Shing Knowledge Institute (V.V., L.A.L., D.J.J., J.L.S.); St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada (V.V., L.A.L., D.J.J., J.L.S.); and College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (C.W.K.).

Sources of Funding

This work was funded by the Canadian Institutes of Health Research (funding reference number, 129920). The Diet, Digestive Tract, and Disease Centre, funded through the Canada Foundation for Innovation and the Ministry of Research and Innovation's Ontario Research Fund, provided the infrastructure for the conduct of this project. Zurbau was funded by the Banting & Best Diabetes Centre Tamarack Graduate Award. Sievenpiper was funded by a PSI Graham Farquharson Knowledge Translation Fellowship, Diabetes Canada Clinician Scientist Award, Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes (INMD) and the Canadian Nutrition Society (CNS) New Investigator Partnership Prize, and Banting & Best Diabetes Centre Sun Life Financial New Investigator Award.

Disclosures

Zurbau is a part-time employee at INQUIS Clinical Research Ltd., a contract research organization. Khan reports he has received research support from the Canadian Institutes of Health Research (CIHR), the International Life Science Institute (ILSI), and National Honey Board. He has been an invited speaker at the Calorie Control Council Annual meeting for which he has received an honorarium. Vuksan has a Canadian (2410556) and American (7326.404) patent on the medical use of viscous fiber blend for reducing blood glucose for treatment of diabetes mellitus, increasing insulin sensitivity, and reduction in systolic blood pressure and blood lipids issued. Kendall has received grants or research support from the Advanced Food Materials Network, Agriculture and Agri-Foods Canada, Almond Board of California, American Peanut Council, Barilla, CIHR, Canola Council of Canada, International Nut and Dried Fruit Council, International Tree Nut Council Research and Education Foundation, Loblaw Brands Ltd, Pulse Canada, and Unilever. He has received in-kind research support from the Almond Board of California, American Peanut Council, Barilla, California Walnut Commission, Kellogg Canada, Loblaw Companies, Quaker (Pepsico), Primo, Unico, Unilever, and White Wave Foods/Danone. He has received travel support and/or honoraria from the American Peanut Council, Barilla, California Walnut Commission, Canola Council of Canada, General Mills, International Nut and Dried Fruit Council, International Pasta Organization, Loblaw Brands Ltd, Nutrition Foundation of Italy, Oldways Preservation Trust, Paramount Farms, Peanut Institute, Pulse Canada, Sun-Maid, Tate & Lyle, Unilever, and White Wave Foods. He has served on the scientific advisory board for the International Tree Nut Council, International Pasta Organization, McCormick Science Institute, and Oldways Preservation Trust. He is a member of the International Carbohydrate Quality Consortium, Executive Board Member of the Diabetes and Nutrition Study Group of the European Association for the Study of Diabetes (EASD), is on the Clinical Practice Guidelines Expert Committee for Nutrition Therapy of the EASD, and is a Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. Jenkins has received research grants from Saskatchewan Pulse Growers, the Agricultural Bioproducts Innovation Program through the Pulse Research Network, the Advanced Foods and Material Network, Loblaw Companies Ltd, Unilever, Barilla, the Almond Board of California, Agriculture and Agri-food Canada, Pulse Canada, Kellogg's Company, Canada, Quaker Oats, Canada, Procter & Gamble Technical Centre Ltd, Bayer Consumer Care, Springfield, NJ, Pepsi/Quaker, International Nut & Dried Fruit (INC), Soy Foods Association of North America, the Coca-Cola Company (investigator-initiated, unrestricted grant), Solae, Haine Celestial, the Sanitarium Company, Orafti, the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, Soy Nutrition Institute, the Canola and Flax Councils of Canada, the Calorie Control

Council, the CIHR, the Canada Foundation for Innovation, and the Ontario Research Fund. He has received in-kind supplies for trials as a research support from the Almond Board of California, Walnut Council of California, American Peanut Council, Barilla, Unilever, Unico, Primo, Loblaw Companies, Quaker (Pepsico), Pristine Gourmet, Bunge Limited, Kellogg Canada, and White Wave Foods. He has been on the speaker's panel, served on the scientific advisory board, and/or received travel support and/ or honoraria from the Almond Board of California, Canadian Agriculture Policy Institute, Loblaw Companies Ltd, the Griffin Hospital (for the development of the NuVal scoring system), the Coca-Cola Company, EPICURE, Danone, Diet Quality Photo Navigation, Better Therapeutics (FareWell), Verywell, True Health Initiative, Institute of Food Technologists, Soy Nutrition Institute, Herbalife Nutrition Institute, Saskatchewan Pulse Growers. Sanitarium Company, Orafti, the Almond Board of California, the American Peanut Council, the International Tree Nut Council Nutrition Research and Education Foundation, the Peanut Institute, Herbalife International, Pacific Health Laboratories, Nutritional Fundamentals for Health, Barilla, Metagenics, Bayer Consumer Care, Unilever Canada and Netherlands, Solae, Kellogg, Quaker Oats, Procter & Gamble, the Coca-Cola Company, the Griffin Hospital, Abbott Laboratories, the Canola Council of Canada, Dean Foods, the California Strawberry Commission, Haine Celestial, PepsiCo, the Alpro Foundation, Pioneer Hi-Bred International, DuPont Nutrition and Health, Spherix Consulting and White Wave Foods, the Advanced Foods and Material Network, the Canola and Flax Councils of Canada, the Nutritional Fundamentals for Health, Agri-Culture and Agri-Food Canada, the Canadian Agri-Food Policy Institute, Pulse Canada, the Saskatchewan Pulse Growers, the Soy Foods Association of North America, the Nutrition Foundation of Italy, Nutra-Source Diagnostics, the McDougall Program, the Toronto Knowledge Translation Group (St. Michael's Hospital), the Canadian College of Naturopathic Medicine, The Hospital for Sick Children, the Canadian Nutrition Society, the American Society of Nutrition, Arizona State University, Paolo Sorbini Foundation, and the Institute of Nutrition, Metabolism and Diabetes. He received an honorarium from the US Department of Agriculture to present the 2013 W.O. Atwater Memorial Lecture. He received the 2013 Award for Excellence in Research from the International Nut and Dried Fruit Council. He received funding and travel support from the Canadian Society of Endocrinology and Metabolism to produce mini cases for the Canadian Diabetes Association. He is a member of the International Carbohydrate Quality Consortium. His wife, Alexandra L Jenkins, is a director and partner of INQUIS Clinical Research for the Food Industry, his 2 daughters, Wendy Jenkins and Amy Jenkins, have published a vegetarian book that promotes the use of the low glycemic index plant foods advocated here, The Portfolio Diet for Cardiovascular Risk Reduction (Academic Press/Elsevier 2020 ISBN:978-0-12-810510-8) and and his sister, Caroline Brydson, received funding through a grant from the St. Michael's Hospital Foundation to develop a cookbook for one of his studies. Sievenpiper has received research support from the Canadian Foundation for Innovation, Ontario Research Fund, Province of Ontario Ministry of Research and Innovation and Science, Canadian Institutes of health Research (CIHR), Diabetes Canada, PSI Foundation, Banting and Best Diabetes Centre (BBDC), American Society for Nutrition (ASN), INC International Nut and Dried Fruit Council Foundation, National Dried Fruit Trade Association, National Honey Board, International Life Sciences Institute (ILSI), The Tate and Lyle Nutritional Research Fund at the University of Toronto, The Glycemic Control and Cardiovascular Disease in Type 2 Diabetes Fund at the University of Toronto (a fund established by the Alberta Pulse Growers), and the Nutrition Trialists Fund at the University of Toronto (a fund established by an inaugural donation from the Calorie Control Council). He has received in-kind food donations to support a randomized controlled trial from the Almond Board of California, California Walnut Commission, American Peanut Council, Barilla, Unilever, Upfield, Unico/Primo, Loblaw Companies, Quaker, Kellogg Canada, WhiteWave Foods, and Nutrartis. He has received travel support, speaker fees and/or honoraria from Diabetes Canada, Dairy Farmers of Canada, FoodMinds LLC, International Sweeteners Association, Nestlé, Pulse Canada, Canadian Society for Endocrinology and Metabolism (CSEM), GI Foundation, Abbott, Biofortis, ASN, Northern Ontario School of Medicine, INC Nutrition Research & Education Foundation, European Food Safety Authority (EFSA), Comité Européen des Fabricants de Sucre (CEFS), and Physicians Committee for Responsible Medicine. He has or has had ad hoc consulting arrangements with Perkins Coie LLP, Tate & Lyle, Wirtschaftliche Vereinigung Zucker e.V., and Inquis Clinical Research. He is a member of the European Fruit Juice Association Scientific Expert Panel and Sov

Nutrition Institute (SNI) Scientific Advisory Committee. He is on the Clinical Practice Guidelines Expert Committees of Diabetes Canada, European Association for the study of Diabetes (EASD), Canadian Cardiovascular Society (CCS), and Obesity Canada. He serves or has served as an unpaid scientific advisor for the Food, Nutrition, and Safety Program (FNSP) and the Technical Committee on Carbohydrates of ILSI North America. He is a member of the International Carbohydrate Quality Consortium (ICQC), Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD, and Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. His wife is an employee of AB InBev. The remaining authors have no disclosures to report.

Supplementary Materials

Tables S1–S9 Figures S1–S205

REFERENCES

- 1. Lustig RH. Fructose: it's "alcohol without the buzz." Adv Nutr. 2013;4:226-235.
- Lustig R, Schmidt L, Brindis C. Public health: the toxic truth about sugar. Nature. 2012;482:27–29.
- Zurger A. A diet manifesto: drop the apple and walk away. The New York Times. 6. 2010. Accessed December 27.
- Government of Canada. Canada's food guide consultations: guiding principles. Government of Canada; 2017. https://www.foodguidec onsultation.ca/guiding-principles-detailed. Accessed August 5, 2020.
- International Diabetes Federation. International Diabetes Federation framework for action on sugar. 2015. https://www.idf.org/images/site1/ content/Framework-for-Action-on-Sugar-010615.pdf. Accessed April 24, 2018.
- Mcmurray S. Sugar content in fruit: is it damaging to your health and waistline? 2018. University Health News Daily. Available at: https:// universityhealthnews.com/daily/nutrition/high-sugar-content-fruit -damaging-health-waistline/. Accessed August 31, 2020.
- World Health Organization. Guideline: Sugars Intake for Adults and Children. 2015. Available at: https://www.who.int/publications/i/item/97892 41549028. Accessed August 16, 2019.
- 8. Villines Z, Butler N. What to know about sugar in fruit. 2019.
- Law MR, Morris JK. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? *Eur J Clin Nutr.* 1998;52:549–556.
- World Health Organization. The world health report: reducing risks, promoting healthy life. 2002. Available at: https://www.who.int/dietp hysicalactivity/publications/f&v_promotion_initiative_report.pdf?ua=1. Accessed August 31, 2020.
- Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. *Int J Epidemiol.* 2017;46:1029–1056.
- Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136:2588–2593.
- Gan Y, Tong X, Li L, Cao S, Yin X, Gao C, Herath C, Li W, Jin Z, Chen Y, et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. *Int J Cardiol.* 2015;183:129–137.
- He FJ, Nowson CA, Lucas M, Macgregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. *J Hum Hypertens*. 2007;21:717–728.
- Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. *Stroke*. 2014;45:1613–1619.
- Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. *BMJ*. 2014;349: g4490.
- 17. Zhan J, Liu YJ, Cai LB, Xu FR, Xie T, He QQ. Fruit and vegetable consumption and risk of cardiovascular disease: a meta-analysis

of prospective cohort studies. Crit Rev Food Sci Nutr. 2017;57: 1650-1663.

- Higgins J, Green S. Cochrane handbook for systematic reviews of interventions. Cochrane Collaboration; 2011. https://training.cochrane. org/handbook/archive/v5.1/. Accessed October 10, 2016.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* 2009;151:264–269; w264.
- Wells G, Shea B, O'connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. Available at: http:// www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed August 31, 2020.
- Dersimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.
- Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. *JAMA*. 1998;280:1690–1691.
- Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *Am J Epidemiol.* 1992;135:1301–1309.
- Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. *Am J Epidemiol.* 2011;175:66–73.
- Lee JE, Mannisto S, Spiegelman D, Hunter DJ, Bernstein L, Van Den Brandt PA, Buring JE, Cho E, English DR, Flood A, et al. Intakes of fruit, vegetables, and carotenoids and renal cell cancer risk: a pooled analysis of 13 prospective studies. *Cancer Epidemiol Biomarkers Prev.* 2009;18:1730–1739.
- Deeks J, Higgins J, Altman D. Chapter 10: analysing data and undertaking meta-analyses. 2011. http://handbook.cochrane.org. Accessed September 25, 2014.
- Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, et al. Grade guidelines: 7: rating the quality of evidence—inconsistency. *J Clin Epidemiol.* 2011;64:1294–1302.
- Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*. 2000;56:455–463.
- Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, et al. Grade guidelines 6: rating the quality of evidence—imprecision. *J Clin Epidemiol.* 2011;64:1283–1293.
- Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, Debeer H, et al. GRADE guidelines: 1: introduction-GRADE evidence profiles and summary of findings tables. J *Clin Epidemiol.* 2011;64:383–394.
- Guyatt GHO, Kunz AD, Atkins R, Brozek D, Vist J, Alderson G, Glasziou P, Falck-Ytter P, Schunemann HJ. GRADE guidelines: 2: framing the question and deciding on important outcomes. *J Clin Epidemiol.* 2011;64:395–400.
- Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, et al. GRADE guidelines: 3: rating the quality of evidence. *J Clin Epidemiol.* 2011;64:401–406.
- Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, et al. GRADE guidelines: 4: rating the quality of evidence—study limitations (risk of bias). J Clin Epidemiol. 2011;64:407–415.
- Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, Alonso-Coello P, Djulbegovic B, Atkins D, Falck-Ytter Y, et al. GRADE guidelines: 5: rating the quality of evidence—publication bias. *J Clin Epidemiol.* 2011;64:1277–1282.
- Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, et al. GRADE guidelines: 7: rating the quality of evidence—inconsistency. *J Clin Epidemiol*. 2011;64:1294–1302.
- Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Falck-Ytter Y, Jaeschke R, Vist G, et al. GRADE guidelines: 8: rating the quality of evidence—indirectness. *J Clin Epidemiol.* 2011;64:1303–1310.
- Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, Atkins D, Kunz R, Brozek J, Montori V, et al. GRADE guidelines: 9: rating up the quality of evidence. *J Clin Epidemiol*. 2011;64:1311–1316.

- Brunetti M, Shemilt I, Pregno S, Vale L, Oxman AD, Lord J, Sisk J, Ruiz F, Hill S, Guyatt GH, et al. GRADE guidelines: 10: considering resource use and rating the quality of economic evidence. *J Clin Epidemiol.* 2013;66:140–150.
- Guyatt G, Oxman AD, Sultan S, Brozek J, Glasziou P, Alonso-Coello P, Atkins D, Kunz R, Montori V, Jaeschke R, et al. GRADE guidelines: 11: making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. *J Clin Epidemiol*. 2013;66:151–157.
- Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, Brozek J, Norris S, Meerpohl J, Djulbegovic B, et al. GRADE guidelines: 12: preparing summary of findings tables-binary outcomes. J *Clin Epidemiol.* 2013;66:158–172.
- Guyatt GH, Thorlund K, Oxman AD, Walter SD, Patrick D, Furukawa TA, Johnston BC, Karanicolas P, Akl EA, Vist G, et al. GRADE guidelines: 13: preparing summary of findings tables and evidence profiles-continuous outcomes. *J Clin Epidemiol*. 2013;66:173–183.
- 42. Adriouch S, Lampure A, Nechba A, Baudry J, Assmann K, Kesse-Guyot E, Hercberg S, Scalbert A, Touvier M, Fezeu LK. Prospective association between total and specific dietary polyphenol intakes and cardiovascular disease risk in the Nutrinet-Sante French cohort. *Nutrients*. 2018;10:1587.
- Appleby PN, Key TJ, Burr ML, Thorogood M. Mortality and fresh fruit consumption. *IARC Sci Publ.* 2002;156:131–133.
- Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. High diet quality is associated with a lower risk of cardiovascular disease and all-cause mortality in older men. *J Nutr.* 2014;144:673–680.
- 45. Bahadoran Z, Mirmiran P, Momenan AA, Azizi F. Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults: a longitudinal follow-up study. *J Hypertens*. 2017;35:1909–1916.
- 46. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-Up Study. Am J Clin Nutr. 2002;76:93–99.
- Belin RJ, Greenland P, Allison M, Martin L, Shikany JM, Larson J, Tinker L, Howard BV, Lloyd-Jones D, Van Horn L. Diet quality and the risk of cardiovascular disease: the Women's Health Initiative (WHI). *Am J Clin Nutr.* 2011;94:49–57.
- Bendinelli B, Masala G, Saieva C, Salvini S, Calonico C, Sacerdote C, Agnoli C, Grioni S, Frasca G, Mattiello A, et al. Fruit, vegetables, and olive oil and risk of coronary heart disease in Italian women: the EPICOR study. *Am J Clin Nutr.* 2011;93:275–283.
- 49. Berard E, Bongard V, Haas B, Dallongeville J, Moitry M, Cottel D, Ruidavets JB, Ferrieres J. Score of adherence to 2016 European cardiovascular prevention guidelines is an independent determinant of cardiovascular and all-cause mortality in a French general population. *Eur Heart J.* 2017;38:1064. Conference: European Society of Cardiology, ESC congress. Spain.
- Bhupathiraju SN, Wedick NM, Pan A, Manson JE, Rexrode KM, Willett WC, Rimm EB, Hu FB. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. *Am J Clin Nutr.* 2013;98:1514–1523.
- Bingham S, Luben R, Welch A, Low YL, Khaw KT, Wareham N, Day N. Associations between dietary methods and biomarkers, and between fruits and vegetables and risk of ischaemic heart disease, in the EPIC Norfolk Cohort Study. *Int J Epidemiol.* 2008;37:978–987.
- Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Zhu K, Lim WH, Woodman RJ, Beilin LJ, Prince RL, Hodgson JM. Cruciferous and allium vegetable intakes are inversely associated with 15-year atherosclerotic vascular disease deaths in older adult women. *J Am Heart Assoc.* 2017;6:e006558. DOI: 10.1161/JAHA.117.006558.
- Bos MJ, Koudstaal PJ, Hofman A, Ikram MA. Modifiable etiological factors and the burden of stroke from the Rotterdam study: a population-based cohort study. *PLoS Med.* 2014;11:e1001634.
- Buijsse B, Feskens EJ, Kwape L, Kok FJ, Kromhout D. Both alpha- and beta-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in Dutch elderly men. *J Nutr.* 2008;138:344–350.
- Buil-Cosiales P, Martinez-Gonzalez MA, Ruiz-Canela M, Diez-Espino J, Garcia-Arellano A, Toledo E. Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a Mediterranean young cohort. *Nutrients*. 2017;9:17.

- Buil-Cosiales P, Toledo E, Salas-Salvado J, Zazpe I, Farras M, Basterra-Gortari FJ, Diez-Espino J, Estruch R, Corella D, Ros E, et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the prevencion con dieta Mediterranea (PREDIMED) trial. *Br J Nutr.* 2016;116:534–546.
- Cassidy A, Rimm EB, O'Reilly EJ, Logroscino G, Kay C, Chiuve SE, Rexrode KM. Dietary flavonoids and risk of stroke in women. *Stroke*. 2012;43:946–951.
- Collin LJ, Judd S, Safford M, Vaccarino V, Welsh JA. Association of sugary beverage consumption with mortality risk in US adults: a secondary analysis of data from the REGARDS study. *JAMA Netw Open*. 2019;2:e193121.
- Conrad Z, Thomson J, Jahns L. Prospective analysis of vegetable amount and variety on the risk of all-cause and cause-specific mortality among US adults, 1999–2011. *Nutrients*. 2018;10:27.
- Dauchet L, Ferrieres J, Arveiler D, Yarnell JW, Gey F, Ducimetiere P, Ruidavets JB, Haas B, Evans A, Bingham A, et al. Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: the PRIME study. *Br J Nutr.* 2004;92:963–972.
- Dauchet L, Montaye M, Ruidavets JB, Arveiler D, Kee F, Bingham A, Ferrieres J, Haas B, Evans A, Ducimetiere P, et al. Association between the frequency of fruit and vegetable consumption and cardiovascular disease in male smokers and non-smokers. *Eur J Clin Nutr.* 2010;64:578–586.
- Du H, Li L, Bennett D, Guo Y, Key TJ, Bian Z, Sherliker P, Gao H, Chen Y, Yang L, et al. Fresh fruit consumption and major cardiovascular disease in China. *N Engl J Med*. 2016;374:1332–1343.
- Du H, Li L, Bennett D, Yang L, Guo Y, Key TJ, Bian Z, Chen Y, Walters RG, Millwood IY, et al. Fresh fruit consumption and all-cause and cause-specific mortality: findings from the China Kadoorie Biobank. *Int J Epidemiol.* 2017;46:1444–1455.
- Elwood P, Galante J, Pickering J, Palmer S, Bayer A, Ben-Shlomo Y, Longley M, Gallacher J. Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the caerphilly cohort study. *PLoS One.* 2013;8:e81877.
- Eriksen A, Tillin T, O'Connor L, Brage S, Hughes A, Mayet J, McKeigue P, Whincup P, Chaturvedi N, Forouhi NG. The impact of health behaviours on incident cardiovascular disease in Europeans and South Asians—a prospective analysis in the UK SABRE study. *PLoS One*. 2015;10:e0117364.
- Fitzgerald KC, Chiuve SE, Buring JE, Ridker PM, Glynn RJ. Comparison of associations of adherence to a Dietary Approaches to Stop Hypertension (DASH)-style diet with risks of cardiovascular disease and venous thromboembolism. J Thromb Haemost. 2012;10:189–198.
- Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease: the Adventist Health Study. *Arch Intern Med.* 1992;152:1416–1424.
- Gardener H, Wright CB, Gu Y, Demmer RT, Boden-Albala B, Elkind MSV, Sacco RL, Scarmeas N. Mediterranean-style diet and risk of ischemic stroke, myocardial infarction, and vascular death: the Northern Manhattan Study. *Am J Clin Nutr.* 2011;94:1458–1464.
- Gaziano JM, Manson JE, Branch LG, Colditz GA, Willett WC, Buring JE. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. *Ann Epidemiol.* 1995;5:255–260.
- Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. *Am J Epidemiol.* 2004;160:1223–1233.
- Gillman MW, Cupples LA, Gagnon D, Posner BM, Ellison RC, Castelli WP, Wolf PA. Protective effect of fruits and vegetables on development of stroke in men. JAMA. 1995;273:1113–1117.
- Goetz ME, Judd SE, Safford MM, Hartman TJ, Mcclellan WM, Vaccarino V. Dietary flavonoid intake and incident coronary heart disease: the reasons for geographic and racial differences in stroke (REGARDS) study. *Am J Clin Nutr.* 2016;104:1236–1244.
- Goetz ME, Judd SE, Hartman TJ, Mcclellan W, Anderson A, Vaccarino V. Flavanone intake is inversely associated with risk of incident ischemic stroke in the reasons for geographic and racial differences in stroke (REGARDS) study. *J Nutr.* 2016;146:2233–2243.

- Gunge VB, Andersen I, Kyro C, Hansen CP, Dahm CC, Christensen J, Tjonneland A, Olsen A. Adherence to a healthy Nordic food index and risk of myocardial infarction in middle-aged Danes: the diet, cancer and health cohort study. *Eur J Clin Nutr.* 2017;71:652–658.
- Gunnell AS, Einarsdottir K, Galvao DA, Joyce S, Tomlin S, Graham V, Mcintyre C, Newton RU, Briffa T. Lifestyle factors, medication use and risk for ischaemic heart disease hospitalisation: a longitudinal population-based study. *PLoS One.* 2013;8:e77833.
- Hansen CP, Overvad K, Kyro C, Olsen A, Tjonneland A, Johnsen SP, Jakobsen MU, Dahm CC. Adherence to a healthy Nordic diet and risk of stroke: a Danish cohort study. *Stroke*. 2017;48:259–264.
- Hansen L, Dragsted LO, Olsen A, Christensen J, Tjønneland A, Schmidt EB, Overvad K. Fruit and vegetable intake and risk of acute coronary syndrome. *Br J Nutr.* 2010;104:248–255.
- Harriss LR, English DR, Powles J, Giles GG, Tonkin AM, Hodge AM, Brazionis L, O'Dea K. Dietary patterns and cardiovascular mortality in the Melbourne Collaborative Cohort Study. *Am J Clin Nutr.* 2007;86:221–229.
- Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. *Am J Clin Nutr.* 1997;65:1489–1494.
- Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Hakkinen S, Albanes D, Virtamo J. Intake of flavonols and flavones and risk of coronary heart disease in male smokers. *Epidemiology*. 2001;12:62–67.
- Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P. Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. *Stroke*. 2000;31:2301–2306.
- Hjartaker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. *Eur J Nutr.* 2015;54:599–608.
- Hodgson JM, Prince RL, Woodman RJ, Bondonno CP, Ivey KL, Bondonno N, Rimm EB, Ward NC, Croft KD, Lewis JR. Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women. *Br J Nutr.* 2016;115:860–867.
- Holmberg S, Thelin A, Stiernstrom EL. Food choices and coronary heart disease: a population based cohort study of rural Swedish men with 12 years of follow-up. *Int J Environ Res Public Health*. 2009;6:2626–2638.
- Iso H, Kubota Y; Japan Collaborative Cohort Study for Evaluation of Cancer. Nutrition and disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev. 2007;8(suppl):35–80.
- Jacques PF, Cassidy A, Rogers G, Peterson JJ, Dwyer JT. Dietary flavonoid intakes and CVD incidence in the Framingham Offspring Cohort. *Br J Nutr.* 2015;114:1496–1503.
- Johnsen SP, Overvad K, Stripp C, Tjonneland A, Husted SE, Sorensen HT. Intake of fruit and vegetables and the risk of ischemic stroke in a cohort of Danish men and women. *Am J Clin Nutr.* 2003;78:57–64.
- Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC. Fruit and vegetable intake in relation to risk of ischemic stroke. *JAMA*. 1999;282:1233–1239.
- Joshipura KJ, Hung HC, Li TY, Hu FB, Rimm EB, Stampfer MJ, Colditz G, Willett WC. Intakes of fruits, vegetables and carbohydrate and the risk of CVD. *Public Health Nutr.* 2009;12:115–121.
- Keli SO, Hertog MG, Feskens EJ, Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med. 1996;156:637–642.
- Kim LG, Adamson J, Ebrahim S. Influence of life-style choices on locomotor disability, arthritis and cardiovascular disease in older women: prospective cohort study. *Age Ageing*. 2013;42:696–701.
- Knekt P, Isotupa S, Rissanen H, Heliovaara M, Jarvinen R, Hakkinen S, Aromaa A, Reunanen A. Quercetin intake and the incidence of cerebrovascular disease. *Eur J Clin Nutr.* 2000;54:415–417.
- Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. *BMJ*. 1996;312:478–481.
- Knekt P, Reunanen A, Jarvinen R, Seppanen R, Heliovaara M, Aromaa A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. *Am J Epidemiol.* 1994;139:1180–1189.
- Kobylecki CJ, Afzal S, Davey Smith G, Nordestgaard BG. Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality: a Mendelian randomization study. *Am J Clin Nutr.* 2015;101:1135–1143.
- Kondo K, Miura K, Tanaka-Mizuno S, Kadota A, Arima H, Okuda N, Fujiyoshi A, Miyagawa N, Yoshita K, Okamura T, et al. Cardiovascular

risk assessment chart by dietary factors in Japan-NIPPON DATA80. *Circ J.* 2019:83:1254–1260.

- Kvaavik E, Batty GD, Ursin G, Huxley R, Gale CR. Influence of individual and combined health behaviors on total and cause-specific mortality in men and women: the United Kingdom Health and Lifestyle Survey [erratum appears in Arch Intern Med. 2010;170:998]. Arch Intern Med. 2010;170:711–718.
- Lai HT, Threapleton DE, Day AJ, Williamson G, Cade JE, Burley VJ. Fruit intake and cardiovascular disease mortality in the UK Women's Cohort Study. *Eur J Epidemiol.* 2015;30:1035–1048.
- Larsson SC, Mannisto S, Virtanen MJ, Kontto J, Albanes D, Virtamo J. Dietary fiber and fiber-rich food intake in relation to risk of stroke in male smokers. *Eur J Clin Nutr.* 2009;63:1016–1024.
- Larsson SC, Virtamo J, Wolk A. Total and specific fruit and vegetable consumption and risk of stroke: a prospective study. *Atherosclerosis*. 2013;227:147–152.
- Leenders M, Boshuizen HC, Ferrari P, Siersema PD, Overvad K, Tjonneland A, Olsen A, Boutron-Ruault MC, Dossus L, Dartois L, et al. Fruit and vegetable intake and cause-specific mortality in the EPIC study. *Eur J Epidemiol.* 2014;29:639–652.
- 102. Leenders M, Sluijs I, Ros MM, Boshuizen HC, Siersema PD, Ferrari P, Weikert C, Tjonneland A, Olsen A, Boutron-Ruault MC, et al. Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. *Am J Epidemiol.* 2013;178:590–602.
- Lin J, Rexrode KM, Hu F, Albert CM, Chae CU, Rimm EB, Stampfer MJ, Manson JE. Dietary intakes of flavonols and flavones and coronary heart disease in US women. *Am J Epidemiol.* 2007;165:1305–1313.
- 104. Lin YH, Ku PW, Chou P. Lifestyles and mortality in Taiwan: an 11-year follow-up study. *Asia Pac J Public Health*. 2017;29:259–267.
- 105. Liu S, Lee IM, Ajani U, Cole SR, Buring JE, Manson JEP; Physicians' Health Study. Intake of vegetables rich in carotenoids and risk of coronary heart disease in men: the Physicians' Health Study. Int J Epidemiol. 2001;30:130–135.
- Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. *Am J Clin Nutr.* 2000;72:922–928.
- Mann JI, Appleby PN, Key TJ, Thorogood M. Dietary determinants of ischaemic heart disease in health conscious individuals. *Heart*. 1997;78:450–455.
- Manuel DG, Tuna M, Perez R, Tanuseputro P, Hennessy D, Bennett C, Rosella L, Sanmartin C, Van Walraven C, Tu JV. Predicting stroke risk based on health behaviours: development of the stroke population risk tool (SPoRT). *PLoS One*. 2015;10:e0143342.
- 109. Miller V, Mente A, Dehghan M, Rangarajan S, Zhang X, Swaminathan S, Dagenais G, Gupta R, Mohan V, Lear S, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. *Lancet*. 2017;390:2037–2049.
- Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs DR. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. *Am J Clin Nutr.* 2007;85:895–909.
- Mizrahi A, Knekt P, Montonen J, Laaksonen MA, Heliovaara M, Jarvinen R. Plant foods and the risk of cerebrovascular diseases: a potential protection of fruit consumption. *Br J Nutr.* 2009;102:1075–1083.
- 112. Mori N, Shimazu T, Charvat H, Mutoh M, Sawada N, Iwasaki M, Yamaji T, Inoue M, Goto A, Takachi R, et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. *Clin Nutr.* 2018;24:24.
- 113. Mytton OT, Forouhi NG, Scarborough P, Lentjes M, Luben R, Rayner M, Khaw KT, Wareham NJ, Monsivais P. Association between intake of less-healthy foods defined by the United Kingdom's nutrient profile model and cardiovascular disease: a population-based cohort study. *PLoS Med.* 2018;15:e1002484.
- 114. Nagura J, Iso H, Watanabe Y, Maruyama K, Date C, Toyoshima H, Yamamoto A, Kikuchi S, Koizumi A, Kondo T, et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC study. *Br J Nutr.* 2009;102:285–292.
- 115. Nakamura K, Nagata C, Oba S, Takatsuka N, Shimizu H. Fruit and vegetable intake and mortality from cardiovascular disease are inversely associated in Japanese women but not in men. *J Nutr.* 2008;138:1129–1134.

- Nechuta SJ, Shu XO, Li HL, Yang G, Xiang YB, Cai H, Chow WH, Ji B, Zhang X, Wen W, et al. Combined impact of lifestyle-related factors on total and cause-specific mortality among Chinese women: prospective cohort study. *PLoS Med.* 2010;7:e1000339.
- Neelakantan N, Koh WP, Yuan JM, Van Dam RM. Diet-quality indexes are associated with a lower risk of cardiovascular, respiratory, and allcause mortality among Chinese adults. *J Nutr.* 2018;148:1323–1332.
- Ness AR, Maynard M, Frankel S, Smith GD, Frobisher C, Leary SD, Emmett PM, Gunnell D. Diet in childhood and adult cardiovascular and all cause mortality: the Boyd Orr cohort. *Heart*. 2005;91:894–898.
- 119. Nothlings U, Schulze MB, Weikert C, Boeing H, Van Der Schouw YT, Bamia C, Benetou V, Lagiou P, Krogh V, Beulens JW, et al. Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. *J Nutr.* 2008;138:775–781.
- 120. Okuda N, Miura K, Okayama A, Okamura T, Abbott RD, Nishi N, Fujiyoshi A, Kita Y, Nakamura Y, Miyagawa N, et al. Fruit and vegetable intake and mortality from cardiovascular disease in Japan: a 24-year follow-up of the NIPPON DATA80 study. *Eur J Clin Nutr.* 2015;69:482–488.
- 121. Oude Griep LM, Geleijnse JM, Kromhout D, Ocke MC, Verschuren WM. Raw and processed fruit and vegetable consumption and 10-year coronary heart disease incidence in a population-based cohort study in the Netherlands. *PLoS One.* 2010;5:e13609.
- Oude Griep LM, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM. Colours of fruit and vegetables and 10-year incidence of CHD. Br J Nutr. 2011;106:1562–1569.
- 123. Oude Griep LM, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM. Raw and processed fruit and vegetable consumption and 10-year stroke incidence in a population-based cohort study in the Netherlands. *Eur J Clin Nutr.* 2011;65:791–799.
- Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. *J Epidemiol Community Health*. 2014;68:856–862.
- Pham TM, Fujino Y, Tokui N, Ide R, Kubo T, Shirane K, Mizoue T, Ogimoto I, Yoshimura T. Mortality and risk factors for stroke and its subtypes in a cohort study in Japan. *Prev Med.* 2007;44:526–530.
- 126. Rebello SA, Koh H, Chen C, Naidoo N, Odegaard AO, Koh WP, Butler LM, Yuan JM, Van Dam RM. Amount, type, and sources of carbohydrates in relation to ischemic heart disease mortality in a Chinese population: a prospective cohort study. *Am J Clin Nutr.* 2014;100:53–64.
- 127. Rissanen TH, Voutilainen S, Virtanen JK, Venho B, Vanharanta M, Mursu J, Salonen JT. Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. *J Nutr.* 2003;133:199–204.
- Saglimbene V, Wong G, Bondonno N, Ruospo M, Palmer SC, Campbell K, Garcia Larsen V, Natale P, Teixeirapinto A, Gargano L, et al. Fruit intake and cardiovascular and all-cause mortality in adults on hemodialysis: the DIET-HD multinational cohort study. *Nephrology*. 2017;22(suppl 3):25.
- Sahyoun NR, Jacques PF, Russell RM. Carotenoids, vitamins C and E, and mortality in an elderly population. *Am J Epidemiol.* 1996;144:501–511.
- Sauvaget C, Nagano J, Allen N, Kodama K. Vegetable and fruit intake and stroke mortality in the Hiroshima/Nagasaki Life Span Study. *Stroke*. 2003;34:2355–2360.
- Scheffers FR, Boer JMA, Verschuren WMM, Verheus M, Van Der Schouw YT, Sluijs I, Smit HA, Wijga AH. Pure fruit juice and fruit consumption and the risk of CVD: the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. *Br J Nutr.* 2019;121:351–359.
- Sesso HD, Gaziano JM, Liu S, Buring JE. Flavonoid intake and the risk of cardiovascular disease in women. *Am J Clin Nutr.* 2003;77:1400–1408.
- Sesso HD, Gaziano JM, Jenkins DJ, Buring JE. Strawberry intake, lipids, C-reactive protein, and the risk of cardiovascular disease in women. J Am Coll Nutr. 2007;26:303–310.
- Sesso HD, Liu S, Gaziano JM, Buring JE. Dietary lycopene, tomato-based food products and cardiovascular disease in women. *J Nutr.* 2003;133:2336–2341.
- Shah NS, Leonard D, Finley CE, Rodriguez F, Sarraju A, Barlow CE, Defina LF, Willis BL, Haskell WL, Maron DJ. Dietary patterns and

long-term survival: a retrospective study of healthy primary care patients. *Am J Med.* 2018;131:48–55.

- Sharma S, Cruickshank JK, Green DM, Vik S, Tome A, Kolonel LN. Impact of diet on mortality from stroke: results from the U.S. multiethnic cohort study. J Am Coll Nutr. 2013;32:151–159.
- Sharma S, Vik S, Kolonel LN. Fruit and vegetable consumption, ethnicity and risk of fatal ischemic heart disease. *J Nutr Health Aging*. 2014;18:573–578.
- Simila ME, Kontto JP, Mannisto S, Valsta LM, Virtamo J. Glycaemic index, carbohydrate substitution for fat and risk of CHD in men. *Br J Nutr.* 2013;110:1704–1711.
- 139. Sonestedt E, Hellstrand S, Schulz CA, Wallstrom P, Drake I, Ericson U, Gullberg B, Hedblad B, Orho-Melander M. The association between carbohydrate-rich foods and risk of cardiovascular disease is not modified by genetic susceptibility to dyslipidemia as determined by 80 validated variants. *PLoS One.* 2015;10:e0126104.
- 140. Sotomayor CG, Gomes-Neto AW, Eisenga MF, Nolte IM, Anderson JLC, De Borst MH, Oste MCJ, Rodrigo R, Gans ROB, Berger SP, et al. Consumption of fruits and vegetables and cardiovascular mortality in renal transplant recipients: a prospective cohort study. *Nephrol Dial Transplant*. 2018;27:27.
- 141. Steffen LM, Jacobs DR Jr, Stevens J, Shahar E, Carithers T, Folsom AR. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78:383–390.
- 142. Stefler D, Pikhart H, Kubinova R, Pajak A, Stepaniak U, Malyutina S, Simonova G, Peasey A, Marmot MG, Bobak M. Fruit and vegetable consumption and mortality in Eastern Europe: longitudinal results from the Health, Alcohol and Psychosocial Factors in Eastern Europe study. *Eur J Prev Cardiol.* 2016;23:493–501.
- 143. Strandhagen E, Hansson PO, Bosaeus I, Isaksson B, Eriksson H. High fruit intake may reduce mortality among middle-aged and elderly men: the Study of Men Born in 1913. *Eur J Clin Nutr.* 2000;54:337–341.
- 144. Takachi R, Inoue M, Ishihara J, Kurahashi N, Iwasaki M, Sasazuki S, Iso H, Tsubono Y, Tsugane S; JPHC Study Group. Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. *Am J Epidemiol.* 2008;167:59–70.
- 145. Tanaka S, Yoshimura Y, Kamada C, Tanaka S, Horikawa C, Okumura R, Ito H, Ohashi Y, Akanuma Y, Yamada N, et al. Intakes of dietary fiber, vegetables, and fruits and incidence of cardiovascular disease in Japanese patients with type 2 diabetes. *Diabetes Care*. 2013;36:3916–3922.
- Tognon G, Lissner L, Saebye D, Walker KZ, Heitmann BL. The Mediterranean diet in relation to mortality and CVD: a Danish cohort study. *Br J Nutr.* 2014;111:151–159.
- 147. Tucker KL, Hallfrisch J, Qiao N, Muller D, Andres R, Fleg JL. The combination of high fruit and vegetable and low saturated fat intakes is more protective against mortality in aging men than is either alone: the Baltimore Longitudinal Study of Aging. *J Nutr.* 2005;135:556–561.
- Von Ruesten A, Feller S, Bergmann MM, Boeing H. Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. *Eur J Clin Nutr.* 2013;67:412–419.
- 149. Vormund K, Braun J, Rohrmann S, Bopp M, Ballmer P, Faeh D. Mediterranean diet and mortality in Switzerland: an alpine paradox? *Eur J Nutr.* 2015;54:139–148.
- 150. Wang JB, Fan JH, Dawsey SM, Sinha R, Freedman ND, Taylor PR, Qiao YL, Abnet CC. Dietary components and risk of total, cancer and cardiovascular disease mortality in the Linxian Nutrition Intervention Trials cohort in China. *Sci Rep.* 2016;6:22619.
- Watkins ML, Erickson JD, Thun MJ, Mulinare J, Heath CW Jr. Multivitamin use and mortality in a large prospective study. *Am J Epidemiol.* 2000;152:149–162.
- Whiteman D, Muir J, Jones L, Murphy M, Key T. Dietary questions as determinants of mortality: the OXCHECK experience. *Public Health Nutr.* 1999;2:477–487.
- 153. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, Ishikawa S, Nakamura Y, Kayaba K; Jichi Medical School Cohort Study Group. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School Cohort Study. J Epidemiol. 2011;21:169–175.

- 154. Yokoyama T, Date C, Kokubo Y, Yoshiike N, Matsumura Y, Tanaka H. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community: the Shibata study. *Stroke*. 2000;31:2287–2294.
- 155. Yoshizaki T, Ishihara J, Kotemori A, Yamamoto J, Kokubo Y, Saito I, Yatsuya H, Yamagishi K, Sawada N, Iwasaki M, et al. Association of vegetable, fruit, and okinawan vegetable consumption with incident stroke and coronary heart disease. J Epidemiol. 2019;12:12.
- 156. Yu D, Zhang X, Gao YT, Li H, Yang G, Huang J, Zheng W, Xiang YB, Shu XO. Fruit and vegetable intake and risk of CHD: results from prospective cohort studies of Chinese adults in Shanghai. *Br J Nutr.* 2014;111:353–362.
- 157. Zhang X, Shu XO, Xiang YB, Yang G, Li H, Gao J, Cai H, Gao YT, Zheng W. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. *Am J Clin Nutr.* 2011;94:240–246.
- Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, Hu G. Lifestyle factors on the risks of ischemic and hemorrhagic stroke. *Arch Intern Med.* 2011;171:1811–1818.
- 159. Saglimbene VW, Bondonno G, Ruospo N, Palmer M, Campbell SC, Garcia Larsen K, Natale V, Teixeirapinto P, Gargano A, Murgo L, et al. Fruit intake and cardiovascular and all-cause mortality in adults on hemodialysis: the DIET-HD multinational cohort study. *Nephrology*. 2017;22(suppl 3):25.
- 160. Gan YT, Li X, Cao L, Yin S, Gao X, Herath C, Li C, Jin W, Chen Z, Lu Y, et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. *Int J Cardiol.* 2015;183:129–137.
- Buil-Cosiales P, Martinez-Gonzalez M, Ruiz-Canela M, Díez-Espino J, García-Arellano A, Toledo E. Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a Mediterranean young cohort. *Nutrients*. 2017;9:17.
- 162. Miller V, Mente A, Dehghan M, Rangarajan S, Zhang X, Swaminathan S, Dagenais G, Gupta R, Mohan V, Lear S, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. *Lancet.* 2017;390:2037–2049.
- Hartley L, May MD, Loveman E, Colquitt JL, Rees K. Dietary fibre for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev.* 2016;2016:Cd011472.
- 164. Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. *Arch Cardiovasc Dis.* 2016;109:39–54.
- Jenkins DJ, Srichaikul K, Kendall CW, Sievenpiper JL, Abdulnour S, Mirrahimi A, Meneses C, Nishi S, He X, Lee S, et al. The relation of

low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes. *Diabetologia*. 2011;54:271–279.

- Mytton OT, Nnoaham K, Eyles H, Scarborough P, Ni MC. Systematic review and meta-analysis of the effect of increased vegetable and fruit consumption on body weight and energy intake. *BMC Public Health*. 2014;14:886.
- 167. Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. *Nutr Rev.* 2014;72:741–762.
- Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to quantify the health burden of obesity. *Ann Epidemiol.* 2015;25:201–207.
- Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994;344:793–795.
- Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. *J Hypertens*. 2017;35:1353–1359.
- 171. Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Woodman RJ, Croft KD, Lim WH, Wong G, Beilin LJ, Prince RL, et al. Association of dietary nitrate with atherosclerotic vascular disease mortality: a prospective co-hort study of older adult women. Am J Clin Nutr. 2017;106:207–216.
- 172. Jovanovski E, Bosco L, Khan K, Au-Yeung F, Ho H, Zurbau A, Jenkins AL, Vuksan V. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: a randomized, controlled trial in healthy adults. *Clin Nutr Res.* 2015;4:160–167.
- Filippini T, Violi F, D'Amico R, Vinceti M. The effect of potassium supplementation on blood pressure in hypertensive subjects: a systematic review and meta-analysis. *Int J Cardiol.* 2017;230:127–135.
- Van Mierlo LA, Arends LR, Streppel MT, Zeegers MP, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. *J Hum Hypertens*. 2006;20:571–580.
- 175. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, Song Y. Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. *Hypertension*. 2016;68:324–333.
- World Heath Organization. Fruit and vegetable promotion initiative—report of the meeting. 2003. Available at: https://www.who.int/dietphysicalact ivity/publications/f&v_promotion_initiative_report.pdf?ua=1. Accessed August 31, 2020.
- 177. World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation. Geneva: WHO Technical Report Series; 2003.

Supplemental Material

Table	S1.	Search	Strategy.
-------	------------	--------	-----------

Search #	Medline	Embase	Cochrane
	1946 to June 03, 2019	1946 to June 03, 2019	Through to June 03, 2019
1	Vegetables/	exp vegetable/	Vegetables/
2	vegetable*.tw,kf.	vegetable*.tw,kw.	vegetable*.ti,ab,hw.
3	Vegetable Products/	1 or 2	1 or 2
4	or/1-3	fruit.mp.	fruit.mp.
5	fruit.mp.	exp Fruit/	Fruit/
6	exp Fruit/	4 or 5	4 or 5
7	5 or 6	3 or 6	3 or 6
8	4 or 7	cardiovascular disease/	cardiovascular diseases/
9	cardiovascular disease/	cardiovascular.tw,kw.	exp myocardial ischemia/
10	exp myocardial ischemia/	exp heart muscle ischemia/	cardiovascular.ti,ab,hw.
11	cardiovascular.tw,kf.	isch?em*.tw,kw.	isch?em*.ti,ab,hw.
12	isch?em*.tw,kf.	coronary.tw,kw.	coronary.ti,ab,hw.
13	coronary.tw,kf.	myocard*.tw,kw.	myocard*.ti,ab,hw.
14	myocard*.tw,kf.	angina.tw,kw.	angina.ti,ab,hw.
15	angina.tw,kf.	exp cerebrovascular disease/	exp cerebrovascular disorders/
16	exp cerebrovascular disorders/	stroke.tw,kw.	stroke*.ti,ab,hw.
17	stroke*.tw,kf.	cerebral vascular.tw,kw.	cerebral vascular.ti,ab,hw.
18	cerebral vascular.tw,kf.	cerebrovascular.tw,kw.	cerebrovascular.ti,ab,hw.
19	cerebrovascular.tw,kf.	Or / 8-18	Or / 8-
20	Or / 9-19	exp cohort analysis/	
21	exp cohort studies/	exp longitudinal study/	
22	cohort*.tw.	exp prospective study/	
23	controlled clinical trial.pt.	exp follow up/	
24	Epidemiologic methods/	cohort\$.tw.	
25	limit 24 to yr=1971-1988	Or / 20-24	
26	Or / 21- 25	7 and 19	
27	8 and 20	25 and 26	
28	26 and 27		

Table S2. Confounding Variables Among 117 Studies of Fruit and Vegetables and Cardiovascular Disease Outcomes.

Table 52. Combunding variables	-			-							1
Study	Adriouch, 2018 ⁴²	Appleby, 2002 ⁴³	Atkins, 201444	Bahadoran, 2017 ⁴⁵	Bazzano, 2002 ⁴⁶	Belin, 2011 ⁴⁷	Bendinelli, 2011 ⁴⁸	Berard, 2017 ⁴⁹	Bhupathiraju, 2013 ⁵⁰	Bingham, 2008 ⁵¹	Blekkenhorst, 2017 ⁵²
No. of variables fully adjusted model	13	3	8	2	10	10	12	5	13	9	10
No. of multivariable models presented	1	1	2	2	2	1	2	1	2	1	8
Timing of measurement of confounding variables	BL	BL	BL	BL	BL, 1982-84, 86, 87, 92	BL	BL	BL	1984-86, q2y	BL	BL
Pre-specified primary confounding variables					,						
Age	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding											
variables											
Sex		✓	✓		✓		✓	✓		✓	N/A
Smoking	\checkmark	✓	✓		✓	✓	✓		✓	✓	✓
BMI	✓		✓			✓			✓		✓
Physical activity	✓		✓		✓	✓	✓		✓	✓	✓
Alcohol	✓				✓		✓		✓	✓	✓
Blood pressure	✓					✓	 ✓ 			✓	
Energy	✓		✓		✓	✓	✓	✓	✓	✓	1
Diabetes			İ		✓	✓	✓		1		✓
Cholesterol			İ			✓	✓		1	✓	✓
Other Confounding variables											
Education	✓				✓	✓	✓	✓			
Socioeconomic status			✓								✓
Menopause and/or hormone Use	✓						✓		✓		
Region/location											
Randomization treatment											✓
Ethnicity/nationality	✓				✓	✓					
Marital status	1										
Study center	1							✓			
Survey season	✓										
Employment status											
Follow-up duration											
Dietary Intake											
Vitamin/supplement					✓				✓		
Fruit and/or vegetable	✓										
Saturated fat											
Whole grains											
Fish/shellfish									✓		
Meat							✓				
Red meat	1		İ						✓		
Dietary pattern score			✓	✓							
Processed meat											
Coffee											
Fibre											
Folate											
Sodium											
Vitamin E											
Disease History											
MI or family history of MI									✓		
CHD or family history of CHD											
CVD or family history of CVD				✓							
Medications											
ASA											✓
Other confounding variables not listed:	Sleep, WC								Cereal fibre, Trans fat	Weight	GFR

Study	Bos, 2014 ⁵³	Buijsse,	BuilCosiales,	BuilCosiales,	Cassidy,	Collin,	Conrad,	Dauchet,	Dauchet,	Du, 2016 ⁶²
•		200854	201656	2017 ⁵⁵	201257	201958	201859	200460	201061	
No. of variables fully adjusted model	7	15	17	14	13	12	10	10	12	13
No. of multivariable models presented	1	4	1	3	1	4	1	1	1	2
Timing of measurement of confounding variables	BL	BL	BL	1999, q2y	1976, q2y	BL	BL	BL	BL	BL
Pre-specified primary confounding variables										
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables	ļ									
Sex	✓	✓	✓	✓	✓	✓	✓			✓
Smoking	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Physical activity		✓	✓		✓	✓		✓	✓	✓
Alcohol		✓	✓	✓	✓	~				✓
Blood pressure	✓		✓	\checkmark	\checkmark			✓	✓	
Energy		✓	✓	✓	✓	\checkmark				
Diabetes	✓		✓		✓			✓	✓	
Cholesterol					✓			✓	✓	
Other Confounding variables										
Education	Ì		✓	✓		✓	✓	✓	✓	✓
Socioeconomic status		✓				✓	✓		İ	✓
Menopause and/or hormone Use	1				✓				1	
Region/location						✓				✓
Randomization treatment	İ		✓						İ	
Ethnicity/nationality	1						✓		1	
Marital status				✓						
Study center	1		✓					✓	✓	
Survey season										✓
Employment status								✓	✓	
Follow-up duration								•	-	
Dietary Intake										
Vitamin/supplement					✓				✓	
Fruit and/or vegetable	1		✓		•				•	
Saturated fat	1	✓	•			✓			1	
Whole grains		•	✓	✓		· · ·				
			•	•						
Fish/shellfish										✓
Meat										v
Red meat										
Dietary pattern score										
Processed meat	 									l
Coffee	 							ļ	<u> </u>	ļ
Fibre		✓ ✓				✓				
Folate		✓								
Sodium										
Vitamin E										
Disease History	ļ	ļ	ļ	[ļ	L
MI or family history of MI	ļ								ļ	
CHD or family history of CHD	✓		✓	✓						
CVD or family history of CVD										
Medications										
ASA					✓					
Other confounding variables not listed:		Vitamin C, trans/PUFA, α-tocopherol	Olive oil, Statins	Dyslipidemia, Legumes, Olive oil			Cardiomet- abolic meds, added sugar, SFA:M/PUFA		Dyslipidemi	Dairy, Preserved vegetables

Table S2. *Page 2/11*

Table S2. Page 3/11 Study	Du, 2017 ⁶³	Elwood,	Eriksen,	Fitzgerald,	Fraser,	Gardener,	Gaziano,	Genkinger,	Gillman,	Goetz, 2016 ⁷²	Goetz,
•		201364	201565	201266	1992 ⁶⁷	201168	1995 ⁶⁹	200470	199571		201673
No. of variables fully adjusted model	12	3	9	10	6	7	6	6	7	12	10
No. of multivariable models presented	14	1	1	1	1	1	1	2	1	1	1
Timing of measurement of confounding variables	BL	1979, q5y	BL	BL	BL	qy.	1976, qy	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Smoking	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓		✓					✓	✓		
Physical activity	✓			✓	✓	✓			✓	✓	✓
Alcohol	✓		✓	✓						✓	
Blood pressure			✓								
Energy				✓	✓	✓		✓		✓	✓
Diabetes	ļ	ļ		✓		ļ	✓		✓		
Cholesterol			✓				✓	✓	✓		
Other Confounding variables						ļ					
Education	✓			✓		✓				✓	✓
Socioeconomic status	✓	✓	✓							✓	✓
Menopause and/or hormone Use				✓							
Region/location	✓									✓	✓
Randomization treatment				✓							
Ethnicity/nationality						✓					✓
Marital status											
Study center											
Survey season	✓										
Employment status			✓								
Follow-up duration											
Dietary Intake											
Vitamin/supplement											
Fruit and/or vegetable											
Saturated fat											
Whole grains											
Fish/shellfish											
Meat	✓										
Red meat											
Dietary pattern score											✓
Processed meat											
Coffee											
Fibre											
Folate											
Sodium											
Vitamin E											
Disease History											
MI or family history of MI											
CHD or family history of CHD											
CVD or family history of CVD											
Medications											
ASA											
Other confounding variables not listed:	Preserved vegetables				Weight		Functional status			Trans FA MUFA:SFA, %E sweets	

Table S2. <i>Page 4/11</i>						_					
Study	Gunge, 2017 ⁷⁴	Gunnell, 201375	Hansen, 2010 ⁷⁷	Hansen, 2017 ⁷⁶	Harriss, 2007 ⁷⁸	Hertog, 1997 ⁷⁹	Hirvonen, 2000 ⁸¹	Hirvonen, 2001 ⁸⁰	Hjartaker, 2015 ⁸²	Hodgson, 2016 ⁸³	Holmberg, 2009 ⁸⁴
No. of variables fully adjusted model	18	10	11	13	15	13	10	11	9	15	0
No. of multivariable models presented	4	1	2	2	2	1	1	1	1	2	0
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL, q5y	BL	BL	BL	BL	BL
Pre-specified primary confounding variables						, 1=)					
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓	✓			1	✓	✓	1
Smoking	✓	✓	✓	✓	✓	 ✓ 	✓	✓	✓	✓	
BMI	✓	✓	✓		✓	✓	✓	✓	✓	✓	
Physical activity	✓	✓	✓	✓	✓		✓	✓	✓	✓	
Alcohol	✓		✓	✓		✓			✓	✓	
Blood pressure	✓	✓	✓	✓	✓	✓	✓	✓		✓	
Energy	✓			✓	✓	✓				✓	
Diabetes		1	1	✓	✓	1	✓	✓	1	✓	1
Cholesterol	✓	✓	✓	✓	1	✓	~	✓	i	✓	1
Other Confounding variables			1		1	1		1			ł
Education	✓	1	✓	✓	✓	1	✓	✓	1	1	1
Socioeconomic status				-		✓			✓	✓	1
Menopause and/or hormone Use	✓									-	1
Region/location	-				✓		1		1		
Randomization treatment	1				•		✓	✓		✓	
Ethnicity/nationality	1				✓		•	•	1	•	
					•	-		✓			
Marital status Study center	<u> </u>				}			• •			
		✓		✓							
Survey season		•		•		_					
Employment status	✓					_					
Follow-up duration	•										
Dietary Intake							1		✓		
Vitamin/supplement	✓				✓				v		
Fruit and/or vegetable	v		✓		v						
Saturated fat			✓ ✓								ļ
Whole grains	\checkmark		~			_					
Fish/shellfish	~										
Meat					~						
Red meat	✓										
Dietary pattern score					~						
Processed meat	✓				ļ						
Coffee					ļ				✓		
Fibre											
Folate						1				ļ	ļ
Sodium						<u> </u>					ļ
Vitamin E						✓					
Disease History					ļ						<u> </u>
MI or family history of MI					ļ	<u> </u>					<u> </u>
CHD or family history of CHD		ļ		✓	ļ	✓	✓	✓	ļ	ļ	Į
CVD or family history of CVD			ļ		✓			ļ		✓	ļ
Medications											
ASA										✓	
Other confounding variables not listed:	WC	Charlson index, DM hospitalization		Weight		Vitamin C, B-carotene, Dietary fat				Cancer	

Study	Iso, 2007 ⁸⁵	Jacques, 2015 ⁸⁶	Johnsen, 2003 ⁸⁷	Joshipura, 1999 ⁸⁸	Joshipura, 2009 ⁸⁹	Keli, 1996 ⁹⁰	Kim, 2013 ⁹¹	Knekt, 1994 ⁹⁴	Knekt, 1996 ⁹³	Knekt, 200092	Kobylecki, 2015 ⁹⁵
No. of variables fully adjusted model	3	5	13	12	14	7	0	5	6	17	12
No. of multivariable models presented	1	2	2	1	198-86, q2y	1	0	2	1	1	3
Timing of measurement of confounding variables	BL	1991, q3-4y	BL	1980-6, q2y	1980-6, q2y	1960-73, 77, 85	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓	✓	✓	✓	√		✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓					✓		✓
Smoking		✓	✓	 ✓ 	✓	√		✓	✓	✓	✓
BMI		✓	✓	✓	✓				✓	✓	✓
Physical activity			✓	✓	✓						✓
Alcohol			✓	✓	✓	√					✓
Blood pressure			✓	✓	✓	√		✓	✓	✓	✓
Energy		✓	✓	✓	√	√		✓		✓	
Diabetes			✓	1	✓					✓	
Cholesterol		1	✓	✓	✓	✓		✓	✓	✓	✓
Other Confounding variables											
Education		1	✓	l	İ			1		1	
Socioeconomic status	1	1		1				1		1	✓
Menopause and/or hormone Use				✓	✓						
Region/location	✓									✓	
Randomization treatment				1							
Ethnicity/nationality				1							
Marital status				1							
Study center				1							
Survey season		1		İ							
Employment status											
Follow-up duration											
Dietary Intake											
Vitamin/supplement				✓	✓						✓
Fruit and/or vegetable				1							
Saturated fat				1						✓	
Whole grains				1	✓						
Fish/shellfish						✓					
Meat											
Red meat			✓								
Dietary pattern score											
Processed meat				1	İ					1	
Coffee		1		l	İ			1		1	
Fibre		1		l	İ			1		✓	
Folate				1	1						
Sodium				1	1						
Vitamin E				1	1					✓	
Disease History				1							
MI or family history of MI		1		✓	Ì			1			
CHD or family history of CHD	1	1		1	✓			1			
CVD or family history of CVD	1	1		1	İ			1			
Medications				1							
ASA		1		l	✓			1		1	
Other confounding variables not listed:			Ω-3-FA							Occupation, Vit C/E,Querc P/MUFA	Maximal oxygen intake, CRP

Table S2. *Page 6/11*

1 abie 52. 1 uge 0/11	77 1	77 '1	1	Ŧ	Y	T 1	x 1			
Study	Kondo, 2019 ⁹⁶	Kvaavik, 2010 ⁹⁷	Lai, 201598	Larsson, 2009 ⁹⁹	Larsson, 2013 ¹⁰⁰	Leenders, 2013 ¹⁰²	Leenders, 2014 ¹⁰¹	Lin, 2007 ¹⁰³	Lin, 2017 ¹⁰⁴	Liu, 2000 ¹⁰⁶
No. of variables fully adjusted model	7	8	8	14	16	11	11	13	6	8
No. of multivariable models presented	1	2	2	2	2	1	1	2	1	3
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	1990, q2y	BL	BL
Pre-specified primary confounding variables	DL	DL	DL	DE	DL	DL	DL	1770, q29	DL	DL
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables		-						-		
Sex	✓	✓	✓	✓	✓	✓	✓		✓	
Smoking	✓		✓	✓	✓	✓ √	✓	✓		
BMI		✓	✓	✓	✓	✓	✓	✓	✓	
Physical activity	1		✓	✓	✓	✓	✓	✓		✓
Alcohol	✓		✓	✓ √	✓	✓	✓	✓		\checkmark
Blood pressure		✓		✓	✓			✓	✓	✓
Energy	✓			✓	✓			✓		
Diabetes		✓		✓	✓	✓	✓	✓	✓	✓
Cholesterol	1	1	1	✓ ·	1	1	1	✓ ·	1	✓ ✓
Other Confounding variables	1						1			
Education	1				✓	✓	✓		✓	
Socioeconomic status	1	✓	✓			-	-			
Menopause and/or hormone Use	1						1	✓	1	
Region/location								-		
Randomization treatment				✓				_		✓
Ethnicity/nationality	1	1	1			1	1			
Marital status										
Study center						✓	✓	_		
Survey season							-	_		
Employment status										
Follow-up duration										
Dietary Intake										
Vitamin/supplement								✓		✓
Fruit and/or vegetable	✓		✓		✓	✓	✓			
Saturated fat					-					
Whole grains										
Fish/shellfish	✓							_		
Meat	-					✓	✓			
Red meat					✓					
Dietary pattern score	1				-	1	1	1	1	1
Processed meat					✓				1	1
Coffee	1	1	1		· · · · · · · · · · · · · · · · · · ·	1	1	1	1	1
Fibre	1	1	1			1	1	1	1	1
Folate				✓						
Sodium	✓						1	-	1	
Vitamin E								✓		
Disease History	1	1	1			1	1			
MI or family history of MI					✓				1	
CHD or family history of CHD	1	✓	1	l		1	1	1	1	1
CVD or family history of CVD	1		1	✓		1	1	1	 ✓ 	1
Medications	1	1	1			1	1			
ASA		1	1	l	✓			✓	l 	l
Other confounding variables not listed:		Respiratory diseases		Magnesium						

	105	Mann,	Manuel,	Miller,	Mink,	Mizrahi,	Mori,	Mytton,	Nagura,	Nakamura,
Study	Liu, 2001 ¹⁰⁵	1997 ¹⁰⁷	2015 ¹⁰⁸	2017 ¹⁰⁹	2007^{110}	2009 ¹¹¹	2018 ¹¹²	2018 ¹¹³	2009 ¹¹⁴	2008 ¹¹⁵
No. of variables fully adjusted model	11	5	1	17	11	8	16	16	16	15
No. of multivariable models presented	2	1	1	1	2	1	3	2	3	3
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL
Pre-specified primary confounding variables										
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables										
Sex	✓	\checkmark		✓		✓	✓	✓	✓	✓
Smoking	✓	✓		✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓			✓	✓	✓		✓	✓
Physical activity	✓			✓	✓	✓	✓	✓	✓	✓
Alcohol	✓						✓	✓	✓	✓
Blood pressure	✓			✓	√	✓	✓	✓	✓	✓
Energy				✓	√	✓	✓	✓		✓
Diabetes	✓			✓	√		✓	✓	✓	✓
Cholesterol	✓		1	✓	İ	✓	İ	✓	Ì	
Other Confounding variables			1	1				1		
Education	1		1	✓	✓	İ	1	✓	✓	✓
Socioeconomic status		✓								
Menopause and/or hormone Use	1		1	1	✓	1	1	1		✓
Region/location			1	✓			1	1		
Randomization treatment	✓			1			1	1		
Ethnicity/nationality			1				1			
Marital status			1		✓		1			✓
Study center			1	✓			✓			
Survey season										
Employment status							✓			
Follow-up duration										
Dietary Intake										
Vitamin/supplement	✓						✓			
Fruit and/or vegetable				✓			✓	1	✓	
Saturated fat			1				1		✓	✓
Whole grains										
Fish/shellfish										
Meat										
Red meat				✓						
Dietary pattern score			1	1			1	1		
Processed meat			1	1			1	1		
Coffee	1		1	1	İ	İ	✓	1	İ	
Fibre			1	✓			1	1		
Folate				Ì			1	Ì		
Sodium				Ì			✓	Ì	✓	✓
Vitamin E				Ì			1	Ì		
Disease History			1	1				1		
MI or family history of MI	1		1	Ì	Ì	Ì	Ì	✓	İ	
CHD or family history of CHD			1	Ì	İ	Ì	İ	İ	İ	
CVD or family history of CVD	1		1	1	İ	İ	1	1	İ	
Medications				1				1		
ASA	1		1	1	İ	İ	1	1		
Other confounding variables not listed:				Waist:hip, bread, white meat	Waist:hip		Green tea	Family hx of diabetes/ stroke	Sleep, stress, Ω-3 FA, diet cholesterol	Dietary protein

Table S2. *Page* 7/11

Table S2. Page 8/11

Study	Nechuta,	Neelakantan,	Ness,	Nothlings,	Okuda,	Oude Griep,	Oude Griep,	Oude Griep,	Oyebode,	Pham,
	2010116	2018117	2005118	2008119	2015120	2010121	2011123	2011122	2014 ¹²⁴	2007125
No. of variables fully adjusted model	7	12	8	11	11	12	15	15	8	9
No. of multivariable models presented	2	1	2	2	3	3	3	3	2	1
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	BL	2001, qy	BL
Pre-specified primary confounding variables							ļ			
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables										
Sex	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Smoking		✓		✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓			✓		✓	✓	✓	✓
Physical activity	✓	✓							✓	
Alcohol				✓	✓	✓	✓	✓	✓	✓
Blood pressure		✓		✓						✓
Energy		✓	~	✓	✓	✓	✓	✓		
Diabetes		✓		✓			✓	✓		✓
Cholesterol							✓	✓		
Other Confounding variables								L		
Education	✓	✓				✓	✓	✓	✓	
Socioeconomic status	✓		✓				L		✓	
Menopause and/or hormone Use						✓	✓	✓		
Region/location			✓							
Randomization treatment							ļ			
Ethnicity/nationality		✓					ļ			
Marital status	✓						ļ			
Study center										
Survey season			✓							
Employment status										
Follow-up duration										
Dietary Intake										
Vitamin/supplement						✓	✓	✓		
Fruit and/or vegetable		✓								✓
Saturated fat										
Whole grains		✓				 ✓ 	 ✓ 	✓		
Fish/shellfish		✓			 ✓ 	✓	✓	✓		
Meat					✓					
Red meat										
Dietary pattern score						,				
Processed meat						✓	✓	✓		
Coffee										
Fibre										
Folate										
Sodium					✓					
Vitamin E								L		
Disease History										
MI or family history of MI				✓		✓	✓	✓		
CHD or family history of CHD										
CVD or family history of CVD								L		
Medications										
ASA								L		
Other confounding variables not listed:		Sleep, nuts, legumes, dairy	Child food expenditure, Townsend	Cancer hx, insulin tx, Waist:Hip	Dairy, soy					Blood transfusion

Table 52. Page 9/11			a	<i>a</i> .	<i>a</i>	a 1 <i>c</i> c	~	~	~	<u> </u>	
Study	Rebello, 2014 ¹²⁶	Rissanen, 2003 ¹²⁷	Saglimbene, 2017 ¹²⁸	Sahyoun, 1996 ¹²⁹	Sauvaget, 2003 ¹³⁰	Scheffers, 2019 ¹³¹	Sesso, 2003 ¹³²	Sesso, 2003 ¹³⁴	Sesso, 2007 ¹³³	Shah, 2018 ¹³⁵	Sharma, 2013 ¹³⁶
No. of variables fully adjusted model	20	10	N/A	4	13	12	16	16	18	10	7
No. of multivariable models presented	3	4	N/A	3	4	4	2	2	4	2	1
Timing of measurement of confounding variables	BL	BL	N/A	BL	BL	BL	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓		✓	✓	✓	✓	✓	✓	✓	
Pre-specified secondary confounding variables											
Sex	İ	✓		✓	✓	✓				✓	
Smoking	✓	√			✓	✓	✓	✓	✓	✓	✓
BMI	✓	√			✓	✓	✓	✓	✓	✓	
Physical activity	✓					✓	✓	✓	✓	✓	✓
Alcohol	✓				✓	✓	✓	✓	✓	✓	✓
Blood pressure	✓	✓			✓	✓	✓	✓	✓	✓	
Energy	✓							✓	✓		✓
Diabetes		✓			✓		✓	✓	✓	✓	[
Cholesterol	İ	✓	1		İ	✓	✓	✓	✓	✓	
Other Confounding variables											
Education	✓	İ			✓	✓		1	1		✓
Socioeconomic status											
Menopause and/or hormone Use	✓						✓	✓	✓		
Region/location					✓						
Randomization treatment							✓	✓	✓		1
Ethnicity/nationality	✓										✓
Marital status											
Study center											
Survey season	✓										
Employment status											
Follow-up duration		✓									✓
Dietary Intake											
Vitamin/supplement		✓									
Fruit and/or vegetable	İ						✓	✓	✓		
Saturated fat	✓						✓	✓			
Whole grains	İ										
Fish/shellfish											
Meat											
Red meat	✓										
Dietary pattern score						✓					
Processed meat											
Coffee											
Fibre							✓	✓	✓		[
Folate							✓	✓	✓		
Sodium											
Vitamin E							~				
Disease History											
MI or family history of MI					✓		✓	✓	✓		
CHD or family history of CHD											
CVD or family history of CVD										✓	
Medications											
ASA											
Other confounding variables not listed:	Sleep, bread, legumes, soy egg, PUFA	Maximal oxygen		Functional status, Health	Birth cohort, animal prod, radiation				Vitamin C, flavonoid, potassium		

Table S2. *Page 9/11*

Table 52. Page 10/11	~	~	~ .	~	~ ~ ~	~ ~	~ "			1	
Study	Sharma, 2014 ¹³⁷	Simila, 2013 ¹³⁸	Sonestedt, 2015 ¹³⁹	Sotomayer, 2019 ¹⁴⁰	Steffen, 2003 ¹⁴¹	Stefler, 2016 ¹⁴²	Strandhagen , 2000 ¹⁴³	Takachi, 2008 ¹⁴⁴	Tanaka, 2013 ¹⁴⁵	Tucker, 2005 ¹⁴⁷	Tognon, 2014 ¹⁴⁶
No. of variables fully adjusted model	5	2	14	16	12	12	5	11	21	10	6
No. of multivariable models presented	1	1	3	4	3	1	2	2	3	3	1
Timing of measurement of confounding variables	BL	BL	BL	BL	BL	BL	BL	BL	BL	1961, biennially	BL
Pre-specified primary confounding variables										, i i i i i i i i i i i i i i i i i i i	
Age		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex			✓	✓	 ✓ 	✓	✓	✓	✓	✓	✓
Smoking	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓		✓	✓	✓			✓	✓	✓	✓
Physical activity	✓		✓	✓	✓	✓		✓	✓	✓	✓
Alcohol	✓		\checkmark	✓	✓	✓		✓	✓	✓	
Blood pressure				✓	✓		✓	✓	✓		
Energy			✓	-	· · · · · · · · · · · · · · · · · · ·	✓		 ✓	· · · · · · · · · · · · · · · · · · ·	✓	
Diabetes	✓			✓				✓	✓		
Cholesterol		1	1	· · · · · · · · · · · · · · · · · · ·	 ✓ 		✓		· ✓		
Other Confounding variables	1			-	⊢ ́						
Education	<u> </u>		✓	✓	✓	✓		L	<u> </u>		✓
			v	✓ ✓	•	v					•
Socioeconomic status				*							
Menopause and/or hormone Use											
Region/location		1									
Randomization treatment		✓									
Ethnicity/nationality					✓						
Marital status					ļ	✓					
Study center								✓			
Survey season			✓								
Employment status					ļ						
Follow-up duration				✓						✓	
Dietary Intake											
Vitamin/supplement					<u> </u>	✓		✓		✓	
Fruit and/or vegetable			✓			✓					
Saturated fat									✓	✓	
Whole grains			✓								
Fish/shellfish											
Meat			✓								
Red meat											
Dietary pattern score					✓						
Processed meat					1						
Coffee	1	İ	✓		1		İ		1		
Fibre	1	İ	İ		İ		İ		1		
Folate	1				İ						
Sodium	1	İ	İ				1		✓		
Vitamin E	1				1		1	<u> </u>	1		
Disease History	1	1					1		ł		
MI or family history of MI	1	i	i		1		1		1		
CHD or family history of CHD	1	i	i		1		1		1		
CVD or family history of CVD	1	1	1	l	1	1	1	·	1	1	
Medications											
ASA	1	}					1	L	1		
	+			oCEP	-				ł		
Other confounding variables not listed:			Fermented milk	eGFR, proteinuria, primary renal disease, hsCRP		Birth cohort, house score			Ť		

Table S2. *Page 10/11*

Table S2. Page 11/11

	Von Ruesten,	Vormund,	Wang,	Watkins,	Whiteman,	Yamada,	Yokoyama,	Yoshizaki,		Zhang	Zhang,
Study	2013 ¹⁴⁸	2015 ¹⁴⁹	2016 ¹⁵⁰	2000^{151}	1999 ¹⁵²	2011^{153}	2000^{154}	2019 ¹⁵⁵	Yu, 2014 ¹⁵⁶	Zhang, 2011 ¹⁵⁷	2011^{158}
No. of variables fully adjusted model	11	8	7	17	3	11	9	17	13	17	11
No. of multivariable models presented	2	3	1	1	1	2	1	3	2	1	1
Timing of measurement of confounding variables	BL, q2-3y	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL
Pre-specified primary confounding variables											
Age	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Pre-specified secondary confounding variables											
Sex	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓
Smoking	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BMI	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓
Physical activity	✓			✓		✓	✓	✓	✓	✓	✓
Alcohol	✓		✓	✓		✓	✓	✓		✓	✓
Blood pressure	✓			✓		✓	✓	√	✓	✓	✓
Energy								✓	✓	✓	
Diabetes				✓			1	√	✓	✓	✓
Cholesterol	✓					✓	✓	✓	✓	✓	✓
Other Confounding variables											
Education	✓			✓		✓			✓	✓	
Socioeconomic status									✓	✓	
Menopause and/or hormone Use									-	✓ ✓	
Region/location		✓	✓			✓					
Randomization treatment		-				-					
Ethnicity/nationality		✓		✓							
Marital status		· ✓		· · · · · · · · · · · · · · · · · · ·		✓					
Study center		•		•		•	✓				
Survey season		✓	✓								
Employment status		•	•	✓			✓				
Follow-up duration				-							
Dietary Intake											
Vitamin/supplement	✓								✓	✓	
Fruit and/or vegetable	✓ ✓							✓	-	-	✓
Saturated fat	•							•		✓	•
Whole grains										•	
Fish/shellfish								✓	✓		
Meat								· · · · · · · · · · · · · · · · · · ·			
Red meat				✓				•	✓		
Dietary pattern score				-							
Processed meat											
Coffee				✓							
Fibre				•							
Folate											
Sodium								✓			
Vitamin E							}	•	}		
Disease History							+		+		
MI or family history of MI	}			{			}		}	{{	
CHD or family history of MI CHD or family history of CHD							 ✓ 			✓	
							•			Ŷ	
CVD or family history of CVD											
Medications				✓							
ASA				-				M- (1		O and the	
Other confounding variables not listed:				Stroke, Diuretics				Mental stress		Occupation, stroke	Stroke

ASA - acetylsalicylic acid; BL - baseline; CHD – coronary heart disease; CRP – C-reactive protein; CVD – cardiovascular disease; GFR – glomerular filtration rate; FA – fatty acid; MI – myocardial infarction; M/PUFA - mono/poly-unsaturated fatty acids; Querc – quercetin supplement; qXy - confounding variables measured once every X years; WC – waist circumference.

