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Abstract: The hYSK1, a serine/threonine kinase (STK)-25, has been implicated in a variety of
cellular functions including cell migration and polarity. We have recently reported that hYSK1
down-regulated the expression and functions of p16INK4a, a cell cycle regulatory protein, thereby
enhancing migration and growth of cancer cells under hypoxic conditions. In this study, we further
investigated the mechanisms underlying downregulation of p16INK4a and anti-migratory function of
hYSK1. Our study revealed that p21WAF1/Cip1 is a novel binding partner of hYSK1. Moreover, the
interaction between hYSK1 and p21WAF1/Cip1 led to the inhibition of SP-1 transcriptional activity,
as revealed by a significant down-regulation of SP-1-mediated transactivation of p16INK4a promoter,
and accelerated MMP-2 expression. Conversely, the knock-down of hYSK1 enhanced the p16INK4a

promoter activity and protein expression, and diminished MMP-2 transcription and protein levels in
hypoxic conditions as compared to control. Taken together, hYSK1 blocks the p21WAF1/Cip1 functions
by direct interaction and inhibits the p16INK4a expression and induces MMP-2 expression by its
regulations of SP-1 transcriptional activity under the hypoxia conditions.
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1. Introduction

Despite relentless efforts in developing anticancer therapeutics, cancer still remains as the
leading cause of death worldwide [1]. Although a wide variety of chemotherapy, radiotherapy
and recently introduced immunotherapies are expected to cure cancer, there have been numerous
reports of failure of these therapeutic modalities. One of the major reasons behind failure of anticancer
therapies is the heterogeneous nature of the disease. Heterogeneity involves alterations, such as
mutations, overexpression, loss or under-expression of various genes, especially those related to
cell cycle regulation. For example, the impact of alterations in cell cycle checkpoint proteins,
p16INK4a, p21WAF1/Cip1 and retinoblastoma (Rb) in tumor development and progression have been
well investigated [2,3]. The p21WAF1/Cip1 and p16INK4a act as tumor suppressors and arrest cell cycle
progression by interfering with the interaction between cyclin-dependent kinases (Cdk) and cyclins [4].
Persistent intra-tumoral hypoxia is a characteristic feature of many solid tumors. The expression of both
p21WAF1/Cip1 and p16INK4a is increased in the early time point (~6 h) and then decreased in the later
time point in various cancer cells under hypoxia condition [5]. The loss of p16INK4a in primary tumors
is attributed to various genetic and epigenetic alterations including mutation of the gene (CDKN2)
encoding p16INK4a protein or promoter hypermethylation [3]. Intra-tumoral hypoxia drives tumor
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cells to invade and migrate through stromal matrix and metastasize to distant locations, resulting in
malignant carcinomas. The invasion and migration of tumor cells require alterations in cell polarization,
activation of a group of matrix degrading enzymes, such as matrix metalloproteinases (MMP)-2 and -9.
The transcriptional activation of MMP-2 is partly mediated by the binding of transcription factor
specificity protein-1 (SP1) at the promoter site of MMP-2 and the activation of SP-1 is mediated via
phosphorylation of SP-1 by cyclin-Cdks. The p16INK4a as an inhibitor of Cdks have been shown to
diminish SP-1 binding at MMP-2 promoter and reduced migration of cancer cells via downregulation
of MMP-2 [6]. We have recently reported that the expression of p16INK4a is negatively regulated by
hYSK1, also known as a serine-threonine protein kinase (STK)-25, which plays a critical role in cell
polarity, invasion, and migration. The hYSK1-mediated loss or downregulation of p16INK4a has been
shown to result in an increase in the expression of MMP-2 through transcriptional activation of SP-1,
and in the enhancement of the migration and invasion of tumor cells including those of the melanoma
and fibrosarcoma [7].