*Tanaka et al. (2013) adjusted for the following additional confounding variables: dyslipidemia, HbA1c, oral antihyperglycemic agents, insulin, retinopathy, dietary cholesterol, dietary fat and Ω -3 and Ω -6 FA.

Study	Selection*	Outcome [†]	Comparability [‡]	Total§
Adriouch, 2018 ⁴²	3	2	2	7
Appleby, 2002 ⁴³	1	1	1	3
Atkins, 2014 ⁴⁴	3	3	1	7
Bahadoran, 2017 ⁴⁵	2	1	0	3
Bazzano, 2002 ⁴⁶	2	3	1	6
Belin, 2011 ⁴⁷	3	3	2	8
Bendinelli, 2011 ⁴⁸	3	3	2	8
Berard, 2017 ⁴⁹	3	3	1	7
3hupathiraju, 2013 ⁵⁰	2	2	1	5
Bingham, 2008 ⁵¹	2	0	2	4
Blekkenhorst, 2017 ⁵²	2	3	2	7
Bos, 2014 ⁵³	2	3	2	7
Buijsse, 2008 ⁵⁴	3	3	1	7
Buil-Cosiales, 2016 ⁵⁶	3	3	2	8
Buil-Cosiales, 2017 ⁵⁵	3	1	2	6
Cassidy, 2012 ⁵⁷	2	2	2	6
Collin, 2019 ⁵⁸	3	3	1	7
Conrad, 2018 ⁵⁹	3	3	1	7
Dauchet, 2004 ⁶⁰	3	3	2	8
Dauchet, 2010 ⁶¹	4	3	2	9
Du, 2016 ⁶²	4	3	1	8
Du, 2017 ⁶³	4	3	1	8
Elwood, 2013 ⁶⁴	3	3	1	7
Eriksen, 2015 ⁶⁵	3	3	2	8
Fitzgerald, 2012 ⁶⁶	2	2	1	5
Fraser, 1992 ⁶⁷	2	3	2	7
Gardener, 2011 ⁶⁸	4	2	1	7
Gaziano, 1995 ⁶⁹	2	3	1	6
Genkinger, 2004 ⁷⁰	3	3	1	7
Gillman, 1995 ⁷¹	3	3	2	8
Goetz, 2016 ⁷²	3	2	1	6
Goetz, 2016 ⁷³	3	3	1	7
Gunge, 2017 ⁷⁴	3	3	2	8

 Table S3: Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Cohort Studies

Study	Selection*	Outcome [†]	Comparability [‡]	Total§
Gunnell, 2013 ⁷⁵	3	1	2	6
Hansen, 2010 ⁷⁷	3	3	2	8
Hansen, 2017 ⁷⁶	2	3	2	7
Harriss, 2007 ⁷⁸	3	3	2	8
Hertog, 1997 ⁷⁹	2	3	2	7
Hirvonen, 2000 ⁸¹	2	3	2	7
Hirvonen, 2001 ⁸⁰	2	3	2	7
Hjartaker, 2015 ⁸²	2	3	1	6
Hodgson, 2016 ⁸³	2	3	2	7
Holmberg, 2009 ⁸⁴	2	3	0	5
Iso, 2007 ⁸⁵	2	2	1	5
Jacques, 2015 ⁸⁶	3	3	1	7
Johnsen, 2003 ⁸⁷	3	2	2	7
Joshipura, 1999 ⁸⁸	2	2	2	6
Joshipura, 2009 ⁸⁹	2	3	2	7
Keli, 1996 ⁹⁰	4	3	1	8
Kim, 2013 ⁹¹	1	3	0	4
Knekt, 1994 ⁹⁴	4	3	1	8
Knekt, 1996 ⁹³	2	3	2	7
Knekt, 2000 ⁹²	4	3	2	9
Kobylecki, 2015 ⁹⁵	3	3	2	8
Kondo, 2019 ⁹⁶	3	3	1	7
Kvaavik, 2010 ⁹⁷	4	3	1	8
Lai, 2015 ⁹⁸	3	3	1	7
Larsson, 2009 ⁹⁹	2	3	2	7
Larsson, 2013 ¹⁰⁰	3	3	2	8
Leenders, 2013 ¹⁰²	3	3	2	8
Leenders, 2014 ¹⁰¹	3	3	2	8
Lin, 2007 ¹⁰³	2	2	2	6
Lin, 2017 ¹⁰⁴	3	3	1	7
Liu, 2000 ¹⁰⁶	2	3	2	7
Liu, 2001 ¹⁰⁵	2	3	2	7
Mann, 1997 ¹⁰⁷	2	3	1	6
Manuel, 2015 ¹⁰⁸	4	3	1	8
Miller, 2017 ¹⁰⁹	3	3	2	8

Study	Selection*	Outcome [†]	Comparability [‡]	Total [§]
Mink, 2007 ¹¹⁰	3	3	2	8
Mizrahi, 2009 ¹¹¹	4	3	2	9
Mori, 2018 ¹¹²	3	3	2	8
Mytton, 2018 ¹¹³	3	3	2	8
Nagura, 2009 ¹¹⁴	3	3	2	8
Nakamura, 2008 ¹¹⁵	2	3	2	7
Nechuta, 2010 ¹¹⁶	3	3	1	7
Neelakantan, 2018 ¹¹⁷	3	3	2	8
Ness, 2005 ¹¹⁸	3	3	1	7
Nothlings, 2008 ¹¹⁹	2	3	1	6
Okuda, 2015 ¹²⁰	3	3	1	7
Oude Griep, 2010 ¹²¹	3	3	1	7
Oude Griep, 2011 ¹²³	2	3	2	7
Oude Griep, 2011 ¹²²	2	3	2	7
Oyebode, 2014 ¹²⁴	3	3	1	7
Pham, 2007 ¹²⁵	3	3	2	8
Rebello, 2014 ¹²⁶	3	3	1	7
Rissanen, 2003 ¹²⁷	2	3	2	7
Saglimbene, 2017 ¹²⁸	1	0	0	1
Sahyoun, 1996 ¹²⁹	1	3	1	5
Sauvaget, 2003 ¹³⁰	2	3	2	7
Scheffers, 2019 ¹³¹	3	3	2	8
Sesso, 2003 ¹³²	2	3	2	7
Sesso, 2003 ¹³⁴	2	3	2	7
Sesso, 2007 ¹³³	3	2	2	7
Shah, 2018 ¹³⁵	3	3	2	8
Sharma, 2013 ¹³⁶	3	2	0	5
Sharma, 2014 ¹³⁷	3	2	0	5
Simila, 2013 ¹³⁸	2	3	1	6
Sonestedt, 2015 ¹³⁹	4	3	2	9
Sotomayer, 2019 ¹⁴⁰	1	3	2	6
Steffen, 2003 ¹⁴¹	4	3	2	9
Stefler, 2016 ¹⁴²	2	3	1	6
Strandhagen, 2000 ¹⁴³	2	3	1	6
Takachi, 2008 ¹⁴⁴	3	3	2	8

Study	Selection*	Outcome [†]	Comparability [‡]	Total§
Tanaka, 2013 ¹⁴⁵	2	3	2	7
Tognon, 2014 ¹⁴⁶	3	3	1	7
Tucker, 2005 ¹⁴⁷	2	3	1	6
Von Ruesten, 2013 ¹⁴⁸	3	2	2	7
Vormund, 2015 ¹⁴⁹	3	3	1	7
Wang, 2016 ¹⁵⁰	1	3	1	5
Watkins, 2000 ¹⁵¹	3	3	2	8
Whiteman, 1999 ¹⁵²	3	3	1	7
Yamada, 2011 ¹⁵³	2	3	2	7
Yokoyama, 2000 ¹⁵⁴	2	3	2	7
Yoshizaki, 2019 ¹⁵⁵	3	3	2	8
Yu, 2014 ¹⁵⁶	3	3	2	8
Zhang, 2011 ¹⁵⁷	3	3	2	8
Zhang, 2011 ¹⁵⁸	3	2	2	7

*Maximum 4 points awarded for representativeness of exposed cohort, selection of non-exposed cohort, exposure assessment, and demonstration outcome not present at baseline.

†Maximum 3 points awarded for outcome assessment, follow-up length, and adequacy of follow-up.

‡Maximum 2 points awarded for adjusting for the pre-specified primary confounding variable (age) and 5 of the 7 pre-specified secondary confounding variables (sex, family history of CVD, smoking, body mass index, blood pressure (or hypertension/medications), cholesterol (or dyslipidemia/medications) and presence of diabetes mellitus.

§A maximum of 9 points could be awarded.

			Quality	Assessment						
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	l Vegetable Con	sumption on C	ardiovascular l	Disease Inciden	ce (follow-up n	nedian 10 years	5)			
12	observational	not serious	not serious	not serious	serious ¹	undetected	dose-response gradient ²	24,310/501,744 (4.9%)	0.93 (0.89, 0.96)	
Fruit Cor	nsumption on C	ardiovascular	Disease Inciden	ce (follow-up n	nedian 10 years	5)				
16	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ³	27,204/577,323 (4.7%)	0.91 (0.88, 0.95)	
Vegetable	e Consumption	on Cardiovasc	ular Disease Inc	cidence (follow-	up median 11	years)				
14	observational	not serious	not serious	not serious	serious ⁴	undetected	none	22,810/539,683 (4.2%)	0.94 (0.90, 0.97)	OCCO VERY LOW
Berries C	Consumption on	Cardiovascula	r Disease Incid	ence (follow-up	median 10 yea	ars)				
1	observational	not serious	not serious ⁵	serious ⁶	serious ⁷	undetected ⁸	none	1,004/38,176 (2.6%)	1.27 (0.95, 1.71)	OCCO VERY LOW
Citrus Fr	uit Consumptio	on on Cardiova	scular Disease	Incidence (follo	w-up median 1	0 years)			I	
6	observational	not serious	not serious	not serious	serious ⁹	undetected ⁸	dose-response gradient ¹⁰	6,220/222,525 (2.8%)	0.88 (0.80, 0.96)	
Fruit Juio	ce Consumptior	n on Cardiovas	cular Disease Ir	ncidence (follow	v-up median 15	years)				
5	observational	not serious	not serious	not serious	serious ¹¹	undetected ⁸	none	8,056/167,879 (4.8%)	1.00 (0.93, 1.07)	UVERY LOW
Pommes	Consumption of	n Cardiovascul	lar Disease Inci	dence (follow-u	p median 8 yea	ars)			1	
5	observational	not serious	not serious	serious ¹²	not serious	undetected ⁸	dose-response gradient ¹³	2,578/149,437 (1.7%)	0.76 (0.66, 0.88)	
Allium V	egetables Consu	imption on Ca	rdiovascular Di	sease Incidence	e (follow-up me	dian 7 years)				
2	observational	not serious	serious ¹⁴	serious ¹⁵	serious ¹⁶	undetected ⁸	none	808/40,814 (2.0%)	0.79 (0.57, 1.10)	OCCO VERY LOW
Crucifero	ous Vegetables (Consumption o	n Cardiovascul	ar Disease Inci	dence (follow-u	ip median 9 yea	ars)			*
7	observational	not serious	serious ¹⁷	not serious	serious ¹⁸	undetected ⁸	none	6,824/273,878 (2.5%)	0.99 (0.90, 1.08)	⊕COO VERY LOW
Green Le	afy Vegetables	Consumption of	on Cardiovascu	lar Disease Inc	idence (follow-	up median 7 ye	· · ·		I	
5	observational	not serious	not serious	not serious	serious ¹⁹	undetected ⁸	dose-response gradient ²⁰	5,732/211,902 (2.7%)	0.87 (0.76, 0.99)	
Tomatoes	s Consumption	on Cardiovasc	ular Disease Inc	cidence (follow-	up median 9 ye	ears)	1		I	
2	observational	not serious	not serious	serious ²¹	serious ²²	undetected ⁸	none	841/55,452 (1.5%)	0.97 (0.78, 1.20)	OCCO VERY LOW
			1 1 1 0	1 OFAL OL OD		.1	11.00			1 C 1

¹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.89) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

 2 Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between total fruit and vegetable intake and incident CVD (p<0.001).

³ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and incident CVD (p=0.004).

⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.90) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.

⁵ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

⁶ Downgrade for serious indirectness as evidence is based on 1 cohort of female health-professionals residing in the USA and may not be generalizable to different populations.

⁷ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.95 to 1.27) includes both clinically important benefit (RR \leq 0.95) and harm (RR \geq 1.05).

⁸ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

⁹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.80) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

¹⁰ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between citrus fruit intake and CVD incidence (p=0.033).

¹¹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.93 to 1.07) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹² Downgrade for serious indirectness as evidence is based on a predominately (>78%) female population and may not be generalizable to different populations.

¹³ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between pommes intake and incident CVD (p=0.043).

 14 Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity (I²=85%, p=0.01), which could not be explored through sensitivity due to only 2 observations available.

¹⁵ Downgrade for serious indirectness as evidence is based on a predominately (97%) female populations of which most are health professionals, and may not be generalizable to different populations.

¹⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.57) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.10) crosses the MID.

¹⁷ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=52\%$, p=0.04). Although the removal of Buil-Cosiales et al. 2016 during sensitivity analysis did partially explain the heterogeneity ($I^2=27\%$, p=0.22), the presence of residual heterogeneity could not be excluded.

¹⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.90 to 1.08) includes both clinically important benefit (RR \leq 0.95) and harm (RR \geq 1.05).

¹⁹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.76) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

²⁰ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between green leafy vegetables intake and CVD mortality (p=0.01)

²¹ Downgrade for serious indirectness as evidence is based on a predominately (88%) female population and may not be generalizable to different populations.

²² Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.78 to 1.20) includes both clinically important benefit (RR \leq 0.95) and harm (RR \geq 1.05).

Table S5. GRADE Assessment for Fruits and Vegetables and Cardiovascular Disease Mortality

			Quality	Assessment						
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on C	ardiovascular I	Disease Mortali	ty (follow-up n	nedian 11 years	s)			
14	observational	not serious	serious ¹	not serious	not serious	undetected	dose-response gradient ²	17,439/798,391 (2.2%)	0.89 (0.85, 0.93)	
Fruit Con	sumption on C	ardiovascular	Disease Mortali	ty (follow-up n	nedian 11 years	s)	1			
27	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	39,623/1,581,506 (2.5%)	0.88 (0.86, 0.91)	
Vegetable	Consumption	on Cardiovasc	ular Disease Mo	ortality (follow-	up median 10	years)	1			
21	observational	not serious	serious ⁵	not serious	not serious	undetected	dose-response gradient ⁶	33,516/1,101,435 (3.0%)	0.87 (0.85, 0.90)	
Apricot C	onsumption on	Cardiovascula	ar Disease Mort	ality (follow-uj	p median 1.5 ye	ears)			1.04	
1	observational	serious ⁷	not serious ⁸	serious9	not serious	undetected ¹⁰	none	515/9,757 (5.3%)	1.84 (1.27, 2.67)	OCCO VERY LOW
Bananas (Consumption o	n Cardiovacula	ar Disease Mort	ality 16(follow-	-up median 20.	3 years)				
1	observational	not serious	not serious ⁸	serious ¹²	serious ¹³	undetected ¹⁰	none	4,595/9,766 (47.1%)	1.06 (0.87, 1.29)	OCCO VERY LOW
Berries C	onsumption on	Cardiovascula	r Disease Mort	ality (follow-up	median 16 yea	ars)	T	[]		
4	observational	not serious	not serious	serious ¹⁴	serious ¹⁵	undetected ¹⁰	none	7,401/112,892 (6.6%)	0.97 (0.92, 1.03)	OCCO VERY LOW
Citrus Fr	uit Consumptio	on on Cardiova	scular Disease I	Mortality (follo	w-up median 1	7 years)				
3	observational	not serious	not serious ¹⁶	serious ¹⁷	serious ¹⁸	undetected ¹⁰	none	7,197/74,716 (9.6%)	0.95 (0.90, 1.02)	OCCO VERY LOW
Dried Fru	it Consumption	n on Cardiovas	scular Disease M	Iortality (follow	w-up median 1'	7 years)				
2	observational	not serious	not serious	not serious	serious ¹⁹	undetected ¹⁰	none	447/31,757 (1.4%)	0.93 (0.63, 1.37)	OCCO VERY LOW
Fruit Juic	e Consumption	on Cardiovas	cular Disease M	lortality (follow	v-up median 17	years)	1			# 000
1	observational	not serious	not serious ⁸	serious ²⁰	serious ²¹	undetected ¹⁰	none	286/30,458 (0.9%)	0.81 (0.58, 1.13)	OCCO VERY LOW
Grapes C	onsumption on	Cardiovascula	r Disease Mort	ality (follow-up	median 16.7 y	ears)				
3	observational	not serious	not serious ²²	serious ²³	serious ²⁴	undetected ¹⁰	none	7,197/74,716 (9.6%)	0.90 (0.81, 1.01)	OCCO VERY LOW
Pommes (Consumption of	n Cardiovascul	lar Disease Mor	tality (follow-u	p median 16 y	ears)	-			
5	observational	not serious	not serious	serious ²⁵	not serious	undetected ¹⁰	none	7,947/85,929 (9.2%)	0.86 (0.80, 0.92)	OCCO VERY LOW
Allium Ve	Allium Vegetables Consumption on Cardiovascular Disease Mortality (follow-up median 15 years)									
1	observational	not serious	not serious ⁸	serious ²⁶	not serious	undetected ¹⁰	none	238/1,226 (19.4%)	0.33 (0.22, 0.49)	⊕COO VERY LOW
Carrots C	Consumption on	Cardiovacula	r Disease Morta	ality (follow-up	median 18 yea	rs)				

2	observational	not serious	not serious	serious ²⁷	serious ²⁸	undetected ¹⁰	none	4,792/10,325 (46.4%)	0.92 (0.85, 1.01)	OCCO VERY LOW
Celery Co	onsumption on	Cardiovasculaı	· Disease Morta	lity (follow-up	median 16 yea	rs)				•
1	observational	not serious	not serious ⁸	serious ²⁹	serious ³⁰	undetected ¹⁰	none	2,316/34,492 (6.7%)	0.91 (0.83, 1.01)	OCCO VERY LOW
Crucifere	ous Vegetables (Consumption of	n Cardiovascul	ar Disease Mor	tality (follow-u	ıp median 12 ye	ars)			
7	observational	not serious	serious ³¹	not serious	not serious	undetected ¹⁰	none	13,081/187,730 (7.0%)	0.85 (0.82, 0.89)	OCCO VERY LOW
Green Le	eafy Vegetables	Consumption o	on Cardiovascu	lar Disease Mo	rtality (follow-	up median 21 y	ears)			
5	observational	not serious	serious ³²	not serious	not serious	undetected ¹⁰	none	6,661/40,893 (16.3%)	0.87 (0.81, 0.94)	
Tomatoes	s Consumption	on Cardiovascu	ilar Disease Mo	ortality (follow-	up median 16	years)		· · · · ·		
3	observational	not serious	not serious	serious ³³	serious ³⁴	undetected9	none	7,072/45,557 (15.5%)	0.98 (0.93, 1.04)	OCCO VERY LOW

¹ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=68\%$, p<0.001) which could not be explained by sensitivity analyses.

² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and CVD mortality (p<0.011). The MKSPLINE procedure indicated a departure from linearity (p<0.001) at a threshold of 4 servings/day as observed by visual inspection.

³ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=79\%$, p<0.001), which could not be explained by sensitivity analyses.

⁴Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p=0.005).

⁵ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=59\%$, p<0.001), which could not be explained by sensitivity analyses.

⁶Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p<0.001).

⁷ Downgrade for serious risk of bias as the effect estimate is based on Saglimbene et al. 2017, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)

⁸No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

⁹ Downgrade for serious indirectness as evidence is based on 1 cohort of patients receiving hemodialysis and may not be generalizable to different populations.

¹⁰ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

¹¹No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

¹² Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations

¹³ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.87 to 1.29) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁴ Downgrade for serious indirectness as evidence is based on a predominately (91%) female population and may not be generalizable to different populations.

¹⁵ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.92) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.03) crosses the MID.

¹⁶ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=62\%$, p=0.05) was explained by the removal of Lai et al. 2015 ($I^2=0\%$, p=0.63) during sensitivity analysis.

¹⁷ Downgrade for serious indirectness as the evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

¹⁸ Downgrade for serious imprecision, as upper bound of the 95% CIs (RR 1.02) crosses the MID (RR<0.95).

¹⁹ Downgrade for serious imprecision, as upper bound of the 95% CIs (RR 1.37) crosses the MID (RR<0.95).

²⁰ Downgrade for serious indirectness as evidence is based on 1 female cohort residing in the United Kingdom and may not be generalizable to different populations.

²¹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.58 to 1.13) includes both clinically important benefit (RR<0.95) and harm ($RR\geq1.05$).

 22 No downgrade for inconsistency as the presence of inter-study heterogeneity (I²=61%, p=0.08) was explained by the removal of Lai et al. 2015 (I²=0%, p=0.93) during sensitivity analysis.

²³ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

²⁴ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.01) crosses the MID (RR<0.95).

²⁵ Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

²⁶ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

²⁷ Downgrade for serious indirectness as evidence is based on 2 male cohorts and may not be generalizable to different populations.

²⁸ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.01) crosses the MID.

²⁹ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

³⁰ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.76) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

 31 Downgrade for serious inconsistency as there was evidence for substantial inter-study heterogeneity (I²=86%, p<0.00001), which could not be explained by sensitivity analyses.

 32 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001), which could not be explained by sensitivity analyses.

³³ Downgrade for serious indirectness as evidence is based on only 3 isolated geographical regions (Norway and Massachusetts and Iowa, USA) and may not be generalizable to different populations.

³⁴ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.04) includes crosses the MID (RR<0.95).

			Quality							
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on C	oronary Heart	Disease Incider	nce (follow-up 1	nedian 10 year				
19	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ¹	17,987/619,182 (2.9%)	0.88 (0.83, 0.92)	MODERATE
Fruit Con	sumption on C	oronary Heart	Disease Incider	nce (follow-up i	nedian 10 year	s)				
20	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ²	23,856/1,170,021 (2.0%)	0.88 (0.84, 0.92)	MODERATE
Vegetable	Consumption	on Coronary H	leart Disease In	cidence (follow	-up median 10	years)				
18	observational	not serious	not serious ³	not serious	serious ⁴	undetected	dose-response gradient ⁵	17,172/696,330 (2.5%)	0.92 (0.87, 0.96)	
Bananas (Consumption o	n Coronary He	art Disease Inc	idence (follow-	up median 7.6 y	years)				
1	observational	not serious	not serious ⁶	serious ⁷	serious ⁸	undetected9	none	365/122,635 (0.3%)	0.76 (0.56, 1.02)	OCCO VERY LOW
Berries C	onsumption on	Coronary Hea	rt Disease Incid	lence (follow-u	p median 8 yea	rs)	1			
4	observational	not serious	serious ¹⁰	not serious	serious ¹¹	undetected9	none	2,233/100,296 (2.2%)	0.94 (0.82, 1.09)	EXCO VERY LOW
Citrus Fr	uit Consumptio	n on Coronary	V Heart Disease	Incidence (follo	ow-up median	9 years)				
10	observational	not serious	not serious	not serious	serious ¹²	undetected	dose-response gradient ¹²	8,333/364,978 (2.3%)	0.91 (0.85, 0.98)	
Fruit Juic	e Consumption	on Coronary	Heart Disease I	ncidence (follo	w-up median 1	5 years)	•			
4	observational	not serious	not serious	not serious	serious ¹⁴	undetected9	none	7,589/109,898 (6.9%)	0.99 (0.92, 1.07)	THEORY LOW
Grapes C	onsumption on	Coronary Hea	rt Disease Incid	lence (follow-u	p median 12 ye	ars)				-
1	observational	not serious	not serious ⁶	serious ¹⁵	serious ¹⁶	undetected9	none	8,333/364,978 (2.3%)	0.91 (0.85, 0.98)	⊕COO VERY LOW
Pommes (Consumption of	n Coronary He	art Disease Inci	idence (follow-u	ıp median 8 ye	ars)				
8	observational	not serious	not serious	not serious	serious ¹⁷	undetected9	none	4,886/371,684 (1.3%)	0.90 (0.84, 0.97)	EXXO VERY LOW
Waterme	lon Consumptio	on on Coronary	y Heart Disease	Incidence (foll	ow-up median	7.6 years)				
1	observational	not serious	not serious	serious ¹⁶	serious ¹⁹	undetected9	none	365/122,635 (0.3%)	0.87 (0.64, 1.18)	OCCO VERY LOW
Allium Ve	egetables Consu	mption on Co	ronary Heart D	isease Incidenc	e(follow-up me	dian 10 years)				
5	observational	not serious	not serious	not serious	serious ²⁰	undetected9	none	1,734/210,964 (0.8%)	0.93 (0.80, 1.09)	THEORY LOW
Crucifero	us Vegetables (Consumption o	n Coronary He	art Disease Inci	idence(follow-u	p median 11 ye	ears)			
8	observational	not serious	not serious	not serious	not serious	undetected9	none	9,383/347,453 (2.7%)	1.01 (0.95, 1.07)	

Table S6. GRADE Assessment for Fruits and Vegetables and Coronary Heart Disease Incidence

Green Le	Green Leafy Vegetables Consumption on Coronary Heart Disease Incidence(follow-up median 16 years)										
5	observational	not serious	not corious	not corious	not corious	undetected9	dose-response	6,696/170,250	0.82	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $	
5	observational	not serious	not serious	not serious	not serious	undetected	gradient ²¹	(3.9%)	(0.76, 0.89)	MODERATE	
Tomatoes	s Consumption	on Coronary H	eart Disease In	cidence(follow-	up median 8 y	ears)					
2	observational	not sorious	not corious	serious ²²	serious ²³	undetected9	none	1,283/134,494	0.80	$\oplus 0000$	
3	observational	not serious	not serious	serious	serious	undetected	lione	(1.0%)	(0.57, 1.13)	VERY LOW	

¹Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and coronary heart disease incidence (CHD) (p<0.001).

²Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CHD (p=0.005).

³ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=53\%$, p=0.002) was explained by the removal of Dauchet et al. 2010 ($I^2=0\%$, p=0.5) ⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.87) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

⁵ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and CHD (p<0.001).

⁶No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available

⁷ Downgrade for serious indirectness as evidence is based on only 1 geographical regions (China) and may not be generalizable to different populations.

⁸ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.02) crosses the MID (RR<0.95).

⁹ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

 10 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=74%, p=0.008), which could not be explained by sensitivity analyses.

¹¹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.82 to 1.09) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹² Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

¹³ Upgrade for a dose-response gradient, as the MKSPLINE analysis indicated a significant non-linear inverse relationship between citrus intake and incident CHD (p=0.005).

¹⁴ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.92 to 1.07) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁵ Downgrade for serious indirectness as evidence is based on 1 female cohort of health professionals and may not be generalizable to different populations.

¹⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

¹⁷ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.84) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.

¹⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.64 to 1.18) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.09) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

 20 Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CVD mortality (p=0.002). The MKSPLINE procedure indicated a departure from linearity (p=0.004) at threshold of 0.5 servings/day as observed by visual inspection.

²¹ Downgrade for serious indirectness as the evidence is based only on female populations, predominately (77.9%) of which reside in USA, and may not be generalizable to different populations.

²² Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.57 to 1.13) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05)

			Quality	Assessment		5				
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on C	oronary Heart	Disease Mortal	ity (follow-up 1	median 18 year	s)			
5	observational	not serious	not serious	not serious	not serious	undetected ¹	dose-response gradient ²	3,240/489,635 (0.7%)	0.81 (0.72, 0.92)	MODERATE
Fruit Con	sumption on C	oronary Heart	Disease Mortal	ity (follow-up 1	nedian 13 year	s)				
21	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	14,786/1,398,863 (1.1%)	0.86 (0.82, 0.90)	
Vegetable	Consumption	on Coronary H	leart Disease M	ortality (follow	-up median 13	years)	1			
18	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ⁵	26,007/1,968,325 (1.3%)	0.86 (0.83, 0.89)	MODERATE
Bananas (Consumption of	n Coronary He	art Disease Mo	rtality (follow-	up median 20 y	ears)				
1	observational	not serious	not serious ⁶	serious ⁷	serious ⁸	undetected ¹	none	2,384/9,964 (4.9%)	1.04 (0.81, 1.34)	OCCO VERY LOW
Berries C	onsumption on	Coronary Hea	rt Disease Mor	tality (follow-u	p median 17 ye	ars)	1			
5	observational	not serious	not serious	not serious	serious9	undetected ¹	none	5,141/105,420 (4.9%)	0.98 (0.91, 1.05)	OCCO VERY LOW
Citrus Fr	uit Consumptio	n on Coronary	Heart Disease	Mortality (foll	ow-up median 🛛	16 years)	•			
6	observational	not serious	not serious	serious ¹⁰	serious ¹¹	undetected ¹	none	5,309/180,574 (2.9%)	0.91 (0.85, 0.96)	OCCO VERY LOW
Dried Fru	it Consumption	n on Coronary	Heart Disease	Mortality (follo	w-up median 1	7 years)				
1	observational	not serious	not serious ⁶	serious ¹²	serious ¹³	undetected ¹	none	38/30,458 (0.1%)	0.79 (0.47, 1.31)	OCCO VERY LOW
Fruit Juic	e Consumption	on Coronary	Heart Disease N	Aortality (follow	w-up median 1'	7 years)				
3	observational	serious ¹⁴	not serious	not serious ¹⁵	serious ¹⁶	undetected ¹	none	1,249/141,170 (0.9%)	0.87 (0.75, 1.01)	OCCO VERY LOW
Grapes C	onsumption on	Coronary Hea	rt Disease Mor	tality (follow-u	p median 17 ye	ars)	-			
3	observational	not serious	not serious	serious ¹⁷	serious ¹⁸	undetected ¹	none	2,846/106, 782 (2.7%)	0.97 (0.77, 1.21)	⊕COO VERY LOW
Pommes (Consumption of	n Coronary He	art Disease Mo	rtality (follow-1	up median 19 y	ears)	-			
5	observational	not serious	not serious	serious ¹⁹	not serious	undetected ¹	none	4,650/146,407 (3.2%)	0.84 (0.76, 0.92)	OCCO VERY LOW
Allium Ve	egetables Consu	mption on Co	ronary Heart D	isease Mortalit	y (follow-up m	edian 15 years)				
4	observational	not serious	serious ²⁰	serious ²¹	not serious	undetected ¹	none	1,280/75,434 (1.7%)	0.67 (0.57, 0.79)	OCCO VERY LOW
Carrots C	Consumption on	Coronary Hea	art Disease Mor	tality (follow-u	p median 13ye	ars)				

Table S7. GRADE Assessment for Fruits and Vegetables and Coronary Heart Disease Mortality

1	observational	not serious	not serious ⁶	serious ²²	serious ²³	undetected ¹	none	64/10,802 (0.6%)	0.76 (0.37, 1.58)	DOOVERY LOW
Celery Co	onsumption on (Coronary Hear	rt Disease Mort	ality (follow-up) median 16 yea	ars)				
1	observational	not serious	not serious ²⁴	serious ²⁵	serious ²⁶	undetected ¹	none	1,329/34,492 (3.9%)	0.92 (0.80, 1.06)	OCCO VERY LOW
Crucifero	ous Vegetables (Consumption of	n Coronary He	art Disease Mo	rtality (follow-	up median 16 y	ears)			
6	observational	serious ²⁷	serious ²⁸	not serious	serious ²⁹	undetected ¹	none	7,420/296,772 (2.5%)	0.91 (0.85, 0.98)	OCCO VERY LOW
Green Le	afy Vegetables	Consumption o	on Coronary Ho	eart Disease Mo	ortality (follow-	-up median 17 y	vears)			
5	observational	serious ³⁰	not serious	not serious	not serious	undetected ¹	none	4,591/148,133 (3.1%)	0.86 (0.78. 0.94)	OCCO VERY LOW
Tomatoes	s Consumption of	on Coronary H	eart Disease M	ortality (follow	-up median 16	years)				
3	observational	serious ³¹	not serious	not serious	serious ³²	undetected ¹	none	3,657/175,088 (2.1%)	0.92 (0.82, 1.04)	OCCO VERY LOW

¹No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

² Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between fruit and vegetable intake and CHD mortality (p=0.044)

³ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=62\%$, p<0.0001). Although heterogeneity could be partially explained by the removal of Du et al. 2017 ($I^2=44\%$, p=0.01) and Hjartaker et al. 2015 ($I^2=46\%$, p=0.007) during sensitivity analyses, the presence of residual heterogeneity could not be excluded.

⁴ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and CHD mortality (p<0.001).

⁵ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and CHD mortality (p=0.005).

⁶ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

⁷ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations.

⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.81 to 1.34) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

⁹ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.91 to 1.05) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁰ Downgrade for serious indirectness as evidence is based on a predominately ($\geq 69.6\%$) female populations and may not be generalizable to different populations.

¹¹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.96) crosses the MID.

¹² Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

¹³ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.47 to 1.31) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁴ Downgrade for serious risk of bias as 56% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

¹⁵ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=71\%$, p=0.02) was explained by the removal of Collin et al. 2019 ($I^2=0\%$, p=0.45).

¹⁶ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 1.01) crosses the MID (RR<0.95).

¹⁷ Downgrade for serious indirectness as evidence is based on a predominately (91%) female population of which the majority are health professionals and may not be generalizable to different populations.

¹⁸ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.77 to 1.21) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁹ Downgrade for serious indirectness as evidence is based on a predominately (82.1%) female populations and may not be generalizable to different populations.

 20 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001). Although heterogeneity could be partially explained by the removal of Blekkenhorst et al. 2017 (I²=47%, p=0.13) during sensitivity analyses, the presence of residual heterogeneity could not be excluded.

²¹ Downgrade for serious indirectness as evidence is based on a predominately (95.4%) female populations and may not be generalizable to different populations.

²² Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

 23 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.37 to 1.58) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²⁴ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

²⁵ Downgrade for serious indirectness as evidence is based on 1 female cohort and may not be generalizable to different populations.

 26 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.06) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²⁷ Downgrade for serious risk of bias as 39.3% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9).

 28 Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity (I²=88%, p<0.00001) which could not be explained by sensitivity analyses.

²⁹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

³⁰ Downgrade for serious risk of bias as 36.8% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)

³¹ Downgrade for serious risk of bias as 48.0% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 1/9)

³² Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.82) includes the minimally important difference (MID) of 5% while the upper bound of the 95% CI (RR, 1.04) crosses the MID.

			Ouality	Assessment						
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on S	troke Incidence	(follow-up me	dian 9 years)					
14	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ¹	11,091/532,667 (2.1%)	0.82 (0.77, 0.88)	ODERATE
Fruit Con	sumption on St	troke Incidence	e (follow-up me	dian 14 years)						
17	observational	not serious	not serious	not serious	not serious	undetected	dose-response gradient ²	43,702/987,983 (4.4%)	0.82 (0.79, 0.85)	MODERATE
Vegetable	Consumption	on Stroke Inci	dence (follow-u	p median 14 ye	ars)					
16	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	13,607/564,531 (2.4%)	0.82 (0.83, 0.93)	MODERATE
Berries C	onsumption on	Stroke Incider	nce (follow-up n	nedian 10 years	5)				1	
4	observational	not serious	not serious ⁵	not serious	serious ⁶	undetected ⁷	none	5,967/143,662 (4.2%)	1.03 (0.94, 1.13)	OCCO VERY LOW
Citrus Fr	uit Consumptio	on on Stroke In	cidence (follow	-up median 11	years)					
8	observational	not serious	serious ⁸	not serious	not serious	undetected ⁷	dose-response gradient ⁹	7,142/225,613 (3.2%)	0.88 (0.82, 0.94)	
Fruit Juic	e Consumption	on Stroke Inc	idence (follow-ເ	ıp median 11 y	ears)					
4	observational	not serious	not serious ¹⁰	not serious	serious ¹¹	undetected ⁷	none	1,705/148,839 (1.2%)	0.82 (0.68, 0.99)	OCC VERY LOW
Pommes (Consumption o	n Stroke Incide	ence (follow-up	median 14 year	rs)		· · · · ·			
5	observational	not serious	not serious	not serious	not serious	undetected ⁷	dose-response gradient ¹²	7,364/146,723 (5.0%)	0.89 (0.84, 0.95)	MODERATE
Allium Ve	egetables Consu	Imption on Str	oke Incidence (#	follow-up medi	an 28 years)					
2	Observational	not serious	not serious	serious ¹³	serious ¹⁴	undetected ⁷	none	4,912/84,169 (5.8%)	0.89 (0.80, 0.99)	OCCO VERY LOW
Crucifero	us Vegetables (Consumption o	n Stroke Incide	nce (follow-up	median 12 year	rs)				
6	observational	not serious	serious ¹⁵	not serious	serious ¹⁶	undetected ⁷	none	7,706/255,726 (3.0%)	0.98 (0.91, 1.05)	OCCO VERY LOW
Green Le	afy Vegetables	Consumption of	on Stroke Incide	ence (follow-up	median 9 year	s)				
4	observational	not serious	not serious	not serious	serious ¹⁷	undetected ⁷	dose-response gradient ¹⁸	4,798/196,456 (2.4%)	0.88 (0.79, 0.98)	
Tomatoes	Consumption	on Stroke Incid	lence (follow-up	o median 7 year	rs)					
1	observational	not serious	not serious ¹⁹	serious ²⁰	not serious	undetected ⁷	dose-response gradient ²¹	247/38,445 (0.6%)	0.20 (0.05, 0.82)	

Table S8. GRADE Assessment for Fruits and Vegetables and Stroke Incidence

¹ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and stroke incidence (p=0.002).

² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and stroke incidence (p<0.001).

³ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=50\%$, p=0.006) that could not be explained during sensitivity analysis.

⁴ Upgrade for a dose-response gradient, as the MKSPLINE analysis revealed a significant non-linear inverse relationship between vegetable intake and stroke incidence with a departure from linearity at 1.5 servings/day (p=0.012)

⁵ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=50\%$, p=0.08) was explained by the removal of Hirvonen et al. 2000 – cerebral infraction ($I^2=0\%$, p=0.41)

during sensitivity analysis.

⁶ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.94 to 1.13) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05)

⁷ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

⁸ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=51\%$, p=0.04). Although the removal of Larsson et al. 2013 ($I^2=37\%$, p=0.14) or Yamada et al. 2011 ($I^2=39\%$, p=0.12) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

 9 Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between citrus fruit intake and stroke incidence (p=0.033) and an MKSPLINE analysis revealed a significant non-linear inverse relationship between citrus fruit intake and stroke incidence (p=0.039).

¹⁰ No downgrade for inconsistency as the presence of inter-study heterogeneity ($I^2=73\%$, p=0.02) was explained by the removal of Scheffers et al. 2019 ($I^2=0\%$, p=0.47) ¹¹ Downgrade for serious imprecision, as the upper bound of the 95% CIs (RR, 0.99) crosses the MID (RR<0.95).

¹² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between pommes intake and stroke incidence (p=0.003). MKSPLINE analyses could not be conducted due to small sample size.

¹³ Downgrade for serious indirectness as evidence is based on cohorts residing in Northern Europe and may not be generalizable to different populations.

¹⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.80) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

¹⁵ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=62\%$, p=0.02). Although the removal of Larsson et al. 2013 (during sensitivity analysis did partially explain the heterogeneity ($I^2=40\%$, p=0.16), the presence of residual heterogeneity could not be excluded.

¹⁶ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.91 to 1.05) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.79) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.98) crosses the MID.

¹⁷ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between green leafy vegetable intake and stroke incidence (p=0.008). MKSPLINE analyses could not be conducted due to small sample size.

¹⁸ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

¹⁹ Downgrade for serious indirectness as evidence is based on only 1 cohort of females for USA and may not be generalizable to different populations.

²⁰ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between tomato intake and stroke incidence (p=0.002). MKSPLINE analyses could not be conducted due to small sample size.

				Assessment						
No. of Cohorts	Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Other	Study Event Rates (%)	Relative Risk (95% CI)	Certainty
Fruit and	Vegetable Con	sumption on S	troke Mortality	(follow-up me	dian 19 years)					
6	observational	not serious	not serious	not serious	not serious	undetected ¹	dose-response gradient ²	3,051/499,732 (0.6%)	0.73 (0.65, 0.81)	MODERATE
Fruit Con	sumption on St	roke Mortality	/ (follow-up me	dian 20 years)			1			
14	observational	not serious	serious ³	not serious	not serious	undetected	dose-response gradient ⁴	10,899/1,282,756 (0.8%)	0.87 (0.84, 0.91)	
Vegetable	e Consumption	on Stroke Mor	tality (follow-u	p median 15 ye	ars)		-			
12	observational	not serious	serious ⁵	not serious	serious ⁶	undetected	dose-response gradient ⁷	7,551/780,441 (1.0%)	0.94 (0.90, 0.99)	
Bananas	Consumption o	n Stroke Morta	ality (follow-up	median 20 year	rs)		1			
1	observational	not serious	not serious ⁸	serious9	serious ¹⁰	undetected ¹	none	1,.34/9,766 (10.6%)	1.04 (0.70, 1.54)	OCCO VERY LOW
Berries C	onsumption on	Stroke Mortal	ity (follow-up n	nedian 19 years	5)		1			
2	observational	not serious	not serious	serious ¹¹	serious ¹²	undetected ¹	none	1,182/40,224 (2.9%)	0.97 (0.82, 1.15)	OCCO VERY LOW
Citrus Fr	uit Consumptio	n on Stroke M	ortality (follow	-up median 20	years)		1			
4	observational	serious ¹³	serious ¹⁴	not serious	not serious	undetected ¹	dose-response gradient ¹⁵	3,869/145,204 (2.7%)	0.90 (0.86, 0.95)	
Dried Fru	it Consumption	n on Stroke Mo	ortality (follow-	up median 17 y	vears)					
1	observational	not serious	not serious	serious ¹⁶	serious ¹⁷	undetected ¹	none	152/30,458 (0.5%)	0.95 (0.80, 1.13)	OCCO VERY LOW
Fruit Juic	e Consumption	on Stroke Mo	rtality (follow-ı	ıp median 17 y	ears)		-			
2	observational	serious ¹⁸	not serious	not serious	not serious	undetected ¹	dose-response gradient ¹⁹	2,232/128,270 (1.7%)	0.67 (0.60, 0.76)	
Grapes C	onsumption on	Stroke Mortal	ity (follow-up n	nedian 19 years	5)		1			
2	observational	not serious	not serious	serious ²⁰	serious ²¹	undetected ¹	none	1,182/40224 (2.9%)	0.74 (0.53, 1.02)	OCCO VERY LOW
Pommes (Consumption of	n Stroke Morta	ality (follow-up	median 17 year	rs)		1			
3	observational	not serious	not serious	serious ²²	serious ²³	undetected ¹	none	1,651/74,716 (2.2%)	0.91 (0.77, 1.09)	OCCO VERY LOW
Allium Vegetable Consumption on Stroke Mortality (follow-up median 19 years)										
2	observational	not serious	serious ²⁴	not serious	serious ²⁵	undetected ¹	none	544/3,671 (14.8%)	0.99 (0.79, 1.24)	OCCO VERY LOW
Carrots C	Consumption on	Stroke Morta	lity (follow-up 1	nedian 20 year	s)					
1	observational	not serious	not serious ⁸	serious9	not serious	undetected ¹	dose-response gradient ²⁶	1,034/9,766 (10.6%)	0.54 (0.48, 0.61)	

Table S9. GRADE Assessment for Fruits and Vegetables and Stroke Mortality

Crucifero	Cruciferous Vegetables Consumption on Stroke Mortality (follow-up median 20 years)										
5	observational	serious ²⁷	not serious	not serious	serious ²⁸	undetected ¹	nona	5,065/195,452	0.92	$\oplus 0000$	
5	observational	observational serious not serious not serious serious-o undetected.	none	(2.6%)	(0.85, 1.01)	VERY LOW					
Green Le	Green Leafy Vegetables Consumption on Stroke Mortality (follow-up median 21 years)										
4	observational	serious ²⁹	serious ³⁰	not serious	serious ³¹	undetected ¹	dose-response	4,103/126,971	0.90	$\oplus \oplus \bigcirc \bigcirc$	
4	observational	serious	serious	not serious	serious	undetected	gradient ³²	(3.2%)	(0.83, 0.97)	LOW	
Tomatoes	Consumption	on Stroke Mort	tality (follow-uj	o median 20 yea	ars)						
2	observational	serious ³³	not serious	not serious	serious ³³	undetected ¹	none ³⁴	3,107/108,260	1.03	$\oplus 0000$	
Z	observational	serious	not serious	not serious	serious	undetected	none	(2.9%)	(0.94, 1.12)	VERY LOW	

¹ No downgrade for publication bias as publication bias could not be assessed due to lack of power for assessing funnel plot asymmetry and small study effects (i.e. <10 observations available).

² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit and vegetable intake and stroke mortality (p=0.005).

³ Downgrade for serious inconsistency as there was evidence of substantial inter-study heterogeneity ($I^2=75\%$, p<0.00001) which could not be explained by sensitivity analyses.

⁴Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit intake and stroke mortality (p<0.001) and an MKSPLINE analysis revealed a significant non-linear inverse relationship between fruit intake and stroke mortality (p<0.001)

⁵ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=62\%$, p=0.0010). Although the removal of Wang et al. 2013 ($I^2=43\%$, p=0.05) or Leeanders et al. 2014 ($I^2=48\%$, p=0.02) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

⁶ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.90) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.99) crosses the MID.

⁷ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between vegetable intake and stroke mortality (p=0.025).

⁸ No downgrade for inconsistency as analyses for inconsistency could not be performed due to <2 observations available.

⁹ Downgrade for serious indirectness as evidence is based on 1 male cohort and may not be generalizable to different populations

¹⁰ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.70 to 1.54) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹¹ Downgrade for serious indirectness as evidence is based on a predominately (76%) female population and may not be generalizable to different populations.

¹² Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.82) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.15) crosses the MID.

¹³ Downgrade for serious risk of bias as 75.3% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

¹⁴ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity ($I^2=82\%$, p=0.0001). Although the removal of Wang et al. 2016 ($I^2=40\%$, p=0.17) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

¹⁵ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between citrus fruit intake and stroke mortality (p<0.001).

¹⁶ Downgrade for serious indirectness as evidence is based on one female population and may not be generalizable to different populations.

¹⁷ Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.80 to 1.13) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

¹⁸Downgrade for serious risk of bias as 62% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

¹⁹ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between fruit juice intake and CHD mortality (p=0.002). MKSPLINE analyses could not be conducted due to small sample size.

²⁰ Downgrade for serious indirectness as evidence is based on a predominately (76%) female population and may not be generalizable to different populations.

 21 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.53 to 1.02) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²² Downgrade for serious indirectness as evidence is based on a predominately (87%) female population and may not be generalizable to different populations.

²³ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.77) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.09) crosses the MID.

²⁴ Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity (I²=96%, p<0.00001).

 25 Downgrade for serious imprecision, as the lower and upper bound of the 95% CIs (RR, 0.79 to 1.24) includes both clinically important benefit (RR<0.95) and harm (RR \ge 1.05).

²⁶ Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between carrots intake and stroke mortality (p<0.001).

²⁷ Downgrade for serious risk of bias as 79.4% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

²⁸ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.85) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.01) crosses the MID.

²⁹ Downgrade for serious risk of bias as 50.0% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

 30 Downgrade for serious inconsistency given evidence of substantial inter-study heterogeneity (I²=50%, p=0.09). Although the removal of Appleby et al. 2002 (I²=36%, p=0.20) or Wang et al. 2016 (I²=25%, p=0.05) during sensitivity analysis did partially explain the heterogeneity, the presence of residual heterogeneity could not be excluded.

³¹ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.83) includes the MID of 5% while the upper bound of the 95% CI (RR, 0.97) crosses the MID.

³² Upgrade for a dose-response gradient, as the GLST analysis revealed a significant linear inverse relationship between green leafy vegetable intake and CHD mortality (p=0.032). MKSPLINE analyses could not be conducted due to small sample size.

³³ Downgrade for serious risk of bias as 60.4% of effect estimate is based on Iso et al. 2007, which presented with a high risk of bias (Newcastle-Ottawa Score: 5/9).

³⁴ Downgrade for serious imprecision, as the lower bound of the 95% CI (RR, 0.94) includes the MID of 5% while the upper bound of the 95% CI (RR, 1.12) crosses the MID.

³⁵ Dose-response gradient could not be assessed due to insufficient dose ranges available to determine the presence of a linear/non-linear dose response.

Figure S1. Relation between total fruit and vegetable intake and cardiovascular disease incidence (highest vs. lowest level of intake).

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
WHS - Liu 2000	39,127	418	1.1%	0.85 [0.61, 1.19]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	2.1%	0.97 [0.77, 1.23]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.4%	0.86 [0.64, 1.15]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	1.2%	1.21 [0.88, 1.65]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	34.3%	0.95 [0.90, 1.01]	-=-
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	1.0%	0.73 [0.52, 1.04]	
PRIME - Dauchet 2010 - former smokers	3,353	237	1.2%	0.93 [0.68, 1.28]	
PRIME - Dauchet 2010 - current smokers	2,297	230	0.9%	0.64 [0.44, 0.93]	
PRIME - Dauchet 2010 - never smokers	2,410	145	0.7%	1.27 [0.84, 1.92]	
WHI-OS - Belin 2011	93,676	6,006	34.3%	0.92 [0.87, 0.98]	
Carphilly Cohort - Elwood 2013	2,235	752	2.1%	0.95 [0.75, 1.20]	
British Regional Heart - Atkins 2014	3,328	582	2.1%	1.01 [0.80, 1.28]	
SABRE - Eriksen 2015 - European	1,090	225	1.4%	1.09 [0.82, 1.47]	
SABRE - Eriksen 2015 - South Asian	1,006	346	2.1%	0.97 [0.77, 1.23]	
PREDIMED- Buil-Cosiales 2016	7,216	342	0.5%	0.56 [0.34, 0.91]	
PURE - Miller 2017	135,335	4,784	1.4%	0.93 [0.69, 1.25]	
EPIC Norfolk - Mytton 2018	22,992	4,965	12.3%	0.84 [0.76, 0.93]	
Total (95% Cl)	501,744	24,310	100.0%	0.93 [0.89, 0.96]	◆
Heterogeneity: Chi ² = 21.52, df = 16 (P = 0.16);	; l² = 26%				
Test for overall effect: Z = 4.42 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CVD
WHS - Liu 2000	39,127	418	2.3%	0.85 [0.61, 1.19]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	4.3%	0.97 [0.77, 1.23]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	2.9%	0.86 [0.64, 1.15]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	2.6%	1.21 [0.88, 1.65]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	22.6%	0.95 [0.90, 1.01]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	2.1%	0.73 [0.52, 1.04]	
PRIME - Dauchet 2010 - former smokers	3,353	237	2.6%	0.93 [0.68, 1.28]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.9%	0.64 [0.44, 0.93]	
PRIME - Dauchet 2010 - never smokers	2,410	145	1.5%	1.27 [0.84, 1.92]	
WHI-OS - Belin 2011	93,676	6,006	22.6%	0.92 [0.87, 0.98]	
Carphilly Cohort - Elwood 2013	2,235	752	4.3%	0.95 [0.75, 1.20]	
British Regional Heart - Atkins 2014	3,328	582	4.3%	1.01 [0.80, 1.28]	
SABRE - Eriksen 2015 - European	1,090	225	2.9%	1.09 [0.82, 1.47]	
SABRE - Eriksen 2015 - South Asian	1,006	346	4.3%	0.97 [0.77, 1.23]	
PREDIMED- Buil-Cosiales 2016	7,216	342	1.1%	0.56 [0.34, 0.91]	
PURE - Miller 2017	135,335	4,784	2.9%	0.93 [0.69, 1.25]	
EPIC Norfolk - Mytton 2018	22,992	4,965	15.0%	0.84 [0.76, 0.93]	
Total (95% Cl) [Random Effects]	501,744	24,310	100.00%	0.92 [0.88, 0.97]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 21.52, df = 1	L6 (P = 0.16); I ² = 2	26%			
Test for overall effect: Z = 3.02 (P = 0.002)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	226	0.7%	0.74 [0.47, 1.16]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.8%	0.77 [0.59, 1.01]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	2.1%	0.83 [0.64, 1.07]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	1.1%	1.25 [0.88, 1.77]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	5.4%	0.81 [0.69, 0.95]	_
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	1.1%	1.11 [0.78, 1.57]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.1%	0.82 [0.58, 1.17]	
PRIME - Dauchet 2010 - never smokers	2,410	145	0.7%	1.45 [0.94, 2.23]	
PRIME - Dauchet 2010 - former smokers	3,353	237	1.4%	1.06 [0.78, 1.45]	
WHI-OS - Belin 2011	93,676	6,006	38.6%	0.91 [0.86, 0.97]	+
WHS - Fitzgerald 2012	34,827	1,094	3.5%	0.82 [0.67, 1.00]	
British Women's Heart & Health - Kim 2013	3,080	329	0.5%	1.09 [0.66, 1.82]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	7.1%	1.14 [0.99, 1.31]	
British Regional Heart - Atkins 2014	3,328	582	1.1%	0.90 [0.63, 1.27]	
MONICA Danish - Tognon 2014	1,849	755	7.1%	0.86 [0.75, 0.99]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	5.4%	0.95 [0.81, 1.11]	_
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	3.5%	0.99 [0.81, 1.20]	_
PREDIMED- Buil-Cosiales 2016	7,216	342	1.0%	0.76 [0.53, 1.11]	_
SUN - Buil-Cosiales - 2017	17,007	112	0.3%	0.51 [0.27, 0.96]	
PURE - Miller 2017	135,335	4,784	7.1%	0.89 [0.77, 1.02]	
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	9.7%	0.87 [0.77, 0.98]	
Total (95% CI)	577,323	27,205	100.0%	0.91 [0.88, 0.95]	•
Heterogeneity: Chi ² = 33.12, df = 20 (P = 0.03); l ²	= 40%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.88 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	226	1.5%	0.74 [0.47, 1.16]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	3.5%	0.77 [0.59, 1.01]	
Japan Public Health Center - Takachi 2008 - M	35,909	830	3.9%	0.83 [0.64, 1.07]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	2.3%	1.25 [0.88, 1.77]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	7.3%	0.81 [0.69, 0.95]	_
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	2.3%	1.11 [0.78, 1.57]	
PRIME - Dauchet 2010 - current smokers	2,297	230	2.3%	0.82 [0.58, 1.17]	
PRIME - Dauchet 2010 - never smokers	2,410	145	1.6%	1.45 [0.94, 2.23]	
PRIME - Dauchet 2010 - former smokers	3,353	237	2.8%	1.06 [0.78, 1.45]	
WHI-OS - Belin 2011	93,676	6,006	13.4%	0.91 [0.86, 0.97]	-
WHS - Fitzgerald 2012	34,827	1,094	5.6%	0.82 [0.67, 1.00]	
British Women's Heart & Health - Kim 2013	3,080	329	1.2%	1.09 [0.66, 1.82]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	8.3%	1.14 [0.99, 1.31]	⊢ •−
British Regional Heart - Atkins 2014	3,328	582	2.3%	0.90 [0.63, 1.27]	
MONICA Danish - Tognon 2014	1,849	755	8.3%	0.86 [0.75, 0.99]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	7.3%	0.95 [0.81, 1.11]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	5.6%	0.99 [0.81, 1.20]	-+-
PREDIMED- Buil-Cosiales 2016	7,216	342	2.1%	0.76 [0.53, 1.11]	
SUN - Buil-Cosiales - 2017	17,007	112	0.8%	0.51 [0.27, 0.96]	
PURE - Miller 2017	135,335	4,784	8.3%	0.89 [0.77, 1.02]	
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	9.5%	0.87 [0.77, 0.98]	
Total (95% Cl) [Random Effects]	577,323	27,205	100.0%	0.91 [0.86, 0.97]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 33.12, df = 20	(P = 0.03); I ² = 409	%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.07 (P = 0.002)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S2. Relation between fruit intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

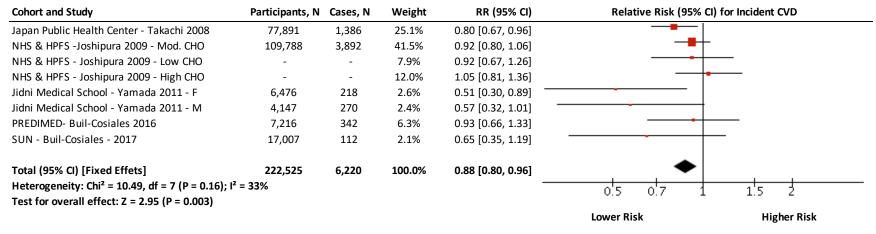
A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Men Born in 1913 - Strandhagen 2000	730	209	2.4%	0.77 [0.61, 0.98]	
Japan Public Health Center - Takachi 2008 - M	35,909	582	2.9%	1.03 [0.83, 1.28]	
Japan Public Health Center - Takachi 2008 - F	41,982	556	1.8%	0.88 [0.67, 1.16]	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	2.0%	0.96 [0.74, 1.24]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	2.0%	0.86 [0.67, 1.11]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	7.0%	0.93 [0.81, 1.07]	- _
PRIME - Dauchet 2010 - current smokers	2,297	230	5.4%	0.74 [0.63, 0.87]	
PRIME - Dauchet 2010 - former smokers	3,353	237	7.0%	1.04 [0.91, 1.19]	_
PRIME - Dauchet 2010 - never smokers	2,410	145	4.3%	1.14 [0.95, 1.36]	
WHI-OS - Belin 2011	93,676	6,006	38.4%	0.96 [0.91, 1.02]	
WHS - Fitzgerald 2012	34,827	1,094	2.9%	0.89 [0.71, 1.10]	
EPIC Potsdam - Von Ruesten 2013	23,531	363	0.9%	0.70 [0.47, 1.03]	
MONICA Danish - Tognon 2014	1,849	755	5.4%	0.88 [0.75, 1.03]	_
British Regional Heart - Atkins 2014	3,328	582	0.5%	1.17 [0.69, 1.99]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	5.4%	0.92 [0.79, 1.08]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	3.5%	0.97 [0.80, 1.18]	
PREDIMED- Buil-Cosiales 2016	7,216	342	1.0%	0.67 [0.46, 0.97]	
PURE - Miller 2017	135,335	4,784	7.0%	0.95 [0.83, 1.09]	_
SUN - Buil-Cosiales - 2017	17,007	112	0.3%	0.96 [0.51, 1.80]	
Total (95% CI)	539,683	22,810	100.0%	0.94 [0.90, 0.97]	◆
Heterogeneity: Chi ² = 27.44, df = 18 (P = 0.07); I ²	² = 34%				
Test for overall effect: Z = 3.51 (P = 0.0004)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for I	ncident CVD
Men Born in 1913 - Strandhagen 2000	730	209	4.0%	0.77 [0.61, 0.98]		
Japan Public Health Center - Takachi 2008 - M	35,909	582	4.5%	1.03 [0.83, 1.28]		_
Japan Public Health Center - Takachi 2008 - F	41,982	556	3.1%	0.88 [0.67, 1.16]		
NHS & HPFS - Joshipura 2009 - High CHO	-	-	3.5%	0.96 [0.74, 1.24]		-
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	8.2%	0.93 [0.81, 1.07]		
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	3.5%	0.86 [0.67, 1.11]		
PRIME - Dauchet 2010 - former smokers	3,353	237	8.2%	1.04 [0.91, 1.19]		
PRIME - Dauchet 2010 - never smokers	2,410	145	6.0%	1.14 [0.95, 1.36]	+	
PRIME - Dauchet 2010 - current smokers	2,297	230	7.0%	0.74 [0.63, 0.87]	.	
WHI-OS - Belin 2011	93,676	6,006	15.0%	0.96 [0.91, 1.02]	-++	
WHS - Fitzgerald 2012	34,827	1,094	4.5%	0.89 [0.71, 1.10]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	1.7%	0.70 [0.47, 1.03]	+	
British Regional Heart - Atkins 2014	3,328	582	0.9%	1.17 [0.69, 1.99]		
MONICA Danish - Tognon 2014	1,849	755	7.0%	0.88 [0.75, 1.03]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	1,227	5.2%	0.97 [0.80, 1.18]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	1,694	7.0%	0.92 [0.79, 1.08]		
PREDIMED- Buil-Cosiales 2016	7,216	342	1.8%	0.67 [0.46, 0.97]		
SUN - Buil-Cosiales - 2017	17,007	112	0.7%	0.96 [0.51, 1.80]		
PURE - Miller 2017	135,335	4,784	8.2%	0.95 [0.83, 1.09]		
Total (95% Cl) [Random Effects]	539,683	22,810	100.0%	0.92 [0.88, 0.97]	•	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 27.44$, df = 18	(P = 0.07); I ² = 34	%			0.5 0.7 1	1.5 2
Test for overall effect: Z = 2.93 (P = 0.003)					Lower Risk	Higher Risk

Figure S3. Relation between vegetable intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


BERRIES AND CARDIOVASCULAR DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl	for Incident CVD
WHS - Sesso 2007	38,176	1,004	100.00%	1.27 [0.95, 1.71]		
Total (95% CI) Heterogeneity: Not applicable	38,176	1,004	100.0%	1.27 [0.95, 1.71] 	0.5 0.7 1	1.5 2
Test for overall effect: Z = 1.60 (P = 0.11)					Protective Association	Adverse Association

Figure S4. Relation between intake of berries and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CITRUS FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Japan Public Health Center - Takachi 2008	77,891	1,386	22.9%	0.80 [0.67, 0.96]	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	11.5%	0.92 [0.67, 1.26]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	27.9%	0.92 [0.80, 1.06]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	15.3%	1.05 [0.81, 1.36]	
Jidni Medical School - Yamada 2011 - M	4,147	270	4.3%	0.57 [0.32, 1.01] -	
Jidni Medical School - Yamada 2011 - F	6,476	218	4.6%	0.51 [0.30, 0.89]	
PREDIMED- Buil-Cosiales 2016	7,216	342	9.6%	0.93 [0.66, 1.33]	
SUN - Buil-Cosiales - 2017	17,007	112	3.8%	0.65 [0.35, 1.19]	
Total (95% CI) [Random Effects]	222,525	6,220	100.0%	0.86 [0.76, 0.97]	•
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 10.49$, df =	7 (P = 0.16); l ² = 339	%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 2.40 (P = 0.02)					· · · · · · · · · · · · · · · · · · ·
					Lower Risk Higher Risk

Figure S5. Relation between citrus fruit intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	8.0%	1.25 [0.97, 1.61]		
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	6.0%	1.07 [0.80, 1.44]		
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	37.5%	0.96 [0.85, 1.08]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	21.1%	1.01 [0.86, 1.18]		
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	27.5%	0.96 [0.84, 1.10]		
Total (95% CI)	167,879	8,056	100.0%	1.00 [0.93, 1.07]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 3.86, df = 4 (P = 0.42); l ² = 0%					0.7 0.85 1 1.2 1.5	
Test for overall effect: Z = 0.06 (P = 0.95)					0.7 0.05 1 1.2 1.5	
					Lower Risk Higher Risk	

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD	
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	8.0%	1.25 [0.97, 1.61]		•
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	6.0%	1.07 [0.80, 1.44]	+•	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	37.5%	0.96 [0.85, 1.08]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	21.1%	1.01 [0.86, 1.18]		
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	27.5%	0.96 [0.84, 1.10]		
Total (95% CI)	167,879	8,056	100.0%	1.00 [0.93, 1.07]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 3.86, df = 4 (P = 0.42); l ² = 0%						
Test for overall effect: Z = 0.06 (P = 0.95)					0.7 0.85 1 1.2	1.5
					Lower Risk Hi	gher Risk

Figure S6. Relation between fruit juice intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

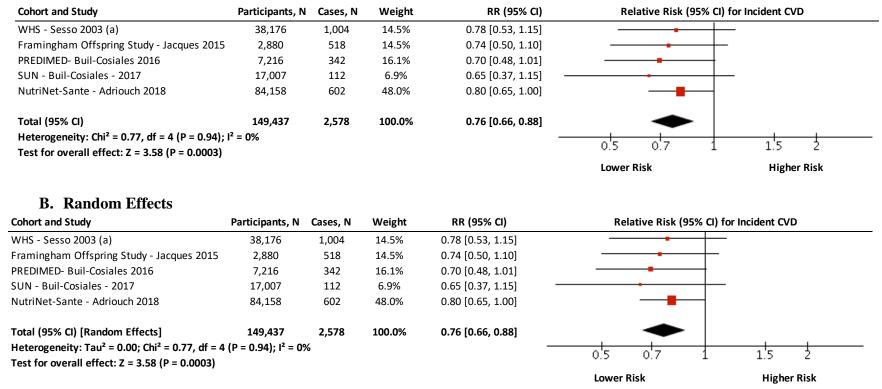
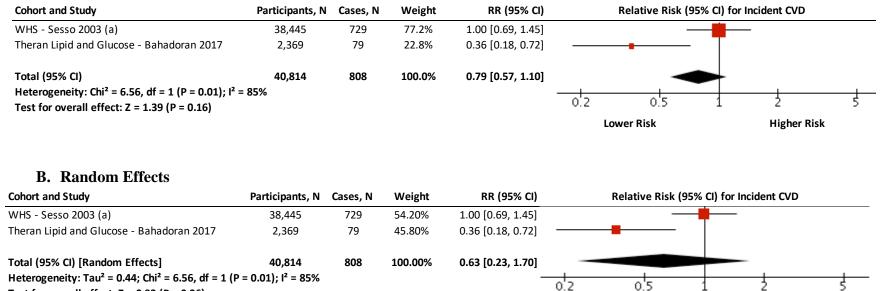
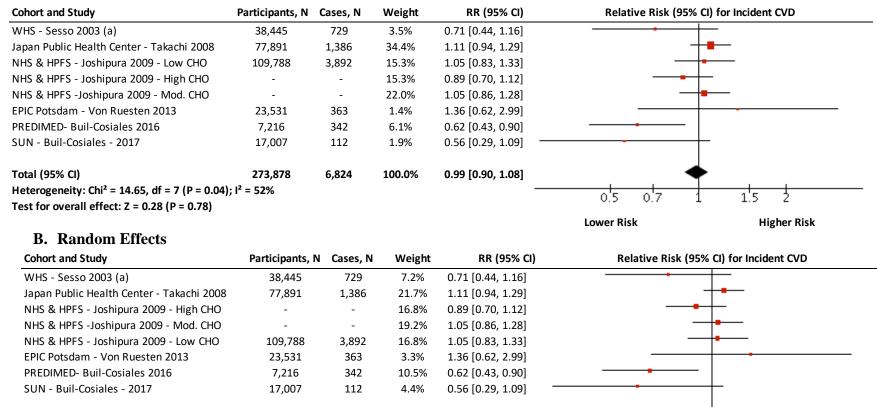



Figure S7. Relation between pommes intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

Test for overall effect: Z = 0.92 (P = 0.36)


Lower Risk

Higher Risk

Figure S8. Relation between intake of allium vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

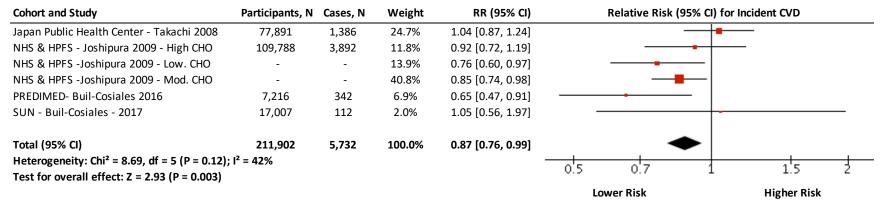
Total (95% CI) [Random Effects] 273,878 6,824 Heterogeneity: $Tau^2 = 0.02$; $Chi^2 = 14.65$, df = 7 (P = 0.04); $I^2 = 52\%$ Test for overall effect: Z = 0.91 (P = 0.36)

0.7 Lower Risk

1.5

Higher Risk

0.5

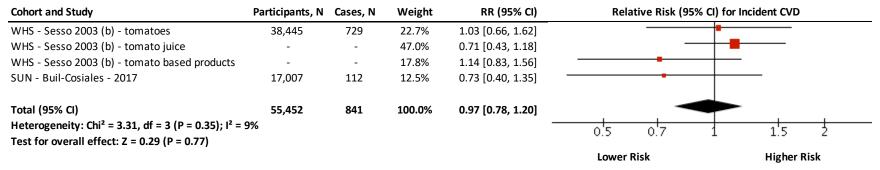

Figure S9. Relation between intake of cruciferous vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

100.0%

0.93 [0.80, 1.09]

GREEN LEAFY VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD	
Japan Public Health Center - Takachi 2008	77,891	1,386	24.7%	1.04 [0.87, 1.24]		
NHS & HPFS - Joshipura 2009 - High CHO	109,788	3,892	11.8%	0.92 [0.72, 1.19]		
NHS & HPFS - Joshipura 2009 - Low. CHO	-	-	13.9%	0.76 [0.60, 0.97]	_	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	40.8%	0.85 [0.74, 0.98]		
PREDIMED- Buil-Cosiales 2016	7,216	342	6.9%	0.65 [0.47, 0.91]		
SUN - Buil-Cosiales - 2017	17,007	112	2.0%	1.05 [0.56, 1.97]		
Total (95% CI)	211,902	5,732	100.0%	0.87 [0.76, 0.99]	◆	
Heterogeneity: Tau ² = 0.01; Chi ² = 8.69, df = 5 (P = 0.12); l ² = 42%						1
Test for overall effect: Z = 2.16 (P = 0.03)					0.5 0.7 1 1.5	2
					Lower Risk Higher Risk	

Figure S10. Relation between intake of green leafy vegetables and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CARDIOVASCULAR DISEASE INCIDENCE

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident	CVD
WHS - Sesso 2003 (b) - tomatoes	38,445	729	23.5%	1.03 [0.66, 1.62]		-
WHS - Sesso 2003 (b) - tomato based products	-	-	18.8%	0.71 [0.43, 1.18]		
WHS - Sesso 2003 (b) - tomato juice	-	-	44.2%	1.14 [0.83, 1.56]		
SUN - Buil-Cosiales - 2017	17,007	112	13.5%	0.73 [0.40, 1.35]		
Total (95% Cl) [Random Effects]	55,452	841	100.0%	0.96 [0.76, 1.21]		
Heterogeneity: Tau ² = 0.01; Chi ² = 3.31, df = 3 (P	² = 0.35); I ² = 9%			-		
Test for overall effect: Z = 0.35 (P = 0.73)					0.5 0.7 1 1.5	2
					Lower Risk Hig	her Risk

Figure S11. Relation between tomato intake and cardiovascular disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CVD
Berries					
WHS - Sesso 2007	38,176	1,004	3.1%	1.27 [0.95, 1.71]	
Subtotal (95% CI)	38,176	1,004	3.1%	1.27 [0.95, 1.71]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.60 (P = 0.11)					
Citrus					
Japan Public Health Center - Takachi 2008	77,891	1,386	8.5%	0.80 [0.67, 0.96]	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	2.7%	0.92 [0.67, 1.26]	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	14.1%	0.92 [0.80, 1.06]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	4.1%	1.05 [0.81, 1.36]	
Jidni Medical School - Yamada 2011 - M	4,147	270	0.8%	0.57 [0.32, 1.01]	
Iidni Medical School - Yamada 2011 - F	6,476	218	0.9%	0.51 [0.30, 0.89] —	
PREDIMED- Buil-Cosiales 2016	7,216	342	2.1%	0.93 [0.66, 1.33]	
SUN - Buil-Cosiales - 2017	17,007	112	0.7%	0.65 [0.35, 1.19]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)	222,525	6,220	33.9%	0.88 [0.80, 0.96]	•
Heterogeneity: Chi ² = 10.49, df = 7 (P = 0.16);	l ² = 33%				-
Test for overall effect: Z = 2.95 (P = 0.003)					
Fruit juice					
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	3.1%	1.07 [0.80, 1.44]	
NHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	19.2%	0.96 [0.85, 1.08]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	4.1%	1.25 [0.97, 1.61]	
PIC Potsdam - Von Ruesten 2013	23,531	363	10.8%	1.01 [0.86, 1.18]	
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	14.1%	0.96 [0.84, 1.10]	_
Subtotal (95% CI)	167,879	8,056	51.2%	1.00 [0.93, 1.07]	
Heterogeneity: Chi ² = 3.86, df = 4 (P = 0.42); I ²	² = 0%				Ī
Test for overall effect: Z = 0.06 (P = 0.95)					
Pommes					
VHS - Sesso 2003 (a)	38,176	1,004	1.7%	0.78 [0.53, 1.15]	
ramingham Offspring Study - Jacques 2015	2,880	518	1.7%	0.74 [0.50, 1.10]	
PREDIMED- Buil-Cosiales 2016	7,216	342	1.9%	0.70 [0.48, 1.01]	
SUN - Buil-Cosiales - 2017	17,007	112	0.8%	0.65 [0.37, 1.15]	
NutriNet-Sante - Adriouch 2018	84,158	602	5.7%	0.80 [0.65, 1.00]	
Subtotal (95% CI)	149,437	2,578	11.9%	0.76 [0.66, 0.88]	
Heterogeneity: Chi ² = 0.77, df = 4 (P = 0.94); I ²	² = 0%				•
Test for overall effect: Z = 3.58 (P = 0.0003)					
Test for subgroup differences: Chi ² = 16.75, df	= 3 (P = 0.0008), I ²	= 82.1%			
					0.'5 0.'7 1 1.'5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Berries					
WHS - Sesso 2007	38,176	1,004	5.8%	1.27 [0.95, 1.71]	
Subtotal (95% Cl)	38,176	1,004	5.8%	1.27 [0.95, 1.71]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.60 (P = 0.11)					
Citrus					
Japan Public Health Center - Takachi 2008	77,891	1,386	9.7%	0.80 [0.67, 0.96]	_
NHS & HPFS - Joshipura 2009 - Mod. CHO	109,788	3,892	11.4%	0.92 [0.80, 1.06]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	6.9%	1.05 [0.81, 1.36]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	5.4%	0.92 [0.67, 1.26]	
Jidni Medical School - Yamada 2011 - F	6,476	218	2.3%	0.51 [0.30, 0.89] -	
Jidni Medical School - Yamada 2011 - M	4,147	270	2.2%	0.57 [0.32, 1.01]	
PREDIMED- Buil-Cosiales 2016	7,216	342	4.6%	0.93 [0.66, 1.33]	
SUN - Buil-Cosiales - 2017	17,007	112	1.9%	0.65 [0.35, 1.19]	
Subtotal (95% CI)	222,525	6,220	44.4%	0.86 [0.76, 0.97]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 10.49, df =	7 (P = 0.16); I ² = 33			- · ·	-
Test for overall effect: Z = 2.40 (P = 0.02)					
Fruit juice					
NHS & HPFS - Joshipura 2009 - Mod. CHO	109,788	3,892	10.9%	0.96 [0.85, 1.08]	
NHS & HPFS - Joshipura 2009 - Low CHO	-	-	4.7%	1.07 [0.80, 1.44]	.
NHS & HPFS - Joshipura 2009 - High CHO	-	-	5.7%	1.25 [0.97, 1.61]	+
EPIC Potsdam - Von Ruesten 2013	23,531	363	9.1%	1.01 [0.86, 1.18]	_ _
EPIC NL and MORGEN - Scheffers 2019	34,560	3,801	10.0%	0.96 [0.84, 1.10]	
Subtotal (95% CI)	167,879	8,056	40.5%	1.00 [0.93, 1.07]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 3.86, df = 4	(P = 0.42); I ² = 0%			- · ·]
Test for overall effect: Z = 0.06 (P = 0.95)					
Pommes					
NutriNet-Sante - Adriouch 2018	84,158	602	6.9%	0.80 [0.65, 1.00]	
WHS - Sesso 2003 (a)	38,176	1,004	3.1%	0.78 [0.53, 1.15]	
Framingham Offspring Study - Jacques 2015	2,880	518	3.1%	0.74 [0.50, 1.10]	
PREDIMED- Buil-Cosiales 2016	7,216	342	3.3%	0.70 [0.48, 1.01]	
SUN - Buil-Cosiales - 2017	17,007	112	1.6%	0.65 [0.37, 1.15]	
Subtotal (95% CI)	149,437	2,578	18.0%	0.76 [0.66, 0.88]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 0.77, df = 4	(P = 0.94); I ² = 0%				-
Test for overall effect: Z = 3.58 (P = 0.0003)					
Test for subgroup differences: Chi ² = 16.40, df	= 3 (P = 0.0009), I ²	= 81.7%		_	
					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S12. Relation between sources of fruit and CVD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CVD
Allium					
NHS - Sesso 2003 (a)	38,445	729	2.6%	1.00 [0.69, 1.45]	
heran Lipid and Glucose - Bahadoran 2017	2,369	79	0.8%	0.36 [0.18, 0.72]	
ubtotal (95% CI)	40,814	808	3.3%	0.79 [0.57, 1.10]	
leterogeneity: Chi² = 6.56, df = 1 (P = 0.01); I² =	: 85%				
est for overall effect: Z = 1.39 (P = 0.16)					
Cruciferous					
NHS - Sesso 2003 (a)	38,445	729	1.5%	0.71 [0.44, 1.16]	
apan Public Health Center - Takachi 2008	77,891	1,386	14.6%	1.11 [0.94, 1.29]	+ -
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	6.5%	1.05 [0.83, 1.33]	s
IHS & HPFS - Joshipura 2009 - Mod. CHO	-	-	9.3%	1.05 [0.86, 1.28]	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	6.5%	0.89 [0.70, 1.12]	_ _
PIC Potsdam - Von Ruesten 2013	23,531	363	0.6%	1.36 [0.62, 2.99]	
REDIMED- Buil-Cosiales 2016	7,216	342	2.6%	0.62 [0.43, 0.90]	
UN - Buil-Cosiales - 2017	17,007	112	0.8%	0.56 [0.29, 1.09]	
ubtotal (95% CI)	273,878	6,824	42.3%	0.99 [0.90, 1.08]	· · · · · · · · · · · · · · · · · · ·
leterogeneity: Chi ² = 14.65, df = 7 (P = 0.04); I ²		•		• • • •	Ť
est for overall effect: Z = 0.28 (P = 0.78)					
ireen Leafy					
apan Public Health Center - Takachi 2008	77,891	1,386	11.5%	1.04 [0.87, 1.24]	
HS & HPFS - Joshipura 2009 - Mod. CHO	-	-	19.0%	0.85 [0.74, 0.98]	
HS & HPFS - Joshipura 2009 - High CHO	-	-	5.5%	0.92 [0.72, 1.19]	
IHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	6.5%	0.76 [0.60, 0.97]	
REDIMED- Buil-Cosiales 2016	7,216	342	3.2%	0.65 [0.47, 0.91]	
UN - Buil-Cosiales - 2017	17,007	112	0.9%	1.05 [0.56, 1.97]	
ubtotal (95% CI)	211,902	5,732	46.6%	0.88 [0.80, 0.96]	
eterogeneity: Chi ² = 8.69, df = 5 (P = 0.12); l ² =		•		• • • •	◆
est for overall effect: Z = 2.93 (P = 0.003)					
omatoes					
/HS - Sesso 2003 (b) - tomato juice	38,445	729	3.6%	1.14 [0.83, 1.56]	
/HS - Sesso 2003 (b) - tomatoes	-	-	1.8%	1.03 [0.66, 1.62]	
/HS - Sesso 2003 (b) - tomato based products	-	-	1.4%	0.71 [0.43, 1.18]	
UN - Buil-Cosiales - 2017	17,007	112	1.0%	0.73 [0.40, 1.35]	
ubtotal (95% CI)	55,452	841	7.7%	0.97 [0.78, 1.20]	
eterogeneity: Chi ² = 3.31, df = 3 (P = 0.35); I ² =	9%				•
est for overall effect: Z = 0.29 (P = 0.77)					
est for subgroup differences: $Chi^2 = 4.34$, df = 3	8 (P = 0.23), I ² = 3	0.8%			
					0.2 0.5 1 2
					0.2 0.5 1 2 Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CVD	
Allium						
WHS - Sesso 2003 (a)	38,445	729	4.3%	1.00 [0.69, 1.45]		
Theran Lipid and Glucose - Bahadoran 2017	2,369	79	1.7%	0.36 [0.18, 0.72]		
Subtotal (95% CI)	40,814	808	6.0%	0.63 [0.23, 1.70]		
Heterogeneity: Tau ² = 0.44; Chi ² = 6.56, df = 1 (P = 0.01); I ² = 85%	5				
Test for overall effect: Z = 0.92 (P = 0.36)						
Cruciferous						
WHS - Sesso 2003 (a)	38,445	729	2.9%	0.71 [0.44, 1.16]		
Japan Public Health Center - Takachi 2008	77,891	1,386	9.3%	1.11 [0.94, 1.29]	+	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	7.0%	1.05 [0.83, 1.33]	-	
NHS & HPFS -Joshipura 2009 - Mod. CHO	-	-	8.1%	1.05 [0.86, 1.28]	-	
NHS & HPFS - Joshipura 2009 - High CHO	-	-	7.0%	0.89 [0.70, 1.12]		
EPIC Potsdam - Von Ruesten 2013	23,531	363	1.3%	1.36 [0.62, 2.99]		
PREDIMED- Buil-Cosiales 2016	7,216	342	4.3%	0.62 [0.43, 0.90]		
SUN - Buil-Cosiales - 2017	17,007	112	1.8%	0.56 [0.29, 1.09]		
Subtotal (95% CI)	273,878	6,824	41.7%	0.93 [0.80, 1.09]	◆	
Heterogeneity: Tau ² = 0.02; Chi ² = 14.65, df = 7	(P = 0.04); I ² = 52	%				
Test for overall effect: Z = 0.91 (P = 0.36)						
Green Leafy						
Japan Public Health Center - Takachi 2008	77,891	1,386	8.7%	1.04 [0.87, 1.24]	<mark>-</mark>	
NHS & HPFS - Joshipura 2009 - High CHO	0	0	6.6%	0.92 [0.72, 1.19]	+	
NHS & HPFS - Joshipura 2009 - Low CHO	109,788	3,892	7.0%	0.76 [0.60, 0.97]	_	
NHS & HPFS -Joshipura 2009 - Mod. CHO	0	0	9.8%	0.85 [0.74, 0.98]		
PREDIMED- Buil-Cosiales 2016	7,216	342	4.9%	0.65 [0.47, 0.91]		
SUN - Buil-Cosiales - 2017	17,007	112	1.9%	1.05 [0.56, 1.97]		
Subtotal (95% CI)	211,902	5,732	39.0%	0.87 [0.76, 0.99]	•	
Heterogeneity: Tau ² = 0.01; Chi ² = 8.69, df = 5 (Test for overall effect: Z = 2.16 (P = 0.03)	(P = 0.12); I ² = 42%	5				
Tomatoes						
WHS - Sesso 2003 (b) - tomatoes	38,445	729	3.3%	1.03 [0.66, 1.62]		
WHS - Sesso 2003 (b) - tomato based products	-	-	2.7%	0.71 [0.43, 1.18]		
WHS - Sesso 2003 (b) - tomato juice	-	-	5.3%	1.14 [0.83, 1.56]		
SUN - Buil-Cosiales - 2017	17,007	112	2.1%	0.73 [0.40, 1.35]		
Subtotal (95% CI)	55,452	841	13.4%	0.96 [0.76, 1.21]	-	
Heterogeneity: Tau ² = 0.01; Chi ² = 3.31, df = 3 (Test for overall effect: Z = 0.35 (P = 0.73)	(P = 0.35); I ² = 9%					
Test for subgroup differences: $C = 0.35$ (P = 0.73) Test for subgroup differences: $Chi^2 = 1.31$, df =	2 (D = 0 72) 1 ² - 0	0/				
rest for subgroup unterences: Cm = 1.31, df =	5 (F = 0.75), I' = 0	/0			0.2 0.5 1 2	5
					Lower Risk Higher Risk	

Figure S13. Relation between sources of vegetables and CVD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
National Health & Nutrition - Bazzano 2002	9,608	1,145	4.1%	0.73 [0.58, 0.93]	
Kuopio IHD Risk - Rissanen 2003	1,950	115	0.3%	0.66 [0.28, 1.56]	
Odyssey - Genkinger 2004	6,151	378	2.1%	1.35 [0.97, 1.88]	
Health and Lifestyle Survey - Kvaavik 2010	4,866	431	4.9%	1.19 [0.96, 1.47]	+
Shanghai Women Health - Nechuta 2010	71,243	755	7.4%	0.84 [0.71, 1.01]	
EPIC - Leenders 2013	451,151	5,125	23.9%	0.85 [0.77, 0.94]	
Health Survey of England - Oyebode 2014	65,226	1,554	3.5%	0.69 [0.54, 0.89]	
British Regional Heart - Atkins 2014	3,328	327	2.1%	0.92 [0.66, 1.29]	
NIPPON DATA80 - Okuda 2015	9,112	823	6.0%	0.74 [0.61, 0.90]	_
Migrant Study - Hjartaker 2015	9,766	4,595	37.3%	0.99 [0.92, 1.07]	
PREDIMED- Buil-Cosiales 2016	7,216	104	0.2%	0.37 [0.12, 1.11]	· · · · · · · · · · · · · · · · · · ·
HAPIEE - Stefler 2016	19,263	438	2.3%	0.74 [0.54, 1.01]	
PURE - Miller 2017	135,335	1,649	1.7%	0.69 [0.48, 1.00]	
Health and Living Status of Elderly - Lin 2017	4,176	-	4.1%	0.70 [0.55, 0.88]	
Total (95% CI)	798,391	17,439	100.0%	0.89 [0.85, 0.93]	•
Heterogeneity: Chi ² = 40.92, df = 13 (P < 0.0001	L); I ² = 68%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.77 (P < 0.00001)					
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
National Health & Nutrition - Bazzano 2002	9,608	1,145	8.0%	0.73 [0.58, 0.93]	
Kuopio IHD Risk - Rissanen 2003	1,950	115	1.3%	0.66 [0.28, 1.56]	
Odyssey - Genkinger 2004	6,151	378	5.7%	1.35 [0.97, 1.88]	
Shanghai Women Health - Nechuta 2010	71,243	755	9.7%	0.84 [0.71, 1.01]	
Health and Lifestyle Survey - Kvaavik 2010	4,866	431	8.6%	1.19 [0.96, 1.47]	
EPIC - Leenders 2013	451,151	5,125	12.0%	0.85 [0.77, 0.94]	
British Regional Heart - Atkins 2014	3,328	327	5.7%	0.92 [0.66, 1.29]	
Health Survey of England - Oyebode 2014	65,226	1,554	7.5%	0.69 [0.54, 0.89]	
Migrant Study - Hjartaker 2015	9,766	4,595	12.5%	0.99 [0.92, 1.07]	-
NIPPON DATA80 - Okuda 2015	9,112	823	9.1%	0.74 [0.61, 0.90]	
HAPIEE - Stefler 2016	19,263	438	6.1%	0.74 [0.54, 1.01]	
PREDIMED- Buil-Cosiales 2016	7,216	104	0.9%	0.37 [0.12, 1.11] 🔶	
PURE - Miller 2017	135,335	1,649	5.0%	0.69 [0.48, 1.00]	
Health and Living Status of Elderly - Lin 2017	4,176	-	8.0%	0.70 [0.55, 0.88]	
Total (95% CI) [Random Effects]	798,391	17,439	100.0%	0.84 [0.76, 0.94]	•
Heterogeneity: Tau ² = 0.02; Chi ² = 40.92, df = 1	3 (P < 0.0001); I ² =	68%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.17 (P = 0.002)					
					Lower Risk Higher Risk

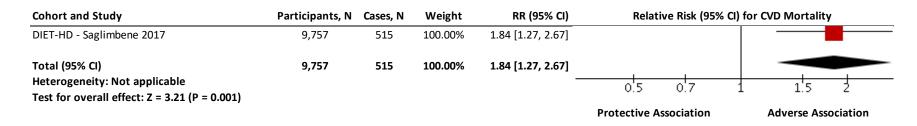
Figure S14. Relation between total fruit and vegetable intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality	
Men Born in 1913 - Strandhagen 2000	730	226	0.3%	0.66 [0.42, 1.03]		
Health Food Shoppers - Appleby 2002 - F	6,416	611	1.6%	0.70 [0.57, 0.85]		
Health Food Shoppers - Appleby 2002 - M	4,325	591	2.0%	0.95 [0.80, 1.13]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	0.7%	0.69 [0.51, 0.93]		
EPIC Diabetes - Nothlings 2008	10,262	517	1.1%	0.61 [0.48, 0.78]	<u> </u>	
Takayama Study - Nakamura 2008 - F	15,724	184	0.3%	0.83 [0.51, 1.35]		
Takayama Study - Nakamura 2008 - M	13,355	200	0.3%	1.27 [0.81, 2.00]		
JACC - Nagura 2009	59,845	2,243	3.3%	0.77 [0.67, 0.88]		
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	1.1%	0.78 [0.62, 0.99]	<u> </u>	
NOMAS - Gardener 2011	2,568	314	1.3%	1.13 [0.91, 1.40]		
EPIC - Leenders 2013	451,151	5,125	6.4%	0.96 [0.87, 1.06]		
Health Survey of England - Oyebode 2014	65,226	1,554	2.0%	0.82 [0.69, 0.98]		
British Regional Heart - Atkins 2014	3,328	327	0.3%	0.95 [0.59, 1.52]		
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	0.7%	0.63 [0.47, 0.85]		
MONICA Danish - Tognon 2014	1,849	223	0.8%	0.72 [0.55, 0.95]		
Migrant Study - Hjartaker 2015	9,766	4,595	10.0%	1.04 [0.96, 1.13]	+-	
UK Women's Cohort - Lai 2015	30,458	286	0.4%	0.57 [0.39, 0.85]		
MONICA Switzerland - Vormund 2015 - F	9,196	634	1.1%	0.92 [0.73, 1.17]		
MONICA Switzerland - Vormund 2015 - M	8,665	751	2.0%	0.87 [0.73, 1.04]		
HAPIEE - Stefler 2016	19,263	438	0.6%	0.78 [0.57, 1.07]		
PREDIMED- Buil-Cosiales 2016	7,216	104	0.1%	0.48 [0.16, 1.44]		
China Kadoorie Biobank- Du 2017	462,342	6,166	10.0%	0.66 [0.61, 0.71]	-	
DIET-HD - Saglimbene 2017	9,757	515	10.0%	1.00 [0.92, 1.08]	+	
MONICA France - Berard 2017	1,311	41	0.1%	0.78 [0.40, 1.52]		
PURE - Miller 2017	135,335	1,649	0.9%	0.84 [0.65, 1.09]		
Cooper Center - Shah 2018 - DASH	11,376	249	0.4%	0.86 [0.58, 1.27]		
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	39.9%	0.92 [0.89, 0.96]		
Renal Transplant Recipients - Sotomayer 2019	400	49	0.1%	0.82 [0.32, 2.10]		
NIPPON DATA80 - Kondo 2019	9,115	1,070	2.5%	0.84 [0.72, 0.99]		
Total (95% CI)	1,581,506	39,623	100.0%	0.88 [0.86, 0.91]	•	
Heterogeneity: Chi ² = 136.43, df = 28 (P < 0.0000	01); l² = 79%					
Test for overall effect: Z = 9.70 (P < 0.00001)					o.'z o.'s 1 2	5
					Lower Risk Higher Ris	k

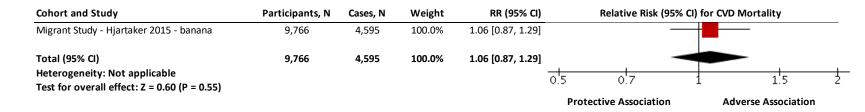
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) fe	or CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	1.8%	0.66 [0.42, 1.03]		
Health Food Shoppers - Appleby 2002 - F	6,416	611	4.2%	0.70 [0.57, 0.85]	_ 	
Health Food Shoppers - Appleby 2002 - M	4,325	591	4.5%	0.95 [0.80, 1.13]		
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	3.0%	0.69 [0.51, 0.93]		
EPIC Diabetes - Nothlings 2008	10,262	517	3.7%	0.61 [0.48, 0.78]		
Takayama Study - Nakamura 2008 - F	15,724	184	1.6%	0.83 [0.51, 1.35]		
Takayama Study - Nakamura 2008 - M	13,355	200	1.8%	1.27 [0.81, 2.00]	-+	
JACC - Nagura 2009	59,845	2,243	5.0%	0.77 [0.67, 0.88]		
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	3.7%	0.78 [0.62, 0.99]	.	
NOMAS - Gardener 2011	2,568	314	4.0%	1.13 [0.91, 1.40]		<u> </u>
EPIC - Leenders 2013	451,151	5,125	5.5%	0.96 [0.87, 1.06]		
Health Survey of England - Oyebode 2014	65,226	1,554	4.5%	0.82 [0.69, 0.98]	_ _	
British Regional Heart - Atkins 2014	3,328	327	1.7%	0.95 [0.59, 1.52]		
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	3.0%	0.63 [0.47, 0.85]		
MONICA Danish - Tognon 2014	1,849	223	3.2%	0.72 [0.55, 0.95]		
Migrant Study - Hjartaker 2015	9,766	4,595	5.8%	1.04 [0.96, 1.13]	-	
UK Women's Cohort - Lai 2015	30,458	286	2.2%	0.57 [0.39, 0.85]		
MONICA Switzerland - Vormund 2015 - F	9,196	634	3.7%	0.92 [0.73, 1.17]	_	-
MONICA Switzerland - Vormund 2015 - M	8,665	751	4.5%	0.87 [0.73, 1.04]	_ +	
HAPIEE - Stefler 2016	19,263	438	2.8%	0.78 [0.57, 1.07]		
PREDIMED- Buil-Cosiales 2016	7,216	104	0.4%	0.48 [0.16, 1.44]		
China Kadoorie Biobank- Du 2017	462,342	6,166	5.8%	0.66 [0.61, 0.71]		
DIET-HD - Saglimbene 2017	9,757	515	5.8%	1.00 [0.92, 1.08]	+	
MONICA France - Berard 2017	1,311	41	1.0%	0.78 [0.40, 1.52]		
PURE - Miller 2017	135,335	1,649	3.5%	0.84 [0.65, 1.09]		
Cooper Center - Shah 2018 - DASH	11,376	249	2.2%	0.86 [0.58, 1.27]		_
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	6.1%	0.92 [0.89, 0.96]	+	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.5%	0.82 [0.32, 2.10]		
NIPPON DATA80 - Kondo 2019	9,115	1,070	4.8%	0.84 [0.72, 0.99]	_ -	
Total (95% Cl) [Random Effects]	1,581,506	39,623	100.0%	0.83 [0.77, 0.89]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 136.43, df = 2	8 (P < 0.00001); I ² :	= 79%		-		<u>_</u>
Test for overall effect: Z = 5.10 (P < 0.00001)					0.2 0.5 1	2
					Lower Risk	Higher Risk

Figure S15. Relation between fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

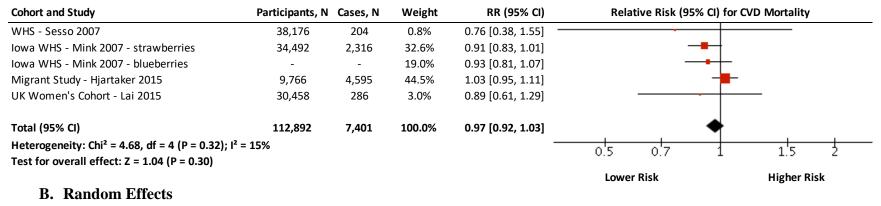

VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	2.0%	0.67 [0.53, 0.85]	
Health Food Shoppers - Appleby 2002	10,471	1,202	7.8%	0.94 [0.84, 1.06]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	1.0%	0.66 [0.47, 0.92]	
EPIC Diabetes - Nothlings 2008	10,262	517	0.8%	0.59 [0.41, 0.85]	
Takayama Study - Nakamura 2008 - M	13,355	200	0.3%	1.02 [0.57, 1.84]	
Takayama Study - Nakamura 2008 - F	15,724	184	0.3%	0.77 [0.41, 1.44]	
JACC - Nagura 2009	59,485	2,243	5.8%	0.96 [0.84, 1.10]	
NOMAS - Gardener 2011	2,568	314	2.0%	0.89 [0.70, 1.12]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	2.3%	0.84 [0.68, 1.05]	
EPIC - Leenders 2013	451,151	5,125	11.3%	0.79 [0.71, 0.87]	+
MONICA Danish - Tognon 2014	1,849	223	2.0%	0.81 [0.64, 1.03]	
Health Survey of England - Oyebode 2014	65,226	1,554	1.7%	0.78 [0.60, 1.00]	
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	1.7%	0.64 [0.49, 0.82]	
British Regional Heart - Atkins 2014	3,328	327	0.3%	0.88 [0.47, 1.64]	
MONICA Switzerland - Vormund 2015 - M	8,665	751	3.5%	1.00 [0.84, 1.19]	-
MONICA Switzerland - Vormund 2015 - F	9,196	634	2.8%	1.11 [0.91, 1.34]	+
Migrant Study - Hjartaker 2015	9,766	4,595	11.3%	0.95 [0.86, 1.05]	
HAPIEE - Stefler 2016	19,236	438	1.3%	0.88 [0.65, 1.18]	
PURE - Miller 2017	135,335	1,649	2.3%	0.87 [0.70, 1.08]	
PLSAW - Blekkenhorst 2017	1,226	238	3.5%	0.81 [0.68, 0.97]	
MONICA France - Berard 2017	1,311	41	0.3%	0.57 [0.30, 1.09]	
NHANES - Conrad 2018	29,133	726	0.5%	0.60 [0.38, 0.94]	
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	31.4%	0.91 [0.86, 0.97]	-
Cooper Center - Shah 2018 - DASH	11,376	249	1.7%	0.73 [0.57, 0.95]	
NIPPON DATA80 - Kondo 2019	9,115	1,070	2.3%	0.78 [0.63, 0.97]	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.1%	0.17 [0.07, 0.41]	
Total (95% CI)	1,101,435	33,516	100.0%	0.87 [0.85, 0.90]	•
Heterogeneity: Chi ² = 61.44, df = 25 (P < 0.0001)	; l² = 59%				
Test for overall effect: Z = 7.99 (P < 0.00001)					0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Men Born in 1913 - Strandhagen 2000	730	226	4.0%	0.67 [0.53, 0.85]	
Health Food Shoppers - Appleby 2002	10,471	1,202	6.7%	0.94 [0.84, 1.06]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	697	2.6%	0.66 [0.47, 0.92]	
EPIC Diabetes - Nothlings 2008	10,262	517	2.2%	0.59 [0.41, 0.85]	
Takayama Study - Nakamura 2008 - M	13,355	200	1.0%	1.02 [0.57, 1.84]	
Takayama Study - Nakamura 2008 - F	15,724	184	0.9%	0.77 [0.41, 1.44]	
JACC - Nagura 2009	59,485	2,243	6.2%	0.96 [0.84, 1.10]	-
NOMAS - Gardener 2011	2,568	314	4.0%	0.89 [0.70, 1.12]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	4.3%	0.84 [0.68, 1.05]	
EPIC - Leenders 2013	451,151	5,125	7.2%	0.79 [0.71, 0.87]	+
MONICA Danish - Tognon 2014	1,849	223	4.0%	0.81 [0.64, 1.03]	
Health Survey of England - Oyebode 2014	65,226	1,554	3.6%	0.78 [0.60, 1.00]	
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	3.6%	0.64 [0.49, 0.82]	_ _
British Regional Heart - Atkins 2014	3,328	327	0.9%	0.88 [0.47, 1.64]	
MONICA Switzerland - Vormund 2015 - M	8,665	751	5.2%	1.00 [0.84, 1.19]	+
MONICA Switzerland - Vormund 2015 - F	9,196	634	4.8%	1.11 [0.91, 1.34]	
Migrant Study - Hjartaker 2015	9,766	4,595	7.2%	0.95 [0.86, 1.05]	-
HAPIEE - Stefler 2016	19,236	438	3.0%	0.88 [0.65, 1.18]	
PURE - Miller 2017	135,335	1,649	4.3%	0.87 [0.70, 1.08]	
PLSAW - Blekkenhorst 2017	1,226	238	5.2%	0.81 [0.68, 0.97]	
MONICA France - Berard 2017	1,311	41	0.9%	0.57 [0.30, 1.09]	
NHANES - Conrad 2018	29,133	726	1.6%	0.60 [0.38, 0.94]	
Singapore Chinese Health - Neelakantan 2018	57,078	4,871	8.1%	0.91 [0.86, 0.97]	+
Cooper Center - Shah 2018 - DASH	11,376	249	3.6%	0.73 [0.57, 0.95]	_ _
NIPPON DATA80 - Kondo 2019	9,115	1,070	4.3%	0.78 [0.63, 0.97]	
Renal Transplant Recipients - Sotomayer 2019	400	49	0.50%	0.17 [0.07, 0.41]	
Total (95% Cl) [Random Effects]	1,101,435	33,516	100.0%	0.83 [0.78, 0.89]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 61.44, df = 25		59%			
Test for overall effect: Z = 5.63 (P < 0.00001)					0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk


Figure S16. Relation between vegetable intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

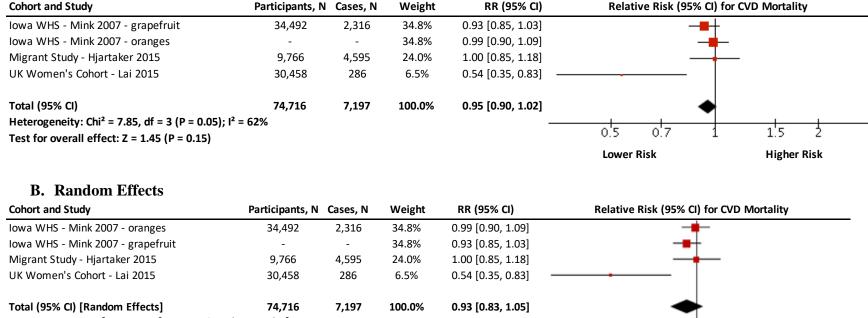
APRICOTS AND CARDIOVASCULAR DISEASE MORTALITY


Supplementary Figure 17. Relation between intake of apricots and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BANANAS AND CARDIOVASCULAR DISEASE MORTALITY

Figure S18. Relation between intake of bananas and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BERRIES AND CARDIOVASCULAR DISEASE MORTALITY

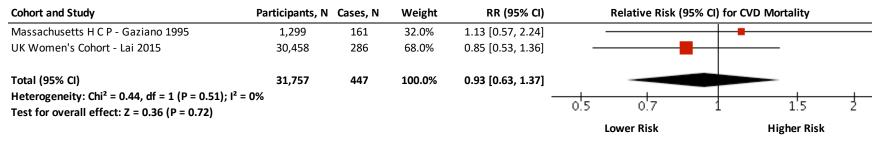


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Iowa WHS - Mink 2007 - strawberries	34,492	2,316	32.6%	0.91 [0.83, 1.01]	
WHS - Sesso 2007	38,176	204	0.8%	0.76 [0.38, 1.55]	
Iowa WHS - Mink 2007 - blueberries	-	-	19.0%	0.93 [0.81, 1.07]	
Migrant Study - Hjartaker 2015	9,766	4,595	44.5%	1.03 [0.95, 1.11]	
UK Women's Cohort - Lai 2015	30,458	286	3.0%	0.89 [0.61, 1.29]	
Total (95% CI) [Random Effects]	112,892	7,401	100.0%	0.97 [0.90, 1.03]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 4.68, df =	4 (P = 0.32); I ² = 15%			-	
Test for overall effect: Z = 1.06 (P = 0.29)					0.5 0.7 i 1.5 ż
					Lower Risk Higher Risk

Figure S19. Relation between intake of berries and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CITRUS FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

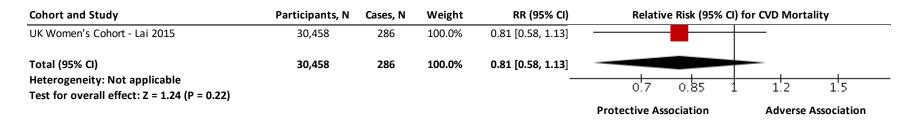

Heterogeneity: Tau² = 0.01; Chi² = 7.85, df = 3 (P = 0.05); I² = 62% Test for overall effect: Z = 1.12 (P = 0.26)

1.5 0.5 0.7 Ż Lower Risk **Higher Risk**

Figure S20. Relation between citrus fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

DRIED FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects



B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative R	isk (95% Cl) for C	VD Mortality	
Massachusetts H C P - Gaziano 1995	1,299	161	32.0%	1.13 [0.57, 2.24]				
UK Women's Cohort - Lai 2015	30,458	286	68.0%	0.85 [0.53, 1.36]				
Total (95% CI) [Random Effects]	31,757	447	100.0%	0.93 [0.63, 1.37]				
Heterogeneity: Tau ² = 0.00; Chi ² = 0.44, df = Test for overall effect: Z = 0.36 (P = 0.72)	= 1 (P = 0.51); I ² = 0%			-	0.5 0.7	1	1.5	2
					Lower Risk		Higher Risk	

Figure S21. Relation between dried fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity

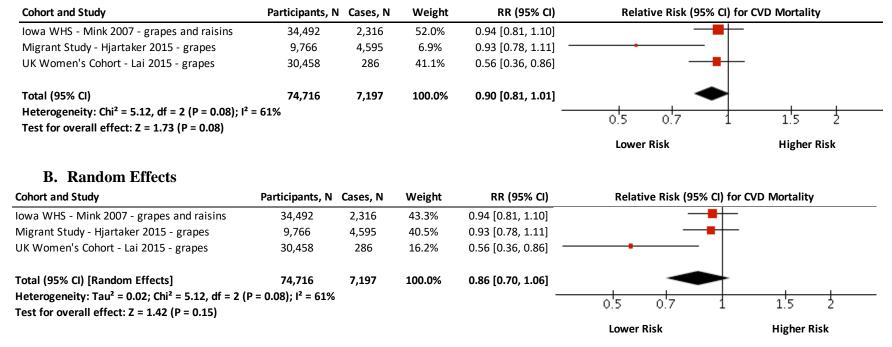

FRUIT JUICE AND CARDIOVASCULAR DISEASE MORTALITY

Figure S22. Relation between fruit juice intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GRAPES AND CARDIOVASCULAR DISEASE MORTALITY

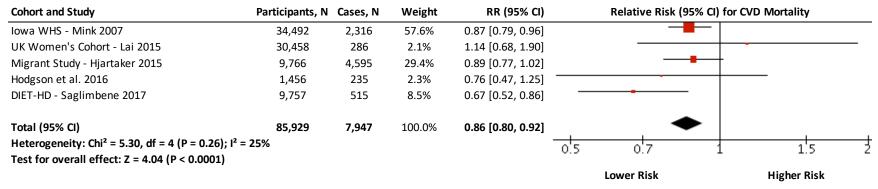
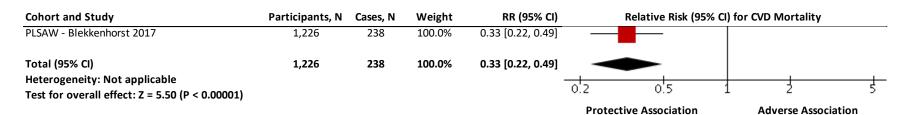

A. Fixed Effects

Figure S23. Relation between intake of grapes and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects



B. Random Effects

Cohort and Study	Participants, N Case	es, N Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality	
Iowa WHS - Mink 2007	34,492 2,3	46.3%	0.87 [0.79, 0.96]		
UK Women's Cohort - Lai 2015	30,458 23	86 3.8%	1.14 [0.68, 1.90]		_
Migrant Study - Hjartaker 2015	9,766 4,5	595 32.7%	0.89 [0.77, 1.02]		
Hodgson et al. 2016	1,456 23	35 4.1%	0.76 [0.47, 1.25]	· · · · · · · · · · · · · · · · · · ·	
DIET-HD - Saglimbene 2017	9,757 5:	15 13.2%	0.67 [0.52, 0.86]		
Total (95% CI) [Random Effects]	85,929 7,9	947 100.0%	0.85 [0.77, 0.94]	◆	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 5.30$, d	f = 4 (P = 0.26); I ² = 25%				<u> </u>
Test for overall effect: Z = 3.15 (P = 0.002	2)			0.5 0.7 1 1.5	2
				Lower Risk Higher Risk	

Figure S24. Relation between pommes fruit intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

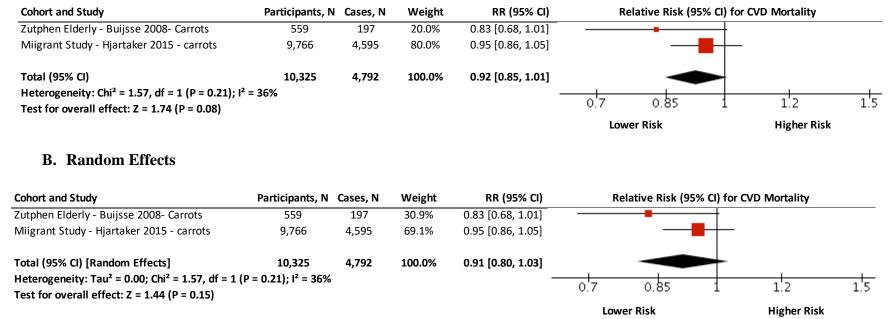
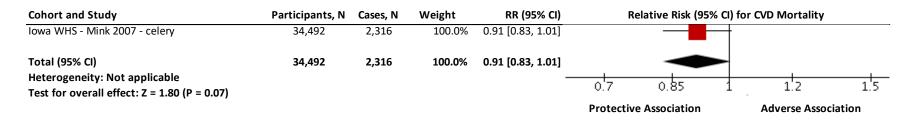

ALLIUM VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S25. Relation between intake allium vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.


CARROTS AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

Figure S26. Relation between carrots intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

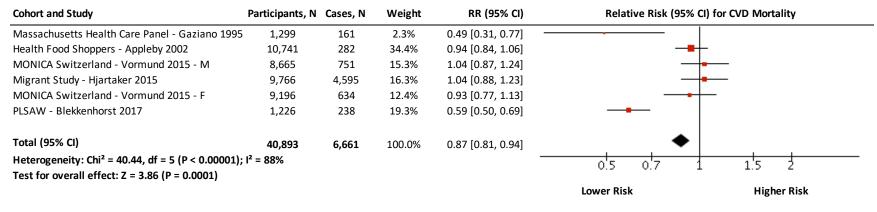
CELERY AND CARDIOVASCULAR DISEASE MORTALITY

Figure S27. Relation between celery intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% C	I) for CVD Mortality
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	0.1%	0.29 [0.04, 2.10] 🔶	•	
Odyssey - Genkinger 2004	6,151	378	1.8%	0.89 [0.64, 1.24]		<u> </u>
Iowa WHS - Mink 2007	34,492	2,316	21.3%	0.94 [0.85, 1.04]		+
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	3.2%	0.61 [0.47, 0.79]		
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	5.3%	0.76 [0.63, 0.93]		
Migrant Study - Hjartaker 2015 - cauliflower	9,766	4,595	59.2%	0.85 [0.80, 0.90]		
Migrant Study - Hjartaker 2015 - cabbage	-	-	5.3%	1.22 [1.00, 1.49]		
PLSAW - Blekkenhorst 2017	1,226	238	3.7%	0.48 [0.38, 0.61]		
Total (95% CI)	187,730	13,081	100.0%	0.85 [0.82, 0.89]	٠	
Heterogeneity: Chi ² = 48.35, df = 7 (P < 0.00001);	l² = 86%					
Test for overall effect: Z = 6.79 (P < 0.00001)					0.5 0.7	1 1.5 2
					Lower Risk	Higher Risk


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Massachusetts Health Care Panel - Gaziano 1995	1299	161	0.6%	0.29 [0.04, 2.10]	
Odyssey - Genkinger 2004	6,151	378	10.2%	0.89 [0.64, 1.24]	
Iowa WHS - Mink 2007	34,492	2,316	17.1%	0.94 [0.85, 1.04]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	12.5%	0.61 [0.47, 0.79]	_
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	14.3%	0.76 [0.63, 0.93]	_
Migrant Study - Hjartaker 2015 - cauliflower	9,766	4,595	17.8%	0.85 [0.80, 0.90]	+
Migrant Study - Hjartaker 2015 - cabbage	-	-	14.3%	1.22 [1.00, 1.49]	
PLSAW - Blekkenhorst 2017	1,226	238	13.1%	0.48 [0.38, 0.61]	- _
Total (95% CI) [Random Effects]	187,730	13,081	100.0%	0.80 [0.68, 0.94]	•
Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (F	<pre>0.00001); l² =</pre>	86%			
Test for overall effect: Z = 2.75 (P = 0.006)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S28. Relation between intake of cruciferous vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I^2 , with values $\geq 50\%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality	
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	10.4%	0.49 [0.31, 0.77]		
Health Food Shoppers - Appleby 2002	10,741	282	19.0%	0.94 [0.84, 1.06]		
Migrant Study - Hjartaker 2015	9,766	4,595	17.8%	1.04 [0.88, 1.23]		
MONICA Switzerland - Vormund 2015 - M	8,665	751	17.6%	1.04 [0.87, 1.24]		
MONICA Switzerland - Vormund 2015 - F	9,196	634	17.1%	0.93 [0.77, 1.13]		
PLSAW - Blekkenhorst 2017	1,226	238	18.1%	0.59 [0.50, 0.69]		
Total (95% CI) [Random Effects]	40,893	6,661	100.0%	0.84 [0.68, 1.03]		
Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (F	P < 0.00001); I ² =	88%		-	0.5 0.7 1 1.5 2	
Test for overall effect: Z = 1.68 (P = 0.09)						
					Lower Risk Higher Risk	

Figure S29. Relation between intake of green leafy vegetables and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CARDIOVASCULAR DISEASE MORTALITY

A. Fixed Effects Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for CVD Mortality Massachusetts Health Care Panel - Gaziano 1995 1,299 161 1.2% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 19.8% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 1.00 [0.94, 1.06] 79.0% Total (95% CI) 45,557 7,072 100.0% 0.98 [0.93, 1.04] Heterogeneity: Chi² = 2.59, df = 2 (P = 0.27); l² = 23% 0.5 0.7 1'5 Test for overall effect: Z = 0.66 (P = 0.51) **Higher Risk** Lower Risk **B. Random Effects** Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for CVD Mortality Massachusetts Health Care Panel - Gaziano 1995 1,299 161 2.5% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 0.93 [0.83, 1.05] 34,492 2,316 30.0% Migrant Study - Hjartaker 2015 1.00 [0.94, 1.06] 9,766 4,595 67.6% Total (95% CI) [Random Effects] 45,557 7,072 100.0% 0.97 [0.90, 1.05] Heterogeneity: Tau² = 0.00; Chi² = 2.59, df = 2 (P = 0.27); l² = 23% 0.5 0'7 1'5 Test for overall effect: Z = 0.75 (P = 0.45)

Lower Risk Higher Risk

Figure S30. Relation between tomato intake and cardiovascular disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Apricots					
IET-HD - Saglimbene 2017	9,757	515	0.8%	1.84 [1.27, 2.67]	
ubtotal (95% CI)	9,757	515	0.8%	1.84 [1.27, 2.67]	
eterogeneity: Not applicable					
est for overall effect: Z = 3.21 (P = 0.001)					
ananas					
Лigrant Study - Hjartaker 2015 - banana	9,766	4,595	3.0%	1.06 [0.87, 1.29]	
ubtotal (95% CI)	9,766	4,595	3.0%	1.06 [0.87, 1.29]	
leterogeneity: Not applicable					
est for overall effect: Z = 0.60 (P = 0.55)					
erries					
owa WHS - Mink 2007 - strawberries	34,492	2,316	11.8%	0.91 [0.83, 1.01]	
owa WHS - Mink 2007 - blueberries	-	-	6.0%	0.93 [0.81, 1.07]	_ _
VHS - Sesso 2007	38,176	204	0.2%	0.76 [0.38, 1.55]	
Aigrant Study - Hjartaker 2015	9,766	4,595	18.5%	1.03 [0.95, 1.11]	
K Women's Cohort - Lai 2015	30,458	286	0.8%	0.89 [0.61, 1.29]	
ubtotal (95% Cl)	112,892	7,401	37.4%	0.97 [0.92, 1.03]	
leterogeneity: Chi ² = 4.68, df = 4 (P = 0.32); I ²		.,		[,]	•
Test for overall effect: $Z = 1.04 (P = 0.30)$					
itrus					
owa WHS - Mink 2007 - grapefruit	34,492	2,316	11.8%	0.93 [0.85, 1.03]	
owa WHS - Mink 2007 - oranges		-	11.8%	0.99 [0.90, 1.09]	
ligrant Study - Hjartaker 2015	9,766	4,595	4.1%	1.00 [0.85, 1.18]	
K Women's Cohort - Lai 2015	30,458	286	0.6%	0.54 [0.35, 0.83]	
ubtotal (95% Cl)	74,716	7,197	28.4%	0.95 [0.90, 1.02]	
leterogeneity: Chi ² = 7.85, df = 3 (P = 0.05); I ²		7,157	20.4/0	0.55 [0.50, 1.02]	•
est for overall effect: Z = 1.45 (P = 0.15)	02/0				
ruit Juice					
IK Women's Cohort - Lai 2015	30,458	286	1.0%	0.81 [0.58, 1.13]	
ubtotal (95% CI)	30,458	286	1.0%	0.81 [0.58, 1.13]	
leterogeneity: Not applicable				· -	
est for overall effect: Z = 1.24 (P = 0.22)					
rapes					
wa WHS - Mink 2007 - grapes and raisins	34,492	2,316	4.6%	0.94 [0.81, 1.10]	
K Women's Cohort - Lai 2015 - grapes	30,458	286	0.6%	0.56 [0.36, 0.86]	
ligrant Study - Hjartaker 2015 - grapes	9,766	4,595	3.7%	0.93 [0.78, 1.11]	
ubtotal (95% Cl)	74,716	7,197	8.9%	0.90 [0.81, 1.01]	
eterogeneity: Chi ² = 5.12, df = 2 (P = 0.08); I ²					\bullet
est for overall effect: Z = 1.73 (P = 0.08)					
ommes					
owa WHS - Mink 2007	34,492	2,316	11.8%	0.87 [0.79, 0.96]	
ligrant Study - Hjartaker 2015	9,766	4,595	6.0%	0.89 [0.77, 1.02]	
K Women's Cohort - Lai 2015	30,458	286	0.4%	1.14 [0.68, 1.90]	
odgson et al. 2016	1,456	235	0.5%	0.76 [0.47, 1.25]	
IET-HD - Saglimbene 2017	9,757	515	1.8%	0.67 [0.52, 0.86]	
ubtotal (95% CI)	85,929	7,947	20.5%	0.86 [0.80, 0.92]	
eterogeneity: Chi ² = 5.30, df = 4 (P = 0.26); I ²				· -	◆
est for overall effect: Z = 4.04 (P < 0.0001)					
est for subgroup differences: Chi ² = 22.57, df	= 6 (P = 0.0010), I ²	= 73.4%		_	
					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

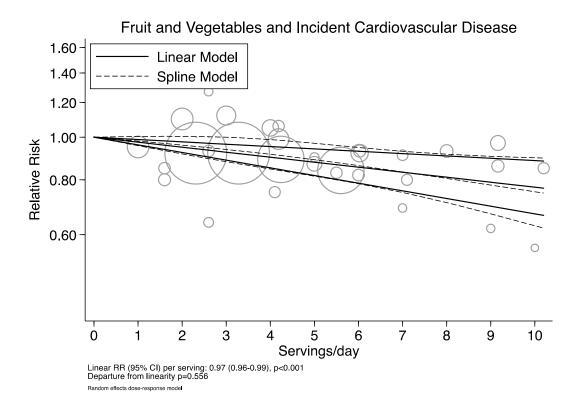
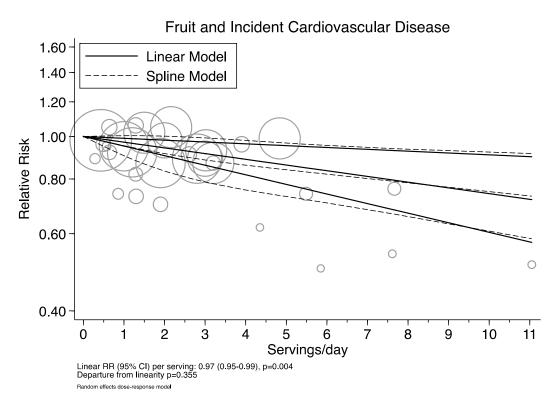
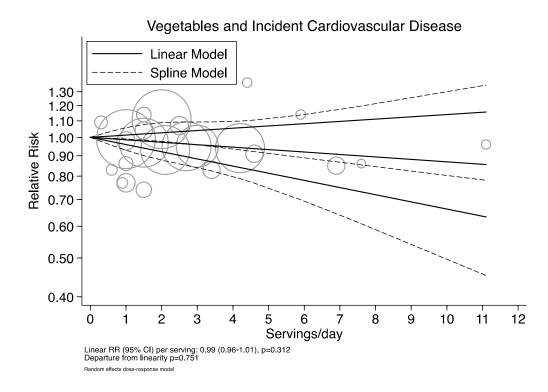
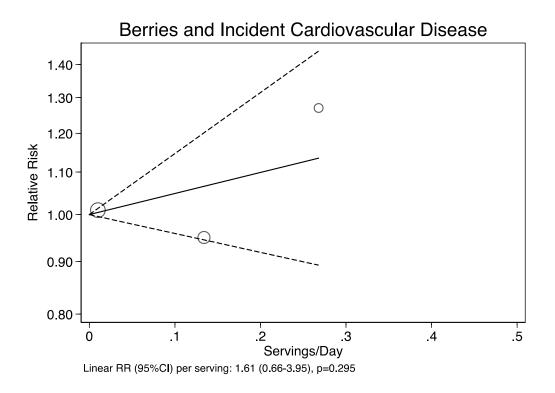

	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
,	515		1.84 [1.27, 2.67	
9,757	515	2.2%	1.84 [1.27, 2.67	
9,766	4,595	5.2%	1.06 [0.87, 1.29	_
-,	.,			
38,176	204	0.7%	0.76 [0.38, 1.55 -	
			. ,	_ -
-	-			
9 766			-	
		28.3%	0.97 [0.90, 1.03	
(P = 0.32); F = 15%				
34 492	2 316	8 7%	0 93 [0 85 1 03	
54,452	,			
0 766				
		25.3%	0.93 [0.83, 1.05	
(P = 0.03);1 = 02%				
			-	
30,458	286	2.6%	0.81 [0.58, 1.13	
34,492	2.316	6.5%	0.94 [0.81, 1.10	
		14.0%	0.00 [0.70, 1.00	
(F - 0.00); I - 01%				
31 102	2 316	8 7%	0 87 [0 79 0 96	
,			-	
85,929	7,947	22.4%	0.85 [0.77, 0.94	◆
(D 0 0C) 12 0F0/				-
(P = 0.26); I ² = 25%				
(P = 0.26); I ⁻ = 25%				
(P = 0.26); I ² = 25% = 6 (P = 0.003), I ² =				0,5 0,7 1 1,5 2
	34,492 - 9,766 30,458 112,892 (P = 0.32); I ² = 15% 34,492 - - 9,766 30,458 74,716 (P = 0.05); I ² = 62% 30,458 30,458 30,458 9,766 74,716 (P = 0.08); I ² = 61% 34,492 30,458 9,766 74,716 (P = 0.08); I ² = 61%	9,757 515 9,766 4,595 9,766 4,595 34,492 2,316 - 9,766 4,595 30,458 286 112,892 7,401 34,492 2,316 - 9,766 4,595 30,458 286 74,716 7,197 (P = 0.05); I ² = 62% 30,458 286 9,766 4,595 74,716 7,197 (P = 0.08); I ² = 61% 34,492 2,316 30,458 286 9,766 4,595 74,716 7,197 (P = 0.08); I ² = 61%	9,757 515 2.2% 9,766 4,595 5.2% 9,766 4,595 5.2% 34,492 2,316 8.7% - - 7.2% 9,766 4,595 9.5% 30,458 286 2.2% 112,892 7,401 28.3% (P = 0.32); I ² = 15% 7.401 28.3% 30,458 286 1.7% 9,766 4,595 6.1% 30,458 286 1.7% 74,716 7,197 25.3% (P = 0.05); I ² = 62% 2.316 6.5% 30,458 286 1.7% 30,458 286 2.6% 30,458 286 1.7% 74,716 7,197 14.0% (P = 0.08); I ² = 61% 7.197 14.0% 34,492 2,316 8.7% 30,458 286 1.3% 9,766 4,595 5.8% 74,716 7,197 14.0% (P = 0.08); I ² = 61% 1.3% 30,458 286 </td <td>9,757 515 2.2% 1.84 [1.27, 2.67 9,766 4,595 5.2% 1.06 [0.87, 1.29 9,766 4,595 5.2% 1.06 [0.87, 1.29 38,176 204 0.7% 0.76 [0.38, 1.55 $-$ 34,492 2,316 8.7% 0.91 [0.83, 1.01 7.2% 0.93 [0.81, 1.07 9,766 4,595 9.5% 1.03 [0.95, 1.11 30,458 286 2.2% 0.89 [0.61, 1.29 112,892 7,401 28.3% 0.97 [0.90, 1.03 (P = 0.32); I² = 15% 34,492 2,316 8.7% 0.93 [0.85, 1.03 8.7% 0.99 [0.90, 1.09 9,766 4,595 6.1% 1.00 [0.85, 1.18 30,458 286 1.7% 0.54 [0.35, 0.83 $-$ 74,716 7,197 25.3% 0.93 [0.83, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 1.7% 0.56 [0.36, 0.86 $-$ 74,716 7,197 14.0% 0.86 [0.70, 1.06 (P = 0.08); I² = 61% 34,492 2,316 8.7% 0.87 [0.79, 0.96 30,458 286 1.3% 1.14 [0.68, 1.90 9,766 4,595 7.2% 0.89 [0.77, 1.02 1,456 235 1.4% 0.76 [0.47, 1.25 9,757 515 3.8% 0.67 [0.52, 0.86</td>	9,757 515 2.2% 1.84 [1.27, 2.67 9,766 4,595 5.2% 1.06 [0.87, 1.29 9,766 4,595 5.2% 1.06 [0.87, 1.29 38,176 204 0.7% 0.76 [0.38, 1.55 $-$ 34,492 2,316 8.7% 0.91 [0.83, 1.01 7.2% 0.93 [0.81, 1.07 9,766 4,595 9.5% 1.03 [0.95, 1.11 30,458 286 2.2% 0.89 [0.61, 1.29 112,892 7,401 28.3% 0.97 [0.90, 1.03 (P = 0.32); I ² = 15% 34,492 2,316 8.7% 0.93 [0.85, 1.03 8.7% 0.99 [0.90, 1.09 9,766 4,595 6.1% 1.00 [0.85, 1.18 30,458 286 1.7% 0.54 [0.35, 0.83 $-$ 74,716 7,197 25.3% 0.93 [0.83, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 2.6% 0.81 [0.58, 1.13 30,458 286 1.7% 0.56 [0.36, 0.86 $-$ 74,716 7,197 14.0% 0.86 [0.70, 1.06 (P = 0.08); I ² = 61% 34,492 2,316 8.7% 0.87 [0.79, 0.96 30,458 286 1.3% 1.14 [0.68, 1.90 9,766 4,595 7.2% 0.89 [0.77, 1.02 1,456 235 1.4% 0.76 [0.47, 1.25 9,757 515 3.8% 0.67 [0.52, 0.86

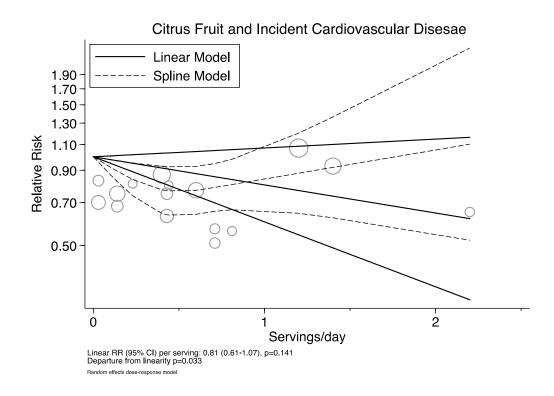
Figure S31. Relation between sources of fruit and CVD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

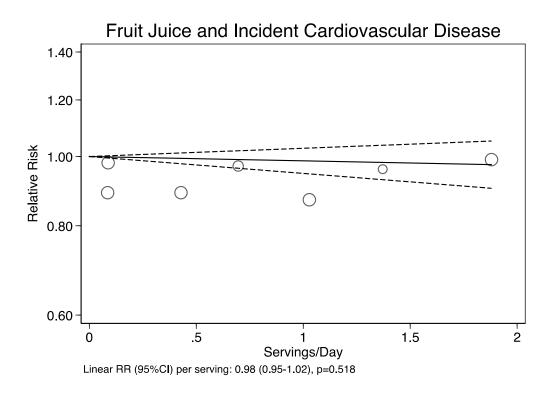

Cohort and Study Perticipants, N. Case, N. Weight R (95% C) Relative Risk (95% C) for CVD Mortality PLSM-: Bitkschotst 2017 1.226 2.88 0.5% 0.33 [0.22, 0.49] PLSM-: Bitkschotst 2017 1.226 2.88 0.5% 0.33 [0.22, 0.49] PLSM-: Bitkschotst 2.5 J.0 < 0.00001) 11.12 Corrols 2.0(9) 2.0(5 1.12, 2.5) 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.33 [0.22, 0.49] 2.0(5 0.35 [0.35, 1.01] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.0(5 0.35 [0.35, 0.31] 2.	A. FIACU Effects					
PLSAM- Bickkenborst 2017 1.226 238 0.5% 0.33 (0.22, 0.49) Heterogeneity: Not applicable Test for overall effect: 2 = 5.50 (< 0.00001) 1.112 Corros Subtral (95% C) Heterogeneity: Tat ² = 0.00; Corrots 559 Subtral (95% C) Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Link 2 Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Heterogeneity: Tat ² = 0.00; Corrots 9, 73, 4492 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Corrots 9, 766 Heterogeneity: Tat ² = 0.00; Cor	Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Subtal (95% C) Heterogeneity: Nat applicable Test for overall effect: 2 = 5.50 (P < 0.00001) 11.12 Carrots Zuphen Eidert, Puijss 2006: Carrots 9.766 4.555 8.00% 9.59 (0.68, 1.01) Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 8.00% 9.59 (0.68, 1.01) Heterogeneity: Tat ² = 0.00; (D ² = 1.57, df = 1 (P = 0.21); P = 36% Test for overall effect: 2 = 1.34 (P = 0.21); 11.13 Celery Test for overall effect: 2 = 1.36 (P = 0.07) 11.14 Cuclerous Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 1.299 161 1.00% 0.29 (0.48, 1.01) Migrant Study - Hjartaker 2015 - carrots 1.14 Cuclerous Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 1.299 161 1.00% 0.29 (0.44, 2.10) Migrant Study - Hjartaker 2015 - carrots 9.766 4.555 2.22% 0.85 (0.80, 0.90] 9.766 4.555 2.22% 0.85 (0.80, 0.90] 9.766 4.555 1.299 161 1.06% 1.15 Green left Missaschusetts Health Care Panel - Gaziano 1995 1.299 161 1.266 1.27, 730 1.3081 9.766 4.555 2.22% 0.85 (0.80, 0.90] 9.766 4.555 2.25% 0.94 (0.81, 1.06] Migrant Study - Hjartaker 2015 - cauliflower 9.766 4.555 2.25% 0.94 (0.81, 0.91) 1.15 Green left Missaschusetts Health Care Panel - Gaziano 1995 1.299 161 0.05% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.05% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Heatth Fodder Samel - Gaziano 1995 1.29 164 0.3% (0.48, 1.23] 0.5% 0.49 (0.81, 1.24) 0.4% 0.49 (0.81, 1.24) 0.4% 0.49 (0.81, 1.24) 0.4% 0.49 (0.81, 1.24) 0.4%						
Heterageneity: Not applicable Test for overall effect: 2 = 5.50 (p < 0.0001) 1.11.2 Corrost Zuphen Elderly - Bujips 2008: Carrosts 559 197 2.0% 0.83 (0.68, 1.01) Migrant Study - Highrater 2015: - carrost 9, 7.66 4.558 Satobal (95% C) 10, 215 carrost 9, 7.66 4.558 Satobal (95% C) 10, 215 carrost 9, 7.66 4.558 Satobal (95% C) 10, 215 carrost 9, 7.66 4.558 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,492 2.316 Satobal (95% C) 24,210 (1.0) 24,492 2.316 Satobal (95% C) 217 1.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.22 Satobal (95% C) 217 2.25 Satobal (95% C) 217 2.25 Satobal (95% C	PLSAW - Blekkenhorst 2017	1,226	238	0.5%	0.33 [0.22, 0.49]	
Test for overall effect: 2 = 5.50 (P < 0.00001) 1.11.2 Carrots 2.112 Carrots 2.112 Carrots 3.766 4.595 8.0% 0.95 (0.86, 1.01) 4.113 Calery 4.102 4.10 4.102 4.102 4.102 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10	Subtotal (95% CI)	1,226	238	0.5%	0.33 [0.22, 0.49]	
1.1.2 Carrols Zurphen Elderly-Builyse 2008: Carrols 559 197 2.0% 0.83 (0.68, 1.01) Wilgrant Study - Hightaber 2015 - carrols 9,766 4.592 8.0% 0.95 (0.85, 1.05) Subtotal (95% C) 10,225 4.792 10.0% 0.95 (0.85, 1.05) Subtotal (95% C) 10,225 4.792 10.0% 0.92 (0.85, 1.01) 11.13 Celery 1007 - celery 34.492 2,316 8.0% 0.91 (0.83, 1.01) 11.14 Cruciferous 11.14 Cruciferous 8.0% 0.91 (0.83, 1.01) 1.00% Mossachusetts Health Care Panel - Gaziano 1995 1.299 161 0.0% 0.29 (0.04, 2.10) Orysey: - Geninger 2004 0.44.92 2.316 8.0% 0.91 (0.83, 1.01) Iwas - Mix 2007 34.492 2.316 8.0% 0.91 (0.83, 1.01) Iwas - Mix 2001 10.13 7.8% 0.83 (0.64, 1.24) Iwas - Mix 2001 10.13 7.8% 0.83 (0.64, 1.24) Iwas - Mix 2011 1.226 2.346 8.0% 0.91 (0.83, 0.61) Iwas - Mix 2011 1.226 2.356 0.56 (0.84, 0.77) Iwas - Mix 20	Heterogeneity: Not applicable					
2.tpthen Eldenly - Bujise 2008: Carrots 559 197 2.0% 0.83 [0.6.8, 1.01] Migran Study - Hightaker 2015 - carrots 9,766 4,595 8.0% 0.95 [0.6.6, 1.05] Subtrai [95% C] 10,225 4,792 10.0% 0.92 [0.8.5, 1.01] Heterogeneity: Tau' = 0.00(. Ch ² = 1.57, df = 1 (P = 0.21); P' = 36% 10.0% 0.92 [0.83, 1.01] 1113 Colery Image: Coler of the cole of the coler of the cole of the c	Test for overall effect: Z = 5.50 (P < 0.00001)					
2.tpthen Eldenly - Bujise 2008: Carrots 559 197 2.0% 0.83 [0.6.8, 1.01] Migran Study - Hightaker 2015 - carrots 9,766 4,595 8.0% 0.95 [0.6.6, 1.05] Subtrai [95% C] 10,225 4,792 10.0% 0.92 [0.8.5, 1.01] Heterogeneity: Tau' = 0.00(. Ch ² = 1.57, df = 1 (P = 0.21); P' = 36% 10.0% 0.92 [0.83, 1.01] 1113 Colery Image: Coler of the cole of the coler of the cole of the c	1 11 2 Correcto					
Migrant Study - Hjartaler 2015 - carrots 9,766 4,595 8,0% 0.95 [0.86, 1.05] Heterogeneity: Tau' = 0.00; Ch' = 1.57, df = 1 (P = 0.21); h' = 36% Test for overall effect: z = 1.4 (P = 0.15) 1113 Celey Iowa W15 - Mink 2007 - celery 34,492 2,316 8,0% 0.91 [0.83, 1.01] Subtabi [95% C] 34,492 2,316 8,0% 0.91 [0.83, 1.01] Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odyssey - Genkinger 2004 - 6,151 378 0.7% 0.89 [0.64, 1.24] Iowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 34,492 2,316 8,0% 0.94 [0.85, 1.04] Jowa W15 - Mink 2007 12,120, 1.249 Migrant Study - Hjartaler 2015 - califlower 9,766 4,595 2,22% 0.85 [0.80, 0.90] PicSAW - Blekkenhors 2017 12,226 2,38 1,4% 0.48 [0.38, 0.61] Josebcal [95% C] Heterogeneity; Tau' = 0.04; Ch' = 48.35, df = 7 [P o.00001]; J' = 85% Test for overall effect: 2 = 2.75 (P = 0.0001) J115 Green Lesty Missachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Heeltin Food Shoppers - Appleby 2002 10,741 282 5,5% 0.94 [0.84, 1.16] MONICA Switzerland - Vormund 2015 - F 9, 196 6,34 2,0% 0.93 [0.77, 1.28] Migrant Study - Hjartaler 2015 - coutons); J' = 88% Test for overall effect: 2 = 2.75 (P = 0.0001); J' = 88% Test for overall effect: 2 = 1.58 (P = 0.0001); J' = 28% Test for overall effect: 2 = 1.58 (P = 0.0001); J' = 28% Test for overall effect: 2 = -1.59 (J = 0.27); J' = 2.3% Test for overall effect: 2 = -1.59 (J = 0.27); J' = 2.3% Test for overall effect: 2 = -1.59 (J = 0.27); J' = 2.8% Test for overall effect: 2 = -1.59 (J = 0.27); J' = 2.8% Test for overall effect: 2 = -1.59 (J = 0.45); J' = 2.8% Disobcal [95% C] Heterogeneity; Tau' = 0		FEO	107	2.0%	0 92 [0 69 1 01]	
Subtable (95% C) 10,225 4,792 10,0% 0.52 (0.85, 1.01) Heterogeneity: Tau ² = 0.00; M ² = 7.05, M ² = 1 (P = 0.21); P ² = 36% Test for overall effect: Z = 1.44 (P = 0.15) 1.11.3 Celery lowa W15 - Mink 2007 - celery 34,492 2,316 8,0% 0.91 [0.83, 1.01] Meterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07) 1.11.4 Contierous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odytsey - Genkinger 2004 6,151 378 0.0% 0.29 [0.04, 2.10] Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.22 (1.00, 1.49] Migrant Study - Higrater 2015 - cabbage - 2.0% 1.26 (1.00, 1.09] Heterogeneity: Tau ² = 0.00; M ² = 48.35, df = 7 (P < 0.00001); P ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 11.15 Green leafy Mossachusets Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 (0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 (1.084, 1.06] MONICA Switterland - Vormund 2015 - M .665 751 2.5% 1.04 (1.081, 1.24] PISAW - Biekkenbert 2017 1.226 238 1.1% 0.39 (0.50, 0.69] Subtati (95% C) 40,893 6,661 1.1% 0.3% 0.73 (0.46, 1.17] NONICA Switterland - Vormund 2015 - M .665 751 2.5% 0.93 (1.084, 0.16] Missachusets Health Care Panel - Gaziano 1995 1.299 161 0.3% 0.73 (0.46, 1.17] Now W15 . Mink 2007 3.4492 2.316 5.5% 0.93 (1.081, 0.69] Jub Grant Sudy - Higrater 2015 9.766 4.55% 2.6% 0.93 (1.031, 0.51] Migrant Sudy - Higrater 2015 9.766 4.59 2.20% 0.93 (1.04, 1.06] Jub Grant Sudy - Higrater 2015 9.766 4.55% 0.93 (1.083, 1.06] Jub Grant Sudy - Higrater 2015 9.766 4.55% 0.93 (1.081, 0.69] Jub Grant Sudy - Higrater 2015 9.766 4.55% 0.93 (1.081						
Hetergeneity: Tau ² = 0.00; Ch ² = 1.57, df = 1 (P = 0.21); P = 36% Test for overall effect: 2 = 1.44 (P = 0.15) 1.11.3 Celery 0 aw Vt/5 · Mink 2007 · celery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Subtral (95% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Mascachustets Health Care Panel - Gaziano 1995 1.299 161 0.0% 0.29 [0.04, 2.10] Ody.sey · Genkinger 2004 6.151 378 0.7% 0.89 [0.64, 1.24] 0 aw Wt/5 · Mink 2007 34,492 2,316 8.0% 0.91 [0.83, 1.01] Migrant Study · Higratiker 2015 - cauliflower 9,766 4.595 22.2% 0.65 [0.04, 0.93] Migrant Study · Higratiker 2015 - cauliflower 9,766 4.595 22.2% 0.85 [0.80, 0.90] Heterogeneity: Tau ⁴ = 0.04; Ch ⁴ = 48.35, df = 7 (P < 0.00001); H = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Missachustets Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.48 [0.81, 0.61] Subtral (95% C) 40.995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10.741 282 5.5% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10.741 282 5.5% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,196 6.34 2.0% 0.93 [0.7, 1.13] Migrant Study · Higritaker 2015 - 9,276 4.555 2.2% 1.00 [0.84, 1.06] Subtral (95% C) - 4.04, df = 5 (P < 0.00001); H = 88% Test for overall effect: 2 = 1.58, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 2 (P = 0.27); F = 23% Test for overall effect: 2 = 1.59, df = 5 (P < 0.00001); J = 88.0%						
Test for overall effect: 2 = 1.44 (P = 0.15) 1.11.3 Celery lowa W15 - Mink 2007 - celery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07) 1.11.4 Crudierous Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.0% 0.92 [0.04, 2.10] Odyssey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 0.10] May M15 - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Odyssey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 0.03] Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cablege - - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cablege - - 2.0% 1.28 [0.82, 0.89] PLSAW - Blekkenhorst 2017 1.226 2.38 1.4% 0.48 [0.31, 0.77] Heterogeneity: Tau* = 0.06; Ch* = 40.34, df = 5 (P < 0.00001); F = 86%			4,792	10.0%	0.92 [0.85, 1.01]	•
1.1.1 Gelery Jowa W15 - Mink 2007 - celery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Subtotal (5% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogenety: Not applicable Test for overall effect: 2 = 1.80 (P = 0.07) 1.1.1 Courderous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Jowa W15 - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Moren Health - Zhang 2011 (a) 73,360 3,442 1.22 0.61 [0.47, 0.79] Shanghai Moren Health - Zhang 2011 (a) 17,3300 3,442 1.22 0.61 [0.47, 0.79] Migrant Study - Hjartaker 2015 - cauliflower 9,766 4,595 2.2.0% 0.85 [0.82, 0.89] PLSAW > Blekkenhorst 2017 1,226 2.38 1.4% 0.48 [0.38, 0.61] Subtotal (5% C) 137,730 13,001 37,45% 0.48 [0.31, 0.77] Heaterogenety: Tau" = 0.04; Ch" = 48.35, df = 7 (P < 0.00001); H = 86%		= 0.21); - = 36%				
lova WHS - Mink 2007 - cellery 34,492 2,316 8.0% 0.91 [0.83, 1.01] Subtotal (95% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07) 1.11 A Cruciferous Massachuetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odysey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 1.24] Jowa WHS - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Migrant Study - Hjartaker 2015 - cabibage - 2 20% 0.55 (0.44, 2.07) Migrant Study - Hjartaker 2015 - cabibage - 2 20% 0.25 (0.80, 0.90] Higrant Study - Hjartaker 2015 - cabibage - 2 20% 0.25 (0.80, 0.90] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); r ² = 88.% Test for overall effect: Z = 1.68 (P = 0.09) 1.115 Green leafy Migrant Study - Hjartaker 2015 - F 9, 196 634 2.0% 0.93 [0.77] Heterogeneity: Tau ² = 0.05; Chi ² = 40.44, df = 5 (P < 0.00001); r ² = 88.% Test for overall effect: Z = 1.68 (P = 0.09) 1.116 Tomates Messachuetts Health Care Panel - Gaziano 1995 1, 299 161 0.4% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.04 [0.87, 1.24] Misrant Study - Hjartaker 2015 - 9, 766 4, 595 2.2% 1.00 (0.94, 1.06] Subtotal (95% C) 4, 953 5, 7, 707 2, 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² - 0.05; Chi ² = 2.0, 75; F = 0.45; Test for overall effect: Z = 0.75; P = 0.45; Test for overall effect: Z = 0.75; P = 0.45; Test for overall effect: Z = 0.75; P = 0.45; Test for overall effect: Z = 0.75; P =	rest for overall effect. 2 – 1.44 (F – 0.13)					
Subtol (95% C) 34,492 2,316 8.0% 0.91 [0.83, 1.01] Heterogeneity: Not applicable Test for overall effect: 2 = 1.80 (P = 0.07) 111.4 Cruciferous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 210] Odyssey - Genkinger 2004 6,151 378 0.7% 0.88 [0.64, 1.24] Odyssey - Genkinger 2001 (a) 73,360 3,442 1.2% 0.61 [0.42, 0.79] Shanghai Men Health - Zhang 2011 (a) 73,360 3,442 1.2% 0.61 [0.42, 0.79] Shanghai Men Health - Zhang 2011 (a) 61,436 1.951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cablage - 2.0% 0.78 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 2.38 1.4% 0.48 [0.88, 0.61] Subtotal (95% C) 1.87,730 13,081 37.4% 0.48 [0.88, 0.61] Subtotal (95% C) - 1.87,730 13,081 37.4% 0.48 [0.84, 0.38 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); I ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 111.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] PLSAW - Blekkenhorst 2017 1,229 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1.299 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1.299 151 0.3% 0.59 [0.50, 0.69] PLSAW - Blekkenhorst 2017 3,492 2,316 5.5% 0.93 [0.83, 1.08] Heterogeneity: Tau ² = 0.06; Chi ² = 4.04, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.27); I ² = 2.2% Line (D = 9, 1.66] Massachusetts Health Care Panel - Gaziano 1995 1,299 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1,299 151 0.3% 0.73 [0.46, 1.17] Line Tomatos Massachusetts Health Care Panel - Gaziano 1995 1.299 151 0.3%	1.11.3 Celery					
Heterogeneity: Not applicable Test for overall effect: 2 = 1.80 (P = 0.07) 11.1 Crudierous Massachuests Health Care Panel - Gaziano 1995 1,299 161 0,0% 0.29 [0,04,2.10] Odyssey - Genkinger 2004 6,151 378 0,7% 0.88 [0,64, 1.24] Jowa WH5 - Mink 2007 34,492 2,316 8,0% 0,94 [0.85, 1.04] Shanghai Wome Health - Zhang 2011 (a) 61,436 1,951 2,0% 0,76 [0,63, 0,93] Migrant Study - Hjartaker 2015 - cauliflower 9,766 4,595 22,2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1,4% 0,48 [0.38, 0.61] Subbtal (95% C) 1 127,730 13,081 37,4% 0.48 [0.38, 0.61] Missachuests Health Care Panel - Gaziano 1995 1,299 161 0,4% 0,49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5,5% 0,94 [0.84, 1.06] Migrant Study - Hjartaker 2015 - 9,766 4,595 2,26% 0,49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5,5% 0,49 [0.84, 1.06] Minor Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,6% 104 [0.88, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,6% 104 [0.88, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,6% 104 [0.88, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2,0% 0,93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2,26% 104 [0.88, 1.24] Migrant Study - Hjartaker 2015 9,766 4,595 2,26% 104 [0.88, 1.24] Migrant Study - Hjartaker 2015 9,766 4,595 2,26% 104 [0.88, 1.05] Subtal (95% C) 40,84, df = 5 (P < 0.00001); H = 88% Test for overall effect: 2 = 1.68 (P = 0.00) 11.16 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0,3% 0,73 [0.46, 1.17] Now WH5 - Mink 2007 34,492 2,316 5,5% 0,93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 (0.94, 1.06] Subtal (95% C) 45,557 7,702 2,80% 0,93 [0.34, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 (0.94, 1.06] Subtal (95% C) 45,557 7,702 2,80% 0,93 [0.34, 1.05] Migrant	Iowa WHS - Mink 2007 - celery	34,492	2,316	8.0%	0.91 [0.83, 1.01]	
Test for overall effect: 2 = 1.80 (P = 0.07) 1.114 Cruciferous Massachusetts Health Grae Panel - Gaziano 1995 1.299 161 0.0% 0.29 [0.04, 2.10] Ordysey - Genkinger 2004 6.151 378 0.7% 0.89 [0.64, 1.24] Iowa WHS - Mink 2007 34,492 2.316 8.0% 0.94 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1.951 2.0% 0.76 [0.63, 0.39] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1.226 2.38 1.4% 0.48 [0.38, 0.61] Subtotal (95% Cl) 187,730 1.30,81 37.4% 0.85 [0.82, 0.89] Heterogenelity: Tau* = 0.04; Chi* = 48.35, df = 7 (P < 0.00001); i* = 86%	Subtotal (95% CI)	34,492	2,316	8.0%	0.91 [0.83, 1.01]	•
1.1.1 Cruciferous Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.0% 0.29 [0.04, 2.10] Odyssey - Genkinger 2004 6,151 378 0.7% 0.88 [0.64, 1.24] Jowa WH5 - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.65, 0.03] Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 0.76 [0.65, 0.03] Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 0.76 [0.65, 0.03] Vibratot [95% C] 127,700 13,081 37.4% 0.88 [0.80, 0.61] Subtotal [95% C] 127,700 13,081 37.4% 0.88 [0.82, 0.89] Heterogeneity: Tau" = 0.04; Chi" = 48.35, df = 7 (P < 0.00001); f" = 86%	Heterogeneity: Not applicable					•
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0,0% 0.29 [0.04, 2.10] Odysey - Genkinger 2004 6,151 378 0,7% 0.89 [0.64, 1.24] Iowa WH5. Mik 2007 34,492 2,316 8,0% 0.49 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1,951 2,0% 0,76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Heterogeneity: Tau ⁴ = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 6.34 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtoal (95% C) 40,49 = 0.44, f = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Now WH5 - Mink 2007 34,442 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 [0.94, 1.06] Subtoal (95% C) 4,455,57 7,707 2,80% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.06; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overal	Test for overall effect: Z = 1.80 (P = 0.07)					
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0,0% 0.29 [0.04, 2.10] Odysey - Genkinger 2004 6,151 378 0,7% 0.89 [0.64, 1.24] Iowa WH5. Mik 2007 34,492 2,316 8,0% 0.49 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 61,436 1,951 2,0% 0,76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage 20% 1.22 [1.00, 1.49] Heterogeneity: Tau ⁴ = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 6.34 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtoal (95% C) 40,49 = 0.44, f = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Now WH5 - Mink 2007 34,442 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2,22% 1.00 [0.94, 1.06] Subtoal (95% C) 4,455,57 7,707 2,80% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.06; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overall effect: C = 0.75 (P = 0.45) Test for overal						
Odyssey - Genkinger 2004 6,151 378 0.7% 0.89 [0.64, 1.24] lowa WHS - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Wome Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablage - - 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablege - - 2.0% 0.78 [0.63, 0.93] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% C) 1087,770 138,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); h ² = 86% 751 2.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 0.94 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtotal (95% C) 40.48 (9.38, 0.51] 4.049 (9.31, 0.31, 0.34] 4.049 (9.31, 0.31, 0.34] 4.049 (9.31, 0.3		4 200	161	0.001	0.0010.010.01	
Iowa WHS - Mink 2007 34,492 2,316 8.0% 0.94 [0.85, 1.04] Shanghai Women Health - Zhang 2011 (a) 73,360 3,442 1.2% 0.61 [0.47, 0.79] Shanghai Menel Health - Zhang 2011 (a) 61,436 1.951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabbage - 2.0% 0.85 [0.82, 0.89] Heterogeneity: Tau* = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); I ² = 86% Test for overall effect: 2 = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.3] Migrant Study - Hjartaker 2015 9,766 4.595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1.226 238 3.1% 0.59 [0.50, 0.69] Subtotal [95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.54] Heterogeneity: Tau* = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: 2 = 1.58 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.3% 0.73 [0.46, 1.17] Lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4.595 2.2.% 1.00 [0.94, 1.06] Subtotal [95% CI) 45,57 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau* = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: 2 = 0.75 (P = 0.45) Test for overall effect: 2 = 0.75 (P = 0.45) Test for overall effect: 2 = 0.75 (P = 0.45) Test for overall effect: 2 = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						·
Shanghai Women Health - Zhang 2011 (a) 73,360 3,442 1.2% 0.61 [0.47, 0.79] Shanghai Men Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cablight 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabliflower 9,766 4,595 22.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtoral (95% C) 187,730 13,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Ch ² = 48.35, df = 7 (P < 0.00001); l ² = 86.% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtoral (95% C) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Ch ² = 40.44, df = 5 (P < 0.00001); l ² = 88.% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomates Massachusetts Health fcare Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 2.2.% 1.00 [0.94, 1.06] Migrant Study - Hjartaker 2015 9,766 4,595 7,7072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.05; Ch ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overa						
Shanghai Men Health - Zhang 2011 (a) 61,436 1,951 2.0% 0.76 [0.63, 0.93] Migrant Study - Hjartaker 2015 - cabibage - 200% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabilfower 9,766 4,595 22.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% C) 187,730 13,081 37.4% 0.85 [0.82, 0.89] 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% C) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.05; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomates Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Missachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Missachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WH5 - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Migram Study - Hjartaker 2015 9,766 2 (P = 0.027); I ⁴ = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect						
Migrant Study - Hjartaker 2015 - cabbage - - 2.0% 1.22 [1.00, 1.49] Migrant Study - Hjartaker 2015 - cabibage - - 2.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% CI) 17,730 13.081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (p < 0.00001); l ² = 86% 756 4.595 2.5% 0.94 [0.31, 0.77] Heath Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] - MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] - MORICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] - Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.87, 1.24] - MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] - Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.83, 1.04] - - Subtotal (95% CI) 40,893 6,661 16.1% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Migrant Study - Hjartaker 2015 - cauliflower 9,766 4,595 22.2% 0.85 [0.80, 0.90] PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% CI) 187,730 13,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.33, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 40,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z =						
PLSAW - Blekkenhorst 2017 1,226 238 1.4% 0.48 [0.38, 0.61] Subtotal (95% C) 111.15 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1.299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MOINCA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.87, 1.24] Meterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.0001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% C)] 45,557 7,072 28.0% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% C)] 45,557 7,072 28.0% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% C)] 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.05; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z = 0.75 (P = 0.45] Test for overall effect: Z						
Subtotal (95% CI) 187,730 13,081 37.4% 0.85 [0.82, 0.89] Heterogeneity: Tau ² = 0.04; Ch ² = 48.35, df = 7 (P < 0.00001); l ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Bletkehnorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Ch ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for Subtotal (95% CI)						
Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P < 0.00001); I ² = 86% Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						
Test for overall effect: Z = 2.75 (P = 0.006) 1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 2.38 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Ch ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 11.16 Tomatoes				37.4%	0.85 [0.82, 0.89]	•
1.11.5 Green leafy Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94]		< 0.00001); ۱ ² = ٤	6%			•
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.4% 0.49 [0.31, 0.77] Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%	Test for overall effect: $Z = 2.75$ (P = 0.006)					
Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%	1.11.5 Green leafy					
Health Food Shoppers - Appleby 2002 10,741 282 5.5% 0.94 [0.84, 1.06] MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%		1,299	161	0.4%	0.49 [0.31, 0.77]	
MONICA Switzerland - Vormund 2015 - M 8,665 751 2.5% 1.04 [0.87, 1.24] MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] lowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%			282	5.5%		
MONICA Switzerland - Vormund 2015 - F 9,196 634 2.0% 0.93 [0.77, 1.13] Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						
Migrant Study - Hjartaker 2015 9,766 4,595 2.6% 1.04 [0.88, 1.23] PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%			634	2.0%		
PLSAW - Blekkenhorst 2017 1,226 238 3.1% 0.59 [0.50, 0.69] Subtotal (95% Cl) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); l ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%						
Subtotal (95% CI) 40,893 6,661 16.1% 0.87 [0.81, 0.94] Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); I ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); I ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), I ² = 88.0%						
Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P < 0.00001); i ² = 88% Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); i ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), i ² = 88.0%						
Test for overall effect: Z = 1.68 (P = 0.09) 1.11.6 Tomatoes Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45)					,	◆
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%						
Massachusetts Health Care Panel - Gaziano 1995 1,299 161 0.3% 0.73 [0.46, 1.17] Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0%	4.44.6 7					
Iowa WHS - Mink 2007 34,492 2,316 5.5% 0.93 [0.83, 1.05] Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 [0.94, 1.06] Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.5 1 2 1		1 200	161	0.2%	0 72 [0 46 1 17]	
Migrant Study - Hjartaker 2015 9,766 4,595 22.2% 1.00 $(0.94, 1.06]$ Subtotal (95% Cl) 45,557 7,072 28.0% 0.98 $(0.93, 1.04]$ Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) $(0.2 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 2 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1 \ 1.02 \ 0.5 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $						
Subtotal (95% CI) 45,557 7,072 28.0% 0.98 [0.93, 1.04] Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.2 0.5 1 2 9						
Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P = 0.27); l ² = 23% Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.2 0.5 1 2 2						+
Test for overall effect: Z = 0.75 (P = 0.45) Test for subgroup differences: Chi ² = 41.70, df = 5 (P < 0.00001), l ² = 88.0% 0.2 0.5 1 2 5			7,072	28.0%	0.98 [0.93, 1.04]	,
Test for subgroup differences: $Chi^2 = 41.70$, df = 5 (P < 0.00001), $I^2 = 88.0\%$ 0.2 0.5 1 2 9		= 0.27); I* = 23%				•
0.2 0.5 1 2 5		1	00 00'			
	Test for subgroup differences: Chi ² = 41.70, df = 5	(P < 0.00001), l ²	= 88.0%			
Lower Risk Higher Risk						
						Lower Risk Higher Risk

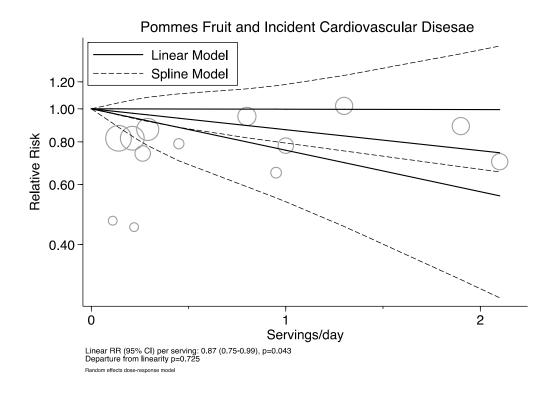
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CVD Mortality
Allium					
PLSAW - Blekkenhorst 2017	1,226	238	2.7%	0.33 [0.22, 0.49]	
Subtotal (95% CI)	1,226	238	2.7%	0.33 [0.22, 0.49]	
Heterogeneity: Not applicable				. , .	
Test for overall effect: Z = 5.50 (P < 0.00001)					
Carrots					
Zutphen Elderly - Buijsse 2008- Carrots	559	197	5.0%	0.83 [0.68, 1.01]	
Miigrant Study - Hjartaker 2015 - carrots	9,766	4,595	6.3%	0.95 [0.86, 1.05]	
Subtotal (95% CI)	10,325	4,792	11.3%	0.91 [0.80, 1.03]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 1.57, df = 1 (P	= 0.21); I ² = 36%				
Test for overall effect: Z = 1.44 (P = 0.15)					
Colore					
Celery Iowa WHS - Mink 2007 - celery	34,492	2,316	6.3%	0.91 [0.83, 1.01]	
Subtotal (95% CI)	34,492 34,492	2,310 2,316	6.3%		◆
	34,472	2,510	0.5%	0.91 [0.83, 1.01]	
Heterogeneity: Not applicable Test for overall effect: Z = 1.80 (P = 0.07)					
100 (r - 0.07)					
Cruciferous					
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	0.2%	0.29 [0.04, 2.10]	• • • • • • • • • • • • • • • • • • • •
Odyssey - Genkinger 2004	6,151	378	3.3%	0.89 [0.64, 1.24]	
Iowa WHS - Mink 2007	34,492	2,316	6.3%	0.94 [0.85, 1.04]	
Shanghai Women Health - Zhang 2011 (a)	73,360	3,442	4.2%	0.61 [0.47, 0.79]	.
Shanghai Men Health - Zhang 2011 (a)	61,436	1,951	5.0%	0.76 [0.63, 0.93]	_
Migrant Study - Hjartaker 2015 - cabbage	9,766	4,595	5.0%	1.22 [1.00, 1.49]	_ _
Migrant Study - Hjartaker 2015 - cauliflower	-	-	6.7%	0.85 [0.80, 0.90]	-
PLSAW - Blekkenhorst 2017	1,226	238	4.5%	0.48 [0.38, 0.61]	
Subtotal (95% CI)	187,730	13,081	35.1%	0.80 [0.68, 0.94]	◆
Heterogeneity: Tau ² = 0.04; Chi ² = 48.35, df = 7 (P					
Test for overall effect: Z = 2.75 (P = 0.006)					
Green leafy					
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	2.3%	0.49 [0.31, 0.77]	
Health Food Shoppers - Appleby 2002	10,741	282	6.1%	0.94 [0.84, 1.06]	
MONICA Switzerland - Vormund 2015 - F	9,196	634	5.0%	0.93 [0.77, 1.13]	
MONICA Switzerland - Vormund 2015 - M	8,665	751	5.3%	1.04 [0.87, 1.24]	<mark>_</mark>
Migrant Study - Hjartaker 2015	9,766	4,595	5.4%	1.04 [0.88, 1.23]	
PLSAW - Blekkenhorst 2017	1,226	238	5.6%	0.59 [0.50, 0.69]	
Subtotal (95% Cl)	40,893	6,661	29.6%	0.84 [0.68, 1.03]	
Heterogeneity: Tau ² = 0.06; Chi ² = 40.44, df = 5 (P	-	-	23.070	0.04 [0.00, 1.03]	-
Test for overall effect: $Z = 1.68$ (P = 0.09)	- 0.00001), I - C				
Tomatoes					
Massachusetts Health Care Panel - Gaziano 1995	1,299	161	2.2%	0.73 [0.46, 1.17]	
lowa WHS - Mink 2007	34,492	2,316	2.2 <i>%</i> 6.1%	0.93 [0.40, 1.17]	
Migrant Study - Hjartaker 2015	9,766	4,595	6.7%	1.00 [0.94, 1.06]	I
Subtotal (95% CI)	45,557	4,393 7,072	14.9%	0.97 [0.90, 1.05]	
Heterogeneity: Tau ² = 0.00; Chi ² = 2.59, df = 2 (P	-	1,012	17.370	5.57 [0.50, 1.05]	٦
Test for overall effect: Z = 0.75 (P = 0.45)	23/6				
Test for subgroup differences: $Ch^2 = 0.75$ ($P = 0.45$)	(P < 0.00001) 12	= 84 1%			
	(, , , 0.00001), T	J7.1/0			0.2 0.5 1 2 5
					Lower Risk Higher Risk

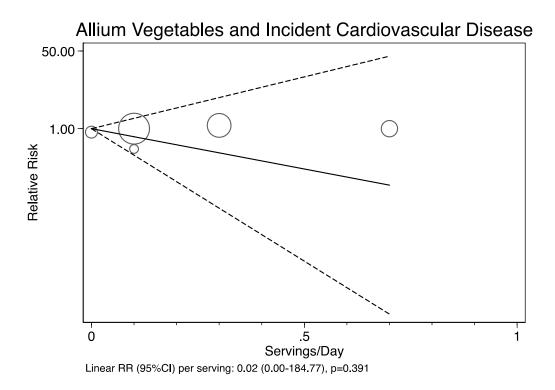

Figure S32. Relation between sources of vegetables and CVD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

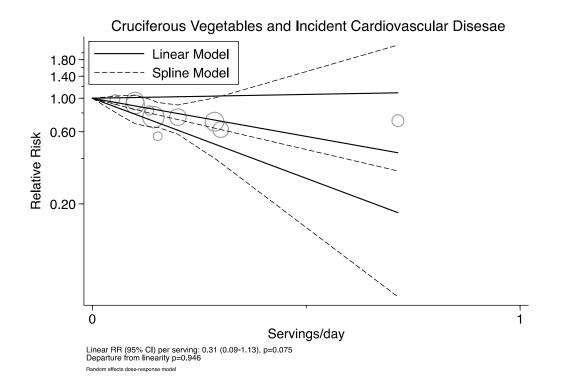

Figure S33. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S34. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S35. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S36. Linear dose-response relation between increasing berries intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S37. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S38. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

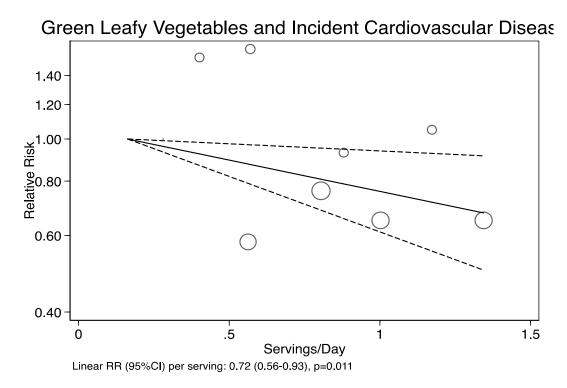
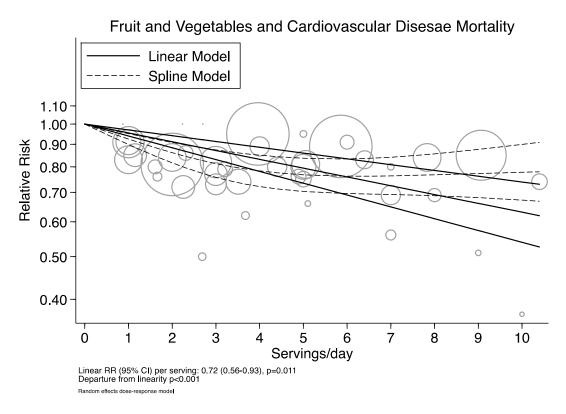
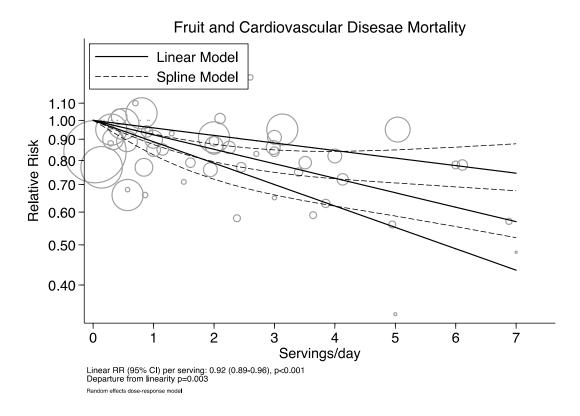
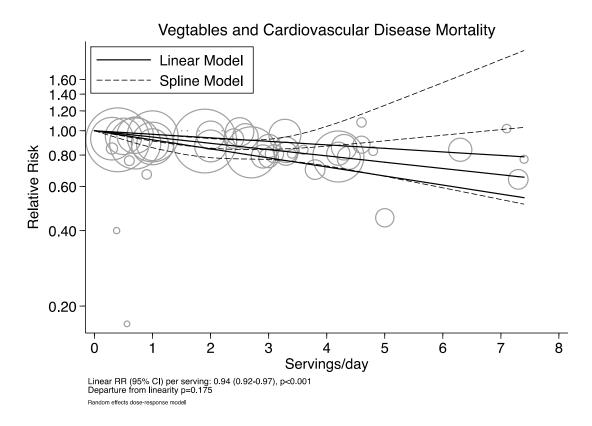
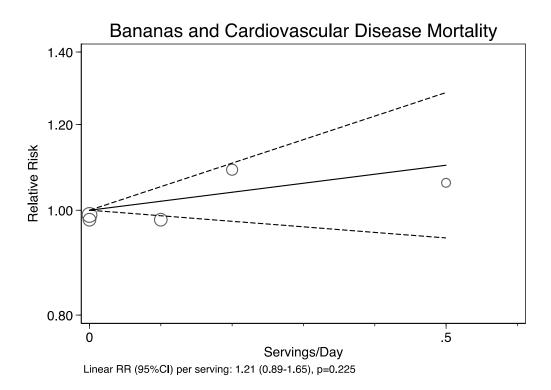

Figure S39. Linear dose-response relation between increasing pommes intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

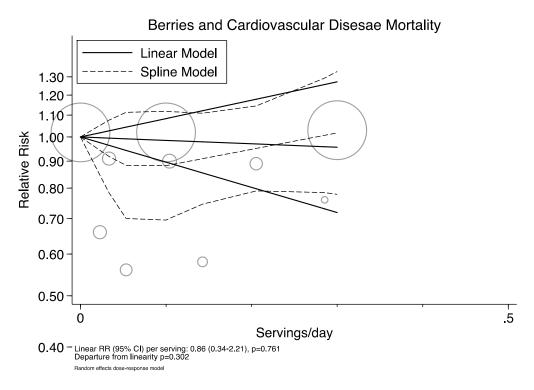

Figure S40. Linear dose-response relation between increasing intake of allium vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

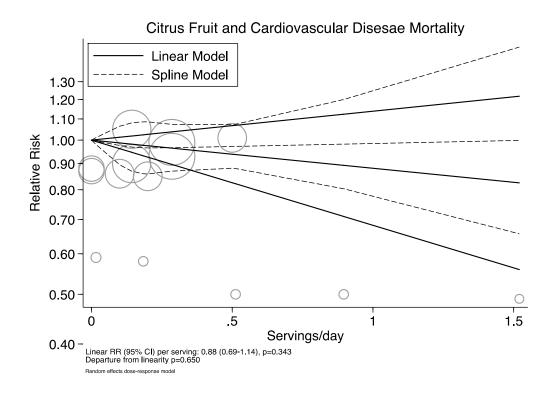

Figure S41. Linear dose-response relation between increasing intake of cruciferous vegetables and incidence of cardiovascular disease y. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

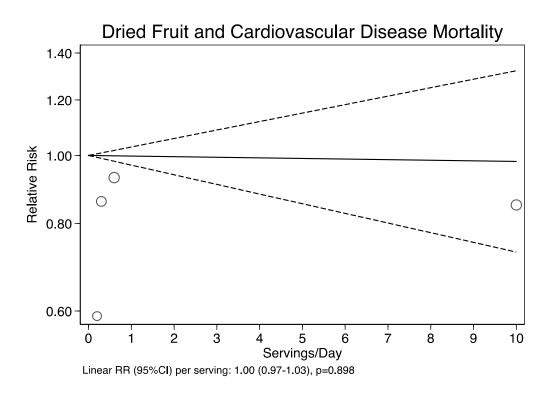

Figure S42. Linear dose-response relation between increasing intake of green leafy vegetables and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

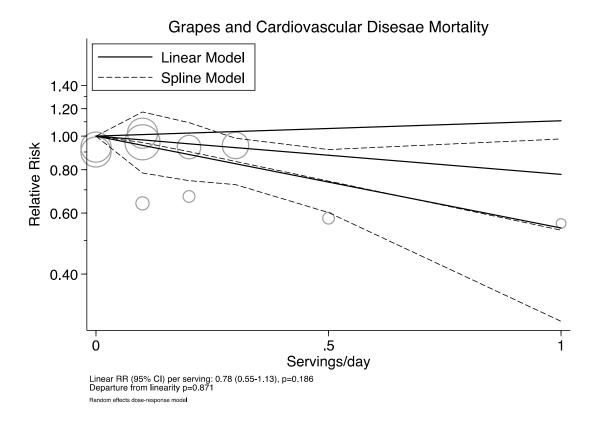

Figure S43. Linear and cubic-spline dose-response relation between increasing tomato intake and incidence of cardiovascular disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

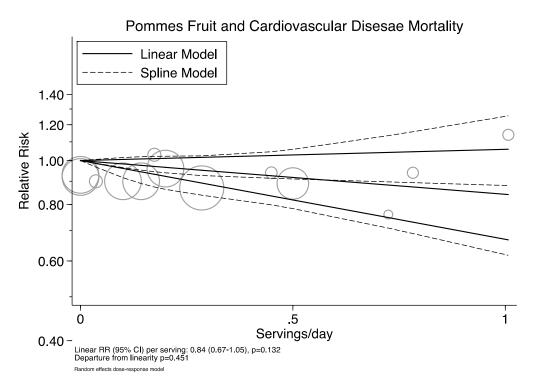

Figure S44. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. The original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

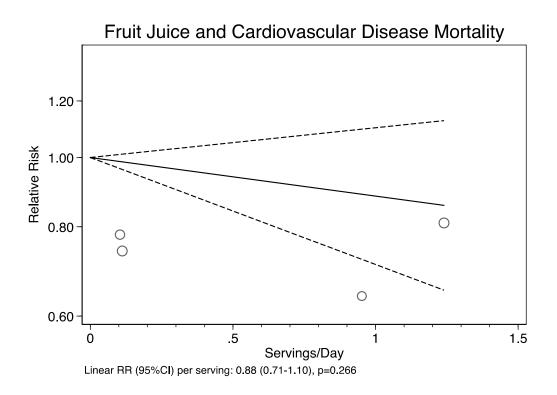

Figure S45. Linear and cubic-spline dose-response relation between increasing fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

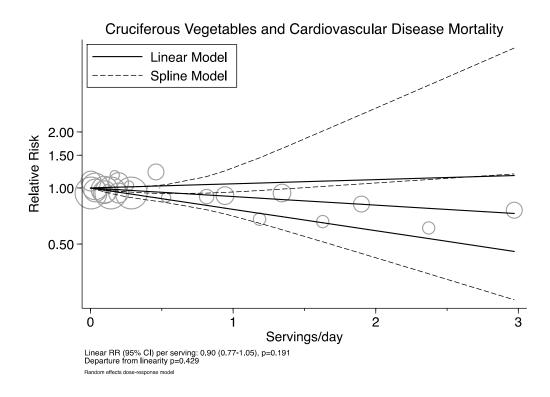

Figure S46. Linear and cubic-spline dose-response relation between increasing intake of vegetables and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S47. Linear dose-response relation between increasing banana intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S48. Linear and cubic-spline dose-response relation between increasing berry fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S49. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S50. Linear and cubic-spline dose-response relation between increasing dried fruit intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S51. Linear and cubic-spline dose-response relation between increasing grapes intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

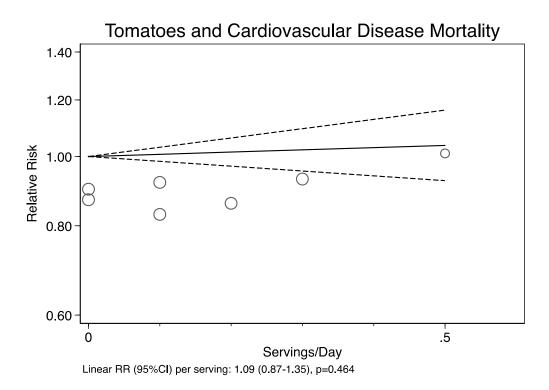

Figure S52. Linear and cubic-spline dose-response relation between increasing pommes intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S53. Linear dose-response relation between increasing fruit juice intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S54. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S55. Linear dose-response relation between increasing tomato intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
WHS - Liu 2000	39,127	126	0.8%	0.63 [0.36, 1.11]	
National Health & Nutrition - Bazzano 2002	9,608	1,786	8.2%	1.01 [0.85, 1.20]	_
ARIC - Steffen 2003	11,940	535	2.0%	0.82 [0.58, 1.17]	
EPIC Norway - Bingham 2008	11,134	678	1.4%	0.90 [0.59, 1.39]	
Swedish National Farm Register - Holmberg 2009	1,738	138	1.7%	0.65 [0.44, 0.96]	
PRIME - Dauchet 2010 - never smokers	2,410	145	0.8%	1.06 [0.60, 1.87]	
PRIME - Dauchet 2010 - former smokers	3,353	140	1.7%	0.98 [0.66, 1.45]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.1%	0.49 [0.30, 0.80] -	
EPIC Italy - Bendinelli 2011	29,689	144	0.9%	1.11 [0.65, 1.88]	
MORGEN - Oude Griep 2011 (b)	20,069	245	1.7%	0.70 [0.47, 1.03]	
Japan Diabetes Complications Study - Tanaka 201	1,414	96	0.7%	1.25 [0.68, 2.29]	
HPFS - Bhupathiraju 2013	42,135	3,607	18.4%	0.84 [0.75, 0.95]	
Health and Wellbeing Surveillance - Gunnell 2013	14,890	538	3.9%	0.74 [0.57, 0.96]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	13.5%	0.81 [0.71, 0.93]	
Shanghai Men Health - Yu 2014	67,211	148	1.8%	0.86 [0.59, 1.25]	
Shanghai Women Health - Yu 2014	55,242	217	1.1%	0.67 [0.41, 1.09]	
British Regional Heart - Atkins 2014	3,328	307	2.6%	1.01 [0.74, 1.38]	
SABRE - Eriksen 2015 - European	1,090	207	2.3%	1.11 [0.79, 1.54]	
SABRE - Eriksen 2015 - South Asian	1,006	313	3.9%	1.01 [0.78, 1.30]	
CCHS - Kobylecki 2015	78,527	2,823	26.5%	0.90 [0.81, 0.99]	
PURE - Miller 2017	135,335	2,143	3.4%	0.95 [0.72, 1.25]	
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.8%	1.04 [0.72, 1.51]	
Total (95% CI)	619,182	17,987	100.0%	0.88 [0.83, 0.92]	•
Heterogeneity: Chi ² = 25.25, df = 21 (P = 0.24); I ²	= 17%			_	0.5 0.7 1 1.5 2
Test for overall effect: Z = 5.12 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
WHS - Liu 2000	39,127	126	1.2%	0.63 [0.36, 1.11]	
National Health & Nutrition - Bazzano 2002	9,608	1,786	9.0%	1.01 [0.85, 1.20]	_
ARIC - Steffen 2003	11,940	535	2.9%	0.82 [0.58, 1.17]	
EPIC Norway - Bingham 2008	11,134	678	2.0%	0.90 [0.59, 1.39]	
Swedish National Farm Register - Holmberg 2009	1,738	138	2.4%	0.65 [0.44, 0.96]	
PRIME - Dauchet 2010 - never smokers	2,410	145	1.2%	1.06 [0.60, 1.87]	
PRIME - Dauchet 2010 - former smokers	3,353	140	2.4%	0.98 [0.66, 1.45]	
PRIME - Dauchet 2010 - current smokers	2,297	230	1.5%	0.49 [0.30, 0.80]	
EPIC Italy - Bendinelli 2011	29,689	144	1.3%	1.11 [0.65, 1.88]	
MORGEN - Oude Griep 2011 (b)	20,069	245	2.4%	0.70 [0.47, 1.03]	
Japan Diabetes Complications Study - Tanaka 201	1,414	96	1.0%	1.25 [0.68, 2.29]	
HPFS - Bhupathiraju 2013	42,135	3,607	14.8%	0.84 [0.75, 0.95]	
Health and Wellbeing Surveillance - Gunnell 2013	14,890	538	5.0%	0.74 [0.57, 0.96]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.5%	0.81 [0.71, 0.93]	
Shanghai Men Health - Yu 2014	67,211	148	2.6%	0.86 [0.59, 1.25]	
Shanghai Women Health - Yu 2014	55,242	217	1.5%	0.67 [0.41, 1.09]	
British Regional Heart - Atkins 2014	3,328	307	3.5%	1.01 [0.74, 1.38]	
SABRE - Eriksen 2015 - European	1,090	207	3.2%	1.11 [0.79, 1.54]	
SABRE - Eriksen 2015 - South Asian	1,006	313	5.0%	1.01 [0.78, 1.30]	
CCHS - Kobylecki 2015	78,527	2,823	17.7%	0.90 [0.81, 0.99]	
PURE - Miller 2017	135,335	2,143	4.5%	0.95 [0.72, 1.25]	
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.6%	1.04 [0.72, 1.51]	
Total (95% CI) [Random Effects]	619,182	17,987	100.0%	0.88 [0.82, 0.93]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 25.25, df = 21 ((P = 0.24); I ² = 17	%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.11 (P < 0.0001)					Lower Risk Higher Risk

Figure S56. Relation between total fruit and vegetables intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Adventis Health Study - Fraser -1992	26,473	134	0.6%	1.07 [0.58, 1.97]	
WHS - Liu 2000	39,127	126	0.6%	0.66 [0.36, 1.21]	
PRIME - Dauchet 2010 - never smokers	2,410	79	0.6%	1.34 [0.73, 2.45]	
PRIME - Dauchet 2010 - current smokers	2,297	148	1.1%	0.61 [0.38, 0.98]	
PRIME - Dauchet 2010 - former smokers	3,353	140	1.5%	0.83 [0.56, 1.22]	
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	5.1%	0.93 [0.75, 1.16]	
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.5%	0.80 [0.54, 1.19]	
EPIC Italy - Bendinelli 2011	29,689	144	0.8%	1.25 [0.73, 2.12]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.6%	0.87 [0.76, 1.00]	
HPFS - Bhupathiraju 2013	42,135	3,607	17.1%	0.88 [0.78, 0.99]	
ATBC - Simila 2013	21,955	4,379	6.2%	0.87 [0.71, 1.06]	
Shanghai Men Health - Yu 2014	55,424	217	1.4%	0.96 [0.64, 1.45]	· · · · · · · · · · · · · · · · · · ·
Shanghai Women Health - Yu 2014	67,211	148	0.8%	0.77 [0.45, 1.31]	
MONICA Danish - Tognon 2014	1,849	161	2.4%	1.01 [0.74, 1.38]	
British Regional Heart - Atkins 2014	3,328	307	1.2%	0.86 [0.55, 1.35]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.1%	0.91 [0.69, 1.20]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.2%	1.04 [0.86, 1.27]	_
CCHS - Kobylecki 2015	78,527	2,823	12.6%	0.87 [0.76, 1.00]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.3%	1.02 [0.41, 2.56]	
China Kadoorie Biobank- Du 2016	451,665	2,551	7.6%	0.66 [0.55, 0.78]	_
PURE - Miller 2017	135,335	2,143	5.1%	0.91 [0.74, 1.13]	-
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.9%	1.15 [0.81, 1.64]	
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	9.6%	0.91 [0.78, 1.07]	_ - +
Total (95% CI)	1,170,021	23,856	100.0%	0.88 [0.84, 0.92]	•
Heterogeneity: Chi ² = 24.96, df = 22 (P = 0.30); I ²	² = 12%			-	• • • • • • • • • • • • • • • • • • •
Test for overall effect: Z = 5.11 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) fo	or Incident CHD
Adventis Health Study - Fraser -1992	26,473	134	0.8%	1.07 [0.58, 1.97]		
WHS - Liu 2000	39,127	126	0.8%	0.66 [0.36, 1.21]		-
PRIME - Dauchet 2010 - current smokers	2,297	148	1.3%	0.61 [0.38, 0.98]		
PRIME - Dauchet 2010 - former smokers	3,353	140	1.9%	0.83 [0.56, 1.22]		_
PRIME - Dauchet 2010 - never smokers	2,410	79	0.8%	1.34 [0.73, 2.45]		•
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	5.6%	0.93 [0.75, 1.16]		
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.9%	0.80 [0.54, 1.19]		-
EPIC Italy - Bendinelli 2011	29,689	144	1.0%	1.25 [0.73, 2.12]		•
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	11.4%	0.87 [0.76, 1.00]		
HPFS - Bhupathiraju 2013	42,135	3,607	14.0%	0.88 [0.78, 0.99]		
ATBC - Simila 2013	21,955	4,379	6.5%	0.87 [0.71, 1.06]		
Shanghai Men Health - Yu 2014	55,424	217	1.7%	0.96 [0.64, 1.45]		
Shanghai Women Health - Yu 2014	67,211	148	1.0%	0.77 [0.45, 1.31]		
MONICA Danish - Tognon 2014	1,849	161	2.8%	1.01 [0.74, 1.38]		
British Regional Heart - Atkins 2014	3,328	307	1.4%	0.86 [0.55, 1.35]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.6%	0.91 [0.69, 1.20]		-
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.5%	1.04 [0.86, 1.27]		_
CCHS - Kobylecki 2015	78,527	2,823	11.4%	0.87 [0.76, 1.00]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.4%	1.02 [0.41, 2.56]	-	
China Kadoorie Biobank- Du 2016	451,665	2,551	7.8%	0.66 [0.55, 0.78]		
PURE - Miller 2017	135,335	2,143	5.6%	0.91 [0.74, 1.13]		
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.3%	1.15 [0.81, 1.64]		
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	9.4%	0.91 [0.78, 1.07]		
Total (95% Cl) [Random Effects]	1,170,021	23,856	100.0%	0.88 [0.84, 0.93]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 24.96, df = 22	(P = 0.30); I ² = 129	%			0.5 0.7 1	1.5 2
Test for overall effect: Z = 4.43 (P < 0.00001)					Lower Risk	Higher Risk

Figure S57. Relation between fruit intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
WHS - Liu 2000	39,127	126	0.7%	0.88 [0.50, 1.55]	
Physicians Health Study - Liu 2001	15,520	1,148	3.6%	0.77 [0.60, 0.99]	
ATBC - Hirvonen 2001	25,373	1,122	6.1%	0.77 [0.63, 0.94]	
Danish Diet Cancer Health - Hansen 2010 - F	25,065	255	1.5%	1.09 [0.74, 1.62]	
Danish Diet Cancer Health - Hansen 2010 - M	28,318	820	5.0%	0.93 [0.75, 1.16]	
PRIME - Dauchet 2010 - never smokers	2,410	79	4.2%	1.25 [0.98, 1.58]	
PRIME - Dauchet 2010 - former smokers	3,353	140	7.5%	1.28 [1.08, 1.53]	
MORGEN - Oude Griep 2010	20,069	245	1.5%	0.88 [0.59, 1.30]	
PRIME - Dauchet 2010 - current smokers	2,297	148	6.1%	0.72 [0.59, 0.87]	-
EPIC Italy - Bendinelli 2011	29,689	144	0.9%	0.62 [0.37, 1.03]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	12.4%	0.85 [0.74, 0.98]	
HPFS - Bhupathiraju 2013	42,135	3,607	16.9%	0.92 [0.82, 1.04]	
British Regional Heart - Atkins 2014	3,328	307	0.5%	1.28 [0.65, 2.55]	
Shanghai Men Health - Yu 2014	55,424	217	1.7%	1.02 [0.70, 1.48]	
Shanghai Women Health - Yu 2014	67,211	148	1.1%	0.83 [0.52, 1.32]	
MONICA Danish - Tognon 2014	1,849	161	2.4%	0.73 [0.54, 1.00]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.1%	1.22 [0.93, 1.61]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.1%	0.89 [0.73, 1.08]	
CCHS - Kobylecki 2015	78,527	2,823	9.5%	0.88 [0.75, 1.03]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.4%	0.64 [0.30, 1.34]	
PURE - Miller 2017	135,335	2,143	7.5%	0.91 [0.77, 1.09]	—
Japan Public Health Centre - Yoshizaki 2019	16,498	839	1.5%	1.07 [0.72, 1.59]	
Total (95% Cl)	696,330	17,172	100.0%	0.92 [0.87, 0.96]	•
Heterogeneity: Chi ² = 44.99, df = 21 (P = 0.002);	l² = 53%			-	0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.59 (P = 0.0003)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
WHS - Liu 2000	39,127	126	1.6%	0.88 [0.50, 1.55]	
Physicians Health Study - Liu 2001	15,520	1,148	4.9%	0.77 [0.60, 0.99]	
ATBC - Hirvonen 2001	25,373	1,122	6.3%	0.77 [0.63, 0.94]	_
Danish Diet Cancer Health - Hansen 2010 - F	25,065	255	2.9%	1.09 [0.74, 1.62]	
Danish Diet Cancer Health - Hansen 2010 - M	28,318	820	5.8%	0.93 [0.75, 1.16]	-
PRIME - Dauchet 2010 - never smokers	2,410	79	5.4%	1.25 [0.98, 1.58]	
PRIME - Dauchet 2010 - former smokers	3,353	140	6.8%	1.28 [1.08, 1.53]	
MORGEN - Oude Griep 2010	20,069	245	2.9%	0.88 [0.59, 1.30]	
PRIME - Dauchet 2010 - current smokers	2,297	148	6.3%	0.72 [0.59, 0.87]	.
EPIC Italy - Bendinelli 2011	29,689	144	1.9%	0.62 [0.37, 1.03]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	7.8%	0.85 [0.74, 0.98]	_
HPFS - Bhupathiraju 2013	42,135	3,607	8.3%	0.92 [0.82, 1.04]	_ - +
British Regional Heart - Atkins 2014	3,328	307	1.2%	1.28 [0.65, 2.55]	
Shanghai Men Health - Yu 2014	55,424	217	3.1%	1.02 [0.70, 1.48]	
Shanghai Women Health - Yu 2014	67,211	148	2.2%	0.83 [0.52, 1.32]	
MONICA Danish - Tognon 2014	1,849	161	3.9%	0.73 [0.54, 1.00]	
CCHS - Kobylecki 2015	78,527	2,823	7.3%	0.88 [0.75, 1.03]	_
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	4.6%	1.22 [0.93, 1.61]	
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	6.3%	0.89 [0.73, 1.08]	- _
PREDIMED- Buil-Cosiales 2016	7,216	118	1.0%	0.64 [0.30, 1.34]	
PURE - Miller 2017	135,335	2,143	6.8%	0.91 [0.77, 1.09]	_
Japan Public Health Centre - Yoshizaki 2019	16,498	839	2.9%	1.07 [0.72, 1.59]	
Total (95% Cl) [Random Effects]	696,330	17,172	100.0%	0.92 [0.85, 0.99]	•
Heterogeneity: Tau ² = 0.02; Chi ² = 44.99, df = 21	(P = 0.002); I ² = 5	3%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 2.14 (P = 0.03)					
					Lower Risk Higher Risk

Figure S58. Relation between intake of vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BANANAS AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Figure S59. Relation between intake of bananas and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

BERRIES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

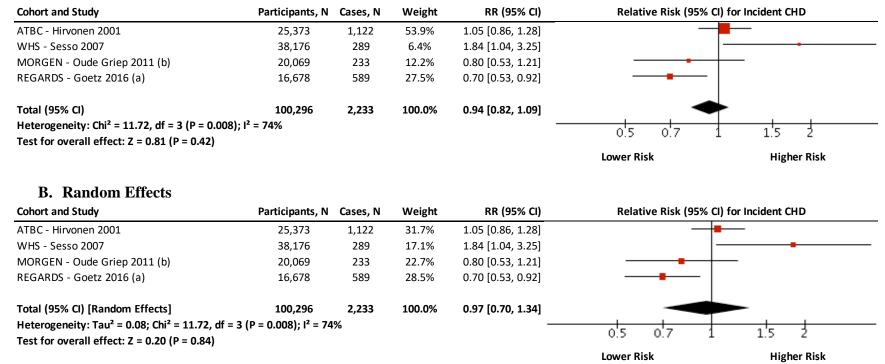


Figure S60. Relation between intake of berries and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

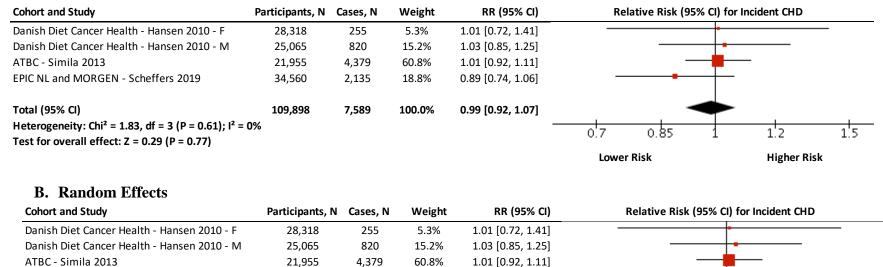
CITRUS FRUIT AND CORONARY HEART DISEASE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
PRIME - Dauchet 2004	8,087	133	4.9%	0.76 [0.56, 1.04]	_
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	10.3%	1.00 [0.81, 1.24]	_ _
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	3.1%	0.85 [0.58, 1.26]	
EPIC Italy - Bendinelli 2011	29,689	144	1.8%	1.48 [0.89, 2.46]	
MORGEN - Oude Griep 2011 (b)	20,069	233	3.4%	0.94 [0.65, 1.37]	-
Jidni Medical School - Yamada 2011 - M	4,147	53	0.4%	0.99 [0.34, 2.85]	
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1%	0.67 [0.11, 4.15]	
HPFS - Bhupathiraju 2013	42,135	3,607	34.5%	0.92 [0.82, 1.04]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	34.5%	0.89 [0.79, 1.00]	
Shanghai Women Health - Yu 2014	67,211	148	2.3%	0.88 [0.56, 1.38]	
Shanghai Men Health - Yu 2014	55,424	217	3.1%	0.74 [0.50, 1.10]	
PREDIMED- Buil-Cosiales 2016	7,216	118	1.5%	1.25 [0.71, 2.20]	
Total (95% CI)	364,978	8,333	100.0%	0.91 [0.85, 0.98]	•
Heterogeneity: Chi ² = 8.17, df = 11 (P = 0.70); l ²	= 0%				
Test for overall effect: Z = 2.60 (P = 0.009)					0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	for Incident CHD	
PRIME - Dauchet 2004	8,087	133	4.9%	0.76 [0.56, 1.04]			
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	10.3%	1.00 [0.81, 1.24]	-+		
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	3.1%	0.85 [0.58, 1.26]			
MORGEN - Oude Griep 2011 (b)	20,069	233	3.4%	0.94 [0.65, 1.37]			
Jidni Medical School - Yamada 2011 - M	4,147	53	0.4%	0.99 [0.34, 2.85]			
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1%	0.67 [0.11, 4.15]			
EPIC Italy - Bendinelli 2011	29,689	144	1.8%	1.48 [0.89, 2.46]	+		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	34.5%	0.89 [0.79, 1.00]			
HPFS - Bhupathiraju 2013	42,135	3,607	34.5%	0.92 [0.82, 1.04]			
Shanghai Women Health - Yu 2014	67,211	148	2.3%	0.88 [0.56, 1.38]		-	
Shanghai Men Health - Yu 2014	55,424	217	3.1%	0.74 [0.50, 1.10]			
PREDIMED- Buil-Cosiales 2016	7,216	118	1.5%	1.25 [0.71, 2.20]			
Total (95% Cl) [Random Effects]	364,978	8,333	100.0%	0.91 [0.85, 0.98]	•		
Heterogeneity: Chi ² = 8.17, df = 11 (P = 0.70); l ² =	0%			<u>र</u>	.1 0.2 0.5 1	2 5	10
Test for overall effect: Z = 2.60 (P = 0.009)					Lower Risk	Higher Risk	

Figure S61. Relation between citrus fruit intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND CORONARY HEART DISEASE INCIDENCE


A. Fixed Effects

EPIC NL and MORGEN - Scheffers 2019

Test for overall effect: Z = 0.29 (P = 0.77)

Heterogeneity: Tau² = 0.00; Chi² = 1.83, df = 3 (P = 0.61); l² = 0%

Total (95% CI) [Random Effects]

Figure S62. Relation between intake of fruit juice and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I^2 , with values $\geq 50\%$ indicating substantial heterogeneity.

18.8%

100.0%

0.89 [0.74, 1.06]

0.99 [0.92, 1.07]

0.7

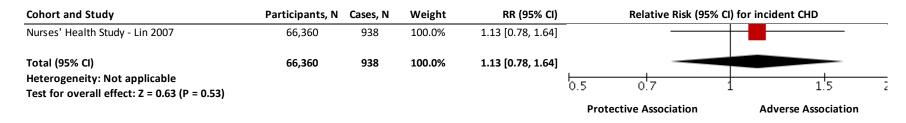
Lower Risk

0.85

1.2

Higher Risk

1.5


34,560

109,898

2,135

7,589

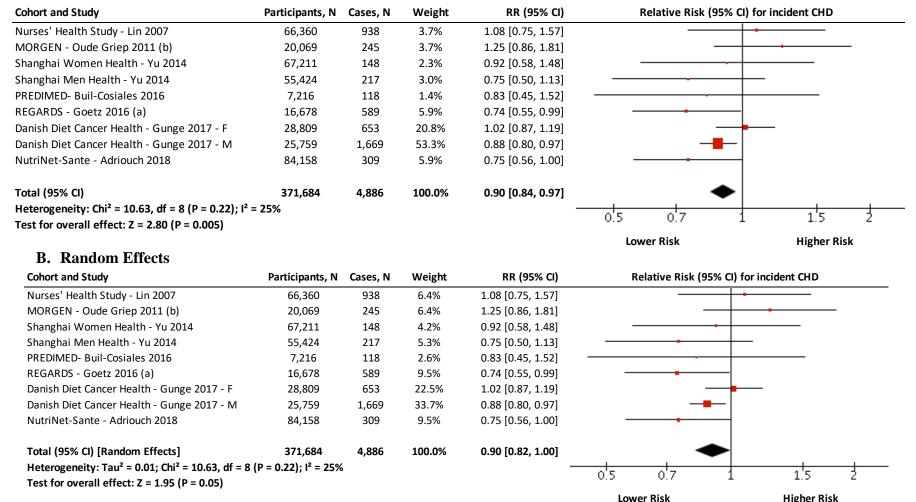

GRAPES AND CORONARY HEART DISEASE INCIDENCE

Figure S63. Relation between intake of grapes and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

Figure S64. Relation between intake of pommes fruit and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

WATERMELON AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

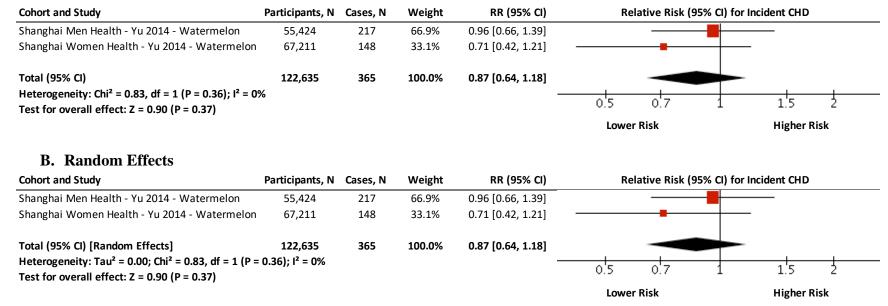
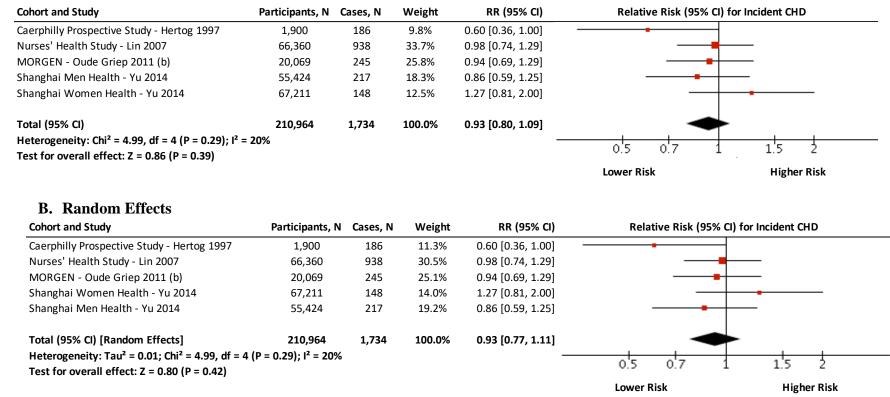



Figure S65. Relation between watermelon intake and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

ALLIUM VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

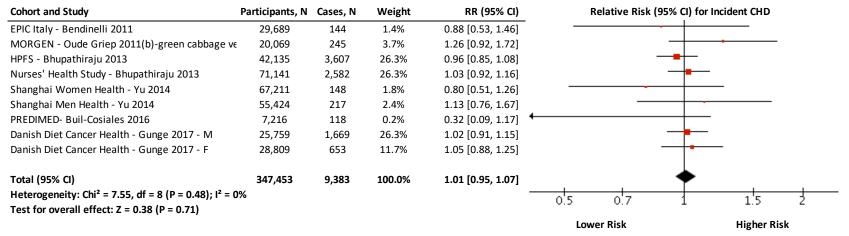
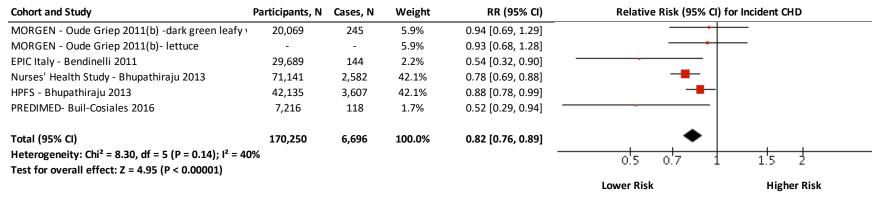

A. Fixed Effects

Figure S66. Relation between intake of allium vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects

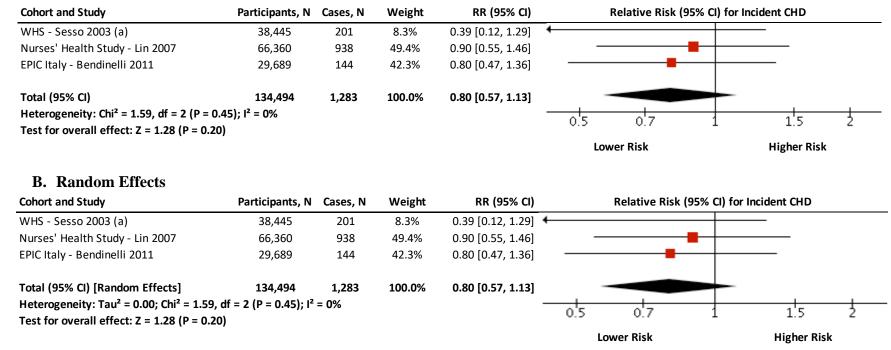

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	for Incident CHD
MORGEN - Oude Griep 2011(b)-green cabbage ve	20,069	245	3.7%	1.26 [0.92, 1.72]		
EPIC Italy - Bendinelli 2011	29,689	144	1.4%	0.88 [0.53, 1.46]		
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	26.3%	1.03 [0.92, 1.16]		
HPFS - Bhupathiraju 2013	42,135	3,607	26.3%	0.96 [0.85, 1.08]		
Shanghai Men Health - Yu 2014	55,424	217	2.4%	1.13 [0.76, 1.67]		·
Shanghai Women Health - Yu 2014	67,211	148	1.8%	0.80 [0.51, 1.26]		
PREDIMED- Buil-Cosiales 2016	7,216	118	0.2%	0.32 [0.09, 1.17] 🔶		
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	11.7%	1.05 [0.88, 1.25]	-+•	
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	26.3%	1.02 [0.91, 1.15]	-	_
Total (95% CI) [Random Effects]	347,453	9,383	100.0%	1.01 [0.95, 1.07]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 7.55, df = 8 (P =	= 0.48); I ² = 0%			_		
Test for overall effect: Z = 0.38 (P = 0.71)					0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk

Figure S67. Relation between intake of cruciferous vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident CHD
MORGEN - Oude Griep 2011(b) - lettuce	20,069	245	11.6%	0.93 [0.68, 1.28]	
MORGEN - Oude Griep 2011(b) - dark green leafy	-	-	11.6%	0.94 [0.69, 1.29]	
EPIC Italy - Bendinelli 2011	29,689	144	5.1%	0.54 [0.32, 0.90]	
HPFS - Bhupathiraju 2013	42,135	3,607	33.9%	0.88 [0.78, 0.99]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	33.9%	0.78 [0.69, 0.88]	
PREDIMED- Buil-Cosiales 2016	7,216	118	4.0%	0.52 [0.29, 0.94] —	
Total (95% CI) [Random Effects]	170,250	6,696	100.0%	0.82 [0.72, 0.92]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 8.30, df = 5 (P =	= 0.14); l ² = 40%			_	
Test for overall effect: Z = 3.23 (P = 0.001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S68. Relation between intake of green leafy vegetables and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CORONARY HEART DISEASE INCIDENCE

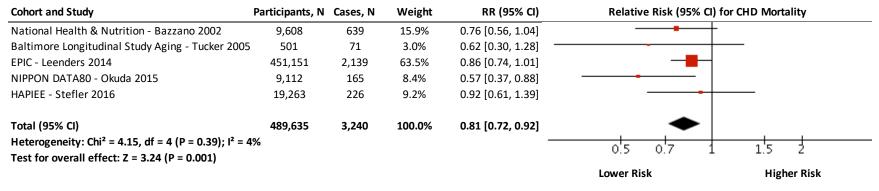
A. Fixed Effects

Figure S69. Relation between intake of tomatoes and coronary heart disease incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

A. FIACU Effects					
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Bananas					
Shanghai Men Health - Yu 2014 - bananas	55,424	217	1.0%	0.65 [0.44, 0.96]	
Shanghai Women Health - Yu 2014 - bananas	67,211	148	0.7%	0.94 [0.59, 1.51]	
Subtotal (95% CI)	122,635	365	1.7%	0.76 [0.56, 1.02]	-
Heterogeneity: Chi ² = 1.40, df = 1 (P = 0.24); I ² =	29%				
Test for overall effect: Z = 1.81 (P = 0.07)					
Berries					
ATBC - Hirvonen 2001	25,373	1,122	4.0%	1.05 [0.86, 1.28]	
WHS - Sesso 2007	38,176	289	0.5%	1.84 [1.04, 3.25]	
MORGEN - Oude Griep 2011 (b)	20,069	233	0.9%	0.80 [0.53, 1.21]	
REGARDS - Goetz 2016 (a)	16,678	589	2.0%	0.70 [0.53, 0.92]	
Subtotal (95% Cl)	100,296	2,233	7.4%	0.94 [0.82, 1.09]	
leterogeneity: Chi ² = 11.72, df = 3 (P = 0.008); l ² 'est for overall effect: Z = 0.81 (P = 0.42)	= 74%				
est for overall effect. 2 - 0.01 (F - 0.42)					
litrus					
PRIME - Dauchet 2004	8,087	133	1.6%	0.76 [0.56, 1.04]	
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.0%	0.85 [0.58, 1.26]	
anish Diet Cancer Health - Hansen 2010 - M	25,065	820	3.3%	1.00 [0.81, 1.24]	
/ORGEN - Oude Griep 2011 (b)	20,069	233	1.1%	0.94 [0.65, 1.37]	
idni Medical School - Yamada 2011 - M	4,147	53	0.1%	0.99 [0.34, 2.85]	
idni Medical School - Yamada 2011 - F	6,476	23	0.0%	0.67 [0.11, 4.15]	
PIC Italy - Bendinelli 2011	29,689	144	0.6%	1.48 [0.89, 2.46]	+
IPFS - Bhupathiraju 2013	42,135	3,607	11.1%	0.92 [0.82, 1.04]	
Jurses' Health Study - Bhupathiraju 2013					
	71,141	2,582	11.1%	0.89 [0.79, 1.00]	
hanghai Men Health - Yu 2014	55,424	217	1.0%	0.74 [0.50, 1.10]	
Shanghai Women Health - Yu 2014	67,211	148	0.8%	0.88 [0.56, 1.38]	
REDIMED- Buil-Cosiales 2016	7,216	118	0.5%	1.25 [0.71, 2.20]	
ubtotal (95% CI)	364,978	8,333	32.1%	0.91 [0.85, 0.98]	▼
leterogeneity: Chi ² = 8.17, df = 11 (P = 0.70); l ² :	= 0%				
est for overall effect: Z = 2.60 (P = 0.009)					
r uit Juice Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.4%	1 01 [0 72 1 41]	
				1.01 [0.72, 1.41]	
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.0%	1.03 [0.85, 1.25]	T
ATBC - Simila 2013	21,955	4,379	15.9%	1.01 [0.92, 1.11]	†
PIC NL and MORGEN - Scheffers 2019	34,560	2,135	4.9%	0.89 [0.74, 1.06]	-• <u>+</u>
ubtotal (95% CI)	109,898	7,589	26.2%	0.99 [0.92, 1.07]	•
leterogeneity: Chi ² = 1.83, df = 3 (P = 0.61); l ² =	0%				
est for overall effect: Z = 0.29 (P = 0.77)					
Grapes					
Iurses' Health Study - Lin 2007	66,360	938	1.1%	1.13 [0.78, 1.64]	
ubtotal (95% CI)	66,360	938	1.1%	1.13 [0.78, 1.64]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.63 (P = 0.53)					
ommes					
lurses' Health Study - Lin 2007	66,360	938	1.1%	1.08 [0.75, 1.57]	_
IORGEN - Oude Griep 2011 (b)	20,069	245	1.1%	1.25 [0.86, 1.81]	+
hanghai Men Health - Yu 2014	55,424	217	0.9%	0.75 [0.50, 1.13]	
hanghai Women Health - Yu 2014	67,211	148	0.7%	0.92 [0.58, 1.48]	
-					
EGARDS - Goetz 2016 (a)	16,678	589	1.8%	0.74 [0.55, 0.99]	
REDIMED- Buil-Cosiales 2016	7,216	118	0.4%	0.83 [0.45, 1.52]	
anish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	15.9%	0.88 [0.80, 0.97]	-
anish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.2%	1.02 [0.87, 1.19]	+
lutriNet-Sante - Adriouch 2018	84,158	309	1.8%	0.75 [0.56, 1.00]	
ubtotal (95% CI)	371,684	4,886	29.9%	0.90 [0.84, 0.97]	♦
eterogeneity: Chi ² = 10.63, df = 8 (P = 0.22); l ² =					
est for overall effect: $Z = 2.80$ (P = 0.005)					
Vatermelon					
hanghai Men Health - Yu 2014 - Watermelon	55,424	217	1.1%	0.96 [0.66, 1.39]	
hanghai Women Health - Yu 2014 - Watermel	67,211	148	0.5%	0.71 [0.42, 1.21]	
Subtotal (95% CI)	122,635	365	1.6%	0.87 [0.64, 1.18]	
leterogeneity: Chi ² = 0.83, df = 1 (P = 0.36); l ² =					-
rest for overall effect: Z = 0.90 (P = 0.37)					
rest for subgroup differences: Chi ² = 6.45, df = 6	(P = 0.37) 1 ² - 7	.0%		_	
	(i = 0.37), i = 7.	U /U			0.2 0.5 1 2 5
					oʻz oʻs 1 2 5
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Bananas Shanghai Men Health - Yu 2014 - bananas	55,424	217	1.6%	0.65 [0.44, 0.96]	
-		217 148	1.6% 1.2%		
Shanghai Women Health - Yu 2014 - bananas	67,211 122,635	148 365	1.2% 2.8%	0.94 [0.59, 1.51]	
Subtotal (95% Cl) Heterogeneity: Tau² = 0.02; Chi² = 1.40, df = 1 (2.0/0	0.76 [0.53, 1.10]	
Heterogeneity: Tau [*] = 0.02; Chi [*] = 1.40, df = 1 (Test for overall effect: Z = 1.47 (P = 0.14)	r - 0.24); I" = 29%				
rest for overall effect. 2 = 1.47 (P = 0.14)					
Berries					
ATBC - Hirvonen 2001	25,373	1,122	5.2%	1.05 [0.86, 1.28]	- -
MORGEN - Oude Griep 2011 (b)	20,069	233	1.5%	0.80 [0.53, 1.21]	
REGARDS - Goetz 2016 (a)	16,678	589	3.0%	0.70 [0.53, 0.92]	
WHS - Sesso 2007	38,176	289	0.8%	1.84 [1.04, 3.25]	
Subtotal (95% CI)	100,296	2,233	10.5%	0.97 [0.70, 1.34]	-
Heterogeneity: Tau ² = 0.08; Chi ² = 11.72, df = 3				• • •	
Test for overall effect: Z = 0.20 (P = 0.84)					
Citrus Danish Diet Cancer Health - Hansen 2010 - E	70 210	255	1 - 0/	0 85 [0 58 1 26]	
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	1.6%	0.85 [0.58, 1.26]	
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.5%	1.00 [0.81, 1.24]	
EPIC Italy - Bendinelli 2011	29,689	144	1.0%	1.48 [0.89, 2.46]	
HPFS - Bhupathiraju 2013	42,135	3,607	9.8%	0.92 [0.82, 1.04]	
Jidni Medical School - Yamada 2011 - F	6,476	23	0.1%	0.67 [0.11, 4.15]	
Jidni Medical School - Yamada 2011 - M	4,147	53	0.2%	0.99 [0.34, 2.85]	
MORGEN - Oude Griep 2011 (b)	20,069	233	1.8%	0.94 [0.65, 1.37]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	9.8%	0.89 [0.79, 1.00]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.8%	1.25 [0.71, 2.20]	
PRIME - Dauchet 2004	8,087	133	2.4%	0.76 [0.56, 1.04]	
Shanghai Men Health - Yu 2014	55,424	217	1.6%	0.74 [0.50, 1.10]	— — —
Shanghai Women Health - Yu 2014	67,211	148	1.2%	0.88 [0.56, 1.38]	
Subtotal (95% CI)	364,978	8,333	35.0%	0.91 [0.85, 0.98]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 8.17, df = 11 Test for overall effect: Z = 2.60 (P = 0.009)	(P = 0.70); l ² = 0%				
rest for overall effect. 2 - 2.00 (F - 0.009)					
Fruit Juice					
EPIC NL and MORGEN - Scheffers 2019	34,560	2,135	5.6%	0.89 [0.74, 1.06]	-+
Danish Diet Cancer Health - Hansen 2010 - M	25,065	820	4.8%	1.03 [0.85, 1.25]	+
Danish Diet Cancer Health - Hansen 2010 - F	28,318	255	2.0%	1.01 [0.72, 1.41]	-+
ATBC - Simila 2013	21,955	4,379	10.7%	1.01 [0.92, 1.11]	+
Subtotal (95% CI)	109,898	7,589	23.0%	0.99 [0.92, 1.07]	+
Heterogeneity: Tau ² = 0.00; Chi ² = 1.83, df = 3 (P = 0.61); I ² = 0%				
Test for overall effect: Z = 0.29 (P = 0.77)					
Grapes					
Nurses' Health Study - Lin 2007	66,360	938	1.6%	1.13 [0.78, 1.64]	
Subtotal (95% CI)	66,360	938	1.6%	1.13 [0.78, 1.64]	-
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.63 (P = 0.53)					
Pommes					
NutriNet-Sante - Adriouch 2018	84,158	309	2.5%	0.75 [0.56, 1.00]	
Nurses' Health Study - Lin 2007	66,360	938	1.6%	1.08 [0.75, 1.57]	_ _
MORGEN - Oude Griep 2011 (b)	20,069	245	1.6%	1.25 [0.86, 1.81]	+
Shanghai Women Health - Yu 2014	67,211	148	1.1%	0.92 [0.58, 1.48]	
Shanghai Men Health - Yu 2014	55,424	217	1.4%	0.75 [0.50, 1.13]	
REGARDS - Goetz 2016 (a)	16,678	589	2.5%	0.74 [0.55, 0.99]	
PREDIMED- Buil-Cosiales 2016	7,216	118	0.6%	0.83 [0.45, 1.52]	
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	10.7%	0.88 [0.80, 0.97]	-
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.5%	1.02 [0.87, 1.19]	<u> </u>
Subtotal (95% Cl)	371,684	4,886	28.5%	0.90 [0.82, 1.00]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 10.63, df = 8			20.3/0	0.00 [0.02, 1.00]	•
Test for overall effect: $Z = 1.95$ (P = 0.05)	(1 - 0.22), 1 - 25;				
Watermelon		-			
Shanghai Men Health - Yu 2014 - Watermelon	55,424	217	1.6%	0.96 [0.66, 1.39]	
Shanghai Women Health - Yu 2014 - Watermel		148	0.8%	0.71 [0.42, 1.21]	
Subtotal (95% CI)	122,635	365	2.5%	0.87 [0.64, 1.18]	-
Heterogeneity: Tau ² = 0.00; Chi ² = 0.83, df = 1 (P = 0.36); l ² = 0%				
Test for overall effect: Z = 0.90 (P = 0.37)					
Test for subgroup differences: Chi ² = 5.38, df =	6 (P = 0.50), I ² = 09	6			1
					Lower Risk Higher Risk
					LOWCI NISK FIIgher RISK

Figure S70. Relation between sources of fruit and CHD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Allium					
Caerphilly Prospective Study - Hertog 1997	1,900	186	0.8%	0.60 [0.36, 1.00]	
MORGEN - Oude Griep 2011 (b)	20,069	245	2.1%	0.94 [0.69, 1.29]	
Nurses' Health Study - Lin 2007	66,360	938	2.7%	0.98 [0.74, 1.29]	
Shanghai Men Health - Yu 2014	55,424	217	1.5%	0.86 [0.59, 1.25]	
Shanghai Women Health - Yu 2014	67,211	148	1.0%	1.27 [0.81, 2.00]	-
Subtotal (95% CI)	210,964	1,734	8.0%	0.93 [0.80, 1.09]	•
Heterogeneity: Chi ² = 4.99, df = 4 (P = 0.29); l ² =	20%				
Test for overall effect: Z = 0.86 (P = 0.39)					
Cruciferous					
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	6.5%	1.05 [0.88, 1.25]	_ -
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	14.6%	1.02 [0.91, 1.15]	+
EPIC Italy - Bendinelli 2011	29,689	144	0.8%	0.88 [0.53, 1.46]	
HPFS - Bhupathiraju 2013	42,135	3,607	14.6%	0.96 [0.85, 1.08]	
MORGEN - Oude Griep 2011(b)-green cabbage	20,069	245	2.1%	1.26 [0.92, 1.72]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	14.6%	1.03 [0.92, 1.16]	+
PREDIMED- Buil-Cosiales 2016	7,216	118	0.1%	0.32 [0.09, 1.17]	
Shanghai Men Health - Yu 2014	55,424	217	1.3%	1.13 [0.76, 1.67]	
Shanghai Women Health - Yu 2014	67,211	148	1.0%	0.80 [0.51, 1.26]	
Subtotal (95% CI)	347,453	9,383	55.6%	1.01 [0.95, 1.07]	♦
Heterogeneity: Chi ² = 7.55, df = 8 (P = 0.48); I ² =	0%				
Test for overall effect: Z = 0.38 (P = 0.71)					
Green leafy					
EPIC Italy - Bendinelli 2011	29,689	144	0.8%	0.54 [0.32, 0.90]	
HPFS - Bhupathiraju 2013	42,135	3,607	14.6%	0.88 [0.78, 0.99]	
MORGEN - Oude Griep 2011(b) -dark green lea	20,069	245	2.1%	0.94 [0.69, 1.29]	
MORGEN - Oude Griep 2011(b)- lettuce	-	-	2.1%	0.93 [0.68, 1.28]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	14.6%	0.78 [0.69, 0.88]	-
PREDIMED- Buil-Cosiales 2016	7,216	118	0.6%	0.52 [0.29, 0.94]	
Subtotal (95% CI)	170,250	6,696	34.7%	0.82 [0.76, 0.89]	•
Heterogeneity: Chi ² = 8.30, df = 5 (P = 0.14); I ² =	40%				
Test for overall effect: Z = 4.95 (P < 0.00001)					
Tomatoes					
EPIC Italy - Bendinelli 2011	29,689	144	0.7%	0.80 [0.47, 1.36]	
, Nurses' Health Study - Lin 2007	66,360	938	0.8%	0.90 [0.55, 1.46]	
WHS - Sesso 2003 (a)	38,445	201	0.1%	0.39 [0.12, 1.29]	
Subtotal (95% CI)	134,494	1,283	1.7%	0.80 [0.57, 1.13]	-
Heterogeneity: Chi ² = 1.59, df = 2 (P = 0.45); I ² =	0%				
Test for overall effect: Z = 1.28 (P = 0.20)					
Test for subgroup differences: Chi ² = 17.73, df =	3 (P = 0.0005), I ²	= 83.1%			
					0.1 0.2 0.5 1 2 5
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident CHD
Allium					
Caerphilly Prospective Study - Hertog 1997	1,900	186	1.8%	0.60 [0.36, 1.00]	
MORGEN - Oude Griep 2011 (b)	20,069	245	4.0%	0.94 [0.69, 1.29]	
Nurses' Health Study - Lin 2007	66,360	938	4.7%	0.98 [0.74, 1.29]	_
Shanghai Men Health - Yu 2014	55,424	217	3.1%	0.86 [0.59, 1.25]	
hanghai Women Health - Yu 2014	67,211	148	2.3%	1.27 [0.81, 2.00]	
ubtotal (95% CI)	210,964	1,734	15.9%	0.93 [0.77, 1.11]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 4.99, df = 4 (P = 0.29); I ² = 20%	6			
Test for overall effect: Z = 0.80 (P = 0.42)					
Cruciferous					
Danish Diet Cancer Health - Gunge 2017 - F	28,809	653	7.6%	1.05 [0.88, 1.25]	
Danish Diet Cancer Health - Gunge 2017 - M	25,759	1,669	10.0%	1.02 [0.91, 1.15]	
PIC Italy - Bendinelli 2011	29,689	144	1.8%	0.88 [0.53, 1.46]	
HPFS - Bhupathiraju 2013	42,135	3,607	10.0%	0.96 [0.85, 1.08]	-
MORGEN - Oude Griep 2011(b)-green cabbage		245	4.0%	1.26 [0.92, 1.72]	
Nurses' Health Study - Bhupathiraju 2013	71,141	2,582	10.0%	1.03 [0.92, 1.16]	+
PREDIMED- Buil-Cosiales 2016	7,216	118	0.3%	0.32 [0.09, 1.17]	
hanghai Men Health - Yu 2014	55,424	217	2.8%	1.13 [0.76, 1.67]	
hanghai Women Health - Yu 2014	67,211	148	2.3%	0.80 [0.51, 1.26]	
Subtotal (95% CI)	347,453	9,383	48.9%	1.01 [0.95, 1.07]	A
				• • •	
Test for overall effect: Z = 0.38 (P = 0.71)					
Green leafy					
PIC Italy - Bendinelli 2011	29,689	144	1.8%	0.54 [0.32, 0.90]	
, IPFS - Bhupathiraju 2013	42,135	3,607	10.0%	0.88 [0.78, 0.99]	
/ORGEN - Oude Griep 2011(b) -dark green lea		245	4.0%	0.94 [0.69, 1.29]	_
MORGEN - Oude Griep 2011(b)- lettuce	-	-	4.0%	0.93 [0.68, 1.28]	_
Iurses' Health Study - Bhupathiraju 2013	71,141	2,582	10.0%	0.78 [0.69, 0.88]	
REDIMED- Buil-Cosiales 2016	7,216	118	1.4%	0.52 [0.29, 0.94]	
ubtotal (95% Cl)	170,250	6,696	31.2%	0.82 [0.72, 0.92]	•
leterogeneity: Tau ² = 0.01; Chi ² = 8.30, df = 5 (P = 0.14); I ² = 40%	, b			
Test for overall effect: Z = 3.23 (P = 0.001)					
omatoes					
EPIC Italy - Bendinelli 2011	29,689	144	1.7%	0.80 [0.47, 1.36]	
, Nurses' Health Study - Lin 2007	66,360	938	2.0%	0.90 [0.55, 1.46]	
WHS - Sesso 2003 (a)	38,445	201	0.4%	0.39 [0.12, 1.29]	
Subtotal (95% CI)	134,494	1,283	4.1%	0.80 [0.57, 1.13]	
Heterogeneity: Tau² = 0.00; Chi² = 1.59, df = 2 (P = 0.45); I ² = 0%	-		•	-
Test for overall effect: Z = 1.28 (P = 0.20)					
Test for subgroup differences: Chi ² = 10.76, df =	: 3 (P = 0.01), I ² =	72.1%			
					0.1 0.2 0.5 1 2 5
					Lower Risk Higher Risk

Figure S71. Relation between sources of vegetables and CHD incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mor	tality
National Health & Nutrition - Bazzano 2002	9,608	639	17.0%	0.76 [0.56, 1.04]		
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	3.3%	0.62 [0.30, 1.28]		
EPIC - Leenders 2014	451,151	2,139	60.6%	0.86 [0.74, 1.01]		
NIPPON DATA80 - Okuda 2015	9,112	165	9.2%	0.57 [0.37, 0.88]		
HAPIEE - Stefler 2016	19,263	226	10.0%	0.92 [0.61, 1.39]		
Total (95% CI) [Random Effects]	489,635	3,240	100.0%	0.81 [0.71, 0.92]	◆	
Heterogeneity: $Tau^{2} = 0.00$; $Chi^{2} = 4.15$, df = 4 (P	= 0.39); l ² = 4%					
Test for overall effect: Z = 3.15 (P = 0.002)					0.5 0.7 1 1.5	2
					Lower Risk Hig	her Risk

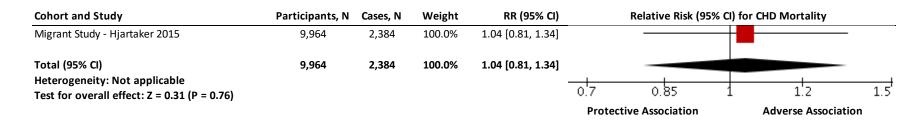
Figure S72. Relation between total fruit and vegetable intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND CORONARY HEART DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Adventis Health Study - Fraser -1992	26,473	463	1.5%	1.17 [0.81, 1.70]	
Finish Mobile Clinic Health - Knekt 1994 - F	2,748	58	0.6%	0.77 [0.52, 1.14]	
Finish Mobile Clinic Health - Knekt 1994 - M	2,385	186	1.4%	0.66 [0.36, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	0.5%	0.64 [0.34, 1.19]	
Oxford Vegetarian - Mann 1997	10,802	64	0.4%	0.89 [0.44, 1.80]	
OXCHECK - Whiteman 1999	10,522	144	0.8%	0.84 [0.50, 1.43]	
ATBC - Hirvonen 2001	25,373	815	4.6%	0.87 [0.70, 1.08]	
Health Food Shoppers - Appleby 2002 - M	6,416	258	3.9%	0.52 [0.39, 0.70]	
Health Food Shoppers - Appleby 2002 - F	4,325	347	2.5%	0.89 [0.70, 1.12]	
Baltimore Longitudinal Study Aging - Tucker 2005	4,028	298	1.0%	1.19 [0.76, 1.86]	
Boyd Orr Cohort - Ness 2005	501	71	1.0%	0.94 [0.60, 1.48]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.3%	0.76 [0.51, 1.15]	
JACC - Nagura 2009	59,485	452	2.2%	0.79 [0.57, 1.08]	
EPIC - Leenders 2014	1,849	64	11.3%	0.85 [0.51, 1.42]	_
Singapore Chinese Health - Rebello 2014 - F	451,151	2,139	2.5%	0.85 [0.74, 0.98]	
Singapore Chinese Health - Rebello 2014 - M	29,968	638	4.6%	0.71 [0.53, 0.96]	
Multiethnic Cohort - Sharma 2014 - F	23,501	1,022	4.6%	0.84 [0.68, 1.05]	-
MONICA Danish - Tognon 2014	91,751	811	0.8%	0.96 [0.77, 1.19]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	2.8%	0.96 [0.73, 1.26]	
UK Women's Cohort - Lai 2015	30,458	138	0.6%	0.45 [0.25, 0.81] -	
NIPPON DATA80 - Okuda 2015	9,112	165	1.1%	0.89 [0.58, 1.37]	
Migrant Study - Hjartaker 2015	9,766	2,386	15.4%	1.09 [0.97, 1.23]	+ -
Linxian Nutrition - Wang 2016	2,445	355	22.2%	0.89 [0.80, 0.98]	
HAPIEE - Stefler 2016	19,263	226	1.0%	0.86 [0.55, 1.35]	
China Kadoorie Biobank- Du 2017	462,342	2,038	11.3%	0.63 [0.55, 0.72]	
Total (95% CI)	1,398,863	14,786	100.0%	0.86 [0.82, 0.90]	•
Heterogeneity: Chi ² = 62.47, df = 24 (P < 0.0001);	l² = 62%			-	0.5 0.7 1 1.5 2
Test for overall effect: Z = 6.52 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Adventis Health Study - Fraser -1992	26,473	463	3.4%	1.17 [0.81, 1.70]	
Finish Mobile Clinic Health - Knekt 1994 - M	2,748	58	3.2%	0.77 [0.52, 1.14]	
Finish Mobile Clinic Health - Knekt 1994 - F	2,385	186	1.7%	0.66 [0.36, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	1.6%	0.64 [0.34, 1.19]	
Oxford Vegetarian - Mann 1997	10,802	64	1.3%	0.89 [0.44, 1.80]	
OXCHECK - Whiteman 1999	10,522	144	2.1%	0.84 [0.50, 1.43]	
ATBC - Hirvonen 2001	25,373	815	5.6%	0.87 [0.70, 1.08]	
Health Food Shoppers - Appleby 2002 - F	6,416	258	4.4%	0.52 [0.39, 0.70]	
Health Food Shoppers - Appleby 2002 - M	4,325	347	5.3%	0.89 [0.70, 1.12]	
Boyd Orr Cohort - Ness 2005	4,028	298	2.6%	1.19 [0.76, 1.86]	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	2.6%	0.94 [0.60, 1.48]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	3.0%	0.76 [0.51, 1.15]	
JACC - Nagura 2009	59 <i>,</i> 485	452	4.1%	0.79 [0.57, 1.08]	
MONICA Danish - Tognon 2014	1,849	64	2.2%	0.85 [0.51, 1.42]	
EPIC - Leenders 2014	451,151	2,139	7.0%	0.85 [0.74, 0.98]	_
Singapore Chinese Health - Rebello 2014 - F	29,968	638	4.4%	0.71 [0.53, 0.96]	
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	5.6%	0.84 [0.68, 1.05]	
Multiethnic Cohort - Sharma 2014 - F	91,751	811	5.6%	0.96 [0.77, 1.19]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	4.7%	0.96 [0.73, 1.26]	
UK Women's Cohort - Lai 2015	30,458	138	1.8%	0.45 [0.25, 0.81] —	
NIPPON DATA80 - Okuda 2015	9,112	165	2.8%	0.89 [0.58, 1.37]	
Migrant Study - Hjartaker 2015	9,766	2,386	7.4%	1.09 [0.97, 1.23]	+
Linxian Nutrition - Wang 2016	2,445	355	7.7%	0.89 [0.80, 0.98]	
HAPIEE - Stefler 2016	19,263	226	2.6%	0.86 [0.55, 1.35]	
China Kadoorie Biobank- Du 2017	462,342	2,038	7.0%	0.63 [0.55, 0.72]	_ -
Total (95% CI) [Random Effects]	1,398,863	14,786	100.0%	0.84 [0.76, 0.91]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 62.47, df = 24	(P < 0.0001); I ² =	62%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.99 (P < 0.0001)					
					Lower Risk Higer Risk

Figure S73. Relation between fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


VEGETABLES AND CORONARY HEART DISEASE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.77 [0.49, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	0.6%	0.51 [0.27, 0.96]	
Finish Mobile Clinic Health - Knekt 1996 - M	29,968	324	2.1%	0.89 [0.65, 1.21]	
CPS 11 - Watkins 2000 - F	609,061	4,605	15.8%	0.84 [0.78, 0.91]	-
CPS 11 - Watkins 2000- M	453,962	9,156	19.5%	0.90 [0.84, 0.95]	+
ATBC - Hirvonen 2001	25,373	815	2.1%	0.68 [0.49, 0.93]	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	0.5%	0.49 [0.25, 0.98] —	
Boyd Orr Cohort - Ness 2005	4,028	298	1.2%	1.01 [0.66, 1.55]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.1%	0.89 [0.57, 1.39]	
JACC - Nagura 2009	59,485	452	2.4%	0.85 [0.64, 1.14]	
Singapore Chinese Health - Rebello 2014 - F	29,968	638	2.4%	0.69 [0.51, 0.93]	
EPIC - Leenders 2014	451,151	2,139	6.9%	0.86 [0.74, 1.01]	
MONICA Danish - Tognon 2014	1,849	64	0.8%	0.58 [0.35, 0.97]	
Multiethnic Cohort - Sharma 2014 - F	91,751	811	2.7%	0.95 [0.72, 1.25]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	3.5%	0.73 [0.58, 0.93]	
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	4.1%	0.84 [0.68, 1.05]	
NIPPON DATA80 - Okuda 2015	9,112	165	1.1%	0.65 [0.41, 1.02]	
Migrant Study - Hjartaker 2015	9,964	2,386	8.4%	0.89 [0.77, 1.02]	
HAPIEE - Stefler 2016	19,263	225	1.3%	1.00 [0.66, 1.51]	
Linxian Nutrition - Wang 2016	2,445	355	15.8%	0.89 [0.82, 0.96]	
PLSAW - Blekkenhorst 2017	1,226	128	4.8%	0.82 [0.67, 1.00]	
NHANES - Conrad 2018	29,133	556	2.0%	0.56 [0.40, 0.78]	
Total (95% CI)	1,968,325	26,007	100.0%	0.86 [0.83, 0.89]	•
Heterogeneity: Chi ² = 26.70, df = 21 (P = 0.18); I ²	= 21%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 8.79 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.77 [0.49, 1.21]	
Nutrition Status Study - Sahyoun 1996	680	101	0.6%	0.51 [0.27, 0.96] -	· · · · · · · · · · · · · · · · · · ·
Finish Mobile Clinic Health - Knekt 1996 - M	29,968	324	2.1%	0.89 [0.65, 1.21]	
CPS 11 - Watkins 2000 - F	609,061	4,605	15.8%	0.84 [0.78, 0.91]	-+-
CPS 11 - Watkins 2000- M	453,962	9,156	19.5%	0.90 [0.84, 0.95]	+
ATBC - Hirvonen 2001	25,373	815	2.1%	0.68 [0.49, 0.93]	
Baltimore Longitudinal Study Aging - Tucker 2005	501	71	0.5%	0.49 [0.25, 0.98] —	
Boyd Orr Cohort - Ness 2005	4,028	298	1.2%	1.01 [0.66, 1.55]	
Melbourne Collaborative Cohort - Harriss 2007	40,653	407	1.1%	0.89 [0.57, 1.39]	
JACC - Nagura 2009	59 <i>,</i> 485	452	2.4%	0.85 [0.64, 1.14]	
Singapore Chinese Health - Rebello 2014 - F	29,968	638	2.4%	0.69 [0.51, 0.93]	
EPIC - Leenders 2014	451,151	2,139	6.9%	0.86 [0.74, 1.01]	
MONICA Danish - Tognon 2014	1,849	64	0.8%	0.58 [0.35, 0.97]	
Multiethnic Cohort - Sharma 2014 - F	91,751	811	2.7%	0.95 [0.72, 1.25]	
Multiethnic Cohort - Sharma 2014 - M	72,866	1,140	3.5%	0.73 [0.58, 0.93]	_
Singapore Chinese Health - Rebello 2014 - M	23,501	1,022	4.1%	0.84 [0.68, 1.05]	
NIPPON DATA80 - Okuda 2015	9,112	165	1.1%	0.65 [0.41, 1.02]	
Migrant Study - Hjartaker 2015	9,964	2,386	8.4%	0.89 [0.77, 1.02]	
HAPIEE - Stefler 2016	19,263	225	1.3%	1.00 [0.66, 1.51]	
Linxian Nutrition - Wang 2016	2,445	355	15.8%	0.89 [0.82, 0.96]	
PLSAW - Blekkenhorst 2017	1,226	128	4.8%	0.82 [0.67, 1.00]	
NHANES - Conrad 2018	29,133	556	2.0%	0.56 [0.40, 0.78]	
Total (95% CI) [Random Effects]	1,968,325	26,007	100.0%	0.84 [0.80, 0.88]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 26.70, df = 21	(P = 0.18); I ² = 22	1%			0.5 0.7 1 1.5 2
Test for overall effect: Z = 7.10 (P < 0.00001)					Lower Risk Higer Risk

Figure S74. Relation between intake of vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

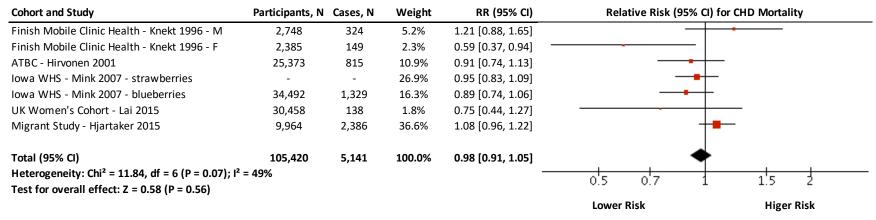
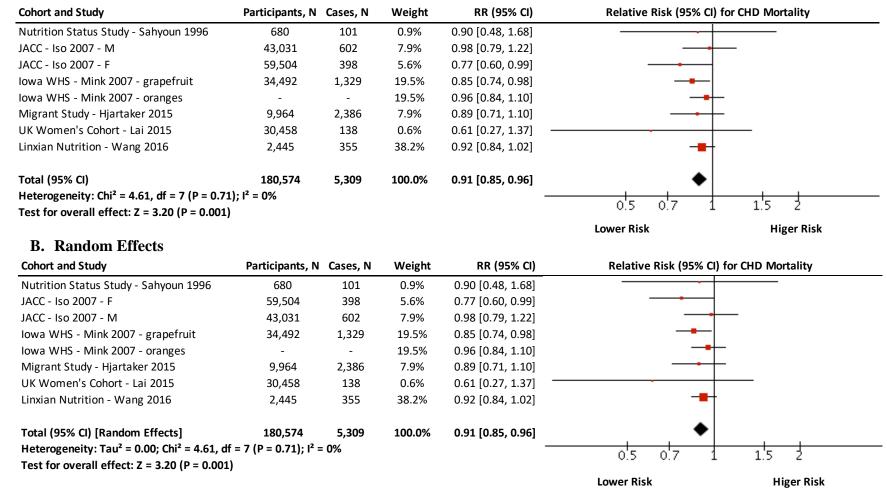

BANANAS AND CORONARY HEART DISEASE MORTALITY

Figure S75. Relation between intake of bananas and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

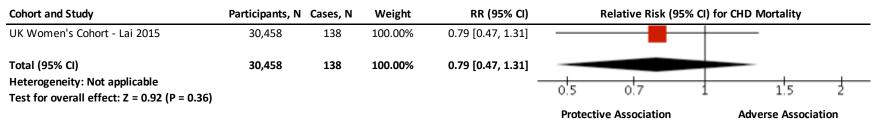
BERRIES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	5.00%	0.59 [0.37, 0.94]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	9.50%	1.21 [0.88, 1.65]	
ATBC - Hirvonen 2001	25,373	815	15.30%	0.91 [0.74, 1.13]	
Iowa WHS - Mink 2007 - blueberries	34,492	1,329	18.70%	0.89 [0.74, 1.06]	
Iowa WHS - Mink 2007 - strawberries	-	-	22.60%	0.95 [0.83, 1.09]	
Migrant Study - Hjartaker 2015	9,964	2,386	24.70%	1.08 [0.96, 1.22]	
UK Women's Cohort - Lai 2015	30,458	138	4.10%	0.75 [0.44, 1.27]	
Total (95% CI) [Random Effects]	105,420	5,141	100.00%	0.95 [0.85, 1.07]	
Heterogeneity: Tau ² = 0.01; Chi ² = 11.84, df = 6	6 (P = 0.07); I ² = 49%	6		_	
Test for overall effect: Z = 0.82 (P = 0.41)				-	0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Figure S76. Relation between intake of berries and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


CITRUS FRUIT AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S77. Relation between citrus fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

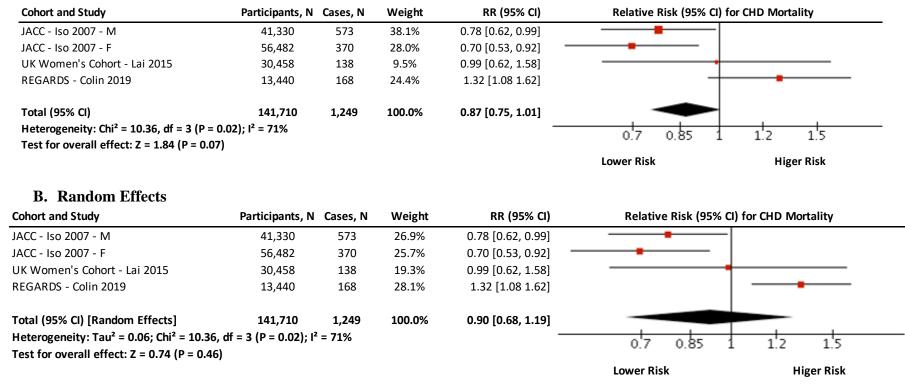

DRIED FRUIT AND CORONARY HEART DISEASE MORTALITY

Figure S78. Relation between dried fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S79. Relation between intake of fruit juice and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

GRAPES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

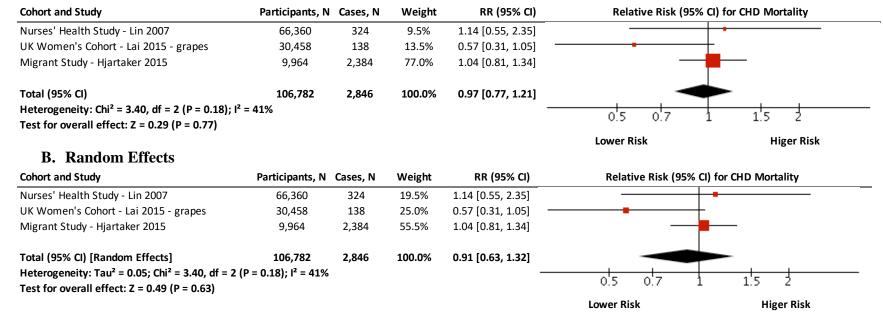
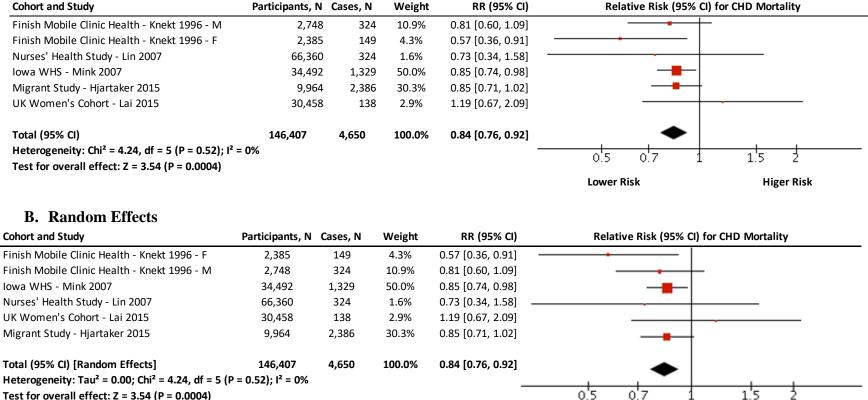
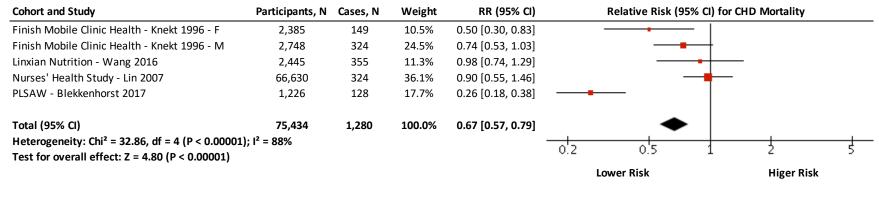



Figure S80. Relation between intake of grapes and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

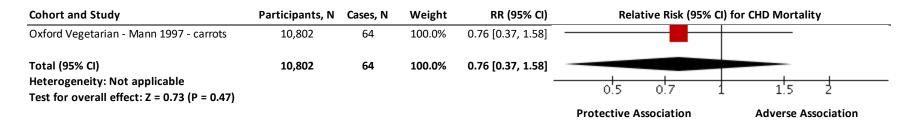

Test for overall effect: Z = 3.54 (P = 0.0004)

Lower Risk **Higer Risk** Figure S81. Relation between pommes fruit intake and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study

heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

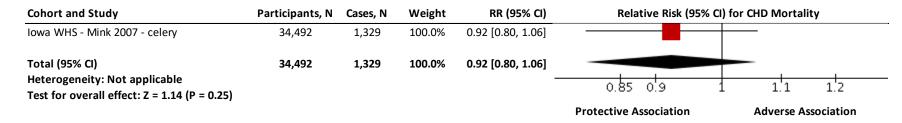
ALLIUM VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

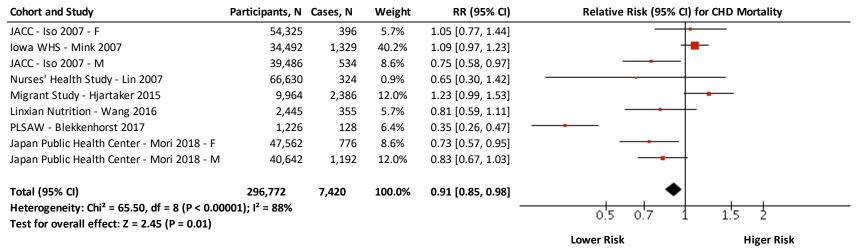


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	18.5%	0.50 [0.30, 0.83]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	20.9%	0.74 [0.53, 1.03]	
Linxian Nutrition - Wang 2016	2,445	355	21.6%	0.98 [0.74, 1.29]	
Nurses' Health Study - Lin 2007	66,630	324	18.8%	0.90 [0.55, 1.46]	
PLSAW - Blekkenhorst 2017	1,226	128	20.2%	0.26 [0.18, 0.38]	
Total (95% CI) [Random Effects]	75,434	1,280	100.0%	0.61 [0.38, 1.00]	
Heterogeneity: Tau ² = 0.27; Chi ² = 32.86, df = 4	(P < 0.00001); I ² =	88%			
Test for overall effect: Z = 1.95 (P = 0.05)					0.2 0.5 1 2 5
					Lower Risk Higer Risk


Figure S82. Relation between intake of allium vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CARROTS AND CORONARY HEART DISEASE MORTALITY


Supplementary Figure 83. Relation between intake of carrots and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CELERY AND CORONARY HEART DISEASE MORTALITY

Figure S84. Relation between intake of celery and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND CORONARY HEART DISEASE MORTALITY

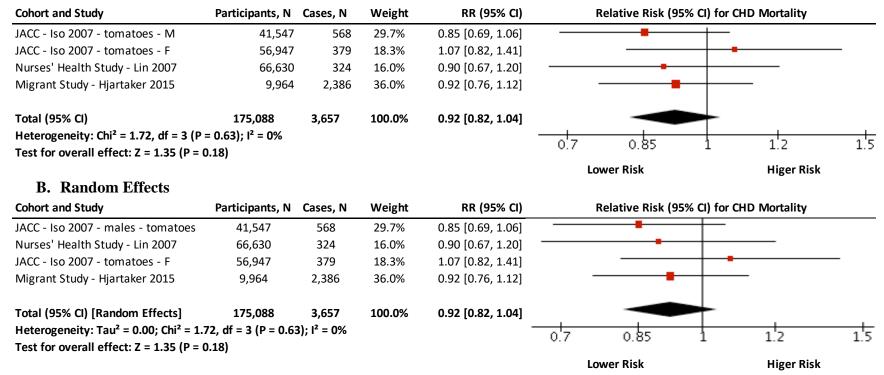
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
JACC - Iso 2007 - F	54,325	396	11.0%	1.05 [0.77, 1.44]	
Iowa WHS - Mink 2007	34,492	1,329	13.2%	1.09 [0.97, 1.23]	+
JACC - Iso 2007 - M	39,486	534	11.8%	0.75 [0.58, 0.97]	
Nurses' Health Study - Lin 2007	66,630	324	5.4%	0.65 [0.30, 1.42]	
Migrant Study - Hjartaker 2015	9,964	2,386	12.3%	1.23 [0.99 <i>,</i> 1.53]	
Linxian Nutrition - Wang 2016	2,445	355	11.0%	0.81 [0.59, 1.11]	
PLSAW - Blekkenhorst 2017	1,226	128	11.3%	0.35 [0.26, 0.47]	
Japan Public Health Center - Mori 2018 - M	40,642	1,192	12.3%	0.83 [0.67, 1.03]	
Japan Public Health Center - Mori 2018 - F	47,562	776	11.8%	0.73 [0.57, 0.95]	
Total (95% CI) [Random Effects]	296,772	7,420	100.0%	0.81 [0.64, 1.02]	-
Heterogeneity: Tau ² = 0.11; Chi ² = 65.50, df	= 8 (P < 0.00001)	; I² = 88%			
Test for overall effect: Z = 1.79 (P = 0.07)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Figure S85. Relation between intake of cruciferous vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I^2 , with values $\geq 50\%$ indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Oxford Vegetarian - Mann 1997	10,802	64	0.8%	1.34 [0.46, 3.85]	
OXCHECK - Whiteman 1999	10,522	144	5.0%	0.63 [0.42, 0.95]	
Health Food Shoppers - Appleby 2002	10,741	605	27.0%	0.85 [0.71, 1.02]	
JACC - Iso 2007 - M	43,850	617	21.9%	0.87 [0.71, 1.06]	
JACC - Iso 2007 - F	59,809	420	12.9%	0.85 [0.66, 1.10]	
Migrant Study - Hjartaker 2015	9,964	2,386	27.0%	0.93 [0.78, 1.11]	
Linxian Nutrition - Wang 2016	2,445	355	5.5%	0.72 [0.49, 1.06]	
Total (95% Cl) Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0%	148,133	4,591	100.0%	0.86 [0.78, 0.94]	0.5 0.7 1 1.5 2
Test for overall effect: Z = 3.25 (P = 0.001)					Lower Risk Higer Risk


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Oxford Vegetarian - Mann 1997	10,802	64	0.8%	1.34 [0.46, 3.85]	
OXCHECK - Whiteman 1999	10,522	144	5.0%	0.63 [0.42, 0.95]	
Health Food Shoppers - Appleby 2002	10,741	605	27.0%	0.85 [0.71, 1.02]	
JACC - Iso 2007 - M	43,850	617	21.9%	0.87 [0.71, 1.06]	
JACC - Iso 2007 - F	59,809	420	12.9%	0.85 [0.66, 1.10]	
Migrant Study - Hjartaker 2015	9,964	2,386	27.0%	0.93 [0.78, 1.11]	
Linxian Nutrition - Wang 2016	2,445	355	5.5%	0.72 [0.49, 1.06]	
Total (95% CI) [Random Effects]	148,133	4,591	100.0%	0.86 [0.78, 0.94]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 4.47, df	= 6 (P = 0.61); l ² = 0%	6		_	0,5 0,7 1 1,5 2
Test for overall effect: Z = 3.25 (P = 0.001)					0.5 0.7 1 1.5 2
					Lower Risk Higer Risk

Figure S86. Relation between intake of green leafy vegetables and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Interstudy heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOMATOES AND CORONARY HEART DISEASE MORTALITY

A. Fixed Effects

Figure S87. Relation between intake of tomatoes and coronary heart disease mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Bananas					
Vigrant Study - Hjartaker 2015	9,964	2,384	2.3%	1.04 [0.81, 1.34]	
Subtotal (95% CI)	9,964	2,384	2.3%	1.04 [0.81, 1.34]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.31 (P = 0.76)					
Berries					
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	0.7%	0.59 [0.37, 0.94]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	1.5%	1.21 [0.88, 1.65]	
ATBC - Hirvonen 2001	25,373	815	3.3%	0.91 [0.74, 1.13]	
owa WHS - Mink 2007 - strawberries	-	-	8.1%	0.95 [0.83, 1.09]	
owa WHS - Mink 2007 - blueberries	34,492	1,329	4.9%	0.89 [0.74, 1.06]	
Vigrant Study - Hjartaker 2015	9,964	2,386	11.0%	1.08 [0.96, 1.22]	
JK Women's Cohort - Lai 2015	30,458	138	0.5%	0.75 [0.44, 1.27]	
Subtotal (95% CI)	105,420	5,141	29.9%	0.98 [0.91, 1.05]	▲
Heterogeneity: Tau ² = 0.01; Chi ² = 11.84, df = 6				,	1
est for overall effect: Z = 0.82 (P = 0.41)					
Citrus					
Nutrition Status Study - Sahyoun 1996	680	101	0.4%	0.90 [0.48, 1.68]	
owa WHS - Mink 2007 - grapefruit	34,492	1,329	8.1%	0.85 [0.74, 0.98]	
IACC - Iso 2007 - F	59,504	398	2.3%	0.77 [0.60, 0.99]	
owa WHS - Mink 2007 - oranges	-	-	8.1%	0.96 [0.84, 1.10]	_ _
ACC - Iso 2007 - M	43,031	602	3.3%	0.98 [0.79, 1.22]	
JK Women's Cohort - Lai 2015	30,458	138	0.2%	0.61 [0.27, 1.37]	
Migrant Study - Hjartaker 2015	9,964	2,386	3.3%	0.89 [0.71, 1.10]	
Linxian Nutrition - Wang 2016	2,445	355	15.8%	0.92 [0.84, 1.02]	
Subtotal (95% CI)	180,574	5,309	41.4%	0.91 [0.85, 0.96]	T
Heterogeneity: Tau² = 0.00; Chi² = 4.61, df = 7 (Test for overall effect: Z = 3.20 (P = 0.001)	(P = 0.71); I ² = 0%				•
Fruit Juice					
IACC - Iso 2007 - M	41,330	573	2.7%	0.78 [0.62, 0.99]	
IACC - Iso 2007 - F	56,482	370	2.0%	0.70 [0.53, 0.92]	
JK Women's Cohort - Lai 2015	30,458	138	0.7%	0.99 [0.62, 1.58]	
REGARDS - Colin 2019	13,440	168	1.8%	1.28 [0.96, 1.72]	
Subtotal (95% CI)	141,710	1,249	7.2%	0.87 [0.75, 1.01]	
Heterogeneity: Tau ² = 0.06; Chi ² = 10.36, df = 3	8 (P = 0.02); I ² = 71	%			-
Test for overall effect: Z = 0.74 (P = 0.46)					
Grapes					
Nurses' Health Study - Lin 2007	66,360	324	0.3%	1.14 [0.55, 2.35]	
JK Women's Cohort - Lai 2015 - grapes	30,458	138	0.4%	0.57 [0.31, 1.05]	
Vigrant Study - Hjartaker 2015	9,964	2,384	2.3%	1.04 [0.81, 1.34]	+
Subtotal (95% CI)	106,782	2,846	3.0%	0.97 [0.77, 1.21]	
Heterogeneity: Tau ² = 0.05; Chi ² = 3.40, df = 2 (· -	-
Test for overall effect: Z = 0.49 (P = 0.63)					
Pommes					
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	0.7%	0.57 [0.36, 0.91]	
Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	1.8%	0.81 [0.60, 1.09]	
owa WHS - Mink 2007	34,492	1,329	8.1%	0.85 [0.74, 0.98]	
Nurses' Health Study - Lin 2007	66,360	324	0.3%	0.73 [0.34, 1.58]	
-	30,458	138	0.5%	1.19 [0.67, 2.09]	
IK Women's Conort - Lai 2015	50,450	2,386	4.9%	0.85 [0.71, 1.02]	
	9 964			0.00 [0.7 1, 1.02]	
Migrant Study - Hjartaker 2015	9,964 146 407				
Migrant Study - Hjartaker 2015 S ubtotal (95% CI)	146,407	4,650	16.1%	0.84 [0.76, 0.92]	
Migrant Study - Hjartaker 2015 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Chi ² = 4.24, df = 5 (146,407				•
Migrant Study - Hjartaker 2015 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Chi ² = 4.24, df = 5 (Test for overall effect: Z = 3.54 (P = 0.0004)	146,407 (P = 0.52); I ² = 0%	4,650			•
UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 4.24, df = 5 (Test for overall effect: Z = 3.54 (P = 0.0004) Test for subgroup differences: Chi ² = 8.23, df =	146,407 (P = 0.52); I ² = 0%	4,650			0.5 0.7 1 1.5 2

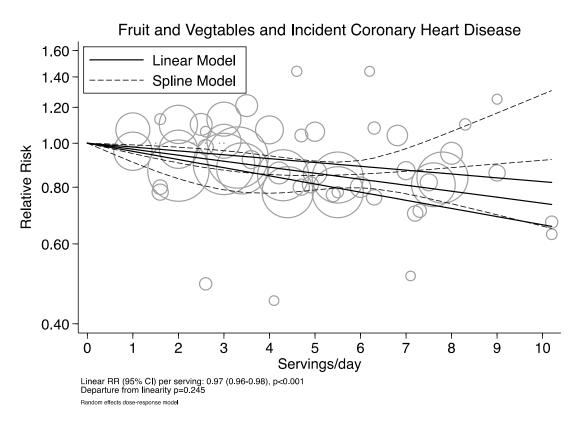
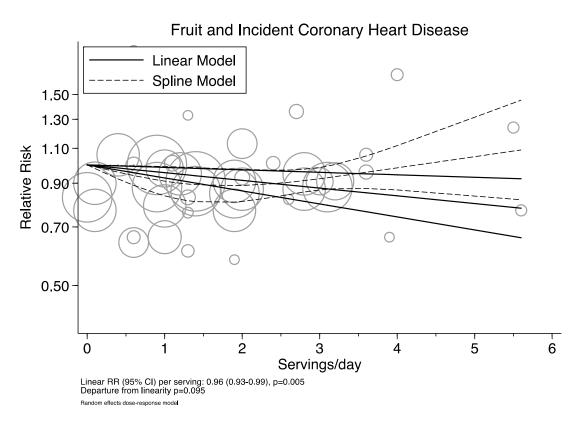
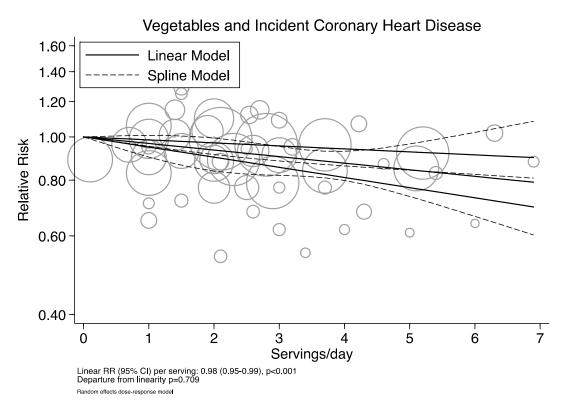
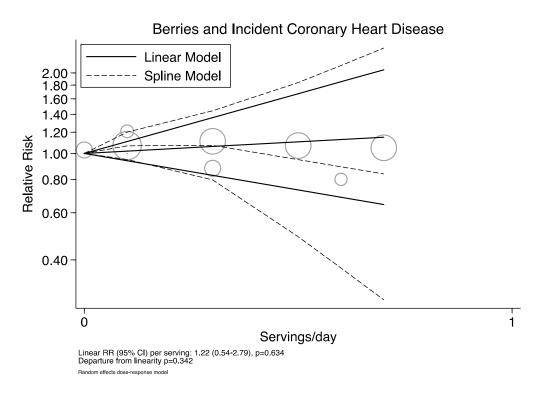

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for CHD Mortality
ananas	0.000		2.224	4 04 [0 04 + 04]	
Aigrant Study - Hjartaker 2015	9,964	2,384	3.2%	1.04 [0.81, 1.34]	
ubtotal (95% Cl)	9,964	2,384	3.2%	1.04 [0.81, 1.34]	
eterogeneity: Not applicable					
est for overall effect: Z = 0.31 (P = 0.76)					
erries					
inish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.59 [0.37, 0.94]	
inish Mobile Clinic Health - Knekt 1996 - M	2,748	324	2.3%	1.21 [0.88, 1.65]	
TBC - Hirvonen 2001	25,373	815	4.2%	0.91 [0.74, 1.13]	
wa WHS - Mink 2007 - strawberries	-	-	7.3%	0.95 [0.83, 1.09]	
wa WHS - Mink 2007 - blueberries	34,492	1,329	5.5%	0.89 [0.74, 1.06]	
ligrant Study - Hjartaker 2015	9,964	2,386	8.5%	1.08 [0.96, 1.22]	
K Women's Cohort - Lai 2015	30,458	138	0.9%	0.75 [0.44, 1.27]	
ubtotal (95% Cl)	105,420	5,141	29.8%	0.95 [0.85, 1.07]	
eterogeneity: Tau ² = 0.01; Chi ² = 11.84, df = (est for overall effect: Z = 0.82 (P = 0.41)	5 (P = 0.07); F = 49	%			
trus					
utrition Status Study - Sahyoun 1996	680	101	0.7%	0.90 [0.48, 1.68]	
ACC - Iso 2007 - M	43,031	602	4.2%	0.98 [0.79, 1.22]	
ACC - Iso 2007 - F	59,504	398	3.2%	0.77 [0.60, 0.99]	
wa WHS - Mink 2007 - oranges	-	-	7.3%	0.96 [0.84, 1.10]	
wa WHS - Mink 2007 - grapefruit	34,492	1,329	7.3%	0.85 [0.74, 0.98]	
K Women's Cohort - Lai 2015	30,458	138	0.4%	0.61 [0.27, 1.37]	
ligrant Study - Hjartaker 2015	9,964	2,386	4.2%	0.89 [0.71, 1.10]	
nxian Nutrition - Wang 2016	2,445	355	9.8%	0.92 [0.84, 1.02]	<u> </u>
ubtotal (95% CI)	180,574	5,309	37.1%	0.91 [0.85, 0.96]	◆
leterogeneity: Tau ² = 0.00; Chi ² = 4.61, df = 7 est for overall effect: Z = 3.20 (P = 0.001) Fruit Juice	(P = 0.71); T = 0%				
ACC - Iso 2007 - M	41,330	573	3.7%	0.78 [0.62, 0.99]	
ACC - Iso 2007 - F	56,482	370	3.0%	0.70 [0.53, 0.92]	
K Women's Cohort - Lai 2015	30,458	138	1.2%	0.99 [0.62, 1.58]	
EGARDS - Colin 2019	13,440	168	2.7%	1.28 [0.96, 1.72]	
ubtotal (95% CI)	141,710	1,249	10.6%	0.90 [0.68, 1.19]	
eterogeneity: Tau ² = 0.06; Chi ² = 10.36, df = 3 est for overall effect: Z = 0.74 (P = 0.46)	3 (P = 0.02); l ² = 71	%			
rapes		ac :	0.5-1		
urses' Health Study - Lin 2007	66,360	324	0.5%	1.14 [0.55, 2.35]	
K Women's Cohort - Lai 2015 - grapes	30,458	138	0.7%	0.57 [0.31, 1.05]	
ligrant Study - Hjartaker 2015	9,964	2,384	3.2%	1.04 [0.81, 1.34] —	
ubtotal (95% Cl) eterogeneity: Tau ² = 0.05; Chi ² = 3.40, df = 2 est for overall effect: Z = 0.49 (P = 0.63)	106,782 (P = 0.18); I ² = 41%	2,846	4.4%	0.91 [0.63, 1.32]	
ommes					
inish Mobile Clinic Health - Knekt 1996 - M	2,748	324	2.6%	0.81 [0.60, 1.09]	
nish Mobile Clinic Health - Knekt 1996 - F	2,385	149	1.1%	0.57 [0.36, 0.91]	
urses' Health Study - Lin 2007	66,360	324	0.4%	0.73 [0.34, 1.58]	
wa WHS - Mink 2007	34,492	1,329	7.3%	0.85 [0.74, 0.98]	
ligrant Study - Hjartaker 2015	9,964	2,386	5.5%	0.85 [0.71, 1.02]	
K Women's Cohort - Lai 2015	30,458	138	0.8%	1.19 [0.67, 2.09]	
ubtotal (95% CI)	146,407	4,650	17.7%	0.84 [0.76, 0.92]	—
eterogeneity: Tau ² = 0.00; Chi ² = 4.24, df = 5 est for overall effect: Z = 3.54 (P = 0.0004)					
est for subgroup differences: Chi ² = 4.24, df =	5 (P = 0.52), I ² = 0	%			
					0.5 0.7 1 1.5 2

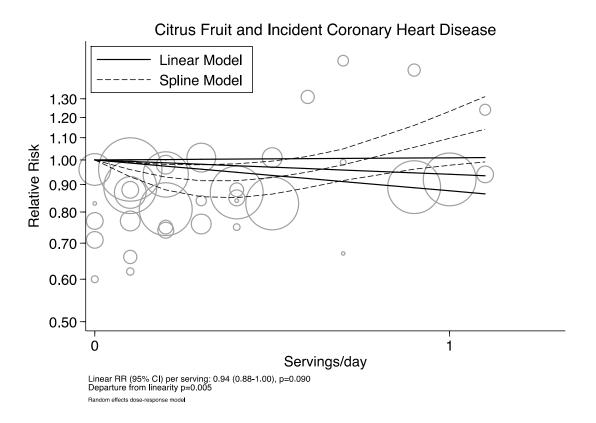
Figure S88. Relation between sources of fruit and CHD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

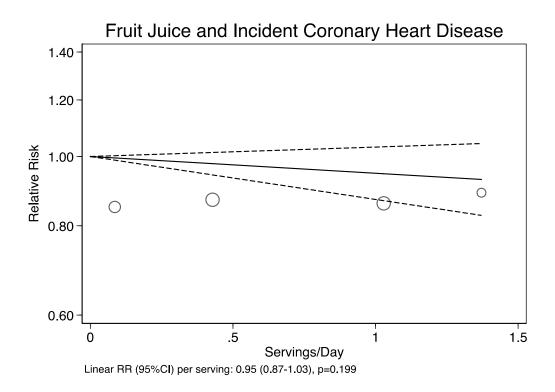

Conci and Study Participants, N C cices, N Weight R (1955 C) Relative Risk (1956 C) 10 CHD Mortality Finish Maile Claic: Health - Keek (1956 - M 2, 2748 324 1.94 0.95 0.30 0.03, 0.08 1.04 Finish Maile Claic: Health - Keek (1956 - M 2, 2748 324 0.95 0.30 0.03, 0.08 1.04 Finish Maile Claic: Health - Keek (1956 - M 2, 2748 1.24 0.95 0.05 0.03, 0.08 1.05 1.46 Status R (1956 C) 77.644 1.260 8.0% 0.97 0.87 0.08 1.03 Subtrail (1955 C) 77.644 1.260 8.0% 0.97 0.87 0.08 1.05 Subtrail (1955 C) 10.0001) (* 88% Test for overall effect: 2 = 4.80 (P < 0.00001) (* 88% Test for overall effect: 2 = 4.80 (P < 0.00001) (* 10.802 Condition (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 10.0802 64 0.44% 0.76 (0.37, 1.58) Subtrail (1956 C) 13.4492 1.329 11.5% 0.92 (0.80, 1.06) Test for overall effect: 2 = 0.73 (P = 0.7) Colery Nerses' Health Study - Lin 2007 66,510 324 0.44% 0.55 (0.30, 1.42) Jacc - 160 207 - 71 5 4.323 326 2.24% 0.35 (0.7, 1.44) Migran Study - High Table 2015 9.4492 1.329 1.55% 1.06 (1.07, 1.24) Jacc - 160 207 - 7 5 4.323 36 2.24% 0.35 (0.25, 1.01) Test for overall effect: 2 = 1.56 (P = 0.0001); F = 4.55 2.776 3.35% 0.37 (0.38) Japan Public Health Center - Mon 2018 - 7 4.55 2.776 3.35% 0.37 (0.38) 0.35 (0.36, 0.47) Japan Public Health Center - Mon 2018 - 7 4.55 2.776 3.35% 0.37 (0.38) 0.45 (0.36) 0.45% 0.45 (0.47, 1.06) Migran Study - High Table 7.215 9.9.69 4.2.386 4.6% 0.28 (0.64, 1.02) Japan Public Health Center - Mon 2018 - 7 4.55 2.776 3.35% 0.37 (0.38) 0.45 (0.3	II. FIXed Effects					
Finds Mobile Clinic Health - Keek 1996 - M 2,748 324 1.9% 0.74 [0.3, 1.03] Finds Mobile Clinic Health - Keek 1996 - F 2,38 149 0.9% 0.50 [0.30, 0.83] Nurser's Health Study - Lin 2019 - F 2,85% 149 0.9% 0.50 [0.35, 1.46] History Avag 2016 2,445 355 2.9% 0.9% 0.74 [0.13, 0.38] PS.W. 9 Elekienhorst 2017 1,226 128 1.4% 0.26 [0.18, 0.38] PS.W. 9 Elekienhorst 2017 1,226 128 1.4% 0.26 [0.18, 0.38] Heterogeneity: Ch ⁺ = 2.8.6 (d < 0.00001); h ⁺ = 85% Test for overall effect: 2 = 4.80 (f < 0.00001); h ⁺ = 85% Test for overall effect: 2 = 4.80 (f < 0.00001); h ⁺ = 85% Heterogeneity: Kh ⁺ = 2.8.6 (d < 0.00001) Concer Concoco Concer Concoco Concer	Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for CHD Mortality
Finish Mohle Clinic Health - Keek 1996 - F. 2,385 149 0.8% 0.50 [0.30, 0.83] Invision Nutrition - Wang 2016 2,445 355 2.9% 0.89 [0.74, 1.29] Linkian Nutrition - Wang 2016 2,445 355 2.9% 0.89 [0.74, 1.29] Subtocal [GSS (0) 75,434 1,280 8.0% 0.67 [0.57, 0.79] Subtocal [GSS (0) 75,434 1,280 8.0% 0.67 [0.57, 0.79] Subtocal [GSS (0) 10.802 64 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 10.802 64 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 10.802 64 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 10.802 64 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 13.982 54 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 13.982 54 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 13.982 54 0.4% 0.76 [0.37, 1.58] Subtocal [GSS (0) 13.942 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 34.492 1,329 11.5% 0.92 [0.80, 1.06] Subtocal [GSS (0) 2.96,77, 2.3] Caciferoca Nurse: Health Study - Lin 2007 66,630 324 0.4% 0.65 [0.30, 1.42] Nurse: Health Study - Lin 2007 66,630 324 0.4% 0.65 [0.30, 1.42] Nurse: Health Study - Lin 2007 66,630 324 0.4% 0.65 [0.30, 1.42] Nurse: Health Study - Lin 2007 66,630 324 0.4% 0.85 [0.37, 1.23] AGC - Iso 2007 - M 3.9486 534 3.3% 0.75 [0.36, 1.03] Subtocal [GSS (0) 2.95,772 7,420 3.8% 0.91 [0.35, 1.31] Subtocal [GSS (0) 2.95,772 7,420 3.8% 0.91 [0.37, 1.58] Order Vergentain - Mann 1997 10.802 64 0.2% 0.83 [0.37, 0.58] Order Vergentain - Mann 1997 10.802 64 0.2% 0.83 [0.37, 0.58] AGC - Iso 2007 - M 3.350 617 5.6% 0.87 [0.71, 1.08] AGC - Iso 2007 - M 3.350 617 5.6% 0.87 [0.71, 1.08] Heargromethy: Chi = 6.5.7, df = 6 (P = 0.63); F = 0X Tert for overall effect: Z = 3.25 (P = 0.03) Finalth Forder - Mann 1997 10.802 64 0.2% 0.83 [0.42, 0.95] Heargromethy: Chi = 6.5.9, df = 0 (A) (A) (A) (
Nussel: Health Study - Lin 2007 66,630 324 0.9% 0.90 [0.55, 1.66] USAW - Selekterhorst 2017 1.256 128 1.4% 0.26 [0.38, 0.38] USAW - 19 Elskewhorst 2017 1.256 128 1.4% 0.26 [0.37, 0.38] USAW - 19 Elskewhorst 2017 1.256 128 1.4% 0.26 [0.37, 0.58] USAW - 19 Elskewhorst 2017 1.256 128 1.4% 0.76 [0.37, 1.58] USAW - 19 Elskewhorst 2017 10,802 64 0.4% 0.76 [0.37, 1.58] USAW - 19 Elskewhorst 2017 10,802 64 0.4% 0.76 [0.37, 1.58] USAW - 19 Elskewhorst 2017 2.07 (0.47) Elskewhorst 21 - 0.73 (P - 0.47) Colory UsaW - 10 Elskewhorst 2017 2.07 (P - 0.47) Colory UsaW - 10 Elskewhorst 2017 2.07 (P - 0.47) Colory UsaW - 10 Elskewhorst 2017 2.07 (P - 0.47) Colory UsaW - 10 Elskewhorst 2017 2.07 (P - 0.47) Colory UsaW - 10 Elskewhorst 2017 2.08 (D - 0.08) USAW - 10 Elskewhorst 2017 2.08 (D - 0.08) Colory UsaW - 10 Elskewhorst 2017 2.08 (D - 0.08) Colory UsaW - 10 Elskewhorst 2017 3.4,492 1.329 11.5% 0.52 [0.80, 1.06] UsaW - 10 Elskewhorst 2017 3.4,492 1.329 11.5% 0.52 [0.80, 1.06] UsaW - 10 Elskewhorst 2017 3.4,492 1.329 15.6% 10.9 [0.97, 1.38] UsaW - 10 Elskewhorst 2017 3.4,492 1.329 15.6% 0.77 [0.58, 0.97] UsaW - 10 Elskewhorst 2017 3.4,492 1.329 15.6% 0.77 [0.58, 0.97] UsaW - 10 Elskewhorst 2017 1.255 128 2.2% 0.35 [0.26, 0.47] UsaPhite Heat Michael - Elskewhorst 2017 1.255 2.2% 0.35 [0.26, 0.47] UsaPhite Heat Michael - Elskewhorst 2017 1.255 2.2% 0.35 [0.26, 0.47] UsaPhite Heat Michael - Elskewhorst 2017 1.255 2.2% 0.35 [0.26, 0.47] UsaPhite Heat Michael - Elskewhorst 2017 1.255 2.2% 0.35 [0.26, 0.47] UsaPhite Heat Michael - Elskewhorst 2017 1.255 1.28 2.5% 0.35 [0.26, 0.47] UsaPhite Heat Michael - Elskewhorst 2017 1.255 2.2% 0.35 [0.66, 1.10] USAW - 10 Elskewhorst 2017 1.255 1.9% 4.2386 0.67 0.58 [0.78, 0.39] USAW - 10 Elskewhorst 2017 1.255 1.9% 4.2386 0.67 0.58 [0.78, 0.39] USAW - 10 Elskewhorst 2017 1.255 0.9% 4.2386 0.67 0.58 [0.78, 0.39] USAW - 10 Elskewhorst 2017 1.255 0.9% 4.2386 0.57 0.56 [0.78, 0.39] USAW - 10 Elskewhorst 2017 1.25 0.9% 4.2385 1.4% 0.29 [0.85, 0.86] [0.78, 0.39						
Lindan Nutrition - Wang 2016 2.445 355 2.9% 0.98 (0.74, 1.29) Subtod (0.55% C) 75,424 1.280 8.0% 0.67 (0.87, 0.79) Subtod (155% C) 75,424 1.280 8.0% 0.67 (0.87, 0.79) Subtod (155% C) 75,424 1.280 8.0% 0.67 (0.57, 0.79) Corrot Corrot Corrot Subtod (155% C) 76,70,79) Corrot Subtod (155% C) 76,70,79) Corrot Corrot Normal effect: 2 = 0.73 (P = 0.47) Corrot Normal effect: 2 = 0.73 (P = 0.47) Corrot Normal effect: 2 = 0.73 (P = 0.47) Corrot Normal effect: 2 = 0.73 (P = 0.47) Corrot Normal effect: 2 = 1.14 (P = 0.25) Corrot Normal effect: 2 = 2.45 (P = 0.01) Corrot Normal effect: 2 = 2.45 (P = 0.01) Corrot Normal effect: 2 = 2.45 (P = 0.01) Corrot Normal effect: 2 = 2.45 (P = 0.01) Corrot Normal effect: 2 = 2.45 (P = 0.01) Corrot Normal effect: 2 = 2.45 (P = 0.01) Corrot Normal effect: 2 = 0.01 Corrot Normal effect: 2 = 0.01 Corrot Normal effect: 2 = 0.01 Corrot Normal effect: 2 = 0.01 Corrot Normal effect: 2 = 0.01 Corrot Normal effect: 2 = 0.01 Corrot Normal effect: 2 = 0.01						
USAW - Biekkenhorst 2017 1,226 1.28 1.44 0.26 [0.18, 0.38] Heterogeneity: Chi ⁺ = 23.6, dir <4 (P < 0.00001); P = 88%						
Subted (95% C) 75,44 1,280 8.0% 0.67 [0.57, 0.79] Hereagreenty: Ch = 24.56, f = 4 (0 - 0.0001); ¹ = 88% Test for overall effect: 2 = 4.30 (P < 0.0001) Chront Control Control Montal Part = 24.56, f = 4 (D < 0.0001); ¹ = 88% Hereagreenty: Chron 1997 - carotis 10,802 64 0.4% 0.76 [0.37, 1.58] Chront Mile 2007 - cellery 34,492 1,329 11,5% 0.92 [0.80, 1.06] Subted (95% C) - cellery 34,492 1,229 11,5% 0.92 [0.80, 1.06] Fast for overall effect: 2 = 0.73 (P = 0.47) Callery Narset Health Study - Un 2007 66,630 32,4 0.4% 0.56 [0.30, 1.42] ACC - Iso 2007 - M 39,485 5,34 3,3% 0.75 [0.58, 0.97] Marset Health Study - Un 2007 66,630 32,4 0.4% 0.65 [0.30, 1.42] Marset Health Study - Un 2007 66,630 32,4 0.4% 0.85 [0.30, 1.42] Marset Health Study - Un 2007 66,630 32,4 0.4% 0.85 [0.30, 1.42] Marset Health Study - Un 2007 66,630 32,4 0.4% 0.85 [0.30, 1.42] Marset Health Study - Un 2007 66,630 32,4 0.4% 0.85 [0.30, 1.42] Marset Health Study - Un 2007 66,630 32,4 0.4% 0.85 [0.37, 1.23] mann Phatic Health Center - Mori 2018 - M 40,642 1,122 4,5% 0.83 [0.57, 1.03] mann Phatic Health Center - Mori 2018 - M 40,642 1,122 4,5% 0.83 [0.57, 1.03] mann Phatic Health Center - Mori 2018 - M 40,642 1,122 4,5% 0.83 [0.57, 1.03] mann Phatic Health Center - Mori 2018 - M 40,642 1,122 4,5% 0.83 [0.57, 1.03] mann Phatic Health Center - Mori 2018 - M 40,642 1,122 4,5% 0.83 [0.57, 0.58] Subted (95% C) 5, 0f = 6,50, 0f = 6,01) Sinema leftect 2 = 2.45 [P = 0.01] Sinema leftect 2 = 2.45 [P = 0.01] Sinema leftect 2 = 2.45 [P = 0.01] Toractes ACC - Iso 2007 - N 43,850 6,17 5,5% 0,47 [0.78, 1.10] Toractes ACC - Iso 2007 - Im 43,557 5,6% 42,386 4,5% 0.39 [0.78, 1.10] Toractes Fact for overall effect: 2 = 1.35 (P = 0.68]; P = 0.02], P = 0.02], F = 0.5%, F = 5,50, d = 2,031 Toractes Fact for overall effect: 2 = 1.35 (P = 0.03] Toractes Fact for overall effect: 2 = 1.35 (P = 0.03] Toractes Fact for overall effect: 2 = 1.35 (P = 0.03] Toractes Fact for overall effect: 2 = 1.35 (P = 0.03] Toractes Fact for overall ef						
Hearogeneity: Ch ² = 22.63, df = 4 (P < 0.00001) P = 88% Test for overall effect: Z = 4.80 (P < 0.00001) Carrols Didroid Vegetarian - Mann 1997 - carrols 10,802 64 0.4% 0.76 [0.37, 1.58] Didroid Vegetarian - Mann 1997 - carrols 10,802 64 0.4% 0.76 [0.37, 1.58] Didroid Vegetarian - Mann 2097 - carrols 10,802 64 0.4% 0.76 [0.37, 1.58] Didroid Vegetarian - Mann 2097 - carrols 10,802 64 0.4% 0.76 [0.37, 1.58] Didroid Vegetarian - Mann 2097 - carrols 10,802 64 0.4% 0.55 [0.30, 1.66] Didroid Vegetarian - Mann 2097 66,630 324 0.4% 0.65 [0.30, 1.42] Didroid Vegetarian - Mann 2097 66,630 324 0.4% 0.65 [0.30, 1.42] ACC - 16 2007 - M 23,4492 1,229 11.5% 0.92 [0.80, 0.16] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.99, 1.53] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.99, 1.13] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.99, 1.13] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.59, 0.13] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.57, 0.48] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.57, 0.14] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.81 [0.59, 0.13] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.83 [0.66, 1.08] Dirama - Murition - Wang 2016 2,445 355 2,2% 0.83 [0.67, 1.08] Dirama - Murition - Wang 2016 2,445 355 2,7% 7,220 8,38% 0.91 [0.85, 0.98] Dirama - Murition - Wang 2016 2,445 355 2,7% 7,220 8,38% 0.91 [0.85, 0.98] Dirama - Murition - Wang 2016 2,445 355 2,7% 7,220 8,38% 0.91 [0.85, 0.98] Dirama - Murition - Wang 2016 2,445 355 2,7% 7,220 8,38% 0.91 [0.85, 0.98] Dirama - Murition - Wang 2016 2,445 355 2,7% 7,220 8,38% 0.91 [0.85, 0.98] Dirama - Murition - Wang 2016 2,445 355 1,7 6,5% 0.98 [0.71, 1.08] Dirama - Murition - Wang 2016 2,445 355 1,7 6,7% 0.88 [0.71, 1.08] Dirama - Murition - Wang 2016 2,445 3,55 1,7 6,5% 0.92 [0.82, 1.41] Dirama - Murition - Wang 2016 2,445 3,55 1,7 6,5% 0.92 [0.82, 1.41] Dirama - Murition - Wang 2016 2,445 3,55 1,7 6,5% 0.92 [0.82, 1.41] Dirama - Murition - Murition - Murition - Murition - Murition - M						
Text for overall effect: Z = 4.80 (P < 0.00001) Carrots Diodrol Vagetraina - Mann 1997 - carrots 10.802 64 0.4% 0.76 [0.37, 1.58] Subtrail (95% CI) 10,802 64 0.4% 0.76 [0.37, 1.58] Subtrail (95% CI) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Subtrail (95% CI) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Subtrail (95% CI) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Subtrail (95% CI) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Subtrail (95% CI) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Subtrail (95% CI) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Subtrail (95% CI) 34,492 1,329 15.5% 0.75 [0.58, 0.97] Autor 1000 2007 - 66,530 324 0.4% 0.65 [0.30, 1.42] Autor 1000 2007 - 66,530 324 0.4% 0.75 [0.58, 0.97] Autor 1000 2007 - 67 54,323 396 2.2% 1.05 [0.77, 1.24] Migran Study - Hintaker 2015 9,964 2,386 4.6% 1.23 [0.99, 1.33] Subtrail (95% CI) 29,72 7,20 38.8% 0.91 [0.55, 0.93] Subtrail (95% CI) 29,72 7,20 38.8% 0.91 [0.55, 0.98] Subtrail (95% CI) 29,964 2,386 4.6% 0.23 [0.57, 0.55] Subtrail (95% CI) 29,964 2,386 4.6% 0.23 [0.57, 0.55] Subtrail (95% CI) 29,964 2,386 4.0% 0.23 [0.57, 0.55] Subtrail (95% CI) 29,964 2,385 0.677 7,20 38.8% 0.91 [0.55, 0.98] Subtrail (95% CI) 29,72 7,20 38.8% 0.91 [0.55, 0.98] Subtrail (95% CI) 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.45, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] Oxicrl Vegratina - Mann 1997 10,802 64 0			1,280	8.0%	0.67 [0.57, 0.79]	-
Carrots Orderd Vegetarian - Man 1997 - carrots 10.802 64 0.4% 0.76 [0.37, 1.58] 0.464 0.76 [0.37, 1.58] 0.464 0.76 [0.37, 1.58] 0.475 [0.37, 1.58] 0.475 [0.37, 1.58] 0.48 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.76 [0.37, 1.58] 0.49 0.44 0.76 [0.37, 1.58] 0.49 0.44 0.76 [0.37, 1.58] 0.49 0.44 0.76 [0.37, 1.58] 0.49 0.44 0.76 [0.37, 1.58] 0.49 0.44 0.76 [0.37, 1.58] 0.44 0.76 [0.37, 1.23] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 1.42] 0.44 0.45 0.55 [0.30, 0.47] 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45		01); I ² = 88%				
Deford Vegetarian - Man 1997 - carrots 10,802 64 0.4% 0.76 [0.37, 1.58] Settor overall effect: Z = 0.73 (P = 0.47) 0.802 64 0.4% 0.76 [0.37, 1.58] Veeterogeneity: Not applicable 0.492 1,329 11.5% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 11.5% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 11.5% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 11.5% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 11.5% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 15.6% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 15.6% 0.92 [0.80, 1.06] Veeterogeneity: Not applicable 1.329 15.6% 0.92 [0.80, 1.02] Veeterogeneity: Not applicable 1.328 0.4% 0.75 [0.59, 0.97] Veeterogeneity: Not applicable 2.386 4.6% 0.83 [0.67, 1.03] Jacc - Iso 2007 - F 54,325 3.9% 0.33 [0.26, 0.47] 3.9% Japan Public Health Center - Mori 2018 - F 4.762 776 3.3%						
Subtod [95% C] Hererogeneity: Not applicable Fest for overall effect: Z = 0.73 (P = 0.47) Celery owa WH5 - Mink 2007 - celery 34.492 1,329 11.5% 0.92 [0.80, 1.06] 0.92 [0.80, 1.06] 0.92 [0.80, 1.06] 1.329 11.5% 0.92 [0.80, 1.06] 0.92 [0.80, 1.07] 0.90 [0.97, 1.14] 0.90 [0.97, 1.14] 0.90 [0.97, 1.14] 0.90 [0.97, 1.14] 0.90 [0.97, 1.06] 0.91 [0.82] 0.91		10 902	64	0.49/	0.76 [0.27, 1.69]	
teterogeneity: Not applicable Test for overall effect: Z = 0.73 (P = 0.47) ≥lery owa WH5 - Mink 2007 - celery 3 4,492 1,329 11.5% 0.92 [0.80, 1.06] ⇒biototal [95% C] 3 4,492 1,329 11.5% 0.92 [0.80, 1.06] ⇒biototal [95% C] 4 4,492 1,329 11.5% 0.92 [0.80, 1.06] ⇒biototal [95% C] 4 4,492 1,329 11.5% 0.92 [0.80, 1.06] →biototal [95% C] 4 4,492 1,329 11.5% 0.92 [0.80, 1.06] →biototal [95% C] 4 4,492 1,329 11.5% 0.97 [0.58, 0.97] → owa WH5 - Mink 2007 66,630 324 0.4% 0.65 [0.30, 1.42] ∧occ \ \so 2007 - M 39,486 534 3.3% 0.75 [0.58, 0.97] → owa WH5 - Mink 2007 34,492 1,329 15.6% 1.09 [0.97, 1.23] → owa WH5 - Mink 2007 12,445 355 2.2% 0.38 [0.59, 1.11] → owa WH5 - Mink 2007 12,26 128 2.5% 0.38 [0.50, 0.47] → opan Public health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] → obiototal [95% C] 26,772 7,420 38,5% 0.91 [0.35, 0.98] → obiototal [95% C] 26,772 7,420 38,5% 0.91 [0.35, 0.98] → obiototal [95% C] 26,772 7,420 38,5% 0.91 [0.35, 0.98] → obiototal [95% C] 10,900 1,974 605 6.9% 0.88 [0.71, 1.02] → obiototal [95% C] 10,902 64 0.2% 1.34 [0.46, 3.85] → Obiototal [95% C] 10,902 10,774 605 6.9% 0.88 [0.71, 1.02] → obiototal [95% C] 10,902 10,774 605 6.9% 0.88 [0.71, 1.02] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 1.06] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.49] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.49] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.49] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.49] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.41] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.41] → obiototal [95% C] 14,81,33 4,591 2.57% 0.86 [0.72, 0.41] → obiototal [95% C] 15,60 3,21 4,25% 0.92 [0.82, 1.41] → obiototal [95% C] 17,508 3,657 15,6% 0.92 [0.82, 1.41] → obiototal [95% C] 17,508 3,657 15,6% 0.92 [0.82, 1.41] → obiototal [95% C] 17,508 3,657 15,6% 0.92 [0.72, 1.12] → obiototal [95% C] 17,508 3,657 15,6% 0.92 [0.82, 1.41] → obiototal [95% C] 17,50,8 3,657 15,6% 0.92 [0.82, 1.41] → o						
Test for overall effect: Z = 0.73 (p = 0.47) Selery owa W15 - Mink 2007 - celery 34,492 1,329 11.5% 0.92 [0.80, 1.06] isolatoda (95% C) 34,492 1,329 11.5% 0.92 [0.80, 1.06] Selected overall effect: Z = 1.14 (p = 0.25) Duciferous W156' Health Study - Un 2007 66,630 324 0.4% O4C - Iso 2007 - M 39,486 534 3.3% 0.65 [0.30, 1.42] ACC - Iso 2007 - M 39,486 534 3.3% 0.75 [0.58, 0.97] owa W15 - Mink 2007 34,492 1,329 15.6% 1.09 [0.97, 1.23] ACC - Iso 2007 - F 54,325 396 2.2% 1.05 [0.77, 1.44] ACC - Iso 2007 - H 40,422 1,326 4.6% 1.28 [0.59, 1.11] Isolan Autificion - Wang 2016 2,445 355 2.2% 0.81 [0.59, 1.11] Isolan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] Subtoda (195% C) 296,772 7,420 38.8% 0.91 [0.85, 0.98] Feter overall effect: Z = 2.45 (p = 0.000) Since leafy Carc - Iso 2007 - F 59,809 42.33% 0.68 [0.71, 1.02] ACC - Iso 2007 - F 59,809 42.33% 0.85 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] Subtoda (195% C) 286,772 7,420 38.8% 0.91 [0.85, 0.98] Fet for overall effect: Z = 2.45 (p = 0.00001); p = 88% Test for overall effect: Z = 2.45 (p = 0.01) Since leafy ACC - Iso 2007 - F 59,809 422 3.3% 0.85 [0.67, 1.10] ACC - Iso 2007 - F 59,809 42 3.3% 0.85 [0.67, 1.10] ACC - Iso 2007 - F 59,809 42 3.3% 0.85 [0.67, 1.10] ACC - Iso 2007 - F 59,809 42 3.3% 0.93 [0.78, 1.10] ACC - Iso 2007 - M 43,850 617 5.56% 0.87 [0.71, 1.06] W[arma Stud, - Hardser 2015 9.464 2.385 5 ACC - Iso 2007 - M 43,850 617 5.56% 0.87 [0.71, 1.06] W[arma Stud, - Hardser 2015 9.464 2.385 5 ACC - Iso 2007 - Comatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - Isolates - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - Isolates - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - Isolates - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - Isolates - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - Isolates - F 56,947 379 2.9% 1.07 [0.82, 1.4		10,802	64	0.4%	0.76 [0.37, 1.58]	
owa WHS - Mink 2007 - cellery 34,492 1,329 11.5% 0.92 (0.80, 1.06) ubitotal (59% C) 34,492 1,329 11.5% 0.92 (0.80, 1.06) ubitotal (59% C) 34,492 1,329 11.5% 0.92 (0.80, 1.06) vitteregeneity: Not applicable est for overall effect: Z = 1.14 (P = 0.25)	est for overall effect: $Z = 0.73$ (P = 0.47)					
ubtol [95% C]) 34,492 1,329 11.5% 0.92 [0.80, 1.06] leterogeneity: Not applicable est for overall effect: Z = 1.14 (P = 0.25) rudferous lurges' Health Study - Lin 2007 66,630 324 0.4% 0.65 [0.30, 1.42] ACC - Iso 2007 - M 39,486 534 3.3% 0.75 [0.58, 0.97] owa WHS - Mink 2007 34,492 1,329 15.6% 1.09 [0.97, 1.23] ACC - Iso 2007 - F 5 4,325 396 2.2% 1.05 [0.77, 1.44] ACC - Iso 2007 - F 5 4,325 396 2.2% 0.35 [0.26, 0.47] apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.05] apan Public Health Center - Mori 2018 - F 47,552 776 3.3% 0.73 [0.57, 0.55] whotal (95% C]) 296,772 7,420 38.8% 0.93 [0.85, 0.98] referencently: Ch ² = 6.5.0, df = 8 [P < 0.0001); P = 88% est for overall effect: Z = 2.45 (P = 0.01) referencently: Ch ² = 6.5.0, df = 8 [P < 0.0001); P = 88% est for overall effect: Z = 2.45 (P = 0.61) referencently: Ch ² = 4.5.2, df = 6 (P < 0.61); P = 88% est for overall effect: Z = 2.45 (P = 0.61); P = 0.5 MCHC/c - Woiteman 1999 10,522 144 1.3% 0.63 [0.62, 0.95] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.65, 1.10] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.71, 1.06] Agrant Study Hjartaker 2015 9,964 2.386 6.9% 0.93 [0.78, 1.11] indian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] Agrant Study Hjartaker 2015 9,964 4.355 1.4% 0.72 [0.49, 1.06] Agrant Study Hjartaker 2015 9,964 2.386 5.0% 0.92 [0.78, 1.11] indian Nutrition - Wang 2016 2,445 355 1.4% 0.92 [0.78, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 5.6,947 379 2.9% 1.0		a			0.00 10 55 5 5 5	
<pre>teterogeneity: Not applicable test for overall effect: Z = 1.14 (P = 0.25) suctifierous succifierous succifierous succifierous succif</pre>						
Test for overall effect: Z = 1.14 (P = 0.25) Surces' Health Study - Lin 2007 66,630 324 0.4% 0.55 [0.30, 1.42] ACC - Iso 2007 - K 39,886 534 3.3% 0.75 [0.58, 0.97] owa WH5 - Mink 2007 34,492 1,329 15.6% 1.09 [0.97, 1.23] ACC - Iso 2007 - F 54,325 396 2.2% 1.05 [0.71, 1.44] Uigrant Study - Hightaker 2015 9,964 2,385 4.6% 1.23 [0.57, 0.54] Jinkian Nutrition - Wang 2016 2,445 355 2.2% 0.81 [0.59, 1.13] Japan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,662 776 3.3% 0.73 [0.87, 0.95] Stothal (96 KCI) 296,772 7420 38.8% 0.91 [0.85, 0.98] Vettoregeneity: Chi* = 55.0, df = 8 (P < 0.00001); i* = 88%		34,492	1,329	11.5%	0.92 [0.80, 1.06]	•
Survise's Health Study - Lin 2007 66,630 324 ACC - Iso 2007 - M 39,486 534 3.3% 0.75 [0.38, 0.77] ACC - Iso 2007 - F 54,325 396 2.2% 105 [0.77, 1.44] Migrant Study - Hjartaker 2015 9,964 2,485 355 2.2% 0.35 [0.26, 0.47] 1.226 1.28 2.2% 0.35 [0.26, 0.47] 1.230 1.26 1.23 [0.59, 1.13] 1.25W - Blekkenhorst 2017 1.226 1.28 2.5% 0.35 [0.26, 0.47] 1.29 1.26 1.28 2.5% 0.31 [0.57, 0.35] 1.26 1.28 1.23 [0.57, 0.35] 1.26 1.28 1.23 [0.57, 0.35] 1.26 1.245 1.23 [0.46, 0.38] 1.23 [0.57, 0.35] 1.26 1.245 1.23 [0.46, 0.38] 1.23 [0.57, 0.35] 1.26 1.245 1.23 [0.46, 0.38] 1.23 [0.57, 0.35] 1.26 1.245 1.23 [0.46, 0.38] 1.23 [0.47, 1.03] 1.25 1.26 1.26 1.245 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.23 [0.46, 0.38] 1.245 1.245 1.23 (0.46, 0.38] 1.245 1.245 1.34 [0.46, 3.85] 2.245 (0.91 [0.65, 1.02] 1.25 1						
hurses' Health Study - Lin 2007 66,630 324 0.4% 0.65 [0.30, 1.42] ACC - iso 2007 - M 39,486 534 3.3% 0.75 [0.58, 0.97] ACC - iso 2007 - F 54,325 396 2.2% 1.05 [0.77, 1.43] ACC - iso 2007 - F 54,325 396 2.2% 1.05 [0.77, 1.44] Afgrant Study - Hjartaker 2015 9.964 2.386 4.6% 1.23 [0.99, 1.13] USAW MS - Mink Center - Mori 2018 - M 40,642 1.192 2.2% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] ubtotal [95% CI) 296,772 7,420 38.8% 0.91 [0.85, 0.98] ieterscenetic; Ch ² = 6.5.0, df = 8 (P < 0.00001); P = 88%	est for overall effect: Z = 1.14 (P = 0.25)					
ACC - iso 2007 - M 39,486 534 3.3% 0.75 [0.58,097] wa WH5 - Mink 2007 34,492 1,329 15.6% 1.09 [0.97, 1.23] ACC - iso 2007 - F 54,325 396 2.2% 1.05 [0.77, 1.44] Aligrant Study - Hjartaker 2015 9.964 2,386 4.6% 1.23 [0.99, 1.53] mixian Nutrition - Wang 2016 2,445 355 2.2% 0.35 [0.26, 0.47] apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 0.95] ubtotal [95% C] 296,772 7,420 38.8% 0.91 [0.85, 0.98] ricen leafy wford Vegetarian - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] MXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] eath Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.66, 1.10] ACC - iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - T 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - T 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - T 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - T 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - iso 2007 - T 43,850 617 5.6% 0.85 [0.69, 1.06] Ubtotal (95% C] 148,133 4,591 25.7% 0.86 [0.78, 0.94] eterogenetic; Ch ² = 4.47, df = 6 [P = 0.61]; h ² = 0% est for overall effect: 2 = 3.25 (P = 0.001) omatoes ACC - iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - iso 2007 - tomatoes - F 56,947 379 2.9% 0.90 [0.67, 1.20] Mitotal (95% C] 175,08 3,557 15.6% 0.92 [0.76, 1.12] Ubtotal (95% C] 175,08 3,557 15.6% 0.92 [0.76, 1.12] Ubtotal (95% C] 175,08 3,557 15.6% 0.92 [0.76, 1.12] Ubtotal (95% C] 175,08 3,557 15.6% 0.92 [0.76, 1.12] Ubtotal (95% C] 175,08 3,557 15.6% 0.92 [0.76, 1.12] Ubtotal (95% C] 175,08 3,557 15.6% 0.92 [0.82, 1.04] eterogeneity: Ch ² = 1.35 (P = 0.63); h ² = 0% est for ouverall effect: Z = 1.35 (P = 0.63	ruciferous					
www.WHS - Mink 2007 34,492 1,329 15.6% 1.09 [0.97, 1.23] ACC - Iso 2007 - F 54,325 396 2.2% 1.05 [0.77, 1.44] Ingrant Study - Hjartaker 2015 9,964 2,386 4.6% 1.23 [0.99, 1.53] Invian Nutrition - Wang 2016 2,445 355 2.2% 0.81 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] ubtotal (95% CI) 296,772 7,420 38.8% 0.91 [0.85, 0.98] veteregeneity: Ch ² = 65.50, df = 8 (P < 0.00001); P = 68%	Iurses' Health Study - Lin 2007	66,630	324	0.4%	0.65 [0.30, 1.42]	
ACC - Iso 2007 - F Sq. 325 396 2.2% 1.05 [0.77, 1.44] Migrant Study - Hjartaker 2015 9.964 2.386 4.6% 1.23 [0.99 1.53] Tixdam Nutrition - Wang 2016 2.445 355 2.2% 0.38 [0.59, 1.11] TSAW - Blekkenhorst 2017 1,226 128 2.5% 0.38 [0.57, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.37 [0.57, 0.95] Subtotal (95% CI) 296,772 7,420 38.8% 0.91 [0.85, 0.98] Test for overall effect: 2 = 2.45 (P = 0.000); P = 88% Test for overall effect: 2 = 2.45 (P = 0.01) Sireen leafy DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] Migrant Study - Hjartaker 2015 9.964 2.386 6.9% 0.38 [0.66, 1.10] ACC - Iso 2007 - F 59,809 420 3.3% 0.87 [0.71, 1.06] Migrant Study - Hjartaker 2015 9.964 2.386 6.9% 0.93 [0.78, 0.94] Heterogeneity: Ch ² = 4.47, df = 6 (P = 0.61); P = 0% Test for overall effect: Z = 3.25 (P = 0.01) Tomatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.90 [0.67, 1.20] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.22] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.12] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.22] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.12] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.12] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.12] Migrant Study - Hjartaker 2015 9.964 2.386 5.6% 0.92 [0.76, 1.12] Migrant S	ACC - Iso 2007 - M	39,486	534	3.3%	0.75 [0.58, 0.97]	
ACC - Iso 2007 - F 54,325 396 2.2% 1.05 [0.77, 1.44] Aligrant Study - Hjartaker 2015 9,964 2,386 4.6% 1.23 [0.99, 1.53] invian Nutrition - Wang 2016 2,445 355 2.2% 0.38 [0.59, 1.11] USAW - Blekkenhorst 2017 1,226 128 2.5% 0.35 [0.26, 0.47] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.37 [0.57, 0.95] ubtotal (95% CI) 296,772 7,420 38.8% 0.91 [0.85, 0.98] Heterogeneity: Ch ² = 65.50, df = 8 (P < 0.00001); l ² = 88% est for overall effect: $Z = 2.45$ (P = 0.01) ireen leafy XiCrd Vegetarian - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] XiCrd Vegetarian - Mann 1997 10,802 64 0.2% 0.85 [0.66, 1.10] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Aligrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 0.94] Heterogeneity: Ch ² = 4.7, df = 6 (P = 0.61); l ² = 0% est for overall effect: $Z = 3.25$ (P = 0.001) a 48,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Ch ² = 4.7, df = 6 (P = 0.61); l ² = 0% est for overall effect: $Z = 3.25$ (P = 0.001) a 42,575 0.96 (0.77, 1.02] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.92 [0.78, 0.94] Heterogeneity: Ch ² = 4.7, df = 6 (P = 0.61); l ² = 0% est for overall effect: $Z = 3.25$ (P = 0.03) a 41,547 568 4.6% 0.85 [0.69, 1.06] Jutotal (95% CI) 175,088 3,657 15.6% 0.92 [0.76, 1.20] Jigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.20] Jigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.20] Jigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.20] Jigrant Study - Hjartaker 2015 9,964 2,385 5.6% 0.92 [0.76, 1.12] Jutotal (95% CI) 175,088 3,657 15.6% 0.92 [0.76, 1.12] Jutotal (95% CI) 175,088 3,657 15.6% 0.92 [0.76, 1.12] Jutotal (95% CI) 175,088 3,657 15.6% 0.92 [0.76, 1.12] Jigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.20] Jigrant Study - Hjartaker 2015 9,964 2,385 5.6% 0.92 [0.76, 1.12] Jutotal (95% CI) 175,088 3,657 15.6% 0.92 [0.82, 1.04] He	owa WHS - Mink 2007		1,329	15.6%	1.09 [0.97, 1.23]	+ - -
Aligrant Study - Hjartaker 2015 9,964 2,386 4,6% 1.23 [0.99, 1.53] inxian Nutrition - Wang 2016 2,445 355 2,2% 0.81 [0.59, 1.11] SLAW - Blekkenhorst 2017 1,2,25 128 2,5% 0.35 [0.26, 0.47] apan Public Health Center - Mori 2018 - M 40,642 1,192 4,6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3,3% 0.73 [0.57, 0.95] ubtotal (95% C) 296,772 7,420 38.8% 0.91 [0.85, 0.98] teterogeneity: Ch ² = 65,50, df = 8 (P < 0.0001); l ² = 88% 'est for overall effect: Z = 2.45 (P = 0.01) Streen leafy Mord Vegetarian - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] NXCHCK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] teath Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.61, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.02] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] digrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] ubtotal (95% C) 148,133 4,591 25.7% 0.86 [0.66, 1.00] ACC - Iso 2007 - m 41,547 568 4.6% 0.85 [0.69, 1.06] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.7, 1.02] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.05 [0.67, 1.00] Afgrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.7, 1.02] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.05 [0.67, 1.00] Afgrant Study - Hjartaker 2015 9,964 2,386 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C) 15.9% 3,657 15.6% 0.92 [0.76, 1.12] ubtotal (95% C	ACC - Iso 2007 - F					
Inixian Nutrition - Wang 2016 2,445 355 2,2% 0.81 [0.59, 1.11] LSAW - Blekkenhorst 2017 1,226 128 2,5% 0.35 [0.26, 0.47] apan Public Health Center - Mori 2018 - K 40,642 1,192 4,6% 0.88 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3,3% 0.73 [0.57, 0.95] uibtotal (95% C) 296,772 7,420 38.8% 0.91 [0.85, 0.98] teterageneity: Ch ² = 4,56,0 df = 8 (P < 0.00001); P = 88% 'est for overall effect: Z = 2.45 (P = 0.01) Sreen leafy DxCrHCK - Whiteman 1999 10,522 144 1,3% 0.63 [0.42, 0.95] teath Food Shoppers - Appleby 2002 10,741 605 6,9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3,3% 0.78 [0.71, 1.06] digrant Study - Hjartaker 2015 9,964 2,386 6,9% 0.98 [0.76, 1.11] indian Nutrition - Wang 2016 2,445 355 1,4% 0.72 [0.49, 1.06] iubtotal (95% C) 1 148,133 4,591 25.7% 0.86 [0.78, 0.94] teterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); I ² = 0% 'est for overall effect: Z = 3.25 (P = 0.001) 'omatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.05 [0.78, 0.94] teterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); I ² = 0% 'est for overall effect: Z = 3.25 (P = 0.001) 'omatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 0.07 [0.67, 1.20] uibtotal (95% C) 1 175,088 3,657 15.6% 0.92 [0.67, 1.20] uibtotal (95% C) 1 175,088 3,657 15.6% 0.92 [0.82, 1.04] teterogeneity: Chi ² = 1.32 (f = 3 (P = 0.63); I ² = 0% 'est for overall effect: Z = 1.35 (P = 0.18) 'est for overall effect: Z = 1.35 (P = 0.02), I ² = 61.8%						
15AW - Blekkenhorst 2017 1,226 128 2.5% 0.35 0.26, 0.47] apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 77.6 3.3% 0.73 [0.57, 0.95] subtotal (95% Cl) 296,772 7,420 38.8% 0.91 [0.85, 0.98] Vestore regeneity: Chi ² = 65.50, df = 8 (P < 0.00001); P = 88%						
apan Public Health Center - Mori 2018 - M 40,642 1,192 4.6% 0.83 [0.67, 1.03] apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] Heterogeneity: Chi ² = 65.50, df = 8 (P < 0.00001); l ² = 88% Fest for overall effect: Z = 2.45 (P = 0.01) Sircen leafy DXCHECK - Whiteman 1997 10,802 64 0.2% 1.34 [0.46, 3.85] DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] Leatth Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Jigrant Study - Hjartaker 2015 9.964 2,386 6.9% 0.93 [0.78, 0.41] Letterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% Lett for overall effect: Z = 3.25 (P = 0.001) Tomatees ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Jurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Jigrant Study - Jin 2007 1 59,964 2,386 5.6% 0.92 [0.76, 1.12] Jubtotal (95% CI) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Letterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Lett for overall effect: Z = 1.35 (P = 0.08) Test for overall effect: Z = 1.38, df = 5 (P = 0.02), l ² = 61.8%						
apan Public Health Center - Mori 2018 - F 47,562 776 3.3% 0.73 [0.57, 0.95] Jubtotal (95% CI) 296,772 7,420 38.8% 0.91 [0.85, 0.98] Heterogeneity: Chi ² = 65.50, df = 8 (P < 0.00001); l ² = 88% 'est for overall effect: Z = 2.45 (P = 0.01) Sireen leafy Sireen le	apan Public Health Center - Mori 2018 - M		1,192	4.6%		
Heterogeneity: $Ch^2 = 65.50$, df = 8 (P < 0.00001); I ² = 88% Sereen leafy Dxford Vegetarian - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] lealth Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] digrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] vibutotal (95% CI) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Viborse' Heatth Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] vibrase' Heatth Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] vibrase' Heatth Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] vibrase' Kit or verall effect: $z = 1.35$ (P = 0.63); I ² = 0% 175,088 3,657 15.6% 0.92 [0.	apan Public Health Center - Mori 2018 - F	47,562	776	3.3%	0.73 [0.57, 0.95]	
Heterogeneity: Chi ² = 65.50, df = 8 (P < 0.00001); I ² = 88% Fest for overall effect: Z = 2.45 (P = 0.01) Sreen leafy Dxford Vegetarian - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] Health Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Vilgrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] Jixinan Nutrifron - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] Subtotal (95% CI) 148,133 4,551 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); I ² = 0% 25.7% 0.86 [0.78, 0.94] 4.00 Fest for overall effect: Z = 3.25 (P = 0.001) 107 [0.82, 1.41] 4.00 4.00 Marce - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] 4.00 ACC - Iso 2007 - tomatoes - F 56,947	Subtotal (95% CI)	296,772	7,420	38.8%	0.91 [0.85, 0.98]	▲
Test for overall effect: Z = 2.45 (P = 0.01) Sireen leafy Dxford Vegetarian - Mann 1997 10,802 64 0.2% 1.34 [0.46, 3.85] DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] lealth Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Wigrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] vibutotal (95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] rest for overall effect: Z = 3.25 (P = 0.001) 148,133 4,591 25.7% 0.86 [0.78, 0.94] omates	leterogeneity: Chi ² = 65.50, df = 8 (P < 0.0000	01); I ² = 88%				•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] Health Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Wigrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] Inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] Subtotal (95% CI) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% Test for overall effect: Z = 3.25 (P = 0.001) Tomatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Nurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Wigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Subtotal (95% CI) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Test for overall effect: Z = 1.35 (P = 0.18) Test for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%	Green leafy					
DXCHECK - Whiteman 1999 10,522 144 1.3% 0.63 [0.42, 0.95] lealth Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Migrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] ubtotal (95% CI) 148,133 4,591 25.7% 0.86 [0.78, 0.94] leterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% est for overall effect: Z = 3.25 (P = 0.001) comatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Uurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] digrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] ubtotal (95% CI) 175,088 3,657 15.6% 0.92 [0.82, 1.04] leterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% est for overall effect: Z = 1.35 (P = 0.18) est for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%		10,802	64	0.2%	1.34 [0.46, 3.85]	
Health Food Shoppers - Appleby 2002 10,741 605 6.9% 0.85 [0.71, 1.02] ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Algrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.72 [0.49, 1.06] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] iubtotal [95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0%						
ACC - Iso 2007 - F 59,809 420 3.3% 0.85 [0.66, 1.10] ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Aigrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] isubtotal (95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% rest for overall effect: Z = 3.25 (P = 0.001) Tomatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Aurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Aigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Jubtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Test for overall effect: Z = 1.35 (P = 0.18) Test for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%						
ACC - Iso 2007 - M 43,850 617 5.6% 0.87 [0.71, 1.06] Aligrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] ubtotal (95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] leterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% rest for overall effect: Z = 3.25 (P = 0.001) and the set for overall effect: Z = 3.25 (P = 0.001) and the set for overall effect: S = 0,007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Jurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Aligrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] ubtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] leterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% rest for overall effect: Z = 1.35 (P = 0.18) rest for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%						
Aligrant Study - Hjartaker 2015 9,964 2,386 6.9% 0.93 [0.78, 1.11] inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] iubtotal (95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% ************************************						
inxian Nutrition - Wang 2016 2,445 355 1.4% 0.72 [0.49, 1.06] Subtotal (95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% 100 [0.57, 0.94] 100 [0.57, 0.94] Frest for overall effect: Z = 3.25 (P = 0.001) 100 [0.57, 1.20] 100 [0.57, 1.20] Fromatoes 41,547 568 4.6% 0.85 [0.69, 1.06] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.90 [0.57, 1.20] Virgers Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.57, 1.20] Vigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% 15.6% 0.92 [0.82, 1.04] 15 Fest for overall effect: Z = 1.35 (P = 0.18) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Test for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8% 15 16 16 16						
Subtotal (95% Cl) 148,133 4,591 25.7% 0.86 [0.78, 0.94] Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% rest for overall effect: Z = 3.25 (P = 0.001)						-+
Heterogeneity: Chi ² = 4.47, df = 6 (P = 0.61); l ² = 0% rest for overall effect: Z = 3.25 (P = 0.001) romatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Jurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Jigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Jubtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% rest for overall effect: Z = 1.35 (P = 0.18)						
Test for overall effect: Z = 3.25 (P = 0.001) Tomatoes ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Nurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Wigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Jubtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Test for overall effect: Z = 1.35 (P = 0.18) Test for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%			.,			•
ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Aurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Migrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Subtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Fest for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%						
ACC - Iso 2007 - tomatoes - F 56,947 379 2.9% 1.07 [0.82, 1.41] ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Aurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Migrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Subtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Fest for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%	Tomatoes					
ACC - Iso 2007 - tomatoes - M 41,547 568 4.6% 0.85 [0.69, 1.06] Nurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] Vigrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Subtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% Test for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%		56.947	379	2,9%	1.07 [0.82, 1.41]	
Nurses' Health Study - Lin 2007 66,630 324 2.5% 0.90 [0.67, 1.20] /ligrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] Subtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% est for overall effect: Z = 1.35 (P = 0.18) est for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%						-
/ligrant Study - Hjartaker 2015 9,964 2,386 5.6% 0.92 [0.76, 1.12] subtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% • • 'est for overall effect: Z = 1.35 (P = 0.18) • • 'est for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8% • •						
Subtotal (95% Cl) 175,088 3,657 15.6% 0.92 [0.82, 1.04] Heterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% • • • 'est for overall effect: Z = 1.35 (P = 0.18) • • • 'est for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8% • • •						
leterogeneity: Chi ² = 1.72, df = 3 (P = 0.63); l ² = 0% est for overall effect: Z = 1.35 (P = 0.18) est for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%						
Test for overall effect: Z = 1.35 (P = 0.18) Test for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%			3,057	13.0%	0.52 [0.62, 1.04]	•
est for subgroup differences: Chi ² = 13.08, df = 5 (P = 0.02), l ² = 61.8%		- 070				
		= 5 (P = 0.02), I ² =	61.8%			
						0.2 0.5 1 2
Lower Risk Higher Risk						Lower Risk Higher Risk

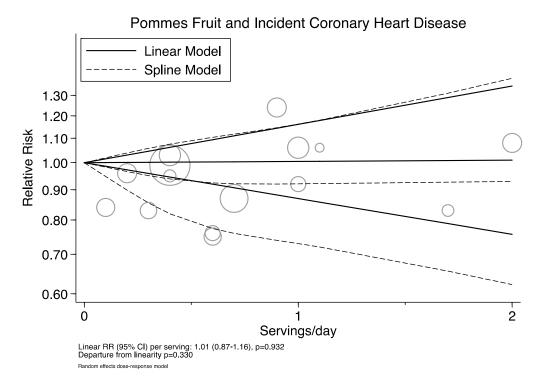
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	IV, Random, 95% CI
Allium Finish Mobile Clinic Health - Knekt 1996 - M	2,748	324	3.6%	0.74 [0.53, 1.03]	
Finish Mobile Clinic Health - Knekt 1996 - F	2,385	149	2.5%	0.50 [0.30, 0.83]	
Nurses' Health Study - Lin 2007	66,630	324	2.5%		
Linxian Nutrition - Wang 2016		355	4.0%	0.90 [0.55, 1.46]	
PLSAW - Blekkenhorst 2017	2,445			0.98 [0.74, 1.29]	
	1,226	128	3.2%	0.26 [0.18, 0.38]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.27; Chi ² = 32.86, df = -	75,434	1,280	15.8%	0.61 [0.38, 1.00]	
Test for overall effect: Z = 1.95 (P = 0.05)	4 (P < 0.00001); 1 -	- 00%			
Carrots					
Oxford Vegetarian - Mann 1997 - carrots	10,802	64	1.6%	0.76 [0.37, 1.58]	
Subtotal (95% CI)	10,802	64	1.6%	0.76 [0.37, 1.58]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.73 (P = 0.47)					
Celery					
Iowa WHS - Mink 2007 - celery	34,492	1,329	5.0%	0.92 [0.80, 1.06]	
Subtotal (95% CI)	34,492	1,329	5.0%	0.92 [0.80, 1.06]	•
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.14 (P = 0.25)					
Cruciferous					
JACC - Iso 2007 - M	39,486	534	4.2%	0.75 [0.58, 0.97]	— • —
Iowa WHS - Mink 2007	34,492	1,329	5.1%	1.09 [0.97, 1.23]	+
JACC - Iso 2007 - F	54,325	396	3.7%	1.05 [0.77, 1.44]	
Nurses' Health Study - Lin 2007	66,630	324	1.4%	0.65 [0.30, 1.42]	
Migrant Study - Hjartaker 2015	9,964	2,386	4.5%	1.23 [0.99, 1.53]	⊢ •−
Linxian Nutrition - Wang 2016	2,445	355	3.7%	0.81 [0.59, 1.11]	
PLSAW - Blekkenhorst 2017	1,226	128	3.9%	0.35 [0.26, 0.47]	
Japan Public Health Center - Mori 2018 - F	47,562	776	4.2%	0.73 [0.57, 0.95]	_ _
Japan Public Health Center - Mori 2018 - M	40,642	1,192	4.5%	0.83 [0.67, 1.03]	
Subtotal (95% CI)	296,772	7,420	35.2%	0.81 [0.64, 1.02]	
Heterogeneity: Tau ² = 0.11; Chi ² = 65.50, df =	8 (P < 0.00001); l ² =	88%			
Test for overall effect: Z = 1.79 (P = 0.07)					
Green leafy					
Oxford Vegetarian - Mann 1997	10,802	64	0.9%	1.34 [0.46, 3.85]	
OXCHECK - Whiteman 1999	10,522	144	3.0%	0.63 [0.42, 0.95]	
Health Food Shoppers - Appleby 2002	10,741	605	4.8%	0.85 [0.71, 1.02]	
JACC - Iso 2007 - F	59,809	420	4.2%	0.85 [0.66, 1.10]	+
JACC - Iso 2007 - M	43,850	617	4.6%	0.87 [0.71, 1.06]	+
Migrant Study - Hjartaker 2015	9,964	2,386	4.8%	0.93 [0.78, 1.11]	-+
Linxian Nutrition - Wang 2016	2,445	355	3.2%	0.72 [0.49, 1.06]	
Subtotal (95% CI)	148,133	4,591	25.4%	0.86 [0.78, 0.94]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 4.47, df = 6 Test for overall effect: Z = 3.25 (P = 0.001)	(P = 0.61); I ² = 0%				
Tomatoes					
Nurses' Health Study - Lin 2007	66,630	324	3.9%	0.90 [0.67, 1.20]	
JACC - Iso 2007 - tomatoes - M	41,547	568	4.5%	0.85 [0.69, 1.06]	_ _
JACC - Iso 2007 - tomatoes - F	56,947	379	4.0%	1.07 [0.82, 1.41]	_
Migrant Study - Hjartaker 2015	9,964	2,386	4.6%	0.92 [0.76, 1.12]	_ _
Subtotal (95% CI)	175,088	3,657	17.0%	0.92 [0.82, 1.04]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 1.72, df = 3		0,001	,	[0.01, 1.04]	•
Test for overall effect: Z = 1.35 (P = 0.18)		•			
Test for subgroup differences: Chi ² = 4.09, df =	= 5 (P = 0.54), I ² = 0	%			0.2 0.5 1 2
					Lower Risk Higher Risk

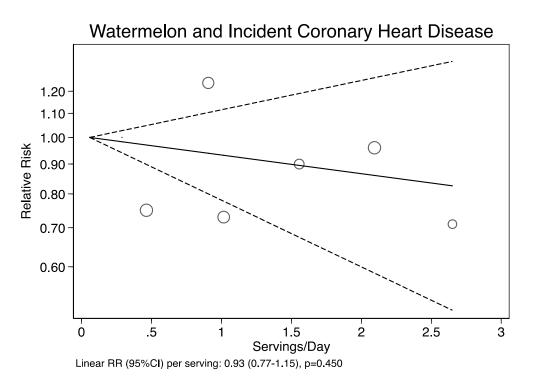

Figure S89. Relation between sources of vegetables and CHD mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

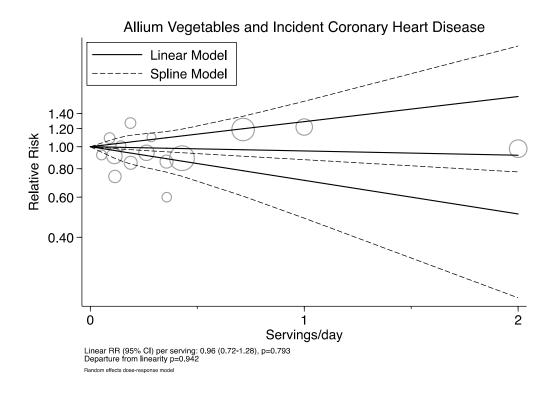

Figure S90. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

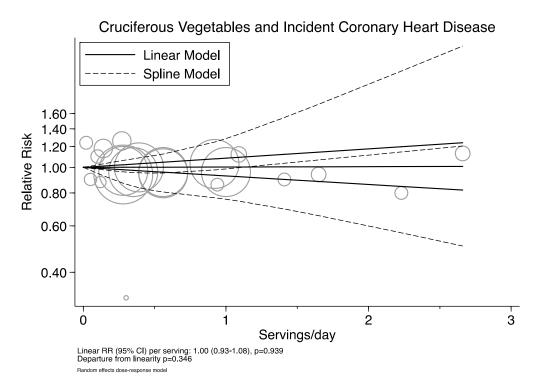

Figure S91. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

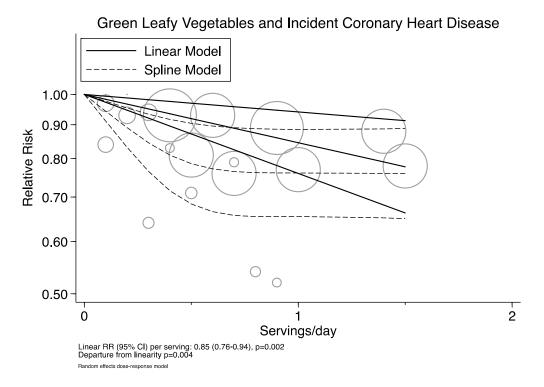

Figure S92. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

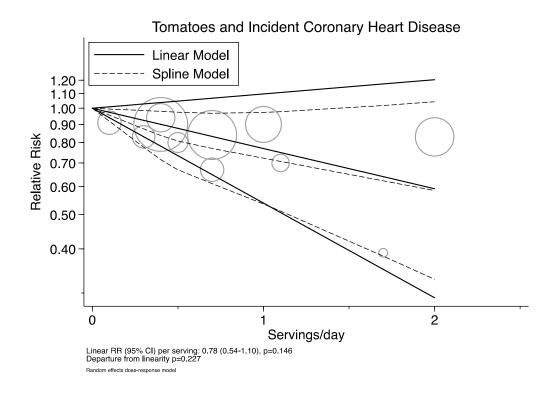

Figure S93. Linear and cubic-spline dose-response relation between increasing berries intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

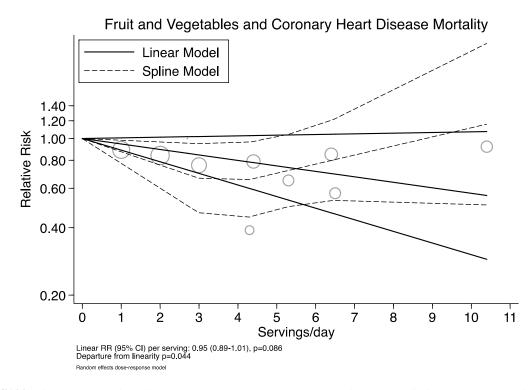

Figure S94. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

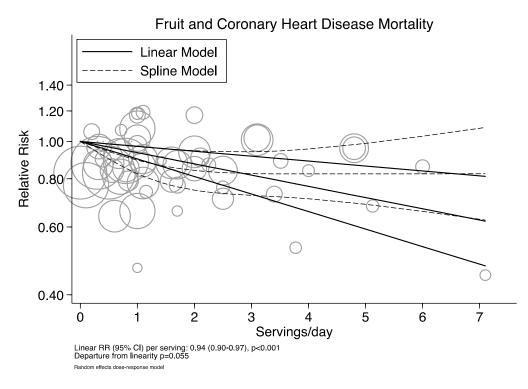

Figure S95. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

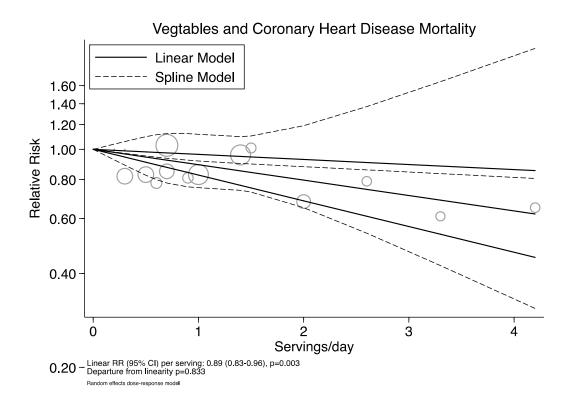

Figure S96. Linear and cubic-spline dose-response relation between increasing pommes intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

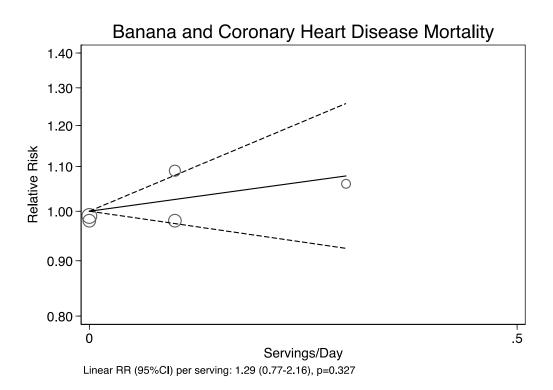

Figure S97. Linear dose-response relation between increasing watermelon intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

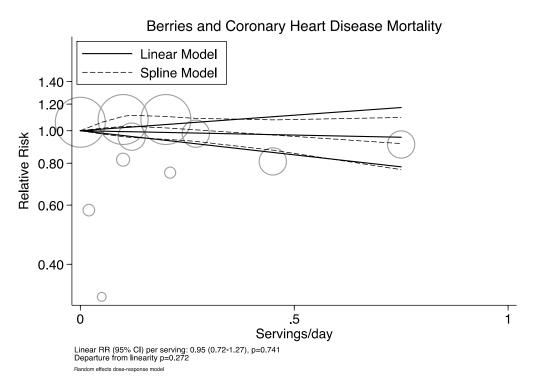

Figure S98. Linear and cubic-spline dose-response relation between increasing intake of allium vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

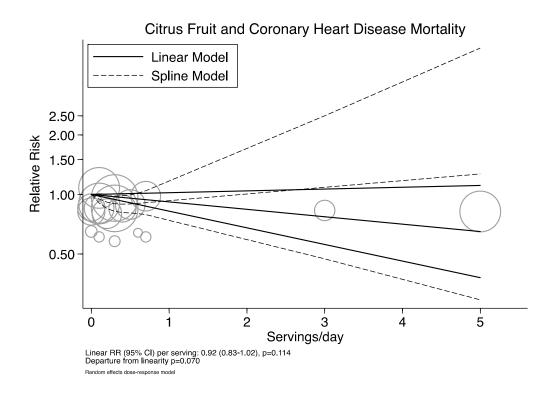

Figure S99. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

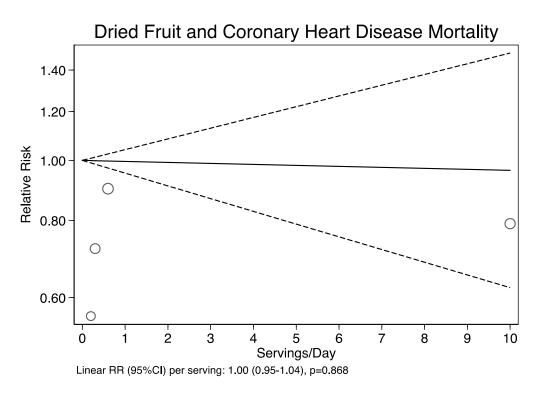

Figure S100. Linear and cubic-spline dose-response relation between increasing intake of green leafy vegetables and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

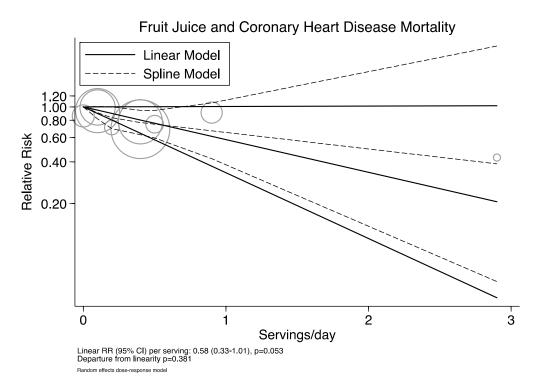

Figure S101. Linear and cubic-spline dose-response relation between increasing tomato intake and incidence of coronary heart disease. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

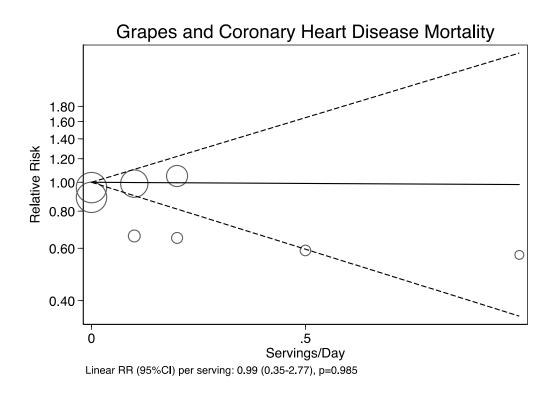

Figure S102. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

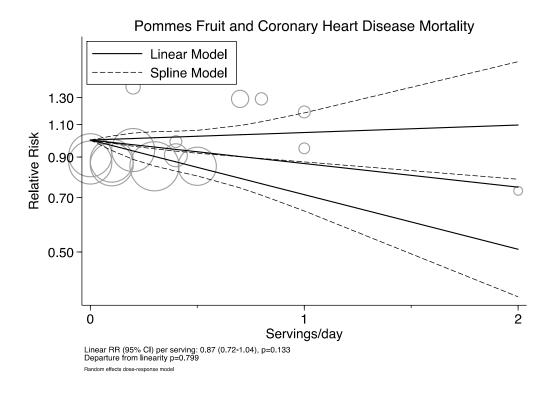

Figure S103. Linear and cubic-spline dose-response relation between increasing fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

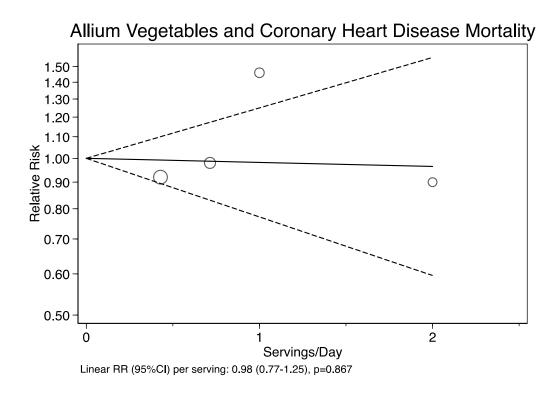

Figure S104. Linear and cubic-spline dose-response relation between increasing intake of vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

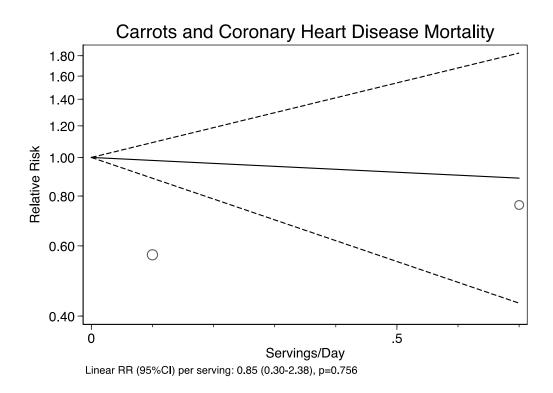

Figure S105. Linear dose-response relation between increasing banana intake and cardiovascular disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

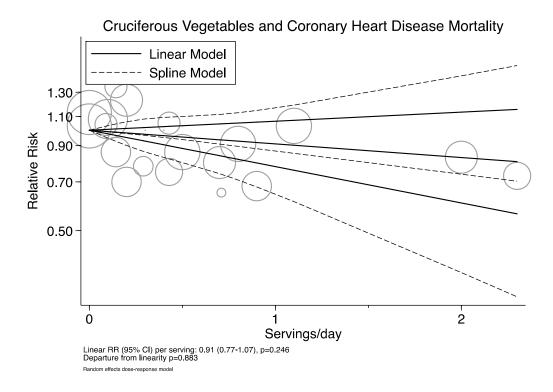

Figure S106. Linear dose-response relation between increasing berries intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

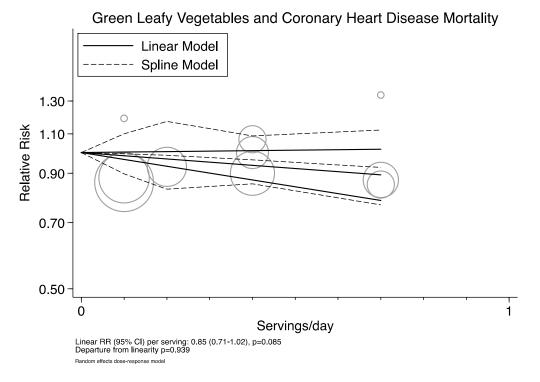

Figure S107. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S108. Linear and cubic-spline dose-response relation between increasing dried fruit intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S109. Linear and cubic-spline dose-response relation between increasing fruit juice intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S110. Linear dose-response relation between increasing grape intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S111. Linear and cubic-spline dose-response relation between increasing pommes intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S112. Linear dose-response relation between increasing intake of allium vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

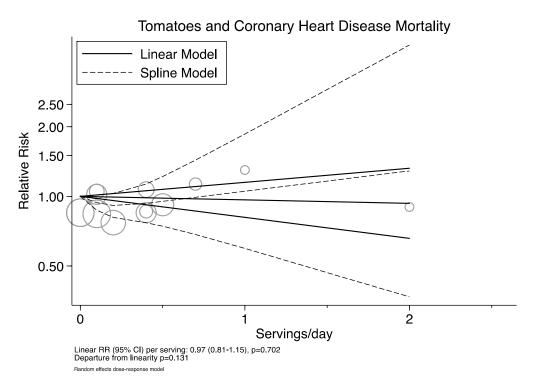

Figure S113. Linear dose-response relation between increasing intake of carrots and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S114. Linear and cubic-spline dose-response relation between increasing intake of cruciferous vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S115. Linear dose-response relation between increasing intake of green leafy vegetables and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S116. Linear dose-response relation between increasing tomato intake and coronary heart disease mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND STROKE INCIDENCE

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Framingham - Gillman 1995	832	97	1.6%	0.61 [0.36, 1.04]	
Nurses' Health Study - Joshipura 1999	75,596	204	3.7%	0.74 [0.52, 1.05]	
HPFS - Joshipura 1999	38,683	336	1.9%	0.61 [0.38, 1.00]	
National Health & Nutrition - Bazzano 2002	9,608	888	7.1%	0.73 [0.57, 0.95]	_
ARIC - Steffen 2003	11,940	214	1.5%	0.94 [0.54, 1.63]	
Danish Diet Cancer Health - Johnsen 2003	54,506	266	2.5%	0.72 [0.47, 1.11]	
MORGEN - Oude Griep 2011 (a)	20,069	233	3.0%	0.97 [0.66, 1.44]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	33.3%	0.87 [0.77, 0.98]	
Japan Diabetes Complications Study - Tanaka 2013	1,414	68	0.9%	0.58 [0.29, 1.18]	
Rotterdam - Bos 2014	3,750	545	2.1%	1.04 [0.65, 1.67]	
CCHS - Manuel 2015 - F	44,776	842	12.0%	0.70 [0.57, 0.85]	_
CCHS - Manuel 2015 - M	37,483	709	9.9%	0.67 [0.54, 0.83]	_
PREDIMED- Buil-Cosiales 2016	7,216	169	1.1%	0.73 [0.38, 1.40]	
PURE - Miller 2017	135,335	2,234	4.7%	0.89 [0.65, 1.21]	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	14.8%	1.06 [0.89, 1.27]	- +
Total (95% CI)	532,667	11,091	100.0%	0.82 [0.77, 0.88]	◆
Heterogeneity: Chi ² = 22.28, df = 14 (P = 0.07); l ² = 379	6				0.5 0.7 1 1.5 2
Test for overall effect: Z = 5.61 (P < 0.00001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Framingham - Gillman 1995	832	97	3.0%	0.61 [0.36, 1.04]	· · · · · · · · · · · · · · · · · · ·
Nurses' Health Study - Joshipura 1999	75,596	204	5.8%	0.74 [0.52, 1.05]	
HPFS - Joshipura 1999	38,683	336	3.5%	0.61 [0.38, 1.00]	
National Health & Nutrition - Bazzano 2002	9,608	888	9.0%	0.73 [0.57, 0.95]	
ARIC - Steffen 2003	11,940	214	2.9%	0.94 [0.54, 1.63]	
Danish Diet Cancer Health - Johnsen 2003	54,506	266	4.3%	0.72 [0.47, 1.11]	
MORGEN - Oude Griep 2011 (a)	20,069	233	5.0%	0.97 [0.66, 1.44]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	16.6%	0.87 [0.77, 0.98]	
Japan Diabetes Complications Study - Tanaka 2013	1,414	68	1.8%	0.58 [0.29, 1.18]	
Rotterdam - Bos 2014	3,750	545	3.7%	1.04 [0.65, 1.67]	
CCHS - Manuel 2015 - F	44,776	842	11.8%	0.70 [0.57, 0.85]	_
CCHS - Manuel 2015 - M	37,483	709	10.7%	0.67 [0.54, 0.83]	
PREDIMED- Buil-Cosiales 2016	7,216	169	2.1%	0.73 [0.38, 1.40]	
PURE - Miller 2017	135,335	2,234	6.9%	0.89 [0.65, 1.21]	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	12.9%	1.06 [0.89, 1.27]	
Total (95% CI) [Random Effects]	532,667	11,091	100.0%	0.80 [0.73, 0.89]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 22.28, df = 14 (P =	0.07); l ² = 37%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 4.30 (P < 0.0001)					0.5 0.7 1 1.5 2
					Lower Risk Higher Risk

Figure S117. Relation between total fruit and vegetables intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT AND STROKE INCIDENCE

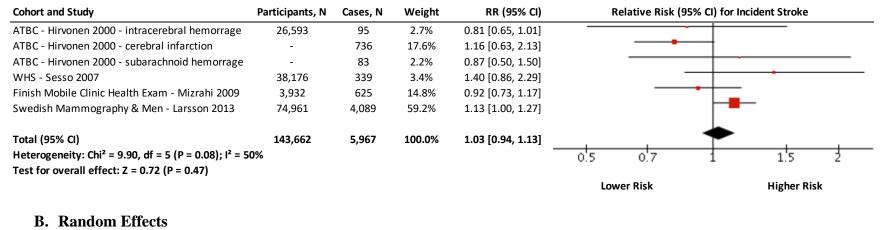
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl)	or Incident Stroke
Framingham - Gillman 1995	832	97	0.4%	0.70 [0.37, 1.31]		
Zutphen Elderly Study - Keli 1996	552	42	0.2%	0.52 [0.21, 1.31]		
HPFS - Joshipura 1999	38,683	366	0.6%	0.68 [0.41, 1.11]		
Nurses' Health Study - Joshipura 1999	75,596	204	1.3%	0.69 [0.49, 0.98]		
Shibata Study - Yokoyama 2000 - M	880	91	0.6%	1.14 [0.68, 1.90]		
Shibata Study - Yokoyama 2000 - F	1,241	105	0.5%	0.70 [0.40, 1.21]		_
Danish Diet Cancer Health - Johnsen 2003	54,506	266	0.8%	0.60 [0.38, 0.94]		
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	1.3%	0.84 [0.59, 1.20]		—
ATBC - Larsson 2009 - cerebral infraction	-	2,702	11.3%	0.82 [0.73, 0.92]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	2.8%	0.81 [0.64, 1.03]		
ATBC - Larsson 2009 - subarachnoid hemorrhage	-	196	0.8%	0.80 [0.52, 1.24]		
MONICA Finland - Zhang 2011 (b)	36,686	1,478	4.1%	0.99 [0.81, 1.20]		_
Swedish Mammography & Men - Larsson 2013	74,961	4,089	11.3%	0.87 [0.77, 0.98]		
MONICA Danish - Tognon 2014	1,849	167	1.6%	0.87 [0.64, 1.19]		—
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	2.1%	1.07 [0.82, 1.41]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	1.8%	0.80 [0.60, 1.08]		
China Kadoorie Biobank - Du 2016 - ischemic stroke	451,665	3,523	25.3%	0.75 [0.69, 0.81]	-	
China Kadoorie Biobank-Du 2016 -hemorrhagic stroke	-	14,579	5.0%	0.64 [0.53, 0.76]		
China Kadoorie Biobank - Du 2016 - other	-	11,054	16.2%	0.88 [0.80, 0.97]		
PREDIMED- Buil-Cosiales 2016	7,216	169	0.3%	0.74 [0.35, 1.56]		
PURE - Miller 2017	135,335	2,234	4.1%	0.93 [0.77, 1.13]	_ +	-
Japan Public Health Centre - Yoshizaki 2019	16,498	197	5.0%	0.89 [0.74, 1.06]		
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	2.8%	0.93 [0.74, 1.18]		_
Total (95% Cl)	987,993	43,702	100.0%	0.82 [0.79, 0.85]	•	
Heterogeneity: Chi ² = 33.36, df = 22 (P = 0.06); l ² = 34%					0.2 0.5 1	{
Test for overall effect: Z = 9.77 (P < 0.00001)					0.2 0.0 1	2)
. ,					Lower Risk	Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Framingham - Gillman 1995	832	97	0.8%	0.70 [0.37, 1.31]	
Zutphen Elderly Study - Keli 1996	552	42	0.4%	0.52 [0.21, 1.31]	
HPFS - Joshipura 1999	38,683	366	1.3%	0.68 [0.41, 1.11]	
Nurses' Health Study - Joshipura 1999	75,596	204	2.3%	0.69 [0.49, 0.98]	
Shibata Study - Yokoyama 2000 - M	880	91	1.2%	1.14 [0.68, 1.90]	
Shibata Study - Yokoyama 2000 - F	1,241	105	1.0%	0.70 [0.40, 1.21]	
Danish Diet Cancer Health - Johnsen 2003	54,506	266	1.5%	0.60 [0.38, 0.94]	
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	2.3%	0.84 [0.59, 1.20]	
ATBC - Larsson 2009 - cerebral infraction	-	2,702	9.9%	0.82 [0.73, 0.92]	
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	4.5%	0.81 [0.64, 1.03]	
ATBC - Larsson 2009 - subarachnoid hemorrhage	-	196	1.6%	0.80 [0.52, 1.24]	
MONICA Finland - Zhang 2011 (b)	36,686	1,478	5.7%	0.99 [0.81, 1.20]	_ _
Swedish Mammography & Men - Larsson 2013	74,961	4,089	9.9%	0.87 [0.77, 0.98]	
MONICA Danish - Tognon 2014	1,849	167	2.8%	0.87 [0.64, 1.19]	
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	3.5%	1.07 [0.82, 1.41]	- _
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	3.2%	0.80 [0.60, 1.08]	
China Kadoorie Biobank - Du 2016 - ischemic stroke	451,665	3,523	12.8%	0.75 [0.69, 0.81]	+
China Kadoorie Biobank-Du 2016 -hemorrhagic stroke	-	14,579	6.6%	0.64 [0.53, 0.76]	_ —
China Kadoorie Biobank - Du 2016 - other	-	11,054	11.3%	0.88 [0.80, 0.97]	
PREDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.74 [0.35, 1.56]	
PURE - Miller 2017	135,335	2,234	5.7%	0.93 [0.77, 1.13]	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	6.6%	0.89 [0.74, 1.06]	
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	4.5%	0.93 [0.74, 1.18]	
Total (95% CI) [Random Effects]	987,993	43,702	100.0%	0.83 [0.78, 0.88]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 33.36, df = 22 (P = 0.06	5); I² = 34%			d.	2 0.5 1 2 5
Test for overall effect: Z = 6.30 (P < 0.00001)				U.	.2 0.5 1 2 5
					Lower Risk Higher Risk

Figure S118. Relation between fruit intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND STROKE INCIDENCE

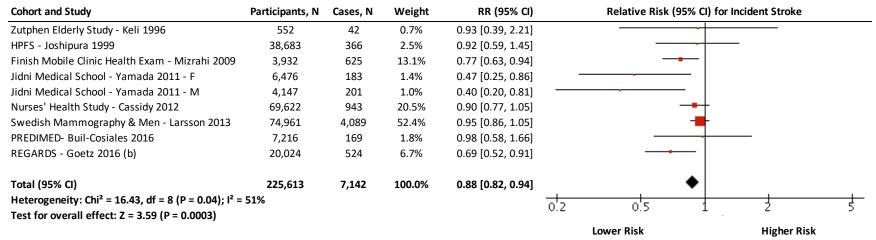
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incide	nt Stroke
Framingham - Gillman 1995	832	97	1.1%	0.61 [0.36, 1.04]		
Zutphen Elderly Study - Keli 1996	552	42	0.4%	0.82 [0.35, 1.94]		_
HPFS - Joshipura 1999	38,683	336	1.5%	0.90 [0.57, 1.41]		
Nurses' Health Study - Joshipura 1999	75,596	204	2.4%	0.89 [0.62, 1.26]		
Shibata Study - Yokoyama 2000 - M	880	91	0.4%	0.33 [0.14, 0.75]		
Shibata Study - Yokoyama 2000 - F	1,241	105	0.2%	0.89 [0.22, 3.64]		
Danish Diet Cancer Health - Johnsen 2003	54,506	266	1.8%	1.00 [0.66, 1.51]		
Miyako Study - Pham 2007	9,651	226	4.0%	1.00 [0.76, 1.32]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	5.5%	1.11 [0.87, 1.40]	_ +•	
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	2.7%	0.80 [0.58, 1.12]		
ATBC - Larsson 2009 - cerebral infraction	26,556	2,702	22.0%	0.75 [0.67, 0.84]		
ATBC - Larsson 2009 - subarachnoid hemorrhage	26,556	196	1.5%	0.62 [0.39, 0.97]		
MONICA Finland - Zhang 2011 (b)	36,686	1,478	7.9%	0.82 [0.67, 1.00]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	22.0%	0.90 [0.80, 1.01]		
MONICA Danish - Tognon 2014	1,849	167	3.1%	0.94 [0.69, 1.29]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	4.0%	0.76 [0.58, 1.00]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	4.0%	0.97 [0.74, 1.28]		
PREDIMED- Buil-Cosiales 2016	7,216	169	0.7%	0.65 [0.34, 1.24]		
PURE - Miller 2017	135,335	2,234	6.6%	1.09 [0.88, 1.36]	_ +	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	7.9%	1.19 [0.97, 1.44]		
Total (95% CI)	564,531	13,607	100.0%	0.88 [0.83, 0.93]	•	
Heterogeneity: Chi ² = 37.99, df = 19 (P = 0.006); i	² = 50%			-	0.2 0.5 1	2 5
Test for overall effect: Z = 4.45 (P < 0.00001)					+	
					Lower Risk	Higher Risk


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident Stroke	
Framingham - Gillman 1995	832	97	2.4%	0.61 [0.36, 1.04]		
Zutphen Elderly Study - Keli 1996	552	42	1.0%	0.82 [0.35, 1.94]		
HPFS - Joshipura 1999	38,683	336	3.1%	0.90 [0.57, 1.41]		
Nurses' Health Study - Joshipura 1999	75,596	204	4.4%	0.89 [0.62, 1.26]		
Shibata Study - Yokoyama 2000 - M	880	91	1.1%	0.33 [0.14, 0.75]		
Shibata Study - Yokoyama 2000 - F	1,241	105	0.4%	0.89 [0.22, 3.64]		
Danish Diet Cancer Health - Johnsen 2003	54,506	266	3.6%	1.00 [0.66, 1.51]		
Miyako Study - Pham 2007	9,651	226	5.9%	1.00 [0.76, 1.32]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	6.9%	1.11 [0.87, 1.40]	.	
ATBC - Larsson 2009 - intracerebral hemorrhage	26,556	383	4.7%	0.80 [0.58, 1.12]	- _	
ATBC - Larsson 2009 - cerebral infraction	26,556	2,702	10.5%	0.75 [0.67, 0.84]	- - -	
ATBC - Larsson 2009 - subarachnoid hemorrhage	26,556	196	3.1%	0.62 [0.39, 0.97]		
MONICA Finland - Zhang 2011 (b)	36,686	1,478	8.0%	0.82 [0.67, 1.00]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	10.5%	0.90 [0.80, 1.01]		
MONICA Danish - Tognon 2014	1,849	167	5.1%	0.94 [0.69, 1.29]		
Malmo Diet Cancer Study- Sonestedt 2015 - F	16,397	-	5.9%	0.76 [0.58, 1.00]		
Malmo Diet Cancer Study - Sonestedt 2015 - M	10,048	-	5.9%	0.97 [0.74, 1.28]		
PREDIMED- Buil-Cosiales 2016	7,216	169	1.7%	0.65 [0.34, 1.24]		
PURE - Miller 2017	135,335	2,234	7.5%	1.09 [0.88, 1.36]	_ _	
Japan Public Health Centre - Yoshizaki 2019	16,498	197	8.0%	1.19 [0.97, 1.44]		
Total (95% Cl) [Random Effects]	564,531	13,607	100.0%	0.89 [0.81, 0.97]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 37.99, df = 19	(P = 0.006); I ² = 50	1%		-		+
Test for overall effect: Z = 2.57 (P = 0.01)					o'.2 o'.5 1 2	5
					Lower Risk Higher Risk	

Figure S119. Relation between intake of vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

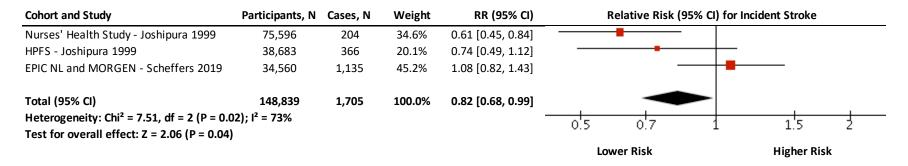
BERRIES AND STROKE INCIDENCE


A. Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incide	nt Stroke
ATBC - Hirvonen 2000 - cerebral infarction	26,593	736	23.40%	0.81 [0.65, 1.01]		
ATBC - Hirvonen 2000 - subarachnoid hemorrage	-	83	6.10%	1.16 [0.63, 2.13]		
ATBC - Hirvonen 2000 - intracerebral hemorrage	-	95	7.20%	0.87 [0.50, 1.50]		
WHS - Sesso 2007	38,176	339	8.70%	1.40 [0.86, 2.29]		•
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	21.70%	0.92 [0.73, 1.17]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	32.80%	1.13 [1.00, 1.27]		
Total (95% CI) [Random Effects]	143,662	5,967	100.0%	1.00 [0.85, 1.18]	-	
Heterogeneity: Tau ² = 0.02; Chi ² = 9.90, df = 5 (P =	= 0.08); l² = 50%					
Test for overall effect: Z = 0.02 (P = 0.99)					0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk

Figure S120. Relation between intake of berries and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CITRUS FRUIT AND STROKE INCIDENCE

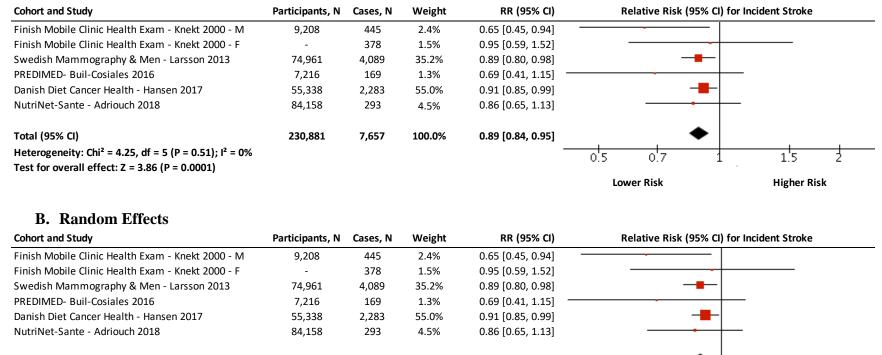


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke	
Zutphen Elderly Study - Keli 1996	552	42	2.3%	0.93 [0.39, 2.21]		
HPFS - Joshipura 1999	38,683	366	7.0%	0.92 [0.59, 1.45]		
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	18.1%	0.77 [0.63, 0.94]		
Jidni Medical School - Yamada 2011 - M	4,147	201	3.3%	0.40 [0.20, 0.81]		
Jidni Medical School - Yamada 2011 - F	6,476	183	4.3%	0.47 [0.25, 0.86]		
Nurses' Health Study - Cassidy 2012	69,622	943	21.0%	0.90 [0.77, 1.05]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	25.2%	0.95 [0.86, 1.05]		
PREDIMED- Buil-Cosiales 2016	7,216	169	5.4%	0.98 [0.58, 1.66]		
REGARDS - Goetz 2016 (b)	20,024	524	13.4%	0.69 [0.52, 0.91]	-	
Total (95% CI) [Random Effects]	225,613	7,142	100.0%	0.82 [0.71, 0.93]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 16.43, df = 8 (I	P = 0.04); I ² = 51%				+	+
Test for overall effect: Z = 2.93 (P = 0.003)					0.2 0.5 1 2	5
					Lower Risk Higher Risk	

Figure S121. Relation between citrus fruit intake and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND STROKE INCIDENCE

A. Fixed Effects


B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Incident Stroke
Nurses' Health Study - Joshipura 1999	75,596	204	34.40%	0.61 [0.45, 0.84]		
HPFS - Joshipura 1999	38,683	366	29.10%	0.74 [0.49, 1.12]		<u> </u>
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	36.50%	1.08 [0.82, 1.43]		
Total (95% CI) [Random Effects]	148,839	1,705	100.0%	0.80 [0.55, 1.15]		
Heterogeneity: Tau ² = 0.08; Chi ² = 7.51, o	df = 2 (P = 0.02); I ²	² = 73%				
Test for overall effect: Z = 1.21 (P = 0.23)				0.5 0.7 :	1 1.5 2
					Lower Risk	Higher Risk

Figure S122. Relation between intake of fruit juice and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND STROKE INCIDENCE

A. Fixed Effects

 Total (95% Cl) [Random Effects]
 230,881

 Heterogeneity: Tau² = 0.00; Chi² = 4.25, df = 5 (P = 0.51); I² = 0%

Test for overall effect: Z = 3.86 (P = 0.0001)

Figure S123. Relation between intake of pommes fruit and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

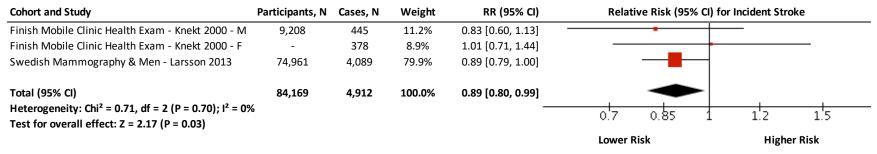
100.0%

0.89 [0.84, 0.95]

0.5

0.7

Lower Risk

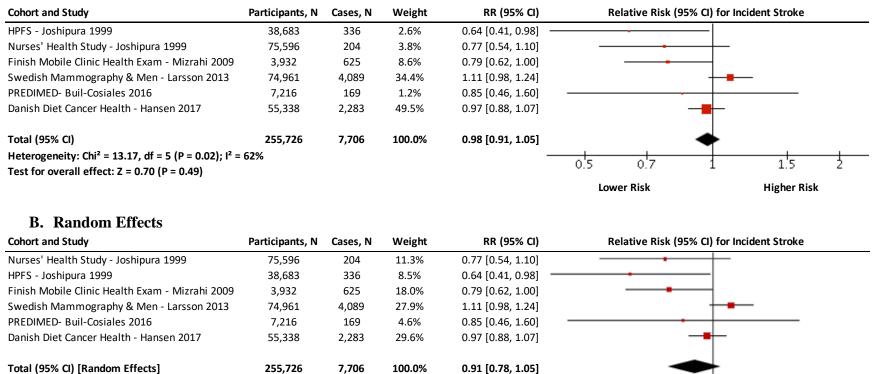

1.5

Higher Risk

7,657

ALLIUM VEGETABLES AND STROKE INCIDENCE

A. Fixed Effects



B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke	
Finish Mobile Clinic Health Exam - Knekt 2000 - M	9,208	445	11.2%	0.83 [0.60, 1.13]		
Finish Mobile Clinic Health Exam - Knekt 2000 - F	-	378	8.9%	1.01 [0.71, 1.44]		
Swedish Mammography & Men - Larsson 2013	74,961	4,089	79.9%	0.89 [0.79, 1.00]		
Total (95% CI) [Random Effects]	84,169	4,912	100.0%	0.89 [0.80 <i>,</i> 0.99]	-	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.71, df = 2 (P	= 0.70); l² = 0%			-		1 5
Test for overall effect: Z = 2.17 (P = 0.03)					0.7 0.85 1 1.2	1.5
					Lower Risk Higher Ris	sk

Figure S124. Relation between intake of allium vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

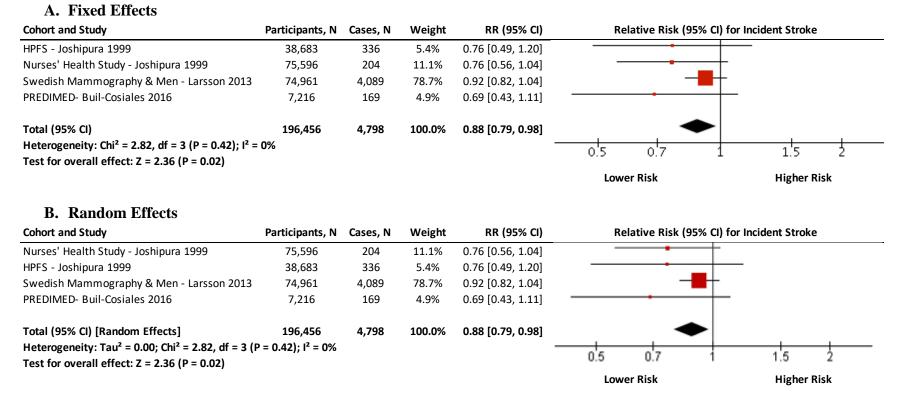
CRUCIFEROUS VEGETABLES AND STROKE INCIDENCE

Heterogeneity: Tau² = 0.02; Chi² = 13.17, df = 5 (P = 0.02); l² = 62%

Test for overall effect: Z = 1.34 (P = 0.18)

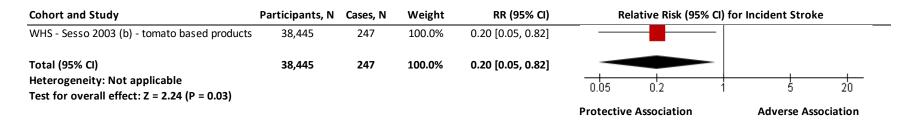
A. Fixed Effects

Lower Risk Higher Risk


1.5

0.7

0.5


Figure S125. Relation between intake of cruciferous vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GREEN LEAFY VEGETABLES AND STROKE INCIDENCE

Figure S126. Relation between intake of green leafy vegetables and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

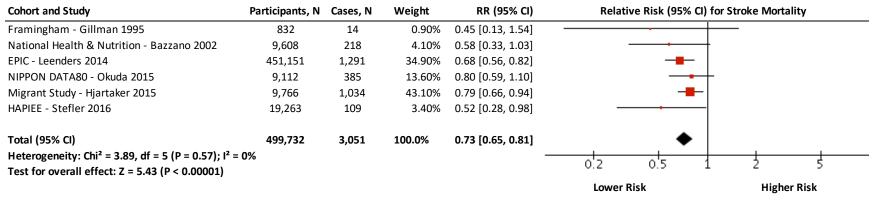
TOMATOES AND STROKE INCIDENCE

Figure S127. Relation between intake of tomatoes and stroke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I, with values $\geq 50\%$ indicating substantial heterogeneity.

ohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
erries					
TBC - Hirvonen 2000 - intracerebral hemorrage	26,593	95	0.5%	0.87 [0.50, 1.50]	
TBC - Hirvonen 2000 - cerebral infarction	-	736	3.3%	0.81 [0.65, 1.01]	
TBC - Hirvonen 2000 - subarachnoid hemorrag	-	83	0.4%	1.16 [0.63, 2.13]	
VHS - Sesso 2007	38,176	339	0.6%	1.40 [0.86, 2.29]	
inish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	2.8%	0.92 [0.73, 1.17]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	11.2%	1.13 [1.00, 1.27]	-
ubtotal (95% CI)	143,662	5,967	18.9%	1.03 [0.94, 1.13]	◆
leterogeneity: Chi ² = 9.90, df = 5 (P = 0.08); l ² :	= 50%				
est for overall effect: Z = 0.72 (P = 0.47)					
itrus					
utphen Elderly Study - Keli 1996	552	42	0.2%	0.93 [0.39, 2.21]	
IPFS - Joshipura 1999	38,683	366	0.8%	0.92 [0.59, 1.45]	
inish Mobile Clinic Health Exam - Mizrahi 2009		625	4.0%	0.77 [0.63, 0.94]	— —
dni Medical School - Yamada 2011 - M	4,147	201	0.3%	0.40 [0.20, 0.81]	
dni Medical School - Yamada 2011 - F	6,476	183	0.4%	0.47 [0.25, 0.86]	
Iurses' Health Study - Cassidy 2012	69,622	943	6.3%	0.90 [0.77, 1.05]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	16.1%	0.95 [0.86, 1.05]	
EGARDS - Goetz 2016 (b)	20,024	524	2.1%	0.69 [0.52, 0.91]	
REDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.98 [0.58, 1.66]	
ubtotal (95% CI)	225,613	7,142	30.8%	0.88 [0.82, 0.94]	•
leterogeneity: Chi ² = 16.43, df = 8 (P = 0.04); l ²		7,142	50.070	0.00 [0.02, 0.04]	•
est for overall effect: Z = 3.59 (P = 0.0003)	- 51/0				
ruit Juice					
Iurses' Health Study - Joshipura 1999	75,596	204	1.6%	0.61 [0.45, 0.84]	
IPFS - Joshipura 1999	38,683	366	0.9%	0.74 [0.49, 1.12]	
PIC NL and MORGEN - Scheffers 2019	34,560	1,135	2.1%	1.08 [0.82, 1.43]	
ubtotal (95% CI)	148,839	1,705	4.5%	0.82 [0.68, 0.99]	◆
eterogeneity: Chi ² = 7.51, df = 2 (P = 0.02); I ² =	= 73%				
est for overall effect: Z = 2.06 (P = 0.04)					
ommes					
inish Mobile Clinic Health Exam - Knekt 2000 -	9,208	445	1.1%	0.65 [0.45, 0.94]	
inish Mobile Clinic Health Exam - Knekt 2000 -	-	378	0.7%	0.95 [0.59, 1.52]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	16.1%	0.89 [0.80, 0.98]	
REDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.69 [0.41, 1.15]	
anish Diet Cancer Health - Hansen 2017	55,338	2,283	25.2%	0.91 [0.85, 0.99]	-
lutriNet-Sante - Adriouch 2018	84,158	293	2.1%	0.86 [0.65, 1.13]	
ubtotal (95% CI)	230,881	7,657	45.8%	0.89 [0.84, 0.95]	•
leterogeneity: Chi ² = 4.25, df = 5 (P = 0.51); l ² :	= 0%				•
est for overall effect: Z = 3.86 (P = 0.0001)					
. ,	3 (P = 0.02), I ² =	70.6%			
est for subgroup differences: Chi ² = 10.20, df =	3 (P = 0.02), I ² =	70.6%			0.2 0.5 1 2

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Berries					
ATBC - Hirvonen 2000 - subarachnoid hemorrag	26,593	83	1.4%	1.16 [0.63, 2.13]	
ATBC - Hirvonen 2000 - intracerebral hemorrage	-	95	1.7%	0.87 [0.50, 1.50]	
ATBC - Hirvonen 2000 - cerebral infarction	-	736	6.3%	0.81 [0.65, 1.01]	
WHS - Sesso 2007	38,176	339	2.1%	1.40 [0.86, 2.29]	
inish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	5.8%	0.92 [0.73, 1.17]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	9.6%	1.13 [1.00, 1.27]	
Subtotal (95% CI)	143,662	5,967	26.9%	1.00 [0.85, 1.18]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 9.90, df = 5 (F	P = 0.08); I ² = 50%	6			
Test for overall effect: Z = 0.02 (P = 0.99)					
Citrus					
Zutphen Elderly Study - Keli 1996	552	42	0.8%	0.93 [0.39, 2.21]	
HPFS - Joshipura 1999	38,683	366	2.4%	0.92 [0.59, 1.45]	
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	6.9%	0.77 [0.63, 0.94]	- -
lidni Medical School - Yamada 2011 - F	6,476	183	1.4%	0.47 [0.25, 0.86]	
idni Medical School - Yamada 2011 - M	4,147	201	1.1%	0.40 [0.20, 0.81]	
Nurses' Health Study - Cassidy 2012	69,622	943	8.2%	0.90 [0.77, 1.05]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	10.3%	0.95 [0.86, 1.05]	
REDIMED- Buil-Cosiales 2016	7,216	169	1.8%	0.98 [0.58, 1.66]	.
REGARDS - Goetz 2016 (b)	20,024	524	4.8%	0.69 [0.52, 0.91]	
Subtotal (95% CI)	225,613	7,142	37.7%	0.82 [0.71, 0.93]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 16.43, df = 8 Fest for overall effect: Z = 2.93 (P = 0.003)	(P = 0.04); I ² = 51	.%			
ruit Juice					
HPFS - Joshipura 1999	38,683	366	2.4%	0.74 [0.49, 1.12]	
Nurses' Health Study - Joshipura 1999	75,596	204	3.7%	0.61 [0.45, 0.84]	
EPIC NL and MORGEN - Scheffers 2019	34,560	1,135	4.4%	1.08 [0.82, 1.43]	
Subtotal (95% CI)	148,839	1,705	10.5%	0.80 [0.55, 1.15]	
Heterogeneity: Tau ² = 0.08; Chi ² = 7.51, df = 2 (F Test for overall effect: Z = 1.21 (P = 0.23)	? = 0.02); l² = 73%	6			
Pommes					
inish Mobile Clinic Health Exam - Knekt 2000 -	9,208	378	2.0%	0.95 [0.59, 1.52]	
inish Mobile Clinic Health Exam - Knekt 2000 -	-	445	2.9%	0.65 [0.45, 0.94]	
wedish Mammography & Men - Larsson 2013	74,961	4,089	9.6%	0.89 [0.80, 0.98]	
PREDIMED- Buil-Cosiales 2016	7,216	169	1.7%	0.69 [0.41, 1.15]	
Danish Diet Cancer Health - Hansen 2017	55,338	2,283	10.2%	0.91 [0.85, 0.99]	-
JutriNet-Sante - Adriouch 2018	84,158	293	4.4%	0.86 [0.65, 1.13]	_
Subtotal (95% Cl)	230,881	7,657	30.7%	0.89 [0.84, 0.95]	♦
Heterogeneity: Tau ² = 0.00; Chi ² = 4.25, df = 5 (F	-	-	30.770	5105 [0104, 0155]	•
Test for overall effect: Z = 3.86 (P = 0.0001)					
Fest for subgroup differences: Chi ² = 3.91, df = 3	(P = 0.27), I ² = 2	3.3%			
······································					0.2 0.5 1 2 Lower Risk Higher Risk

Figure S128. Relation between sources of fruit and stoke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Incident Stroke
Allium					
Finish Mobile Clinic Health Exam - Knekt 2000 - M	9,208	445	2.6%	0.83 [0.60, 1.13]	
Finish Mobile Clinic Health Exam - Knekt 2000 - F	-	378	2.0%	1.01 [0.71, 1.44]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	18.4%	0.89 [0.79, 1.00]	+
Subtotal (95% CI)	84,169	4,912	23.0%	0.89 [0.80, 0.99]	◆
Heterogeneity: Chi ² = 0.71, df = 2 (P = 0.70); I ² = 0%					
Test for overall effect: Z = 2.17 (P = 0.03)					
Cruciferous					
Nurses' Health Study - Joshipura 1999	75,596	204	2.0%	0.77 [0.54, 1.10]	
HPFS - Joshipura 1999	38,683	336	1.4%	0.64 [0.41, 0.98]	
Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	4.6%	0.79 [0.62, 1.00]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	18.4%	1.11 [0.98, 1.24]	
PREDIMED- Buil-Cosiales 2016	7,216	169	0.6%	0.85 [0.46, 1.60]	
Danish Diet Cancer Health - Hansen 2017	55,338	2,283	26.5%	0.97 [0.88, 1.07]	+
Subtotal (95% CI)	255,726	7,706	53.5%	0.98 [0.91, 1.05]	•
Heterogeneity: Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62%					
Test for overall effect: Z = 0.70 (P = 0.49)					
Green Leafy					
HPFS - Joshipura 1999	38,683	336	1.3%	0.76 [0.49, 1.20]	
Nurses' Health Study - Joshipura 1999	75,596	204	2.6%	0.76 [0.56, 1.04]	
Swedish Mammography & Men - Larsson 2013	74,961	4,089	18.4%	0.92 [0.82, 1.04]	-
PREDIMED- Buil-Cosiales 2016	7,216	169	1.1%	0.69 [0.43, 1.11]	
Subtotal (95% CI)	196,456	4,798	23.4%	0.88 [0.79, 0.98]	♦
Heterogeneity: Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0%					
Test for overall effect: Z = 2.36 (P = 0.02)					
Tomatoes					
WHS - Sesso 2003 (b) - tomato based products	38,445	247	0.1%	0.20 [0.05, 0.82]	
Subtotal (95% CI)	38,445	247	0.1%	0.20 [0.05, 0.82]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 2.24 (P = 0.03)					
Test for subgroup differences: Chi ² = 8.08, df = 3 (P = 0	.04), I² = 62.9%				
					0.05 0.2 1 5 20
					Lower Risk Higher Risk
					Lower Kisk Higher Kisk

	Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)		Relative Risk (95% CI) for Incident Stroke
Finish Mobile Clinic Health Exam - Knekt 2000 378 4.6% 1.01 [0.71, 1.44] Swedish Mammography & Men - Larsson 2013 74.961 4.089 14.7% 0.89 [0.79, 1.00] Heterogeneity: Tau" = 0.00; Ch ² = 0.71, df = 2 (P = 0.70); l* = 0% Text for overall effect: 2 = 2.17 (P = 0.37) Cruiferous Danish Diet Cancer Health - Hansen 2017 55.38 2.283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3.932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 0.46 [0.41, 0.98] Writs - Jashipura 1999 75.596 204 4.6% 0.77 [0.54, 1.10] PREDIMED: Buil-Cosiales 2016 7.216 169 1.7% 0.88 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 1.11 [0.98, 1.24] Switotal (95% Cl) 255,726 7.706 48.6% 0.91 [0.78, 1.05] Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75.595 204 5.5% 0.76 [0.54, 1.10] Fets for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 75.596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75.595 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75.596 204 5.5% 0.76 [0.54, 1.10] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 0.92 [0.82, 1.04] Green Leafy HPFS - Joshipura 1999 75.596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75.596 204 5.5% 0.76 [0.54, 1.10] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 0.92 [0.82, 1.04] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 0.92 [0.82, 1.04] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 0.92 [0.82, 1.04] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 0.92 [0.82, 1.04] Swedish Mammography & Men - Larsson 2013 74.961 4.069 14.7% 0.92 [0.82, 1.04] Fetrogeneity: Tau" = 0.00; Ch ² = 2.32, df = 9 (0.42); I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ = 0.42; I ⁴ =	Allium						
Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.89 [0.79, 1.00] Subtotal (55% C) 84,169 4,912 74.8% 0.89 [0.80, 0.99] Heterogeneity: Tau ² = 0.00; Ch ² = 0.71, df = 2 (P = 0.70); l ² = 0% Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,38 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPF5 - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] HPFS - Joshipura 1999 75,596 204 4.6% 0.97 [0.54, 1.0] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.22); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Green Leafy HPFS - Joshipura 1999 38,683 346 3.1% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Green Leafy HPFS - Joshipura 1999 38,683 345 2.47 0.4% 0.20 [0.05, 0.82] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0.% Test for overall effect: Z = 2.36 (P = 0.02) Test for overall effect: Z = 2.36 (P = 0.02) Test for overall effect: Z = 2.42 (P = 0.03) Test for subgroup differences: Ch ² = 4.37, df = 3 (P = 0.42); l ² = 0.4% Test for overall effect: Z = 2.42 (P = 0.03) Test for subgroup differences: Ch ² = 4.37, df = 3 (P = 0.42); l ² = 0.4% Test for overall effect: Z = 2.42 (P = 0.03) Test for overall effect: Z = 2.42 (P = 0.03	Finish Mobile Clinic Health Exam - Knekt 2000 -	9,208	445	5.5%	0.83 [0.60, 1.13]		
Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Ch ² = 0.71, df = 2 (P = 0.70); l ² = 0% Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% Unres' Health Study - Joshipura 1999 38,683 33.6 Nurse's Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.00] PREDIMED: Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurse's Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 166,456 4,798 26.2% 0.68 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] WHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] UNHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] UNHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] UNHS - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4% Subtotal (95% CI) 38,445 247 0.4%	Finish Mobile Clinic Health Exam - Knekt 2000 -	-	378	4.6%	1.01 [0.71, 1.44]		_
Heterogeneity: Tau ² = 0.00; Ch ² = 0.71; df = 2 (P = 0.70); l ² = 0% Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mitzrah 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED: Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% Cl) 4.13.17, df = 5 (P = 0.02); l ⁴ = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED: Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 147% 0.22 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.26 (P = 0.03) Test for subgroup differences: Ch ² = 4.37, df = 3 (P = 0.22), l ² = 31.4% URL - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.26 (P = 0.03) Test for subgroup differences: Ch ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Swedish Mammography & Men - Larsson 2013	74,961	4,089	14.7%	0.89 [0.79, 1.00]		
Test for overall effect: Z = 2.17 (P = 0.03) Cruciferous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mirrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] PHFS - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PMEDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mamography & Men - Larsson 2013 74,961 4.089 0.47 [0.58, 1.07] Swedish Mamography & Men - Larsson 2013 74,961 4.089 0.91 [0.78, 1.05] Weterogeneity: Tau" = 0.02; Ch" = 13.17, df = 5 (P = 0.02); l" = 62% Test for overall effect: Z = 1.34 (P = 0.18) 0.76 [0.56, 1.04] Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] 0.92 Swedish Mamography & Men - Larsson 2013 74,961 4.089 14.7% 0.29 [0.82, 1.04] 0.92 Subtotal (95% Cl) 196,455 4,798 26.2% 0.88 [0.79, 0.98] 0.79 [0.50, 0.82] 0.79 [0.50, 0.82]	Subtotal (95% CI)	84,169	4,912	24.8%	0.89 [0.80, 0.99]		•
Chuiderous Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 0.48 0.47 [0.54, 1.00] PREDMED- Buil-Cosiales 2016 7,216 169 1.7% 0.88 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4.089 14.7% 1.11 [0.98, 1.24] Subtoal (95% Cl) 125,726 7.706 48.6% 0.91 [0.78, 1.05] Green Leafy HPFS - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] REDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.76 [0.56, 1.04] MPFS - Joshipura 1999 75,596 2.04 5.5% 0.76 [0.56, 1.04] REDIMED- Buil-Cosiales 2016 7.216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4.089 14.7% 0.92 [0.82, 1.04] 0.20 Swe	Heterogeneity: Tau ² = 0.00; Chi ² = 0.71, df = 2 (P = 0.70); I ² = 0%					
Danish Diet Cancer Health - Hansen 2017 55,338 2,283 16.1% 0.97 [0.88, 1.07] Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% C) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); t ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% C) 196,721 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); t ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% C) 30,2 1 5 2 2	Test for overall effect: Z = 2.17 (P = 0.03)						
Finish Mobile Clinic Health Exam - Mizrahi 2005 3,932 625 8.1% 0.79 [0.62, 1.00] HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WH5 - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WH5 - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Tomatoes WH5 - Sesso 2003 (D) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,45 247 0.4% 0.20	Cruciferous						
HPFS - Joshipura 1999 38,683 336 3.3% 0.64 [0.41, 0.98] Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Danish Diet Cancer Health - Hansen 2017	55,338	2,283	16.1%	0.97 [0.88, 1.07]		-
Nurses' Health Study - Joshipura 1999 75,596 204 4.6% 0.77 [0.54, 1.10] PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 40,89 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) PREDIMED- Buil-Cosiales 2016 7,216 1.002]; I ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 75,596 204 7,216 169 2.9% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.49, 1.20] 0.88 [0.79, 0.98] 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.11 4.7% 1.12 4.7% 1.11 4.7% 4	Finish Mobile Clinic Health Exam - Mizrahi 2009	3,932	625	8.1%	0.79 [0.62, 1.00]		
PREDIMED- Buil-Cosiales 2016 7,216 169 1.7% 0.85 [0.46, 1.60] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Ch ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Ch ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for overall effect: Z = 2.24 (P = 0.03) Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	HPFS - Joshipura 1999		336	3.3%	0.64 [0.41, 0.98]		_
Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 1.11 [0.98, 1.24] Subtotal (95% C) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMEDE Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% C) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Nurses' Health Study - Joshipura 1999	75,596	204	4.6%	0.77 [0.54, 1.10]		_ _
Subtotal (95% CI) 255,726 7,706 48.6% 0.91 [0.78, 1.05] Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% CI) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	PREDIMED- Buil-Cosiales 2016	7,216	169	1.7%	0.85 [0.46, 1.60]		
Heterogeneity: Tau ² = 0.02; Chi ² = 13.17, df = 5 (P = 0.02); l ² = 62% Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for overall effect: C = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Swedish Mammography & Men - Larsson 2013	74,961	4,089	14.7%	1.11 [0.98, 1.24]		-
Test for overall effect: Z = 1.34 (P = 0.18) Green Leafy HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Image: Comparison of the comparison	Subtotal (95% CI)	255,726	7,706	48.6%	0.91 [0.78, 1.05]		•
HPFS - Joshipura 1999 38,683 336 3.1% 0.76 [0.49, 1.20] Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%							
Nurses' Health Study - Joshipura 1999 75,596 204 5.5% 0.76 [0.56, 1.04] PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% CI) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	•	20 602	226	2 10/	0.76 [0.40, 1.20]		
PREDIMED- Buil-Cosiales 2016 7,216 169 2.9% 0.69 [0.43, 1.11] Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	•						
Swedish Mammography & Men - Larsson 2013 74,961 4,089 14.7% 0.92 [0.82, 1.04] Subtotal (95% Cl) 196,456 4,798 26.2% 0.88 [0.79, 0.98] Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%							
Subtotal (95% Cl) 196,456 4,798 26.2% $0.88 [0.79, 0.98]$ Heterogeneity: Tau ² = 0.00; Chi ² = 2.82, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%							
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.82$, $df = 3$ (P = 0.42); $l^2 = 0\%$ Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: $Chi^2 = 4.37$, $df = 3$ (P = 0.22), $l^2 = 31.4\%$							
Test for overall effect: Z = 2.36 (P = 0.02) Tomatoes WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) Baseline Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%			4,750	20.2/0	0.00 [0.75, 0.50]		•
WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%		1 - 0.42),1 - 0/0					
WHS - Sesso 2003 (b) - tomato based products 38,445 247 0.4% 0.20 [0.05, 0.82] Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%	Tomatoes						
Subtotal (95% Cl) 38,445 247 0.4% 0.20 [0.05, 0.82] Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), I ² = 31.4% 0.05 0.2 1 5 2		38.445	247	0.4%	0.20 [0.05, 0.82]		
Heterogeneity: Not applicable Test for overall effect: Z = 2.24 (P = 0.03) Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4% 10005 0.2 1 1000 1	., .						
Test for subgroup differences: Chi ² = 4.37, df = 3 (P = 0.22), l ² = 31.4%		-					
0.05 0.2 1 5 2	Test for overall effect: Z = 2.24 (P = 0.03)						
	Test for subgroup differences: Chi ² = 4.37, df = 3	3 (P = 0.22), I ² = 3	1.4%				
						0.05	0/2 1 5
							Lower Risk Higher Risk

Figure S129. Relation between sources of vegetables and stoke incidence (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

TOTAL FRUIT AND VEGETABLES AND STROKE MORTALITY

A. Fixed Effects

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mortality
Framingham - Gillman 1995	832	14	0.9%	0.45 [0.13, 1.54]	
National Health & Nutrition - Bazzano 2002	9,608	218	4.1%	0.58 [0.33, 1.03]	
EPIC - Leenders 2014	451,151	1,291	34.9%	0.68 [0.56, 0.82]	
NIPPON DATA80 - Okuda 2015	9,112	385	13.6%	0.80 [0.59, 1.10]	
Migrant Study - Hjartaker 2015	9,766	1,034	43.1%	0.79 [0.66, 0.94]	
HAPIEE - Stefler 2016	19,263	109	3.4%	0.52 [0.28, 0.98]	
Total (95% CI) [Random Effects]	499,732	3,051	100.0%	0.73 [0.65, 0.81]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 3.89, df = 5 (Test for overall effect: Z = 5.43 (P < 0.00001)	P = 0.57); I ² = 0%			_	0.2 0.5 1 2 5
					Lower Risk Higher Risk

Figure S130. Relation between total fruit and vegetables intake and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

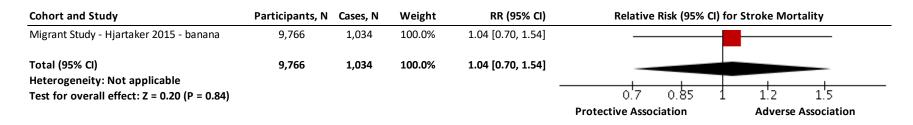
FRUIT AND STROKE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mortality
Health Food Shoppers - Appleby 2002 - M	4,325	142	1.3%	0.89 [0.61, 1.29]	
Health Food Shoppers - Appleby 2002 - F	6,416	214	1.6%	0.78 [0.56, 1.09]	
Life Span Study - Sauvaget 2003 - M	14,966	692	3.8%	0.65 [0.52, 0.81]	_
Life Span Study - Sauvaget 2003 - F	23,471	1,234	7.2%	0.75 [0.64, 0.88]	_
Boyd Orr Cohort - Ness 2005	4,028	83	0.3%	0.48 [0.21, 1.10]	_
Miyako Study - Pham 2007	9,651	226	1.1%	0.90 [0.59, 1.35]	
JACC - Nagura 2009	59,485	1,053	3.8%	0.65 [0.52, 0.81]	_ -
Multiethnic Cohort - Sharma 2013 - M	78,410	434	1.4%	1.11 [0.78, 1.57]	
Multiethnic Cohort - Sharma 2013 - F	95,618	426	1.3%	0.83 [0.57, 1.20]	
MONICA Danish - Tognon 2014	1,849	40	0.4%	0.59 [0.31, 1.12]	
EPIC - Leenders 2014	451,151	1,291	5.7%	1.13 [0.95, 1.35]	+•
NIPPON DATA80 - Okuda 2015	9,112	385	2.4%	0.72 [0.55, 0.95]	
UK Women's Cohort - Lai 2015	30,458	148	0.6%	0.70 [0.41, 1.18]	
Migrant Study - Hjartaker 2015	9,766	1,034	4.6%	0.89 [0.73, 1.08]	
Linxian Nutrition - Wang 2016	2,445	452	51.5%	0.98 [0.92, 1.04]	•
HAPIEE - Stefler 2016	19,263	109	0.3%	0.66 [0.28, 1.53]	
China Kadoorie Biobank - Du 2017 - ischemic	462,342	585	3.2%	0.67 [0.53, 0.85]	-
China Kadoorie Biobank- Du 2017-hemorrhagic	-	2,351	9.5%	0.68 [0.59, 0.78]	
Total (95% CI)	1,282,756	10,899	100.0%	0.87 [0.84, 0.91]	•
Heterogeneity: Chi ² = 67.81, df = 17 (P < 0.0000	1); l² = 75%			7	.2 0.5 1 2 5
Test for overall effect: Z = 6.30 (P < 0.00001)				~····	
					Lower Risk Higher Risk

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stro	ke Mortality
Health Food Shoppers - Appleby 2002 - F	6,416	214	5.2%	0.78 [0.56, 1.09]		
Health Food Shoppers - Appleby 2002 - M	4,325	142	4.6%	0.89 [0.61, 1.29]		
Life Span Study - Sauvaget 2003 - F	23,471	1,234	8.1%	0.75 [0.64, 0.88]	_ 	
Life Span Study - Sauvaget 2003 - M	14,966	692	7.1%	0.65 [0.52, 0.81]	-	
Boyd Orr Cohort - Ness 2005	4,028	83	1.5%	0.48 [0.21, 1.10]		
Miyako Study - Pham 2007	9,651	226	4.2%	0.90 [0.59, 1.35]		
JACC - Nagura 2009	59,485	1,053	7.1%	0.65 [0.52, 0.81]	-	
Multiethnic Cohort - Sharma 2013 - M	78,410	434	4.9%	1.11 [0.78, 1.57]		-
Multiethnic Cohort - Sharma 2013 - F	95,618	426	4.6%	0.83 [0.57, 1.20]		
EPIC - Leenders 2014	451,151	1,291	7.8%	1.13 [0.95, 1.35]	+	
MONICA Danish - Tognon 2014	1,849	40	2.3%	0.59 [0.31, 1.12]		
Migrant Study - Hjartaker 2015	9,766	1,034	7.4%	0.89 [0.73, 1.08]		
NIPPON DATA80 - Okuda 2015	9,112	385	6.1%	0.72 [0.55, 0.95]		
UK Women's Cohort - Lai 2015	30,458	148	3.0%	0.70 [0.41, 1.18]		
Linxian Nutrition - Wang 2016	2,445	452	9.4%	0.98 [0.92, 1.04]	-	
HAPIEE - Stefler 2016	19,263	109	1.5%	0.66 [0.28, 1.53]		
China Kadoorie Biobank- Du 2017-hemorrhagic	462,342	2,351	8.4%	0.68 [0.59 <i>,</i> 0.78]	_ 	
China Kadoorie Biobank - Du 2017 - ischemic	-	585	6.7%	0.67 [0.53, 0.85]	_ 	
Total (95% CI) [Random Effects]	1,282,756	10,899	100.0%	0.79 [0.71, 0.89]	•	
Heterogeneity: Tau ² = 0.03; Chi ² = 67.81, df = 17	′ (P < 0.00001); I ²	= 75%			0.2 0.5 1	
Test for overall effect: Z = 4.12 (P < 0.0001)					0.2 0.3 1	۷.
					Lower Risk	Higher Risk

Figure S131. Relation between fruit intake and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

VEGETABLES AND STROKE MORTALITY


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke N	Nortality
Life Span Study - Sauvaget 2003 - M	14,966	692	4.5%	0.77 [0.62, 0.96]		
Life Span Study - Sauvaget 2003 - F	23,471	1,234	6.7%	0.81 [0.68, 0.97]	_ 	
Boyd Orr Cohort - Ness 2005	4,028	83	0.4%	0.40 [0.19, 0.84]		
Miyako Study - Pham 2007	9,651	226	2.8%	1.00 [0.76, 1.32]		
JACC - Nagura 2009	59,485	1,053	5.4%	1.09 [0.90, 1.33]	_ + •	
Multiethnic Cohort - Sharma 2013 - F	95,618	426	1.3%	0.79 [0.53, 1.16]		
Multiethnic Cohort - Sharma 2013 - M	78,410	434	1.5%	1.01 [0.70, 1.47]		
MONICA Danish - Tognon 2014	1,849	40	0.5%	0.90 [0.48, 1.68]		
EPIC - Leenders 2014	451,151	1,291	5.4%	0.68 [0.56, 0.82]	_ 	
NIPPON DATA80 - Okuda 2015	9,112	385	2.4%	0.81 [0.60, 1.09]	+	
Migrant Study - Hjartaker 2015	9,766	1,034	5.4%	0.95 [0.78, 1.16]	-	
Linxian Nutrition - Wang 2016	2,445	452	60.0%	1.01 [0.95, 1.07]		
HAPIEE - Stefler 2016	19,263	109	0.6%	0.69 [0.38, 1.24]		
PLSAW - Blekkenhorst 2017	1,226	92	3.2%	0.80 [0.62, 1.04]		
Total (95% CI)	780,441	7,551	100.0%	0.94 [0.90, 0.99]	•	
Heterogeneity: Chi ² = 34.54, df = 13 (P = 0.0	0010); I ² = 62%				0,2 0,5 1	<u> </u>
Test for overall effect: Z = 2.58 (P = 0.010)					o.'z o.'s 1	2 5
					Lower Risk H	ligher Risk

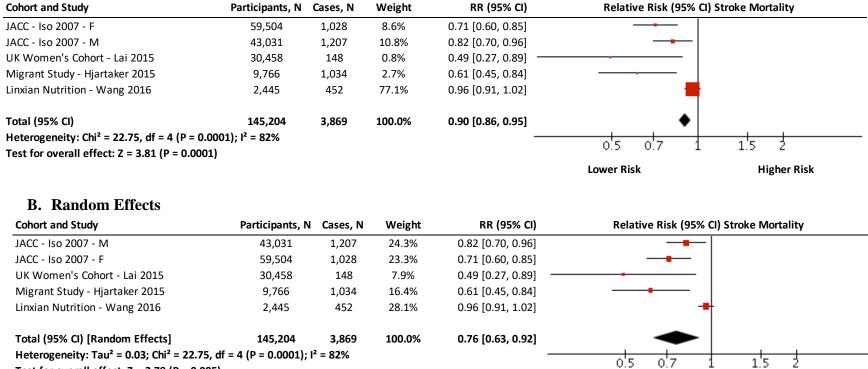
B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mo	ortality
Life Span Study - Sauvaget 2003 - M	14,966	692	9.0%	0.77 [0.62, 0.96]		
Life Span Study - Sauvaget 2003 - F	23,471	1,234	10.3%	0.81 [0.68, 0.97]	_ 	
Boyd Orr Cohort - Ness 2005	4,028	83	1.7%	0.40 [0.19, 0.84]		
Miyako Study - Pham 2007	9,651	226	7.2%	1.00 [0.76, 1.32]		
JACC - Nagura 2009	59,485	1,053	9.6%	1.09 [0.90, 1.33]	- -	
Multiethnic Cohort - Sharma 2013 - M	78,410	434	5.0%	1.01 [0.70, 1.47]		
Multiethnic Cohort - Sharma 2013 - F	95,618	426	4.7%	0.79 [0.53, 1.16]		
EPIC - Leenders 2014	451,151	1,291	9.6%	0.68 [0.56, 0.82]	_ .	
MONICA Danish - Tognon 2014	1,849	40	2.3%	0.90 [0.48, 1.68]		
NIPPON DATA80 - Okuda 2015	9,112	385	6.7%	0.81 [0.60, 1.09]		
Migrant Study - Hjartaker 2015	9,766	1,034	9.6%	0.95 [0.78, 1.16]	— 	
HAPIEE - Stefler 2016	19,263	109	2.5%	0.69 [0.38, 1.24]		
Linxian Nutrition - Wang 2016	2,445	452	14.1%	1.01 [0.95, 1.07]	+	
PLSAW - Blekkenhorst 2017	1,226	92	7.7%	0.80 [0.62, 1.04]		
Total (95% CI) [Random Effects]	780,441	7,551	100.0%	0.86 [0.78, 0.96]	•	
Heterogeneity: Tau ² = 0.02; Chi ² = 34.54, df	² = 13 (P = 0.0010); I ²	= 62%			0.2 0.5 1 2	÷.
Test for overall effect: Z = 2.79 (P = 0.005)					0.E 0.0 I E	2
					Lower Risk Hig	gher Risk

Figure S132. Relation between intake of vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values $\geq 50\%$ indicating substantial heterogeneity.

BANANAS AND STROKE MORTALITY

Figure S133. Relation between intake of bananas and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

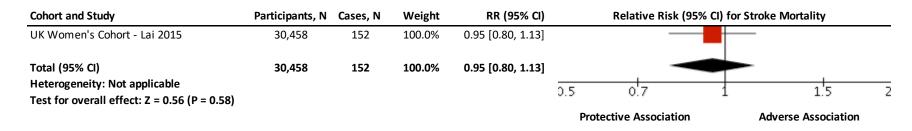

BERRIES AND STROKE MORTALITY

Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for Stroke Mortality UK Women's Cohort - Lai 2015 30,458 10.7% 1.08 [0.65, 1.80] 148 Migrant Study - Hjartaker 2015 9,766 1,034 89.3% 0.96 [0.81, 1.15] Total (95% CI) 40,224 1,182 100.0% 0.97 [0.82, 1.15] Heterogeneity: $Chi^2 = 0.19$, df = 1 (P = 0.66); $I^2 = 0\%$ 0.5 1'5 0.7 Test for overall effect: Z = 0.32 (P = 0.75) Lower Risk **Higher Risk B. Random Effects** Cohort and Study Participants, N Cases, N Weight RR (95% CI) Relative Risk (95% CI) for Stroke Mortality UK Women's Cohort - Lai 2015 30,458 148 10.7% 1.08 [0.65, 1.80] Migrant Study - Hjartaker 2015 9,766 0.96 [0.81, 1.15] 1,034 89.3% 0.97 [0.82, 1.15] Total (95% CI) [Random Effects] 40,224 1,182 100.0% Heterogeneity: Tau² = 0.00; Chi² = 0.19, df = 1 (P = 0.66); l² = 0% 15 0.5 0.7 Test for overall effect: Z = 0.32 (P = 0.75) Lower Risk **Higher Risk**

Figure S134. Relation between intake of berries and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

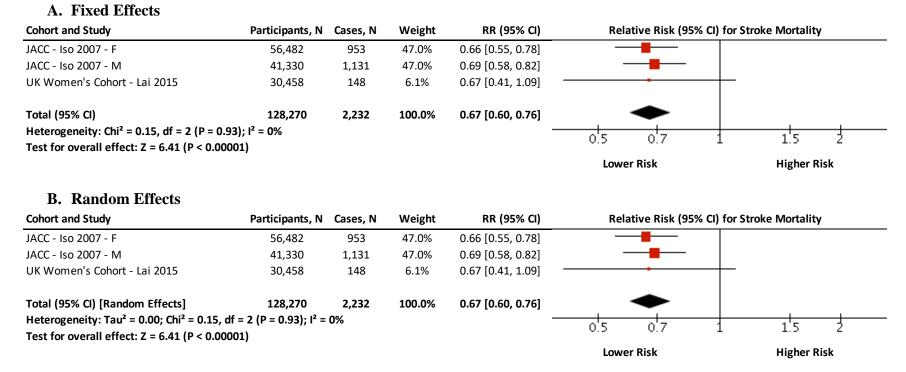
CITRUS FRUIT AND STROKE MORTALITY

A. Fixed Effects

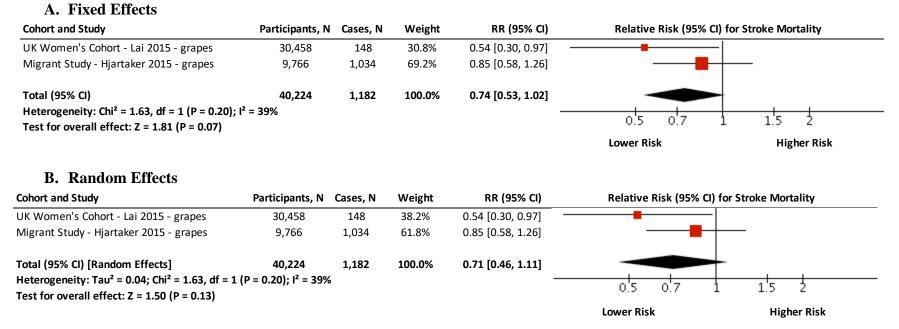


Test for overall effect: Z = 2.79 (P = 0.005)

Lower Risk Higher Risk


Figure S135. Relation between intake of citrus fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

DRIED FRUIT AND STROKE MORTALITY


Figure S136. Relation between intake of dried fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

FRUIT JUICE AND STROKE MORTALITY

Figure S137. Relation between intake of fruit juice and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

GRAPES AND STROKE MORTALITY

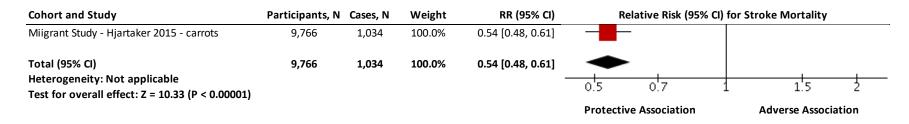
Figure S138. Relation between intake of grapes and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

POMMES AND STROKE MORTALITY

A Fixed Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) f	or Stroke Mortality
Iowa WHS - Mink 2007	34,492	469	54.0%	0.85 [0.67, 1.08]		_
UK Women's Cohort - Lai 2015	30,458	148	11.5%	1.13 [0.68, 1.88]		
Migrant Study - Hjartaker 2015	9,766	1,034	34.5%	0.95 [0.71, 1.28]		
Total (95% CI)	74,716	1,651	100.0%	0.91 [0.77, 1.09]		•
Heterogeneity: $Chi^2 = 1.06$, df = 2 (P = 0	.59); I² = 0%					15 2
Test for overall effect: Z = 1.02 (P = 0.32	1)				0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk
B. Random Effects						-
	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) f	or Stroke Mortality
Cohort and Study	Participants, N 34,492	Cases, N 469	Weight 54.0%	RR (95% Cl) 0.85 [0.67, 1.08]	Relative Risk (95% CI) f	or Stroke Mortality
Cohort and Study Iowa WHS - Mink 2007	• •		-		Relative Risk (95% CI) f	or Stroke Mortality
Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015	34,492	469	54.0%	0.85 [0.67, 1.08]	Relative Risk (95% Cl) f	for Stroke Mortality
Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015	34,492 30,458	469 148	54.0% 11.5%	0.85 [0.67, 1.08] 1.13 [0.68, 1.88]	Relative Risk (95% Cl) f	for Stroke Mortality
Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015 Total (95% Cl) [Random Effects]	34,492 30,458 9,766 74,716	469 148 1,034	54.0% 11.5% 34.5%	0.85 [0.67, 1.08] 1.13 [0.68, 1.88] 0.95 [0.71, 1.28]		-
B. Random Effects Cohort and Study Iowa WHS - Mink 2007 UK Women's Cohort - Lai 2015 Migrant Study - Hjartaker 2015 Total (95% CI) [Random Effects] Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, Test for overall effect: Z = 1.02 (P = 0.32	34,492 30,458 9,766 74,716 df = 2 (P = 0.59); I ² = 0%	469 148 1,034	54.0% 11.5% 34.5%	0.85 [0.67, 1.08] 1.13 [0.68, 1.88] 0.95 [0.71, 1.28]	Relative Risk (95% Cl) f	-

Figure S139. Relation between intake of pommes fruit and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


ALLIUM AND STROKE MORTALITY

A Fixed Effects

Cohort and Study	Participants, N C	Cases, N	Weight	RR (95% CI)	Relative R	isk (95% CI) for Stı	oke Mortality	
Linxian Nutrition - Wang 2016	2,445	452	51.7%	1.17 [0.93, 1.48]				
PLSAW - Blekkenhorst 2017	1,226	92	48.3%	0.14 [0.06, 0.31]		·		
Total (95% CI)	3,671	544	100.0%	0.99 [0.79, 1.24]		•		
Heterogeneity: $Chi^2 = 24.86$, df = 1 (P < 0.12)	.00001); l ² = 96%						<u>_</u>	
Test for overall effect: Z = 0.07 (P = 0.94))				0.05 0.2	1	5	2'0
					Lower Risk		Higher Risk	
B. Random Effects					Lower Nisk		riigher Nisk	
B. Random Effects Cohort and Study	Participants, N C	Cases, N	Weight	RR (95% CI)		isk (95% Cl) for Str		
	Participants, N C 2,445	Cases, N 452	Weight 51.7%	RR (95% Cl) 1.17 [0.93, 1.48]		isk (95% Cl) for Str 		
Cohort and Study	• •		•			isk (95% Cl) for Str		
Cohort and Study Linxian Nutrition - Wang 2016	2,445	452	51.7%	1.17 [0.93, 1.48]		isk (95% Cl) for Str		
Cohort and Study Linxian Nutrition - Wang 2016 PLSAW - Blekkenhorst 2017	2,445 1,226 3,671	452 92 544	51.7% 48.3%	1.17 [0.93, 1.48] 0.14 [0.06, 0.31]	Relative R	isk (95% CI) for Str		<u>_</u>
Cohort and Study Linxian Nutrition - Wang 2016 PLSAW - Blekkenhorst 2017 Total (95% CI) [Random Effects]	2,445 1,226 3,671 df = 1 (P < 0.00001); I ² = 96	452 92 544	51.7% 48.3%	1.17 [0.93, 1.48] 0.14 [0.06, 0.31]		isk (95% Cl) for Str 		20

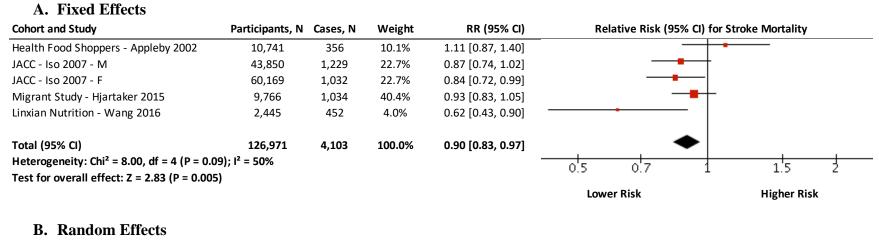
Figure S140. Relation between intake of allium vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CARROTS AND STROKE MORTALITY

Figure S141. Relation between intake of carrots and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

CRUCIFEROUS VEGETABLES AND STROKE MORTALITY

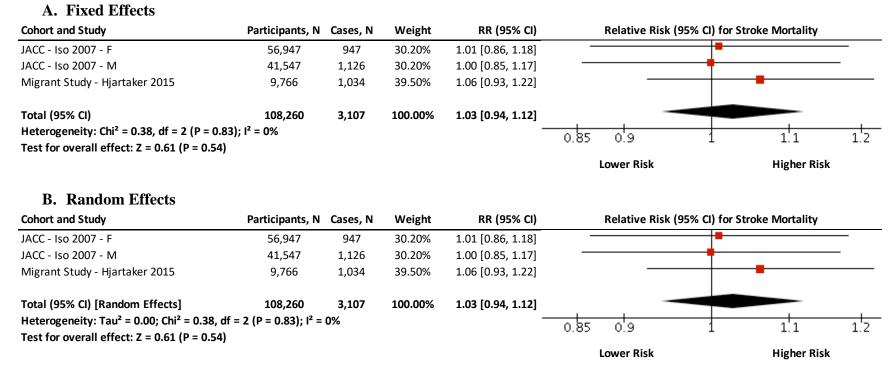
A. Fixed Effects


Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mo	ortality
JACC - Iso 2007 - M	39,486	1,098	25.4%	0.97 [0.81, 1.16]		
JACC - Iso 2007 - F	54,325	919	20.6%	0.87 [0.71, 1.06]		
Migrant Study - Hjartaker 2015 - cauliflower	9,766	1,034	8.0%	1.12 [0.82, 1.53]		
Migrant Study - Hjartaker 2015 - cabbage	-	-	3.9%	1.12 [0.71, 1.75]		
Linxian Nutrition - Wang 2016	2,445	452	14.3%	1.06 [0.84, 1.34]		
PLSAW - Blekkenhorst 2017	1,226	92	8.0%	0.70 [0.51, 0.95]		
Japan Public Health Center - Mori 2018 - M	40,642	856	10.5%	0.89 [0.67, 1.17]		
Japan Public Health Center - Mori 2018 - F	47,562	614	9.2%	0.78 [0.58, 1.04]		
Total (95% CI)	195,452	5,065	100.0%	0.92 [0.85, 1.01]	•	
Heterogeneity: Chi ² = 8.55, df = 7 (P = 0.29); l ² = 1 Test for overall effect: Z = 1.75 (P = 0.08)	8%				0.5 0.7 1	1.5 2
1 = 1.75 (F - 0.00)					Lower Risk Hig	gher Risk

B. Random Effects

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Rela	ntive Risk (95% CI) fo	or Stroke Mortality	
JACC - Iso 2007 - M	39,486	1,098	22.2%	0.97 [0.81, 1.16]				
JACC - Iso 2007 - F	54,325	919	19.2%	0.87 [0.71, 1.06]				
Migrant Study - Hjartaker 2015 - cabbage	9,766	1,034	4.7%	1.12 [0.71, 1.75]			•	_
Migrant Study - Hjartaker 2015 - cauliflower	-	-	9.0%	1.12 [0.82, 1.53]			•	
Linxian Nutrition - Wang 2016	2,445	452	14.5%	1.06 [0.84, 1.34]				
PLSAW - Blekkenhorst 2017	1,226	92	9.0%	0.70 [0.51, 0.95]		•		
Japan Public Health Center - Mori 2018 - F	47,562	614	10.1%	0.78 [0.58, 1.04]				
Japan Public Health Center - Mori 2018 - M	40,642	856	11.3%	0.89 [0.67, 1.17]				
Total (95% CI) [Random Effects]	195,452	5,065	100.0%	0.92 [0.83, 1.02]				
Heterogeneity: Tau ² = 0.00; Chi ² = 8.55, df = 7 (P = 0.29); l ² = 18%				, t	0.7 1		<u> </u>
Test for overall effect: Z = 1.57 (P = 0.12)					0.5 (J./ I	1.5	2
					Lowei	r Risk	Higher Risk	

Figure S142. Relation between intake of cruciferous vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.


GREEN LEAFY VEGETABLES AND STROKE MORTALITY

Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for S	Stroke Mortality
Health Food Shoppers - Appleby 2002	10,741	356	15.3%	1.11 [0.87, 1.40]		
JACC - Iso 2007 - M	43,850	1,229	23.7%	0.87 [0.74, 1.02]		
JACC - Iso 2007 - F	60,169	1,032	23.7%	0.84 [0.72, 0.99]		
Migrant Study - Hjartaker 2015	9,766	1,034	29.4%	0.93 [0.83, 1.05]		
Linxian Nutrition - Wang 2016	2,445	452	7.8%	0.62 [0.43, 0.90]		
Total (95% CI) [Random Effects]	126,971	4,103	100.0%	0.89 [0.79, 1.00]	•	
Heterogeneity: Tau ² = 0.01; Chi ² = 8.00, o	df = 4 (P = 0.09); I ²	= 50%		-	0.5 0.7 1	
Test for overall effect: Z = 1.98 (P = 0.05)				0.5 0.7 1	1.5 2
					Lower Risk	Higher Risk

Figure S143. Relation between intake of green leafy vegetables and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

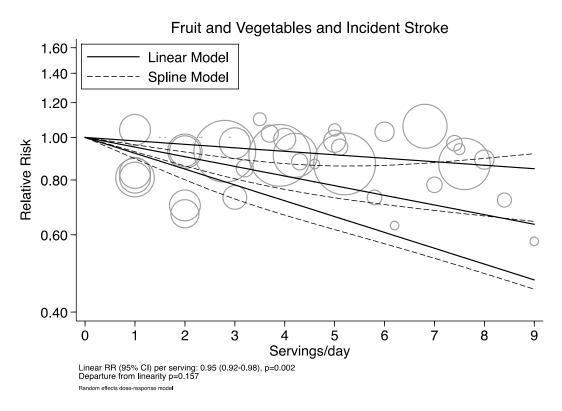
TOMATOES AND STROKE MORTALITY

Figure S144. Relation between intake of tomatoes and stroke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

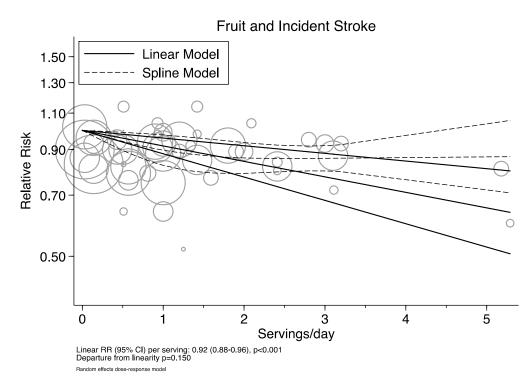
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mortality
Bananas					
Migrant Study - Hjartaker 2015 - banana	9,766	1,034	1.2%	1.04 [0.70, 1.54]	
Subtotal (95% CI)	9,766	1,034	1.2%	1.04 [0.70, 1.54]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.20 (P = 0.84)					
Berries					
Migrant Study - Hjartaker 2015	9,766	1,034	6.1%	0.96 [0.81, 1.15]	
JK Women's Cohort - Lai 2015	30,458	148	0.7%	1.08 [0.65, 1.80]	
Subtotal (95% CI)	40,224	1,182	6.8%	0.97 [0.82, 1.15]	-
leterogeneity: Tau ² = 0.00; Chi ² = 0.19, df =	1 (P = 0.66); I ² = 0%				
est for overall effect: Z = 0.32 (P = 0.75)					
ütrus					
ACC - Iso 2007 - F	59,504	1,028	6.1%	0.71 [0.60, 0.85]	_
ACC - Iso 2007 - M	43,031	1,207	7.7%	0.82 [0.70, 0.96]	_
Vigrant Study - Hjartaker 2015	9,766	1,034	1.9%	0.61 [0.45, 0.84]	
JK Women's Cohort - Lai 2015	30,458	148	0.5%	0.49 [0.27, 0.89]	[
inxian Nutrition - Wang 2016	2,445	452	54.7%	0.96 [0.91, 1.02]	-
ubtotal (95% CI)	145,204	3,869	70.9%	0.90 [0.86, 0.95]	◆
leterogeneity: Tau ² = 0.03; Chi ² = 22.75, df = est for overall effect: Z = 2.79 (P = 0.005)	= 4 (P = 0.0001); I ² =	82%			
Fruit Juice					
ACC - Iso 2007 - M	41,330	1,131	6.1%	0.69 [0.58, 0.82]	_
ACC - Iso 2007 - F	56,482	953	6.1%	0.66 [0.55, 0.78]	_
JK Women's Cohort - Lai 2015	30,458	148	0.8%	0.67 [0.41, 1.09]	
ubtotal (95% CI)	128,270	2,232	12.9%	0.67 [0.60, 0.76]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 0.15, df = Test for overall effect: Z = 6.41 (P < 0.00001)	• •				
Grapes					
/ligrant Study - Hjartaker 2015 - grapes	9,766	1,034	1.2%	0.85 [0.58, 1.26]	
JK Women's Cohort - Lai 2015 - grapes	30,458	148	0.5%	0.54 [0.30, 0.97] _	
ubtotal (95% Cl)	40,224	1,182	1.8%	0.74 [0.53, 1.02]	
<pre>leterogeneity: Tau² = 0.04; Chi² = 1.63, df = Test for overall effect: Z = 1.50 (P = 0.13)</pre>	1 (P = 0.20); I ² = 39%				
Pommes					
	34,492	469	3.4%	0.85 [0.67, 1.08]	
owa WHS - Mink 2007	34,492 9,766	469 1,034	3.4% 2.2%	0.85 [0.67, 1.08] 0.95 [0.71, 1.28]	
owa WHS - Mink 2007 Aigrant Study - Hjartaker 2015					
owa WHS - Mink 2007 ⁄ligrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015	9,766	1,034	2.2%	0.95 [0.71, 1.28]	
owa WHS - Mink 2007 Migrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% CI)	9,766 30,458 74,716	1,034 148	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	
owa WHS - Mink 2007 Migrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, df =	9,766 30,458 74,716	1,034 148	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	
owa WHS - Mink 2007 Vligrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, df = Fest for overall effect: Z = 1.02 (P = 0.31)	9,766 30,458 74,716 2 (P = 0.59); I ² = 0%	1,034 148 1,651	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	
Pommes owa WHS - Mink 2007 Migrant Study - Hjartaker 2015 JK Women's Cohort - Lai 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 1.06, df = Test for overall effect: Z = 1.02 (P = 0.31) Test for subgroup differences: Chi ² = 23.18, c	9,766 30,458 74,716 2 (P = 0.59); I ² = 0%	1,034 148 1,651	2.2% 0.7%	0.95 [0.71, 1.28] 1.13 [0.68, 1.88]	0.5 0.7 1 1.5 2

B. Random Effects

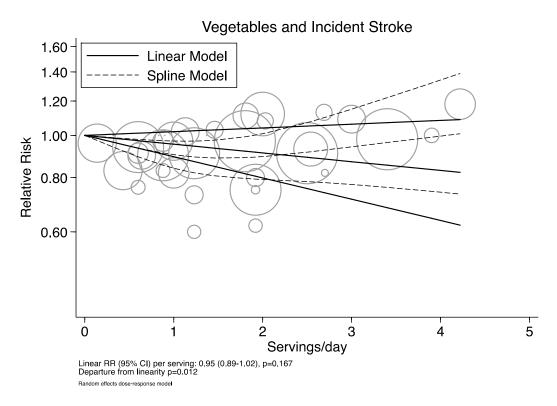
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mortality
Bananas					
/ligrant Study - Hjartaker 2015 - banana	9,766	1,034	4.5%	1.04 [0.70, 1.54]	•
ubtotal (95% CI)	9,766	1,034	4.5%	1.04 [0.70, 1.54]	
leterogeneity: Not applicable					
est for overall effect: Z = 0.20 (P = 0.84)					
Berries					
JK Women's Cohort - Lai 2015	30,458	148	3.2%	1.08 [0.65, 1.80]	-
Aigrant Study - Hjartaker 2015	9,766	1,034	8.9%	0.96 [0.81, 1.15]	
ubtotal (95% CI)	40,224	1,182	12.1%	0.97 [0.82, 1.15]	
leterogeneity: Tau ² = 0.00; Chi ² = 0.19, df = 1	(P = 0.66); I ² = 0%				
est for overall effect: Z = 0.32 (P = 0.75)					
itrus					
ACC - Iso 2007 - F	59,504	1,028	8.9%	0.71 [0.60, 0.85]	_
ACC - Iso 2007 - M	43,031	1,207	9.4%	0.82 [0.70, 0.96]	_ _
JK Women's Cohort - Lai 2015	30,458	148	2.6%	0.49 [0.27, 0.89] 🗕	
Aigrant Study - Hjartaker 2015	9,766	1,034	5.8%	0.61 [0.45, 0.84]	
inxian Nutrition - Wang 2016	2,445	452	11.5%	0.96 [0.91, 1.02]	-
ubtotal (95% CI)	145,204	3,869	38.2%	0.76 [0.63, 0.92]	◆
Heterogeneity: Tau² = 0.03; Chi² = 22.75, df = est for overall effect: Z = 2.79 (P = 0.005)	4 (P = 0.0001); I ² = 3	82%			
ruit Juice					
ACC - Iso 2007 - F	56,482	953	8.9%	0.66 [0.55, 0.78]	_
ACC - Iso 2007 - M	41,330	1,131	8.9%	0.69 [0.58, 0.82]	_
JK Women's Cohort - Lai 2015	30,458	148	3.4%	0.67 [0.41, 1.09]	
ubtotal (95% CI)	128,270	2,232	21.2%	0.67 [0.60, 0.76]	◆
leterogeneity: Tau ² = 0.00; Chi ² = 0.15, df = 2 Test for overall effect: Z = 6.41 (P < 0.00001)	: (P = 0.93); I ² = 0%				
Grapes					
JK Women's Cohort - Lai 2015 - grapes	30,458	148	2.6%	0.54 [0.30, 0.97]	· · · · · · · · · · · · · · · · · · ·
Migrant Study - Hjartaker 2015 - grapes	9,766	1,034	4.5%	0.85 [0.58, 1.26]	
ubtotal (95% CI)	40,224	1,182	7.1%	0.71 [0.46, 1.11]	
<pre>leterogeneity: Tau² = 0.04; Chi² = 1.63, df = 1 est for overall effect: Z = 1.50 (P = 0.13)</pre>	. (P = 0.20); I ² = 39%				
Pommes					
owa WHS - Mink 2007	34,492	469	7.5%	0.85 [0.67, 1.08]	
/ligrant Study - Hjartaker 2015	9,766	1,034	6.2%	0.95 [0.71, 1.28]	
K Women's Cohort - Lai 2015	30,458	148	3.2%	1.13 [0.68, 1.88]	
ubtotal (95% CI)	74,716	1,651	16.9%	0.91 [0.77, 1.09]	
leterogeneity: Tau ² = 0.00; Chi ² = 1.06, df = 2 est for overall effect: Z = 1.02 (P = 0.31)					
est for subgroup differences: Chi ² = 17.65, df	ⁱ = 5 (P = 0.003), I ² =	: 71.7%		_	
					0.5 0.7 1 1.5 2
					0.0 0.7 I I.0 Z

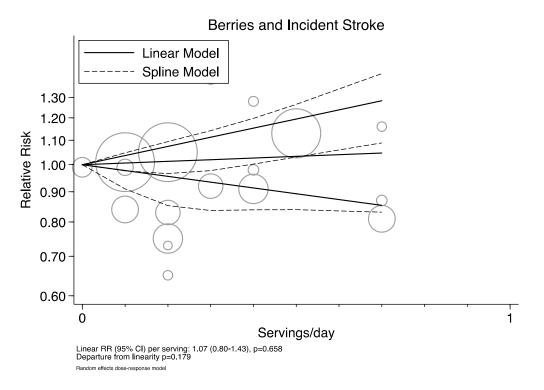

Figure S145. Relation between sources of fruit and stoke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

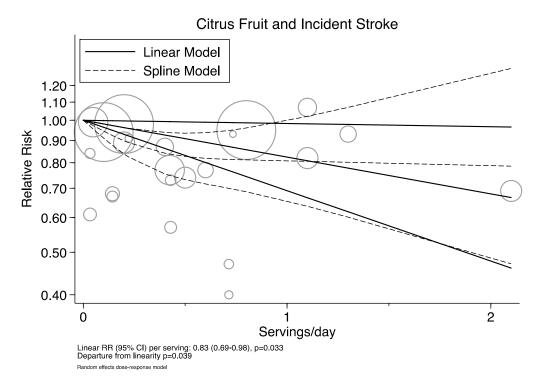
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% CI) for Stroke Mortality
Allium					
inxian Nutrition - Wang 2016	2,445	452	3.4%	1.17 [0.93, 1.48]	+
LSAW - Blekkenhorst 2017	1,226	92	0.3%	0.14 [0.06, 0.31] -]
ubtotal (95% CI)	3,671	544	3.7%	0.99 [0.79, 1.24]	•
eterogeneity: Chi ² = 24.86, df = 1 (P < 0.0000	01); I² = 96%				
est for overall effect: Z = 0.07 (P = 0.94)					
arrots					
liigrant Study - Hjartaker 2015 - carrots	9,766	1,034	13.6%	0.54 [0.48, 0.61]	+
ıbtotal (95% CI)	9,766	1,034	13.6%	0.54 [0.48, 0.61]	◆
eterogeneity: Not applicable					
est for overall effect: Z = 10.33 (P < 0.00001))				
uciferous					
CC - Iso 2007 - M	39,486	1,098	6.0%	0.97 [0.81, 1.16]	-4-
ACC - Iso 2007 - F	54,325	919	4.9%	0.87 [0.71, 1.06]	-++
ligrant Study - Hjartaker 2015 - cabbage	9,766	1,034	0.9%	1.12 [0.71, 1.75]	_
ligrant Study - Hjartaker 2015 - cauliflower	-	-	1.9%	1.12 [0.82, 1.53]	-
nxian Nutrition - Wang 2016	2,445	452	3.4%	1.06 [0.84, 1.34]	- -
SAW - Blekkenhorst 2017	1,226	92	1.9%	0.70 [0.51, 0.95]	
pan Public Health Center - Mori 2018 - F	47,562	614	2.2%	0.78 [0.58, 1.04]	
pan Public Health Center - Mori 2018 - M	40,642	856	2.5%	0.89 [0.67, 1.17]	
ubtotal (95% CI)	195,452	5,065	23.8%	0.92 [0.85, 1.01]	•
eterogeneity: Chi ² = 8.55, df = 7 (P = 0.29); l ²	² = 18%				
est for overall effect: Z = 1.75 (P = 0.08)					
reen Leafy					
ealth Food Shoppers - Appleby 2002	10,741	356	3.4%	1.11 [0.87, 1.40]	
ACC - Iso 2007 - M	43,850	1,229	7.6%	0.87 [0.74, 1.02]	
ACC - Iso 2007 - F	60,169	1,032	7.6%	0.84 [0.72, 0.99]	
igrant Study - Hjartaker 2015	9,766	1,034	13.6%	0.93 [0.83, 1.05]	
nxian Nutrition - Wang 2016	2,445	452	1.4%	0.62 [0.43, 0.90]	
ibtotal (95% CI)	126,971	4,103	33.7%	0.90 [0.83, 0.97]	•
eterogeneity: Chi ² = 8.00, df = 4 (P = 0.09); l ²	[•] = 50%				
est for overall effect: Z = 2.83 (P = 0.005)					
omatoes		a :=			
ACC - Iso 2007 - F	56,947	947	7.6%	1.01 [0.86, 1.18]	+
ACC - Iso 2007 - M	41,547	1,126	7.6%	1.00 [0.85, 1.17]	4
ligrant Study - Hjartaker 2015	9,766	1,034	10.0%	1.06 [0.93, 1.22]	
ubtotal (95% CI)	108,260	3,107	25.3%	1.03 [0.94, 1.12]	
eterogeneity: Chi ² = 0.38, df = 2 (P = 0.83); l ² est for overall effect: Z = 0.61 (P = 0.54)	² = 0%				ſ
est for subgroup differences: Chi ² = 82.07, df	= 4 (P < 0.00001), I	² = 95.1%			
				_	0.1 0.2 0.5 1 2 5 10

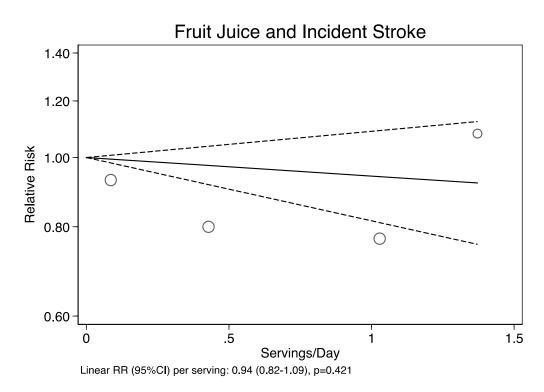

B. Random Effects

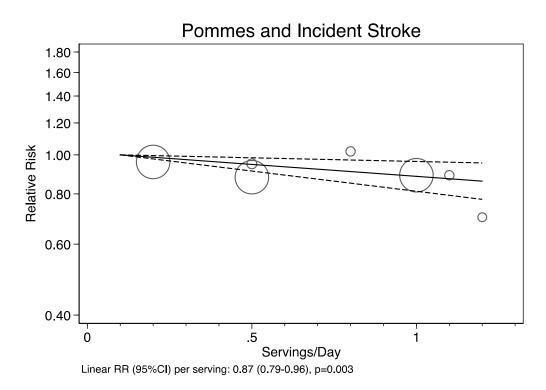
Cohort and Study	Participants, N	Cases, N	Weight	RR (95% CI)	Relative Risk (95% Cl) for Stroke Mortality
Allium					
Linxian Nutrition - Wang 2016	2,445	452	5.4%	1.17 [0.93, 1.48]	
PLSAW - Blekkenhorst 2017	1,226	92	1.7%	0.14 [0.06, 0.31]	
Subtotal (95% CI)	3,671	544	7.0%	0.42 [0.05, 3.38]	
leterogeneity: Tau ² = 2.18; Chi ² = 24.86, df = 1	1 (P < 0.00001); I ² =	96%			
est for overall effect: Z = 0.82 (P = 0.41)					
Carrots					
/liigrant Study - Hjartaker 2015 - carrots	9,766	1,034	6.4%	0.54 [0.48, 0.61]	+
ubtotal (95% CI)	9,766	1,034	6.4%	0.54 [0.48, 0.61]	•
leterogeneity: Not applicable					•
est for overall effect: Z = 10.33 (P < 0.00001)					
ruciferous					
ACC - Iso 2007 - M	39,486	1,098	5.9%	0.97 [0.81, 1.16]	
ACC - Iso 2007 - F	54,325	919	5.7%	0.87 [0.71, 1.06]	
1igrant Study - Hjartaker 2015 - cabbage	9,766	1,034	3.5%	1.12 [0.71, 1.75]	
Aigrant Study - Hjartaker 2015 - cauliflower	-	-	4.6%	1.12 [0.82, 1.53]	
inxian Nutrition - Wang 2016	2,445	452	5.4%	1.06 [0.84, 1.34]	
LSAW - Blekkenhorst 2017	1,226	92	4.6%	0.70 [0.51, 0.95]	
apan Public Health Center - Mori 2018 - M	40,642	856	5.0%	0.89 [0.67, 1.17]	
apan Public Health Center - Mori 2018 - F	47,562	614	4.9%	0.78 [0.58, 1.04]	
ubtotal (95% CI)	195,452	5,065	39.9%	0.92 [0.83, 1.02]	•
leterogeneity: Tau ² = 0.00; Chi ² = 8.55, df = 7 Test for overall effect: Z = 1.57 (P = 0.12)	(P = 0.29); I ² = 18%				
Green Leafy					
lealth Food Shoppers - Appleby 2002	10,741	356	5.4%	1.11 [0.87, 1.40]	_ _
ACC - Iso 2007 - M	43,850	1,229	6.1%	0.87 [0.74, 1.02]	
ACC - Iso 2007 - F	60,169	1,032	6.1%	0.84 [0.72, 0.99]	
ligrant Study - Hjartaker 2015	9,766	1,034	6.4%	0.93 [0.83, 1.05]	-
inxian Nutrition - Wang 2016	2,445	452	4.1%	0.62 [0.43, 0.90]	.
ubtotal (95% CI)	126,971	4,103	28.0%	0.89 [0.79, 1.00]	•
leterogeneity: Tau ² = 0.01; Chi ² = 8.00, df = 4 est for overall effect: Z = 1.98 (P = 0.05)	(P = 0.09); I ² = 50%				
omatoes					
ACC - Iso 2007 - F	56,947	947	6.1%	1.01 [0.86, 1.18]	
ACC - Iso 2007 - M	41,547	1,126	6.1%	1.00 [0.85, 1.17]	Ť
Aigrant Study - Hjartaker 2015	9,766	1,034	6.2%	1.06 [0.93, 1.22]	T.
ubtotal (95% CI)	108,260	3,107	18.4%	1.03 [0.94, 1.12]	T
leterogeneity: Tau ² = 0.00; Chi ² = 0.38, df = 2	-				Ť
rest for overall effect: Z = 0.61 (P = 0.54)	,,,. e ,e				
est for subgroup differences: Chi ² = 80.08, df	= 4 (P < 0.00001), I	² = 95.0%			
<u> </u>	· ·····///·			0.88 [0.78, 0.99] —	0.1 0.2 0.5 1 2 5 10
					Lower Risk Higher Risk

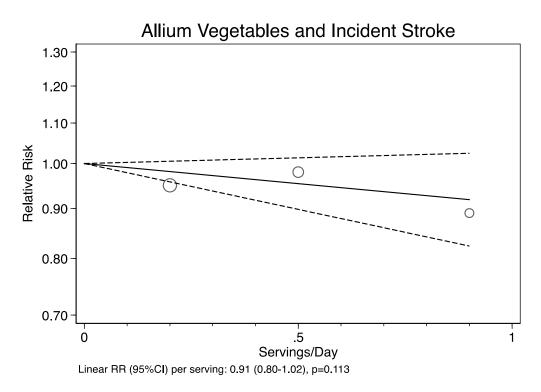

Figure S146. Relation between sources of vegetables and stoke mortality (highest vs. lowest level of intake). All results are presented as relative risk (RR) with 95% confidence intervals (95% CI). Pooled risk estimate is represented by the black diamond using (A) fixed effects and (B) random effects models. Inter-study heterogeneity was assessed using the Cochran Q statistic (Chi²) at a significance level of p<0.10, and quantified by I², with values \geq 50% indicating substantial heterogeneity.

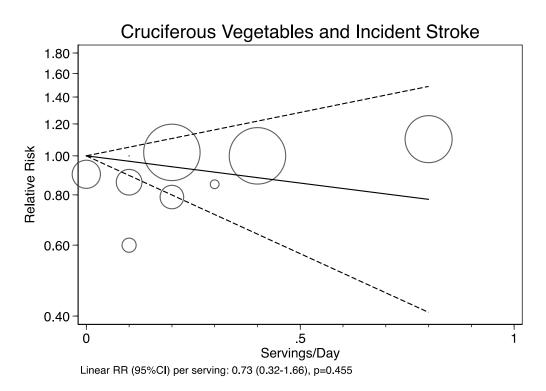

Figure S147. Linear and cubic-spline dose-response relation between increasing fruit and vegetable intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

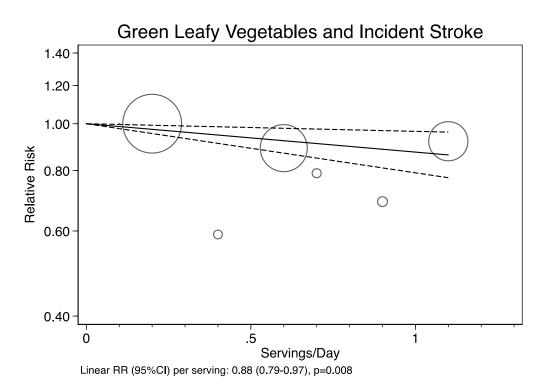

Figure S148. Linear and cubic-spline dose-response relation between increasing fruit intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

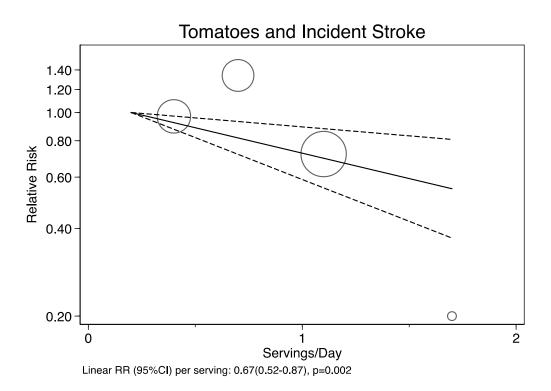

Figure S149. Linear and cubic-spline dose-response relation between increasing intake of vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

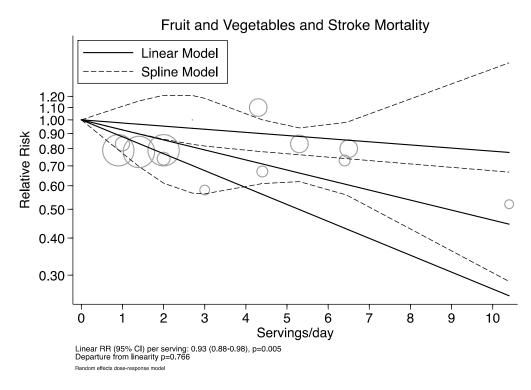

Figure S150. Linear and cubic-spline dose-response relation between increasing berries intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

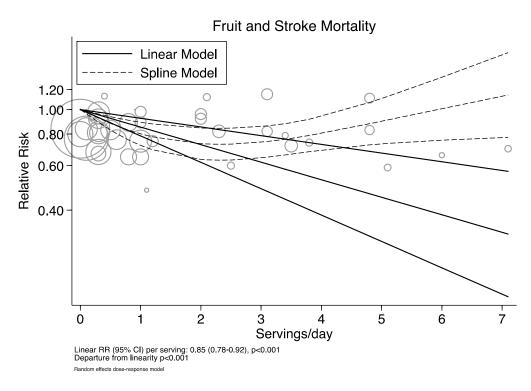

Figure S151. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

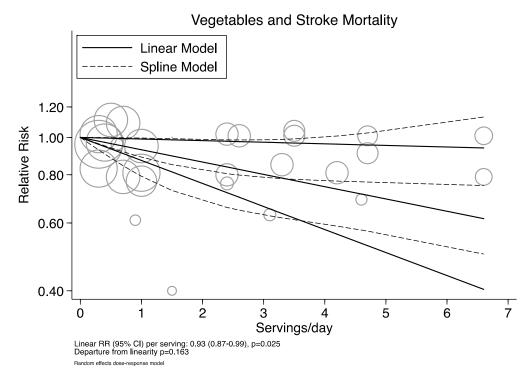

Figure S152. Linear and cubic-spline dose-response relation between increasing fruit juice intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

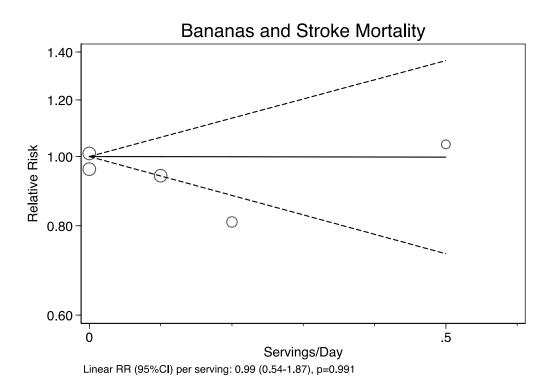

Figure S153. Linear dose-response relation between increasing pommes intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

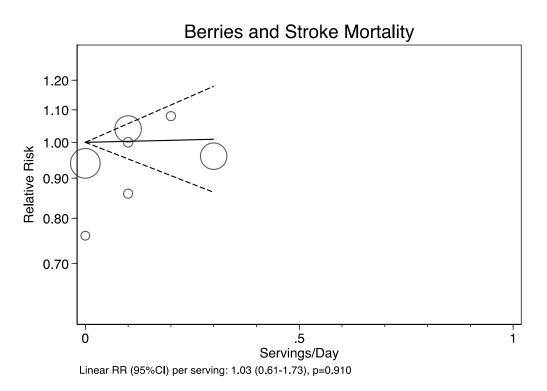

Figure S154 Linear dose-response relation between increasing intake of allium vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

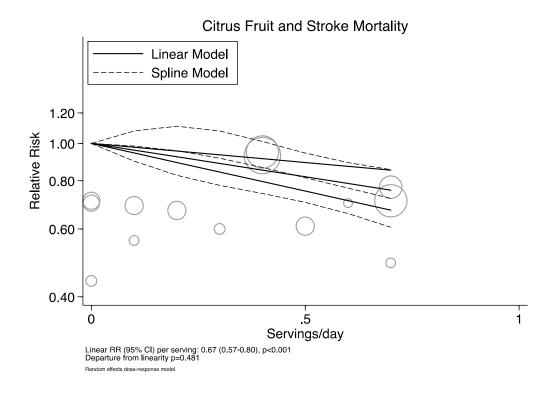

Figure S155. Linear dose-response relation between increasing intake of cruciferous vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

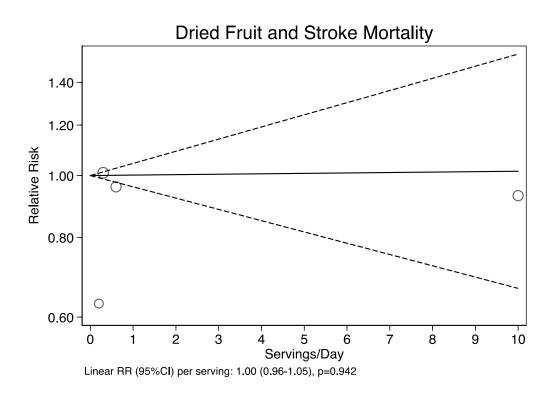

Figure S156. Linear dose-response relation between increasing intake of green leafy vegetables and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

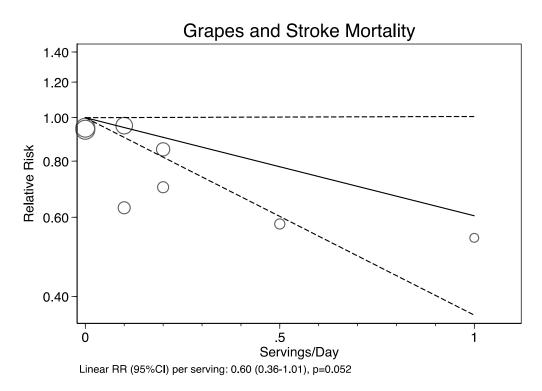

Figure S157. Linear dose-response relation between increasing tomato intake and incidence of stroke. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S158. Linear dose-response relation between increasing fruit and vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S159. Linear and cubic-spline dose-response relation between increasing fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S160. Linear and cubic-spline dose-response relation between increasing intake of vegetables and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S161 Linear dose-response relation between increasing banana intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Figure S162. Linear dose-response relation between increasing berries intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

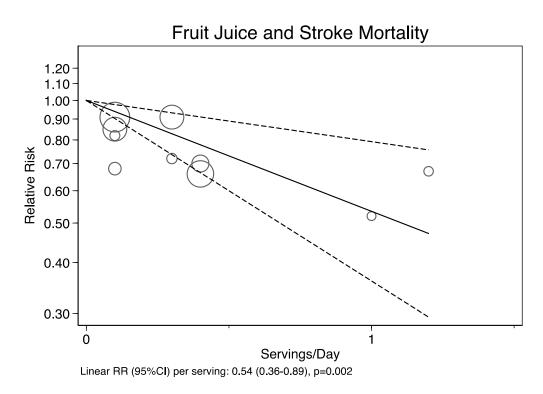

Figure S163. Linear and cubic-spline dose-response relation between increasing citrus fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S164. Linear and cubic-spline dose-response relation between increasing dried fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S165. Linear dose-response relation between increasing grapes intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S166. Linear dose-response relation between increasing fruit juice intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

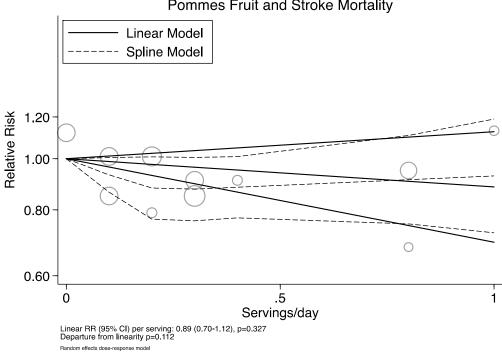
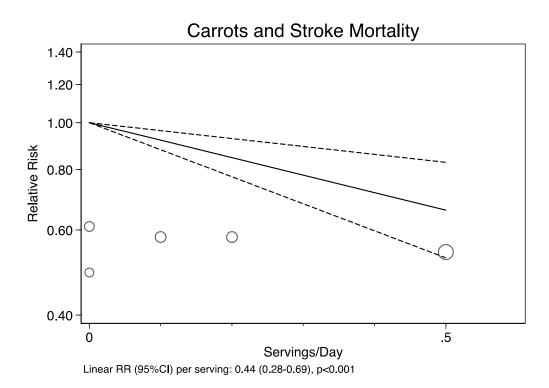
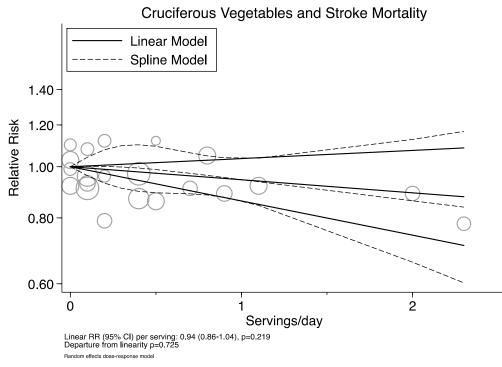
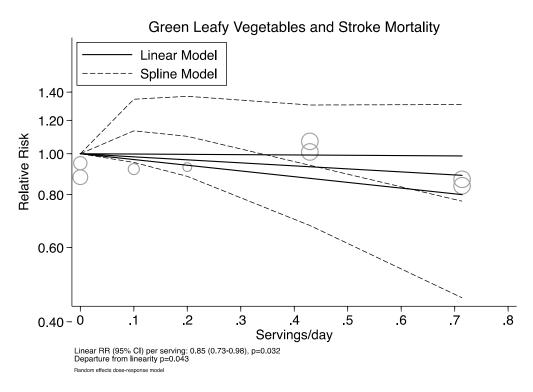




Figure S167. Linear and cubic-spline dose-response relation between increasing pomme fruit intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.


Pommes Fruit and Stroke Mortality

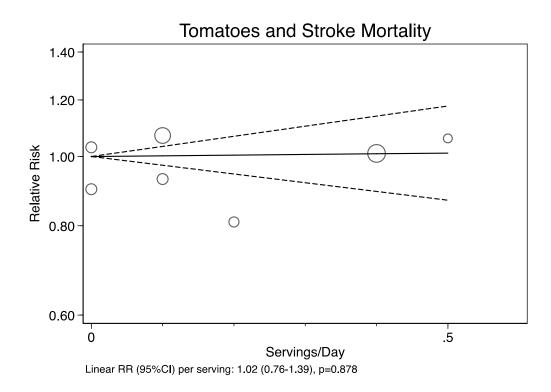

Figure S168. Linear dose-response relation between increasing intake of carrots and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S169. Linear and cubic-spline dose-response relation between increasing cruciferous vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S170. Linear and cubic-spline dose-response relation between increasing green leafy vegetable intake and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. Cubic spline data were modeled with fixed-effects restricted cubic spline with 3 knots and using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk. All data was kept on the original dose scale. The fitted trend for each model is represented by a central line (solid lines for linear model; dashed lines for cubic spline model) with 95% confidence intervals represented by the outer lines. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

Figure S171. Linear dose-response relation between increasing intake of tomatoes and stroke mortality. Linear dose-response data was modeled using the Greenland and Longnecker²³ method to estimate the covariances of multivariable-adjusted relative risk, with kept on the original dose scale. Dashed lines represent the pointwise 95% confidence intervals for the fitted linear trend represented by a solid line. Individual observations are represented by the circles, with the weight of the study in the overall analysis represented by the size of the circles.

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

						Pool	ed Effect Estimates				Adjusted
Subgroup	Level	Cohorts	Ν	Events	RR [95% CIs] for Fruit and Ve	getables and Inciden	t CVD	Residual I ²	p -value	Alpha Level
					Within Subgro			Between Subgroups			
Total	-	12	501,744	24,310	0.92 [0.88, 0	-		-	-	-	-
Sex	Females	3	174,785	6,980	0.91 [0.80, 1	_		F vs. M: 0.95 [0.79, 1.16]	34.01%	0.88	0.007
	Males	4	49,532	2,776	0.95 [0.83, 1			F vs. Mix: 0.99 [0.85, 1.16]			
	Mxed	7	277,427	14,554	0.92 [0.84, 1			M vs. Mix: 1.03 [0.87, 1.23]			
Age (y)	<60	6	209,845	12,102	0.89 [0.82, 0	_ • _		0.95 [0.86, 1.04]	22.88%	0.23	0.008
	≥60	6	291,899	291,899	0.94 [0.89, 0	-•-					
ollow Up (y)	<10	4	259,569	6,930	0.88 [0.74, 1			0.95 [0.79, 1.13]	28.44%	0.53	0.010
	≥10	10	242,175	17,380	0.93 [0.88, 0	↓					
itatistical Adjustments	<8	2	5,563	1,334	0.98 [0.79, 1			1.06 [0.86, 1.33]	28.70%	0.54	0.013
	≥ 8	10	496,181	22,976	0.92 [0.87, 0	- • -					
NOS	<6	-	-	-	-			-	-	-	0.017
	≥6	12	501,744	24,310	0.92 [0.88, 0	-•					
xposure Assessment Tool	Validated FFQ	9	474,421	18,022	0.93 [0.89, 0	-•		vFFQ vs. uFFQ: 1.06 [0.89, 1.27]	17.71%	0.19	0.025
	Unvalidated FFQ	2	4,331	1,323	0.99 [0.83, 1		_	vFFQ vs. record: 0.90 [0.80, 1.03]			
	Food Record	1	22,992	4,965	0.84 [0.75, 0	_		uFFQ vs. record: 0.85 [0.69, 1.05]			
ocation	Asia	1	77,891	1,386	0.93 [0.72, 1		_	+	39.02%	0.98	0.050
	Europe	5	22,935	2,859	0.95 [0.82, 1	_					
	North America	5	265,583	15,281	0.92 [0.85, 0						
	Global	1	135,335	4,784	0.93 [0.63, 1	•					
					0.5	1.0	1.5				
						Lower Risk	Higher Risk				

Figure S172. Categorical subgroup analyses of total fruit and vegetable intake and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD - cardiovascular disease; FFQ - food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR - relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.98 [0.74, 1.31]; Europe vs. Global 0.99 [0.64, 1.51]; Europe vs. North America 0.97 [0.83, 1.14]; Asia vs. Global 0.99 [0.62, 1.60]; Asia vs. North America 1.00 [0.78, 1.32]; Global vs. North America 1.02 [0.68, 1.53];

FRUIT AND CARDIOVASCULAR DISEASE INCIDENCE

							Pooled	Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		R	R [95% Cis] for Fruit a	nd Incident CVD		Residual I ²	p -value	Alpha Level
			0.0471227		Within Subgroups				Between Subgroups			
Total	-	16	577,323	27,205	0.91 [0.86, 0.97]				-	-	-	-
Sex	Females	5	189,962	9,212	0.90 [0.78, 1.03]		+		F vs. M: 0.96 [0.79, 1.18]	45.27%	0.91	0.007
	Males	5	58,075	3,944	0.93 [0.80, 1.09]		_	_	F vs. Mix: 0.98 [0.83, 1.16]			
	Mxed	8	329,286	14,049	0.92 [0.83, 1.01]				M vs. Mix: 1.02 [0.85, 1.22]			
Age (y)	<59	8	255,899	11,747	0.92 [0.83, 1.01]		_ _		1.01 [0.88, 1.15]	42.56%	0.94	0.008
	≥59	8	321,424	15,458	0.91 [0.83, 1.00]		_ • _					
Follow Up (y)	<10	5	247,053	7,204	0.93 [0.82, 1.06]		_	_	1.02 [0.88, 1.19]	40.64%	0.88	0.010
	≥10	11	330,270	20,001	0.91 [0.84, 0.98]		_ -					
Statistical Adjustments	<8	4	8,987	1,892	0.87 [0.72, 1.05]				0.94 [0.78, 1.15]	41.21%	0.57	0.013
	≥8	12	568,336	24,953	0.92 [0.86, 0.99]		- - -					
NOS	<6	2	37,907	1,423	0.86 [0.66, 1.12]		6		0.94 [0.72, 1.23]	41.54%	0.63	0.017
	≥6	14	539,416	25,782	0.92 [0.86, 0.98]		- - -					
Exposure Assessment Tool	Validated FFQ	13	571,664	25,895	0.86 [0.67, 1.10]		•		vFFQ vs. uFFQ: 1.07 [0.83, 1.38]	44.25%	0.85	0.025
	Unvalidated FFQ	2	3,810	555	0.92 [0.85, 0.99]		_ _		vFFQ vs. record: 1.02 [0.62, 1.67]			
	Food record	1	1,849	755	0.88 [0.58, 1.35]	-	•		uFFQ vs. record: 0.96 [0.63, 1.47]			
Location	Asia	1	77,891	1,386	0.80 [0.62, 1.03]		+		+	43.21%	0.65	0.050
	Europe	10	125,806	10,043	0.94 [0.85, 1.03]		_ + _					
	North America	4	238,291	10,992	0.91 [0.80, 1.03]		 +					
	Global	1	135,335	4,784	0.89 [0.69, 1.13]		-					
								ı				
						0.5	1.0	1.	5			
							Lower Risk	Higher Risk				

Figure S173. Categorical subgroup analyses of fruit intake and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.85 [0.65, 1.12]; Europe vs. Global 0.94 [0.73, 1.23]; Europe vs. North America 0.96 [0.82, 1.13]; Asia vs. Global 0.90 [0.63, 1.29]; Asia vs. North America 0.88 [0.67, 1.18]; Global vs. North America 0.98 [0.74, 1.29]

VEGETABLES AND CARDIOVASCULAR DISEASE INCIDENCE

						Pooled Effect Estimates	5			Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and Incident	CVD	Residual I ²	p-value	Alpha Level
					Within Subgroups		Between Subgroups			
otal	-	14	539,683	22,810	0.92 [0.88, 0.97]	-	-	-	-	-
ex	Females	3	170,485	7,656	0.93 [0.79, 1.09]	•	F vs. M: 0.98 [0.80, 1.20]	50.46%	0.97	0.007
	Males	4	48,027	1,985	0.95 [0.84, 1.07]	_	F vs. Mix: 0.98 [0.82, 1.19]			
	Mxed	7	321,171	13,169	0.94 [0.85, 1.03]	• _	M vs. Mix: 1.00 [0.86, 1.18]			
Age (y)	<59	7	197,808	15,244	0.95 [0.86, 1.04]		1.01 [0.89, 1.15]	47.34%	0.86	0.008
	≥59	7	318,344	7,566	0.93 [0.85, 1.03]					
ollow Up (y)	<10	3	220,442	6,264	0.98 [0.87, 1.11]		1.06 [0.91, 1.22]	44.16%	0.44	0.010
	≥10	11	319,241	16,546	0.93 [0.86, 1.00]					
tatistical Adjustments	<8	3	5,907	1,546	0.86 [0.72, 1.03]		0.91 [0.75, 1.10]	42.70%	0.29	0.013
	≥8	11	533,776	21,264	0.95 [0.89, 1.02]					
NOS	<6	1	34,827	1,094	0.89 [0.66, 1.19]		0.94 [0.69, 1.28]	46.72%	0.68	0.017
	≥6	13	504,856	21,716	0.94 [0.88, 1.01]	_				
xposure Assessment Tool	Validated FFQ	12	537,104	21,846	0.95 [0.89, 1.02]		vFFQ vs. uFFQ: 0.80 [0.59, 1.11]	42.86%	0.32	0.025
	Unvalidated FFQ	1	730	209	0.77 [0.57, 1.05]	-+-	vFFQ vs. record: 0.92 [0.72, 1.18]			
	Food record	1	1,849	755	0.88 [0.69, 1.12]		uFFQ vs. record: 1.13 [0.77, 1.69]			
ocation	Asia	1	77,891	1,138	0.96 [0.76, 1.23]		+	53.51%	0.99	0.050
	Europe	9	88,166	5,896	0.94 [0.85, 1.03]					
	North America	3	238,291	10,992	0.93 [0.81, 1.06]	_				
	Global	1	135,335	4,784	0.95 [0.73, 1.24]					
						0.5 1.0	1.5			
						Lower Risk Higher Risk				

Figure S174. Categorical subgroup analyses of intake of vegetables and cardiovascular disease incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 1.03 [0.79, 1.33]; Europe vs. Global 1.01 [0.76, 1.34]; Europe vs. NA 0.99 [0.84, 1.16]; Asia vs. Global 1.01 [0.71, 1.45]; Asia vs. NA 1.04 [0.79, 1.37]; Global vs. NA 1.03 [0.76, 1.38]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events	F	R [95% CIs] for Fruit and Vegetables and CVD Mortality		Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	14	798,391	17,439	0.84 [0.76, 0.94]	_ -	-	-	-	-
Sex	Females	1	71,243	755	0.84 [0.53, 1.33]		F vs. M: 0.90 [0.52, 1.58]	63.21%	0.73	0.007
	Males	3	15,044	5,037	0.93 [0.68, 1.29]		F vs. Mix: 1.03 [0.63, 1.68]			
	Mxed	10	712,104	11,647	0.82 [0.69, 0.95]	_	M vs. Mix: 1.14 [0.80, 1.64]			
Age (y)	<55	7	616,198	9,288	0.81 [0.67, 0.97]		0.92 [0.70,1.20]	65.40%	0.49	0.008
	≥55	7	182,193	8,151	0.88 [0.73, 1.07]					
Follow Up (y)	<10	5	298,283	4,500	0.73 [0.59, 0.92]		0.82 [0.63, 1.07]	64.71%	0.14	0.010
	≥10	9	500,108	12,939	0.89 [0.77, 1.03]					
Statistical Adjustments	<8	3	13,655	705	0.93 [0.69, 1.24]		1.13 [0.81, 1.57]	70.67%	0.44	0.013
	≥ 8	11	784,736	16,734	0.82 [0.71, 0.95]	_				
NOS	<6	-	-	-	-					0.017
	≥6	14	798,391	17,439	0.84 [0.76, 0.94]	_ -				
Exposure Assessment Tool	Validated FFQ	8	703,295	9,921	0.84 [0.76, 0.94]	_	vFFQ vs. uFFQ: 1.21 [1.03, 1.41]	30.71%	<0.01	0.025
	Unvalidated FFQ	2	14,632	5,026	1.01 [0.91, 1.14]	×	vFFQ vs. record: 0.85 [0.69, 1.03]			
	Food record	4	80,464	9,921	0.71 [0.60, 0.85]	ľ	uFFQ vs. record: 0.70 [0.57, 0.86]			
Location	Asia	3	84,531	1,578	0.76 [0.58, 1.00]	_	+	68.09%	0.61	0.050
	Europe	8	562,766	12,689	0.87 [0.72 1.06]					
	North America	2	15,759	1,523	0.95 [0.66, 1.38]					
	Global	1	135335	1649	0.69 [0.38, 1.26]					
						0.5 1.0 1.5	i			
						Lower Risk Higher Risk				

TOTAL FRUIT AND VEGETABLES AND CARDIOVASCULAR DISEASE MORTALITY

Figure S175. Categorical subgroup analyses of total fruit and vegetable intake and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD - cardiovascular disease; FFQ - food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.87 [0.63, 1.22]; Europe vs. Global 0.79 [0.42, 1.49]; Europe vs. North America 1.09 [0.72, 1.66]; Asia vs. Global 1.10 [0.57, 2.13]; Asia vs. North America 0.80 [0.50, 1.27]; Global vs. North America 0.73 [0.36, 1.47]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit and CVD Mortality		Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	27	1,581,506	39,623	0.83 [0.77, 0.89]	—	-	-	-	-
Sex	Females	5	135,154	5,157	0.76 [0.63, 0.91]	_	F vs. M: 0.84 [0.66, 1.07]	77.74%	0.33	0.007
	Males	7	101,605	8,641	0.92 [0.75, 1.13]	_	F vs. Mix: 0.92 [0.75, 1.13]			
	Mxed	17	329,286	14,049	0.82 [0.75, 0.90]	_ - -	M vs. Mix: 1.10 [0.92, 1.31]			
Age (y)	<54	10	1,115,225	15,507	0.77 [0.69, 0.86]		0.88 [0.77, 1.02]	71.00%	0.08	0.008
	≥54	17	466,281	24,116	0.87 [0.80, 0.94]	••				
Follow Up (y)	<11	13	916,897	17,780	0.80 [0.72, 0.90]		0.95 [0.82, 1.09]	76.29%	0.44	0.010
	≥11	14	664,609	21,843	0.85 [0.77, 0.93]					
Statistical Adjustments	<8	8	57,260	5,303	0.88 [0.78, 0.99]		1.10 [0.95, 1.27]	79.15%	0.22	0.013
	≥ 8	19	1,524,246	34,320	0.80 [0.73, 0.88]					
NOS	<6	2	20,531	1,717	0.89 [0.73, 1.08]		1.08 [0.88, 1.33]	78.84%	0.45	0.017
	≥6	24	1,560,975	37,906	0.82 [0.76, 0.89]	_ _				
Exposure Assessment Tool	Validated FFQ	15	990,789	22,863	0.84 [0.76, 0.93]		vFFQ vs. uFFQ: 0.97 [0.80, 1.17]	78.17%	0.93	0.025
	Unvalidated FFQ	4	483,979	12,238	0.81 [0.69, 0.95]	_	vFFQ.vs. record: 0.99 [0.83, 1.18]			
	Food record	6	106,738	4,522	0.83 [0.72, 0.96]		uFFQ vs. record: 1.02 [0.83, 1.27]			
Location	Asia	6	752,255	20,127	0.80 [0.71, 0.89]		+	78.55%	0.32	0.050
	Australia	1	40,653	697	0.69 [0.46, 1.05]					
	Europe	14	629,562	16,072	0.83 [0.75, 0.91]					
	North America	2	13,944	563	1.02 [0.77, 1.38]	_ -				
	Global	2	145,092	2,164	0.94 [0.75 1.19]					
						0.5 1.0 1.	5			
						Lower Risk Higher Risk	-			

FRUIT AND CARDIOVASCULAR DISEASE MORTALITY

Figure S176. Categorical subgroup analyses of fruit intake and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.96 [0.83, 1.13]; Europe vs Australia 0.84 [0.55, 1.28]; Europe vs. Global 1.14 [0.89, 1.47]; Europe vs. North America 1.25 [0.92, 1.70]; Asia vs. Australia 1.15 [0.75, 1.77]; Asia vs. Global 0.85 [0.65, 1.10]; Asia vs. North America 0.77 [0.56, 1.06]; Australia vs. Global 0.73 [0.46, 1.18]; Australia vs. North America 0.67 [0.41, 1.12]; Global vs. North America 0.92 [0.63, 1.33]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and CVD Mortality		Residual I ²	p-value	Alpha Level
Total	-	21	1,101,435	33,516	Within Subgroups 0.83 [0.78, 0.89]	—	Between Subgroups -	-	-	-
Sex	Females Males Mxed	4 6 14	99,506 97,280 904,649	4,498 8,050 20,968	0.90 [0.74, 1.09] 0.85 [0.72, 1.00] 0.82 [0.74, 0.91]		F vs. M: 1.07 [0.82, 1.38] F vs. Mix: 1.10 [0.88, 1.37] M vs. Mix: 1.03 [0.85 1.25]	59.31%	0.69	0.007
Age (y)	<55 ≥55	12 9	733,002 368,433	13,359 20,157	0.82 [0.74, 0.91] 0.86 [0.78, 0.96]		0.95 [0.82, 1.10]	54.86%	0.47	0.008
Follow Up (y)	<10 ≥10	7 14	352,675 748,760	7582 25,934	0.77 [0.68, 0.89] 0.87 [0.81, 0.95]	_	0.88 [0.76, 1.03]	52.02%	0.11	0.010
Statistical Adjustments	<8 ≥8	7 11	47,233 1,054,202	4,788 28,728	0.88 [0.78, 1.00] 0.82 [0.75, 0.90]		1.07 [0.92, 1.25]	57.47%	0.38	0.013
NOS	<6 ≥6	1 20	10,471 1,090,964	1,202 32,314	0.94 [0.71, 1.25] 0.83 [0.79, 0.90]		1.13 [0.84, 1.52]	56.90%	0.40	0.017
Exposure Assessment Tool	Validated FFQ Unvalidated FFQ Food record	10 4 7	942,971 22,593 135,871	21,958 6,310 5,248	0.84 [0.75, 0.94] 0.83 [0.70, 0.98] 0.84 [0.73, 0.98]		vFFQ vs. uFFQ: 0.99 [0.81, 1.21] vFFQ vs. record: 1.00 [0.83, 1.21] uFFQ vs. record: 1.01 [0.81, 1.27]	59.53%	0.99	0.025
Location	Asia Australia Europe North America Global	5 2 11 2 1	289,553 41,879 591,591 43,077 135,335	13,961 935 15,682 1289 1,649	0.85 [0.73, 0.99] 0.76 [0.57, 1.01] 0.86 [0.76, 0.96] 0.77 [0.59, 1.00] 0.87 [0.59, 1.28]		+	59.70%	0.87	0.050
						0.5 1.0 1.5				

Figure S177. Categorical subgroup analyses of intake of vegetables and cardiovascular disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CVD – cardiovascular disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.99 [0.82, 1.19]; Europe vs Australia 0.88 [0.65, 1.20]; Europe vs. Global 1.01 [0.68, 1.52]; Europe vs. North America 0.90 [0.67, 1.20]; Asia vs. Australia 1.12 [0.81, 1.56]; Asia vs. Global 0.98 [0.64, 1.48]; Asia vs. North America 1.11 [0.81, 1.50]; Australia vs. Global 0.87 [0.54, 1.41]; Australia vs. North America 0.98 [0.66, 1.46]; Global vs. North America 1.13 [0.71, 1.81]

							Pooled Eff	fect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% (Cls] for Fruit and Vegeta	bles and Incident Cl	ID	Residual I ²	p-value	Alpha Level
			0.02904962		Within Subgroups				Between Subgroups			
Total	-	19	619,182	17,987	0.88 [0.82, 0.93]					-	-	-
Sex	Females	4	195,199	3,069	0.84 [0.76, 0.94]		_ • _		F vs. M: 0.96 [0.80, 1.14]	9.65%	0.18	0.007
	Males	5	122,472	4,715	0.81 [0.70, 0.93]		_		F vs. Mix: 0.88 [0.75, 1.03]			
	Mxed	10	301,511	10,203	0.92 [0.85, 0.99]		_ _		M vs. Mix: 0.92 [0.81, 1.05]			
Age (y)	<54	10	406,180	11,508	0.87 [0.80, 0.95]				0.99 [0.87, 1.13]	20.41%	0.85	0.008
	≥54	9	213,002	6,479	0.88 [0.80, 0.98]							
Follow Up (y)*	<10	7	342,908	3412	0.85 [0.76, 0.95]				0.95 [0.82, 1.10]	24.09%	0.45	0.010
	≥10	11	265,140	13,897	0.90 [0.82, 0.99]							
Statistical Adjustments	<8	2	5,066	445	0.85 [0.65, 1.14]				0.97 [0.72, 1.31]	20.60%	0.82	0.013
	≥8	17	614,116	17,542	0.88 [0.82, 0.94]			_				
NOS	<6	4	126,148	7,005	0.82 [0.75, 0.91]		•		0.91 [0.81, 1.02]	9.12%	0.10	0.017
103	≥6	15	493,034	10,982	0.91 [0.85, 0.97]				0.51 [0.81, 1.02]	5.12/0	0.10	0.017
	20	15	493,034	10,962	0.91 [0.83, 0.97]		-•					
Exposure Assessment Tool	Validated FFQ	15	521,931	13,968	0.88 [0.83, 0.94]		_ • _		vFFQ vs. uFFQ: 0.84 [0.62, 1.14]	16.44%	0.37	0.025
	Unvalidated FFQ	3	82,361	3,481	0.74 [0.55, 1.00]				vFFQ vs. record: 1.18 [0.76, 1.84]			
	Food record	1	14,890	538	1.04 [0.67, 1.61]		•		uFFQ vs. record: 1.41 [0.83, 2.38]			
Location	Asia	4	140,365	1,300	0.92 [0.70, 1.19]				+	23.70%	0.71	0.050
	Australia	1	14,890	538	0.74 [0.54, 1.02]							
	Europe	8	154,641	5,370	0.90 [0.81, 1.00]		·					
	North America	5	173951	8636	0.86 [0.77, 0.95]		·					
	Global	1	135,335	2,143	0.95 [0.68, 1.34]		+					
						0.5	1.0	1.5				
						0.5						
							Lower Risk	Higher Risk				

TOTAL FRUIT AND VEGETABLES AND CORONARY HEART DISEASE INCIDENCE

Figure S178. Categorical subgroup analyses of total fruit and vegetable intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. * Follow-up years incudes 17 cohorts as Bingham et al. 2008 (EPIC Norfolk) did not report follow-up time. † Europe vs. Asia 1.02 [0.77, 1.35]; Europe vs. Australia 0.82 [0.59, 1.14]; Europe vs. Global 1.06 [0.74, 1.51]; Europe vs. North America 0.95 [0.83, 1.10]; Asia vs. Australia 1.24 [0.82, 1.87]; Asia vs. Global 0.96 [0.63, 1.48]; Asia vs. North America 1.07 [0.81, 1.42]; Australia vs. Global 0.78 [0.49, 1.24]; Australia vs. North America 0.86 [0.62, 1.21]; Global vs. North America 1.11 [0.78, 1.58]

						Pooled E	ffect Estimates			Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit an	d Incident CHD	Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	20	1,170,021	23,856	0.88 [0.84, 0.93]	-+-	-	-	-	-
Sex	Females	6	251,883	3,255	0.86 [0.76, 1.00]	_	F vs. M: 0.97 [0.82, 1.15]	11.32%	0.88	0.007
	Males	6	166,015	9,697	0.90 [0.82, 0.99]	_ -	F vs. Mix: 1.00 [0.85, 1.19]			
	Mxed	10	752,123	10,904	0.87 [0.79, 0.96]	_ -	M vs. Mix: 1.03 [0.90, 1.18			
Age (y)	<55	10	899,185	13,731	0.86 [0.80, 0.93]	_	0.94 [0.84, 1.06]	3.79%	0.31	0.008
	≥55	10	270,836	10,125	0.91 [0.83, 0.99]	_ -				
Follow Up (y)	<10	9	865,523	6,656	0.82 [0.74, 0.92]	_ —	0.92 [0.82, 1.04]	0.00%	0.16	0.010
	≥10	11	304,498	17,200	0.90 [0.85, 0.95]					
Statistical Adjustments	<8	4	206,008	11,296	0.91 [0.77, 1.09]	_	- 1.04 [0.87, 1.25]	8.05%	0.63	0.013
-	≥ 8	16	964,013	12,560	0.88 [0.82, 0.93]	_ -				
NOS	<6	2	113,276	6,189	0.87 [0.77, 0.99]	_	0.99 [0.86, 1.14]	8.97%	0.89	0.017
	≥6	18	1,056,745	17,667	0.88 [0.82, 0.95]	- - -				
Exposure Assessment Tool	Validated FFQ	17	637,980	18,321	0.90 [0.85, 0.95]		vFFQ vs. uFFQ: 0.87 [0.76, 0.9	9] 0.00%	0.07	0.025
	Unvalidated FFQ	2	530,192	5,374	0.78 [0.69, 0.88]		vFFQ vs. record: 1.12 [0.80, 1	57]		
	Food record	1	1,849	161	1.01 [0.72, 1.41]		uFFQ vs. record: 1.29 [0.91, 1.	-		
ocation	Asia	4	590,798	3,755	0.76 [0.65, 0.89]	_ -	t	0.00%	0.22	0.050
	Europe	11	265,012	11,509	0.90 [0.84, 0.97]	_ -				
	North America	4	178876	6449	0.87 [0.80, 0.96]	_ -				
	Global	1	135,335	2,143	0.91 [0.73, 1.15]		<u> </u>			
						0.5 1.0	1.5			
						Lower Risk	Higher Risk			

FRUIT AND CORONARY HEART DISEASE INCIDENCE

Figure S179. Categorical subgroup analyses of fruit intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.84 [0.71, 0.99]; Europe vs. Global 1.01 [0.79, 1.29]; Europe vs. North America 0.96 [0.85, 1.08]; Asia vs. Global 0.83 [0.63, 1.10]; Asia vs. North America 0.87 [0.73, 1.04]; Global vs. North America 1.05 [0.82, 1.34]

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and Incident CHD		Residual I ²	p-value	Alpha Level
			0.0246607		Within Subgroups		Between Subgroups			
Total	•	18	696,330	17,172	0.92 [0.85, 0.99]	-•-		-	-	-
ex	Females	6	251,883	3,820	0.87 [0.77, 0.98]	•	F vs. M: 0.99 [0.86, 1.14]	0.00%	0.86	0.007
	Males	8	184,953	7,023	0.88 [0.81, 0.95]	_ -	F vs. Mix: 0.96 [0.82, 1.13]			
	Mxed	6	259,494	6,329	0.91 [0.81, 1.01]		M vs. Mix: 0.97 [0.85, 1.11]			
ge (y)	<55	11	422,076	10,304	0.88 [0.81, 0.94]	_ —	0.98 [0.87, 1.09]	0.00%	0.67	0.008
	≥55	7	274,254	6,868	0.90 [0.82, 0.97]					
bllow Up (y)	<10	9	403,213	5986	0.83 [0.74, 0.94]	_	0.95 [0.83, 1.09]	0.00%	0.43	0.010
	≥10	9	252,241	10,712	0.88 [0.82, 0.95]					
tatistical Adjustments	<8	2	5,177	468	0.96 [0.73, 1.26]		1.09 [0.82, 1.44]	0.00%	0.53	0.013
	≥ 8	16	691,153	16,704	0.88 [0.83, 0.93]	_ -				
os	<6	2	113,276	6,189	0.87 [0.80, 0.96]	_ —	0.99 [0.88, 1.11]	0.00%	0.78	0.017
	≥6	16	583,054	10,983	0.89 [0.83, 0.95]	- -				
xposure Assessment Tool	Validated FFQ	16	615,954	14,188	0.88 [0.83, 0.94]	-•	vFFQ vs. uFFQ: 0.99 [0.84, 1.16]	0.00%	0.69	0.025
	Unvalidated FFQ	1	78,527	2,823	0.87 [0.75, 1.01]		vFFQ vs. record: 1.15 [0.82, 1.61]			
	Food record	1	1,849	161	1.01 [0.72, 1.41]		uFFQ vs. record: 1.16 [0.81, 1.68]			
ocation	Asia	3	139,133	1,204	0.96 [0.73, 1.25]		+	0.00%	0.79	0.050
	Europe	10	253,939	6,362	0.89 [0.83, 0.97]					
	North America	4	167,923	7,463	0.86 [0.79, 0.94]					
	Global	1	135,335	2,143	0.91 [0.73, 1.15]					
						0.5 1.0 1.5				
						Lower Risk Higher Risk				

VEGETABLE AND CORONARY HEART DISEASE INCIDENCE

Figure S180. Categorical subgroup analyses of intake of vegetables and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 1.07 [0.81, 1.41]; Europe vs. Global 1.02 [0.80, 1.30]; Europe vs. NA 0.96 [0.85, 1.08]; Asia vs. Global 1.05 [0.74, 1.49]; Asia vs. NA 1.11 [0.84, 1.48]; Global vs. NA 1.07 [0.83, 1.37]

CITRUS FRUIT AND CORONARY HEART DISEASE INCIDENCE

						_		Adjusted		
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Citrus Fruit and Incident CHD	1	Residual I ²	p -value	Alpha Level
					Within Subgroups		Between Subgroups			
Total	-	10	364,978	8,333	0.91 [0.85, 0.98]	•	-	-	-	-
Sex	Females	5	202,835	3,152	0.90 [0.80, 1.02]	_	F vs. M: 0.99 [0.84, 1.17]	0.00%	0.76	0.007
	Males	5	134,858	4,830	0.91 [0.82, 1.02]	_	F vs. Mix: 0.88 [0.60, 1.29]			
	Mxed	2	27,285	351	1.02 [0.72, 1.47]	•	- M vs. Mix: 0.89 [0.61, 1.29]			
Age (y)	<55	7	293,756	7,064	0.90 [0.83, 0.98]	_	0.91 [0.74, 1.14]	0.00%	0.38	0.008
	≥55	3	71,222	1,269	0.99 [0.81, 1.20]					
- ollow Up (y)	<10	5	212,923	1702	0.97 [0.82, 1.15]		1.08 [0.90, 1.31]	0.00%	0.38	0.010
	≥10	5	152,055	6,631	0.90 [0.82, 0.98]					
Statistical Adjustments	<8	-	-	-	-		-	-	-	0.013
	≥8	10	364,978	8,333	0.91 [0.85, 0.98]					
NOS	<6	2	113,276	6,189	0.91 [0.82, 1.00]	_ _	0.97 [0.82, 1.15]	0.00%	0.73	0.017
	≥6	8	251,702	2,144	0.93 [0.81, 1.07]					
Exposure Assessment Tool	Validated FFQ	10	364,978	8,333	0.91 [0.85, 0.98]		-	-	-	0.025
	Unvalidated FFQ	-	-	-	-	•				
	Food record	-	-	-	-			-		
ocation	Asia	3	133,258	441	0.81 [0.58, 1.12]	_	Europe vs. Asia: 0.84 [0.58, 1.20]	0.00%	0.54	0.050
	Europe	5	118,444	1,703	0.96 [0.82, 1.13]	·	Europe vs. NA: 0.94 [0.78, 1.13]			
	North America	2	113,276	6,189	0.91 [0.82, 1.00]	+	Asia vs. NA: 0.89 [0.64, 1.25			
						0.5 1.0	1.5			
						Lower Risk Higher Risk				

Figure S181. Categorical subgroup analyses of citrus fruit intake and incident coronary heart disease. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals.

						Pooled Effect Estimates		_		Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% Cls] for Fruit and CHD Mortality		Residual I ²	p-value	Alpha Level
					Within Subgroups		Between Subgroups	-		
Total	-	21	1,398,863	14,786	0.84 [0.76, 0.91]	_ -	-	-	-	-
Sex	Females	5	160,978	1,903	0.69 [0.56, 0.85]	_	F vs. M: 0.75 [0.58, 0.97]	52.61%	0.1	0.007
	Males	7	139,080	5,967	0.92 [0.80, 1.07]	_	F vs. Mix: 0.83 [0.65, 1.06]			
	Mxed	13	1,237,885	12,883	0.84 [0.74, 0.95]		M vs. Mix: 1.10 [0.91, 1.34]			
Age (y)	<55	10	1,014,095	6,488	0.79 [0.71, 0.89]		0.89 [0.75, 1.06]	54.99%	0.1	0.008
	≥55	11	384,768	8,298	0.89 [0.78, 1.02]					
Follow Up (y)	<10	6	708,590	5637	0.86 [0.73, 1.02]		1.05 [0.85, 1.28]	60.64%	0.65	0.010
	≥10	15	690,273	9,149	0.82 [0.74, 0.92]					
Statistical Adjustments	<8	10	237,290	4,289	0.86 [0.75, 0.99]		1.05 [0.88, 1.27]	62.86%	0.57	0.013
	≥8	11	1,161,573	10,497	0.82 [0.72, 0.92]					
NOS	<6	4	178,483	3,012	0.83 [0.70, 0.98]		0.99 [0.80, 1.21]	63.13%	0.9	0.017
	≥6	17	1,220,380	11,774	0.84 [0.75, 0.94]					
Exposure Assessment Tool	Validated FFQ	10	881,744	8,315	0.85 [0.74, 0.97]		vFFQ vs. uFFQ: 0.94 [0.77, 1.14]	64.54%	0.63	0.025
	Unvalidated FFQ	6	500,949	5,772	0.80 [0.68, 0.92]		vFFQ vs. record: 1.07 [0.79, 1.45]			
	Food record	4	16,170	699	0.91 [0.69, 1.19]		uFFQ vs. record: 1.14 [0.84, 1.56]			
Location	Asia	5	586,853	4,670	0.78 [0.66, 0.91]		+	60.03%	0.44	0.050
	Australia	1	40,653	407	0.76 [0.45, 1.30]					
	Europe	11	579,086	7,123	0.84 [0.73, 0.96]					
	North America	4	192,271	2,586	0.96 [0.77, 1.20]					
	North America	4	192,271	2,560	0.96 [0.77, 1.20]					
						0.5 1.0	1.5			
						Lower Risk Higher Ris	k			

FRUIT AND CORONARY HEART DISEASE MORTALITY

Figure S182. Categorical subgroup analyses of fruit intake and coronary heart disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.93 [0.76, 1.14]; Europe vs. Australia 0.91 [0.53, 1.57]; Europe vs. North America 1.15 [0.89, 1.47]; Asia vs. Australia 1.01 [0.59, 1.77]; Asia vs. North America 0.81 [0.62, 1.06]; Australia vs. North America 0.80 [0.45, 1.41]

						Pooled Effect Estimate	25	_		Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and CHD Mo	rtality	Residual I ²	p -value	Alpha Level
Total	-	18	1,968,325	26,007	Within Subgrou 0.84 [0.80, 0.8	-	Between Subgroups -		-	-
Sex	Females	4	704,423	5,693	0.85 [0.76, 0.9	_	F vs. M: 0.96 [0.88, 1.06]	26.01%	0.73	0.007
	Males	6	592,634	13,892	0.86 [0.78, 0.9	- _	F vs. Mix: 0.98 [0.89, 1.09]			
	Mxed	12	671,268	6,422	0.83 [0.76, 0.9		M vs. Mix: 1.02 [0.93 1.11]			
Age (y)	<56	10	1,054,654	14,251	0.87 [0.83, 0.9	—	1.04 [0.96, 1.13]	20.98%	0.31	0.008
	≥56	10	913,671	11,756	0.84 [0.78, 0.8	_				
Follow Up (y)	<13	9	1,404,076	18332	0.84 [0.78, 0.9		0.98 [0.89, 1.10]	25.06%	0.73	0.010
	≥13	9	564,249	7,675	0.85 [0.79, 0.9	_ _				
Statistical Adjustments	<8	5	205,972	3,242	0.86 [0.78, 0.9	_ _	1.01 [0.91, 1.14]	24.96%	0.81	0.013
-	≥ 8	13	1,762,353	22,765	0.84 [0.80, 0.9	- • -				
NOS	<6	3	167,742	2,407	0.86 [0.77, 0.9	_ _	1.02 [0.90, 1.15]	24.72%	0.73	0.017
	≥6	15	1,800,583	23,600	0.84 [0.80, 0.8	- - -				
Exposure Assessment Tool	Validated FFQ	7	814,011	7,649	0.82 [0.75, 0.9	_ —	vFFQ vs. uFFQ: 1.07 [0.96, 1.18]	0.00%	0.02	0.025
	Unvalidated FFQ	5	1,109,011	17,103	0.88 [0.84, 0.9		vFFQ vs. record: 0.77 [0.62, 0.96]			
	Food record	6	45,303	1,255	0.64 [0.52, 0.7		uFFQ vs. record: 0.72 {0.59, 0.89			
Location	Asia	4	124,511	2,632	0.85 [0.74, 0.9	_	+	32.13%	0.98	0.050
	Australia	2	41,879	535	0.83 [0.66, 1.0					
	Europe	7	543,981	6,400	0.85 [0.75, 0.9	_				
	North America	5	1,257,954	16,440	0.82 [0.75, 0.9	_ -				
					г О.	5 1.0	¬ 1.5			
						Lower Risk Higher Risk				

VEGETABLES AND CORONARY HEART DISEASE MORTALITY

Figure S183. Categorical subgroup analyses of intake of vegetables and coronary heart disease mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.98 [0.83, 1.17]; Europe vs. Australia 0.98 [0.75, 1.28]; Europe vs. North America 0.97 [0.83, 1.14]; Asia vs. Australia 1.01 [0.77, 1.32]; Asia vs. North America 1.02 [0.87, 1.19]; Australia vs. North America 1.01 [0.78, 1.30]

							Pooled Effect Estimate	s				Adjusted
Subgroup	Level	Cohorts	N	Events	RR	95% CIsl for Fruit a	nd Vegetables and Incid	lent Stro	ke	Residual I ²	p -value	Alpha Level
					Within Subgroups			-	Between Subgroups			
Total	-	14	532,667	11,091	0.80 [0.73, 0.89]	_•			-	-	-	-
Sex	Females	2	120,372	1,046	0.71 [0.57, 0.88]	•			F vs. M: 1.09 [0.80, 1.48]	0.00%	0.03	0.007
	Males	3	76,998	1,142	0.65 [0.52, 0.82]	_ -			F vs. Mix: 0.80 [0.63, 1.01]			
	Mxed	10	335,297	8,903	0.89 [0.80, 0.99]				M vs. Mix: 0.74 [0.57, 0.94]			
Age (y)	<55	6	373,490	5,660	0.74 [0.66, 0.84]	_ - •			0.84 [0.70, 1.00]	10.79%	0.05	0.008
	≥55	8	159,177	5,431	0.89 [0.78, 1.01]		·					
Follow Up (y)	<9	7	394,374	8713	0.75 [0.65, 0.87]				0.86 [0.68, 1.07]	29.24%	0.16	0.010
≥9		7	138,293	2,378	0.88 [0.74, 1.04]	♦						
Statistical Adjustments <8	<8	3	86,841	2,193	0.71 [0.59, 0.85]	+			0.83 [0.67, 1.03]	14.30%	0.09	0.013
	≥ 8	11	445,826	8,898	0.85 [0.76, 0.96]							
NOS	<6	-	-	-	-				-	-	-	0.017
	≥6	14	532,667	11,091	0.80 [0.73, 0.89]	_						
Exposure Assessment Tool	Validated FFQ	12	528,085	10,449	0.78 [0.70, 0.87]	_ -			vFFQ vs. uFFQ: 0.79 [0.42, 1.46]	65.82%	0.06	0.025
	Unvalidated FFQ	1	3,750	545	0.61 [0.33, 1.13]	•			vFFQ vs. record: 1.36 [1.04, 1.78]			
	Food record	1	832	97	1.06 [0.83, 1.36]		•		uFFQ vs. record: 1.73 [0.90, 3.35]			
Location	Asia	2	17,912	265	1.03 [0.85, 1.24]	_			+	0.00%	0.02	0.050
	Europe	6	160,502	5,302	0.87 [0.77, 0.98]	+						
	North America	5	218,918	3,290	0.70 [0.62, 0.79]							
	Global	1	135,335	2,234	0.89 [0.62, 1.26]							
					C).5	1.0	1.5				
						Lower Risk	Higher Risk					

TOTAL FRUIT AND VEGETABLES AND STROKE INCIDENCE

Figure S184. Categorical subgroup analyses of total fruit and vegetable intake and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs Asia 1.17 [0.94, 1.47]; Europe vs Global 1.02 [0.70, 1.48]; Europe vs NA 0.81 [0.68, 0.96]; Asia vs Global 1.16 [0.77, 1.72]; Asia vs NA 1.46 [1.16, 1.84]; Global vs NA 1.27 [0.87, 1.84]

FRUIT AND STROKE INCIDENCE

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit and Incident Stroke		Residual I ²	p -value	Alpha Level
Total	-	17		43,702	Within Subgrou 0.83 [0.78, 0.8	- • -	Between Subgroups -	-	-	-
Sex	Females Males	3 6	93,234 77,551	309 3,877	0.86 [0.68, 1.1 0.81 [0.70, 0.9		F vs. M: 1.06 [0.80, 1.41] F vs. Mix: 1.04 [0.80, 1.34]	39.25%	0.89	0.007
Age (y)	Mxed	10 9	817,208 779,138	39,516 35,462	0.83 [0.77, 0.9 0.82 [0.75, 0.8	_ _	M vs. Mix: 0.97 [0.83, 1.15] 0.96 [0.84, 1.10]	33.59%	0.53	0.008
-ge (y)	≥56	8	208,855	8,240	0.85 [0.77, 0.9	_	0.90 [0.84, 1.10]	33.33%	0.55	0.008
Follow Up (y)	<14 ≥14	8 9	827,457 160,536	41206 2,496	0.82 [0.76, 0.8 0.86 [0.75, 0.9	→ →	0.95 [0.82, 1.09]	33.91%	0.44	0.010
Statistical Adjustments	<8 ≥8	3 14	3,233 984,760	306 43,396	0.79 [0.58, 1.0 0.83 [0.78, 0.8	→	0.95 [0.69, 1.31]	36.97%	0.74	0.013
NOS	<6	-	-	-	-	- - -	-	-	-	0.017
	≥6	17	987,993	43,702	0.83 [0.78, 0.8	_				0.005
Exposure Assessment Tool	Validated FFQ Unvalidated FFQ Food record	10 2 5	490,356 453,786 43,851	11,941 29,352 2,409	0.85 [0.79, 0.9 0.78 [0.70, 0.8 0.87 [0.74, 1.0	_ _	vFFQ vs. uFFQ: 0.91 [0.79, 1.04] vFFQ vs. record: 1.02 [0.85, 1.23] uFFQ vs. record: 1.13 [0.93, 1.37]	26.76%	0.28	0.025
Location	Asia	3	470,284	29,549	0.79 [0.72, 0.8	- -	+	17.05%	0.25	0.050
	Europe North America	10 3	267,263 115,111	11,252 667	0.86 [0.79, 0.9 0.69 {0.51, 0.9					
	Global	1	135335	2234	0.93 [0.72, 1.2 0.5	1.0 1.5				
						Lower Risk Higher Risk				

Figure S185. Categorical subgroup analyses of fruit intake and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 0.92 [0.81, 1.05]; Europe vs. Global 1.09 [0.82, 1.42]; Europe vs. North America 0.80 [0.59, 1.09]; Asia vs. Global 0.85 [0.65, 1.12]; Asia vs. North America 1.15 [0.85, 1.57]; Global vs. North America 1.36 [0.92, 2.01]

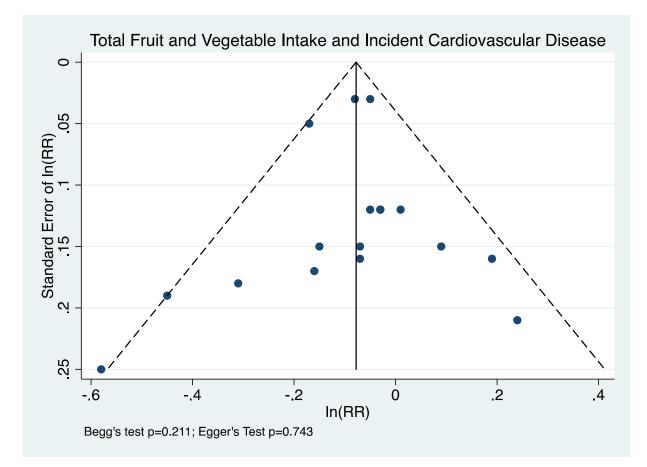
VEGETABLES AND STROKE INCIDENCE

								Pooled	Effect E	stimates					Adjusted
Subgroup	Level	Cohorts	N	Events		R	R [95% Cls]	for Fruit a	and CVD	Mortality			Residual I ²	p-value	Alpha Level
			0.0241		Within Subgroups			1				Between Subgroups			
Total	-	16	564,531	13,607	0.89 [0.81, 0.97]			-				•	-	-	-
Sex	Females	3	93,234	309	0.82 [0.61, 1.09]		-	•	-			F vs. M: 1.00 [0.72, 1.38]	41.34%	0.18	0.007
	Males	9	134,595	4,472	0.82 [0.70, 0.95]			←				F vs. Mix: 0.84 [0.62, 1.16]			
	Mxed	8	336,702	8,826	0.97 [0.85, 1.10]			-+	-			M vs. Mix: 0.85 [0.69, 1.03]			
Age (y)	<58	8	437,979	9,019	0.88 [0.78, 1.00]			-				0.99 [0.78, 1.22]	50.42%	0.89	0.008
	≥58	9	126,552	4,588	0.90 [0.75, 1.06]										
Follow Up (y)	<14	8	432,836	12,645	0.88 [0.78, 1.00]]							0.97 [0.80, 1.20]	49.72%	0.80	0.010
	≥14	8	131,695	962	0.90 [0.76, 1.07]			-							
Statistical Adjustments	<8	3	3,233	306	0.82 [0.58, 1.15]							0.92 [0.64, 1.31]	52.43%	0.62	0.013
	≥8	13	561,298	13,301	0.89 [0.81, 0.99]		-	→	_						
NOS	<6			-									-	-	0.017
	≥6	16	564,531	13,607	0.87 [0.80, 0.94]			-							
Exposure Assessment Tool	Validated FFQ	10	512,840	11,401	0.91 [0.81, 1.01]							vFFQ vs. uFFQ: 0.47 [0.21, 1.05]	49.62%	0.17	0.025
	Unvalidated FFQ	1	2,121	196	0.43 [0.19, 0.95]			•				vFFQ vs. record: 0.95 [0.76, 1.20]			
	Food record	5	49,570	2,010	0.86 [0.70, 1.06]		•	-+				uFFQ vs. record: 2.02 [0.89, 4.58]			
ocation	Asia	3	28,270	619	1.03 [0.82, 1.30]			_				+	41.17%	0.23	0.050
	Europe	9	285,815	10,117	0.85 [0.77, 0.95]			_ _							
	North America	3	115,111	637	0.82 [0.60, 1.12]		_	•	_						
	Global	1	135,335	2,234	1.09 [0.79, 1.52]				•	_					
	0.000	-	200,000	2,204	2.05 [0.75, 2.52]				-						
						0.0	0.5	1.0		1.5	2.0				
							Lower Risk		н	igher Risk					

Figure S186. Categorical subgroup analyses of intake of vegetables and stroke incidence. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I² value indicates the inter-study heterogeneity unexplained by the subgroup. CHD – coronary heart disease; FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals. † Europe vs. Asia 1.21 [0.94, 1.56]; Europe vs. Global 1.28 [0.91, 1.81]; Europe vs. NA 0.96 [0.69, 1.33]; Asia vs. Global 0.94 [0.63, 1.40]; Asia vs. NA 1.26 [0.86, 1.86]; Global vs. NA 1.34 [0.85, 2.10]

FRUIT AND STROKE MORTALITY

						Pooled Effect Estimates		_		Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Fruit and Stroke Mortality		Residual I ²	p -value	Alpha Level
Total	-	14	1,282,756	10,899	Within Subgroups 0.79 [0.71, 0.89]	_ —	Between Subgroups -		-	-
Sex	Females	4	155,963	2,022	0.76 [0.59, 0.99]		F vs. M: 0.90 [0.64, 1.29}	75.38%	0.8	0.007
	Males	4	107,467	2,302	0.85 [0.67, 1.07]		F vs. Mix: 0.98 [0.72, 1.32]			
	Mxed	9	1,126,793	8,877	0.78 [0.67, 0.91]		M vs. Mix: 1.08 [0.81, 1.44]			
ge (y)	<55	8	972,126	5,691	0.80 [0.69, 0.93]		1.02 [0.81, 1.28]	71.67%	0.85	0.008
	≥55	6	310,630	5,208	0.78 [0.66, 0.93]					
Follow Up (y) <10	<10	3	655,633	3905	0.76 [0.61, 0.95]	-	0.95 [0.73, 1.22]	69.52%	0.65	0.010
	≥ 10	14	627,123	6,994	0.81 [0.71, 0.92]					
Statistical Adjustments <8	<8	5	193,091	1,791	0.88 [0.673, 1.06]		1.15 [0.92, 1.44]	58.65%	0.19	0.013
	≥ 8	9	1,089,665	9,108	0.76 [0.67, 0.86]					
IOS	<6	3	187,214	1,668	0.92 [0.76, 1.12]		1.23 [0.99, 1.54]	54.86%	0.07	0.017
	≥ 6	11	1,095,542	9,231	0.75 [0.67, 0.85]					
xposure Assessment Tool	Validated FFQ	7	772,822	5,387	0.80 [0.68, 0.96]		vFFQ vs. uFFQ: 1.01 [0.80, 1.29]	74.29%	0.49	0.025
	Unvalidated FFQ	5	494,945	5,004	0.82 [0.69, 0.97]		vFFQ vs. record: 0.81 [0.54, 1.21]			
	Food record	2	14,989	508	0.65 [0.45, 0.94]		uFFQ vs. record: 0.79 [0.53, 1.19]			
ocation	Asia	6	581,472	6,978	0.74 [0.65, 0.85]		Europe vs. NA: 1.12 [0.75, 1.68]	77.24%	0.25	0.050
	Europe	7	527,256	3,061	0.86 [0.71, 1.03]		Europe vs. Asia: 0.87 [0.69, 1.10]			
	North America	1	174,028	860	0.96 [0.67, 1.37]		Asia vs. NA: 0.77 [0.53, 1.13]			
						0.5 1.0 1	י 5			
						Lower Risk Higher Risk				


Figure S187. Categorical subgroup analyses of fruit intake and stroke mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup. FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals.

VEGETABLES AND STROKE MORTALITY

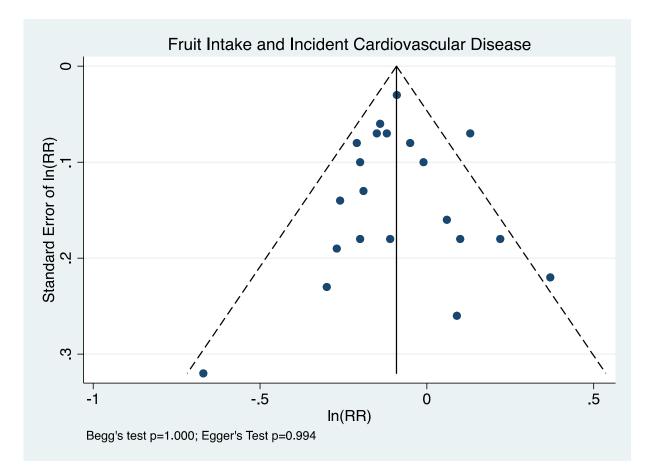
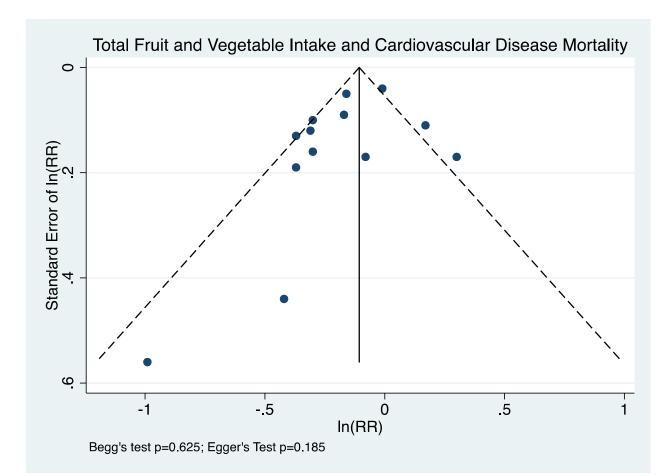
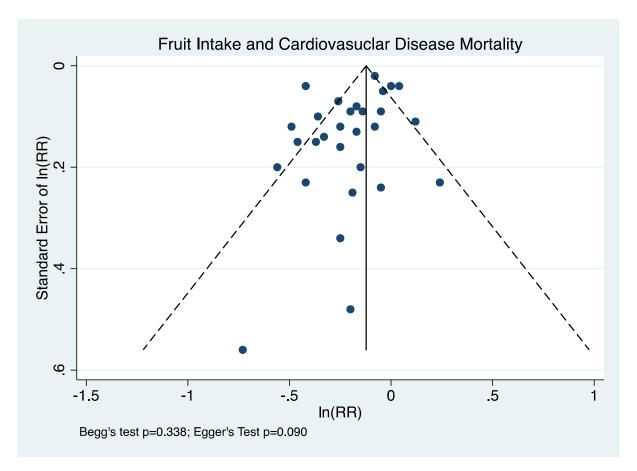

						Pooled Effect Estimates				Adjusted
Subgroup	Level	Cohorts	N	Events		RR [95% CIs] for Vegetables and Stroke Mortality		Residual I ²	p -value	Alpha Level
					Within Subgroups	_	Between Subgroups			-
Total	-	12	780,441	7,551	0.86 [0.78, 0.96]	_ -	-	-	-	-
Sex	Females	3	120,315	1,752	0.80 [0.63, 1.02]		F vs. M: 0.90 [0.64, 1.27]	59.38%	0.76	0.007
	Males	4	103,142	2,160	0.89 [0.70, 1.13]	_	F vs. Mix: 0.91 [0.68, 1.22]			
	Mxed	7	556,984	3,639	0.88 [0.75, 1.03]	_	M vs. Mix: 1.01 [0.76, 1.35]			
Age (y)	<58	7	497,499	258	0.84 [0.71, 1.00]	•	0.95 [0.75, 1.19]	62.43%	0.63	0.008
	≥58	5	282,942	7,293	0.88 [0.76, 1.03]	_				
Follow Up (y)	<10	1	193,291	969	0.85 [0.61, 1.18]	_	0.98 [0.69, 1.38]	64.65%	0.9	0.010
	≥10	9	587,150	6,582	0.87 [0.77, 0.98]	_				
Statistical Adjustments	<8	3	182,350	1,425	0.92 [0.75, 1.13]		1.08 [0.85, 1.38]	49.01%	0.51	0.013
	≥ 8	7	598,091	6,126	0.85 [0.75, 0.97]	•				
NOS	<6	1	174,028	860	0.97 [0.79, 1.19]		1.16 [0.91, 1.47]	44.20%	0.21	0.017
	≥6	11	606,413	6,691	0.84 [0.74, 0.94]	_ _	. , .			
Exposure Assessment Tool	Validated FFQ	5	742,364	5,239	0.83 [0.72, 0.96]	_	vFF vs. uFFQ: 1.15 {0.92, 1.43]	45.92%	0.26	0.025
	Unvalidated FFQ	4	23,088	1,804	0.95 [0.81, 1.12]		vFFQ vs. record: 0.90 [0.62, 1.29]			
	Food record	3	14,989	508	0.75 [0.53, 1.04]	_	uFFQ vs. record: 0.78 [0.54, 1.13]			
Location	Asia	5	116,685	3,590	0.92 [0.79, 1.07]	_	+	57.00%	0.50	0.050
	Australia	1	1,226	92	0.80 [0.53, 1.21]					
	Europe	5	486,057	2,557	0.76 [0.61, 0.96]	_				
	North America	1	174,028	860	0.90 [0.62, 1.29]					
	north, include	-	17 1,020	000	0.00 [0.02, 1.20]	· · · · · · · · · · · · · · · · · · ·				
						0.5 1.0 1.5				
						Lower Risk Higher Risk				

Figure S188. Categorical subgroup analyses of intake of vegetables and stroke mortality. Point estimates for within subgroup level are the pooled effect estimates and are represented by a black diamond. The residual I^2 value indicates the inter-study heterogeneity unexplained by the subgroup. FFQ – food frequency questionnaire; NOS – Newcastle-Ottawa Scale; RR – relative risk; 95% CIs – 95% confidence intervals.


[†] Europe vs. Asia 1.20 [0.92, 1.57]; Europe vs. Australia 1.05 [0.66, 1.67]; Europe vs. North America 1.17 [0.76, 1.80]; Asia vs. Australia 1.44 [0.74, 1.77]; Asia vs. North America 1.03 [0.69, 1.53]; Australia vs. North America 0.90 [0.52, 1.55]


Figure S189. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).


Figure S190. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease incidence comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

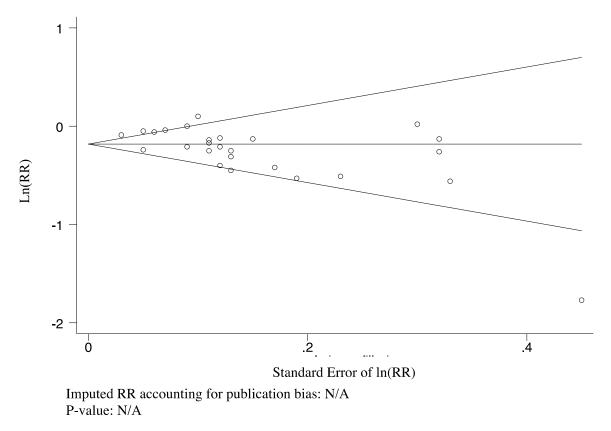

Figure S191. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Figure S192. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease mortality comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

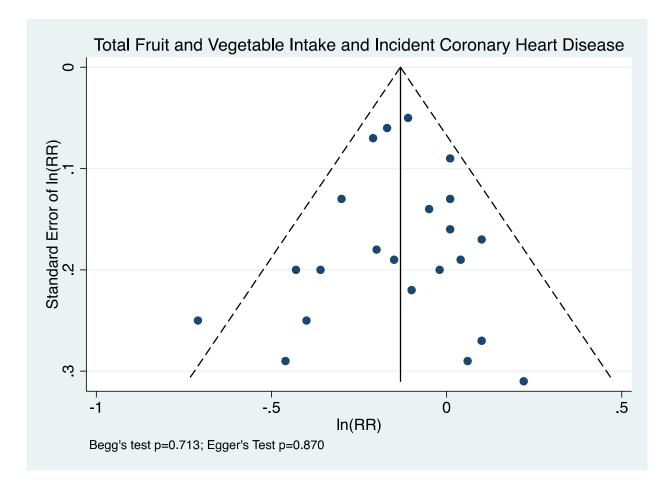
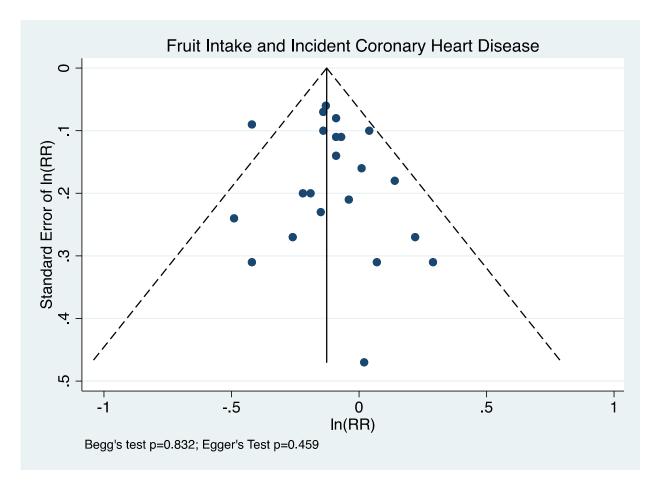
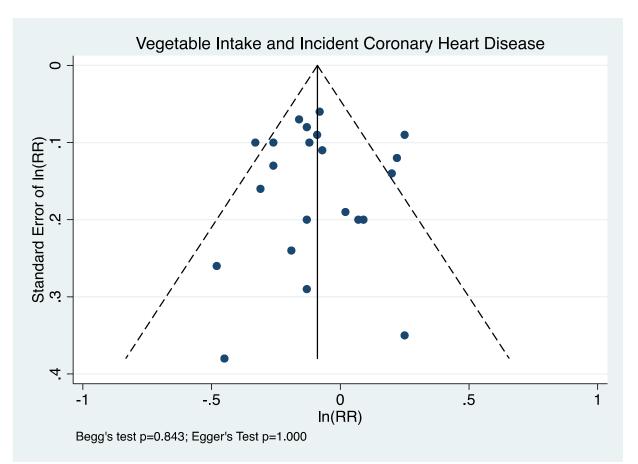
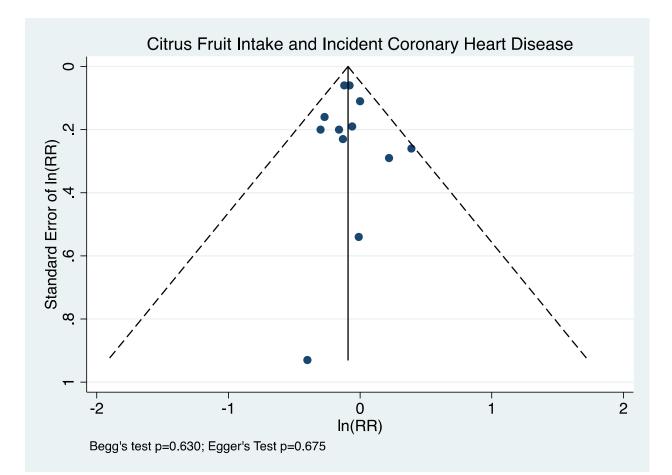


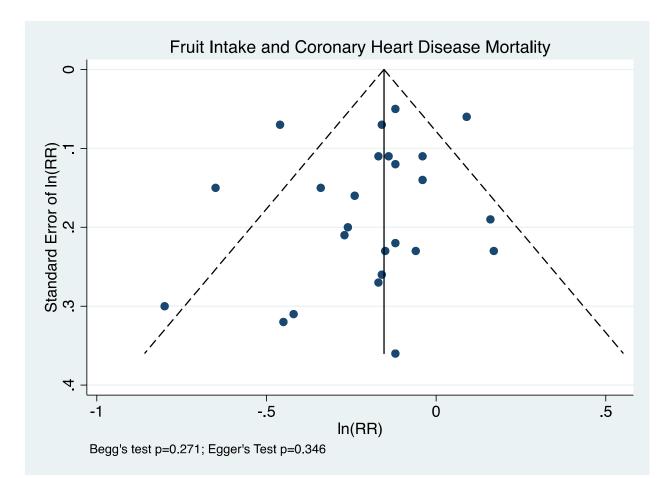
Figure S193. Funnel plot of natural logarithm relative risk [Ln(RR)] for cardiovascular disease mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).



Vegetable Intake and Cardiovascular Disease Mortality


Figure S194. Funnel plot for trim-and-fill analysis for coronary heart disease mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [ln(RR)]. The diagonal lines represent the pseudo-95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.


Figure S195. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).


Figure S196. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

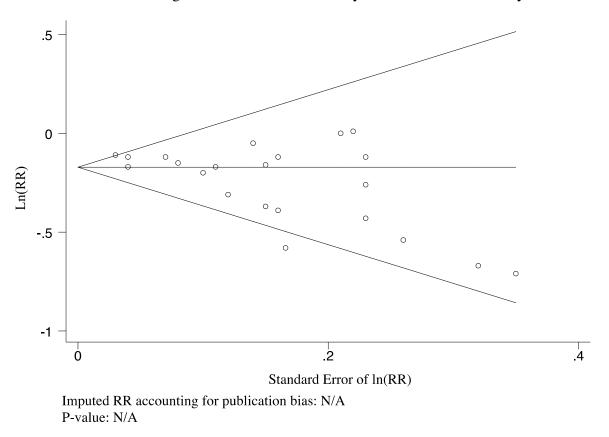

Figure S197. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Figure S198. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease incidence comparing the highest and lowest quantiles of citrus fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

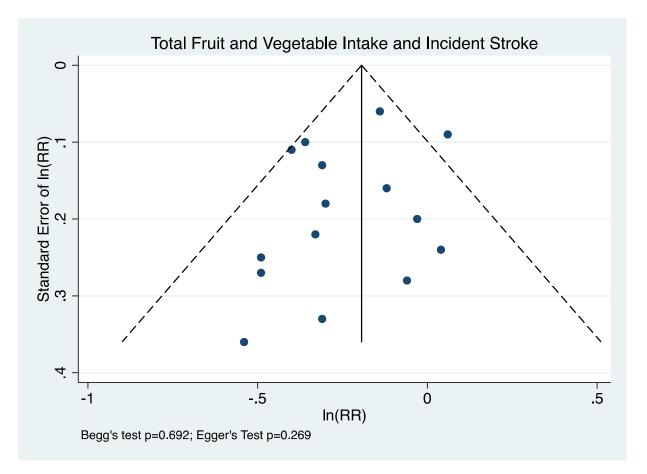
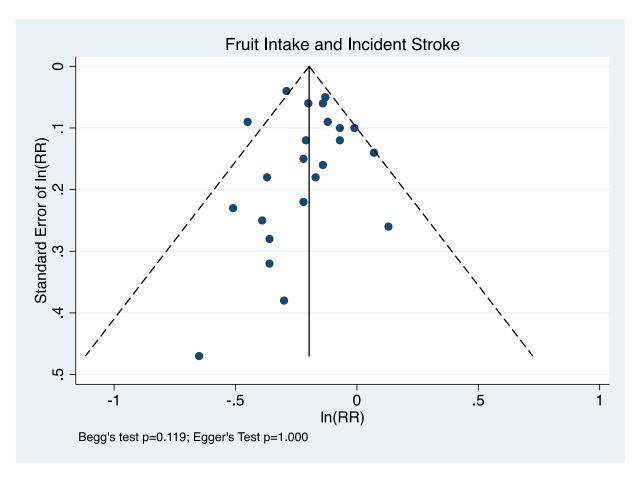


Figure S199. Funnel plot of natural logarithm relative risk [Ln(RR)] for coronary heart disease mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).



Vegetable Intake and Coronary Heart Disease Mortality

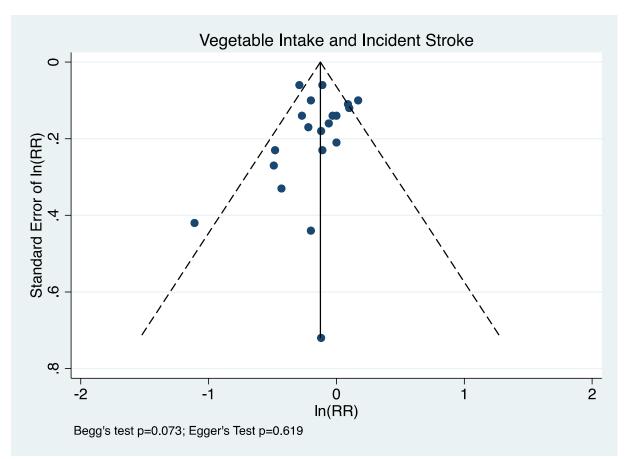
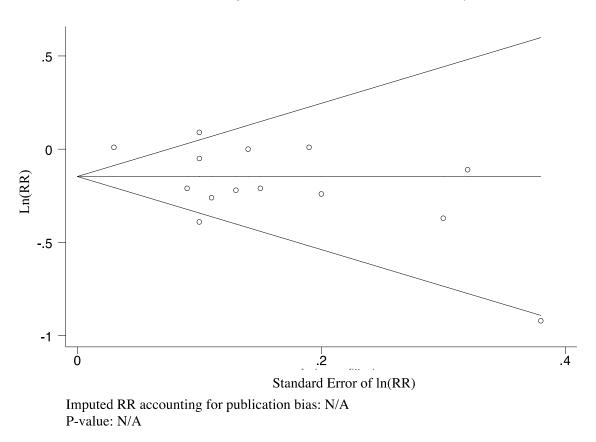

Figure S200. Funnel plot for trim-and-fill analysis for coronary heart disease mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [ln(RR)]. The diagonal lines represent the pseudo-95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.

Figure S201. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke incidence comparing the highest and lowest quantiles of total fruit and vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Figure S202. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke incidence comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).


Figure S203. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke incidence comparing the highest and lowest quantiles of vegetable intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Fruit Intake and Stroke Mortality

Figure S204. Funnel plot of natural logarithm relative risk [Ln(RR)] for stroke mortality comparing the highest and lowest quantiles of fruit intake. The vertical line represents the pooled effect estimated expressed as ln(RR). Dashed lines represent pseudo-95% confidence intervals. The circles represent risk estimates for each comparison, and the horizontal lines represent standard errors of the ln(RR).

Vegetable Intake and Stroke Mortality

Figure S205. Funnel plot for trim-and-fill analysis for stroke mortality comparing the highest and lowest quantiles of vegetable intake. The horizontal line represents the pooled effect estimate expressed as the natural logarithm of relative risk [ln(RR)]. The diagonal lines represent the pseudo-95% confidence intervals of the RR. The clear circles represent the effect estimates for each included study.