The p21WAF1/Cip1 is another Cdk inhibitor that suppresses tumor growth by inhibiting
proliferation, inducing apoptosis, and blocking DNA synthesis in many cancers. Although
p21WAF1/Cip1 being a p53-regulated gene is thought to play a tumor suppressive role, several studies
have reported a pro-tumorigenic role of p21WAF1/Cip1 [8]. Zhang et al. [9] recently reported that the
level of p21WAF1/Cip1is reduced in breast cancer tissues as well as in cultured cell lines, and the patients
having high p21WAF1/Cip1 level showed longer survival than the patients having a low p21WAF1/Cip1

level. The micro-RNA (miR-3619)-mediated activation of p21WAF1/Cip1 induced growth arrest and
inhibited metastasis of breast cancer cells [9]. Others have also shown that restoration of p21WAF1/Cip1

inhibits migration and invasion of various cancer cells [10,11]. Since hYSK1 enhanced tumor cells
proliferation and migration by down-regulation of p16INK4a [7], we have been interested to examine if
p21WAF1/Cip1 also plays a role in hYSK1-induced tumor cells migration under hypoxia. The hYSK1 is
an oxidative stress response protein. According to the Cancer Genome Atlas (TCGA) dataset, mRNA
level of hYSK1 is high in cancers, such as glioma and endometrial cancer. In liver and colorectal cancers,
a high protein expression of hYSK1 is associated with a decrease in five years survival rate as compared
to those having a low expression of hYSK1 [12]. We have recently reported that hYSK1 interacted with
20–40 a.a. and 140–200 a.a. of p16INK4a, thereby decreasing the translocation of p16INK4a from cytosol
to nucleus in hypoxic condition [7]. The reduced p16INK4a nuclear localization by overexpression of
hYSK1 leads to the activation of SP-1 transcriptional activity, resulting in increased MMP-2 expression
and enhanced cancer cell proliferation and migration. Since p21WAF1/Cip1 inhibits cyclin-Cdks, we
were interested to see if hYSK1 also targets p21WAF1/Cip1 to excel tumor cell migration via activation
of MMP-2. Here we report that hYSK1 directly interacted with p21WAF1/Cip1, thereby resulting in
SP-1-mediated suppression of p16INK4a promoter activity and increased MMP-2 expression under
hypoxic condition leading to increased proliferation and migration of cancer cells.

2. Results

2.1. hYSK1 Interacts with p21WAF1/Cip1

We attempted to assess the interaction between hYSK1 and p21WAF1/Cip1 by GST pull-down
analysis. The 35S-labeled p21WAF1/Cip1 proteins were incubated with either GST or GST-hYSK1 fusion
proteins bound to Sepharose beads and precipitated in a pull-down assay. Results indicated that
GST-hYSK1 was bound to p21WAF1/Cip1, whereas GST alone did not bind (Figure 1).
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Figure 1. hYSK1 interacts with p21WAF1/Cip1. GST-hYSK1 interacts with in vitro transcribed and 
translated p21WAF1/Cip1. After pull-down with GST-hYSK1, western blots of in vitro translated and 
bound proteins are shown (upper panel). p21WAF1/Cip1 expression represents that even amount of 
p21WAF1/Cip1 protein incubated with GST-hYSK1 or GST only (middle panel). Coomassie blue-stained 
gels showed GST–hYSK1 and GST as a loading control (lower panel). 

2.2. Interaction between hYSK1 and p21WAF1/Cip1 Regulates SP-1 Transcriptional Activities 

We first examined the role of p21WAF1/Cip1 in p16INK4a expression by assessing the SP-1 
transcription factor activity through the p16INK4a promoter luciferase assay (Figure 2). As shown in 
Figure 2, with the increasing amount of p21WAF1/Cip1 SP-1 transcriptional activity, as revealed by SP-1-
mediated p16INK4a luciferase activity, was significantly induced (Figure 2). To identify the role of 
hYSK1 on p16INK4a expression by regulation of p21WAF1/Cip1 and SP-1, we transfected hYSK1 under the 
p16INK4a promoter luciferase gene, SP-1 and p21WAF1/Cip1 together (Figure 3A). The results showed that 
p16INK4a gene transcription was induced by transfection of SP-1 and it is enhanced by transfection of 
p21WAF1/Cip1, however p16INK4a gene transcription was decreased by transfection of hYSK1 in an 
amount-dependent manner (Figure 3A). This phenomenon was verified by immunoprecipitation 
analysis (Figure 3B). After immunoprecipitation with anti-hYSK1, we detected p21WAF1/Cip1 (Myc tag) 
but not SP-1 (Figure 3B). Conversely, hYSK1 expression was not detected but p21WAF1/Cip1 expression 
was observed after immunoprecipitation with anti-SP-1 (Figure 3B). It means that the interaction 
between hYSK1 and p21WAF1/Cip1 causes to block the SP-1 transcriptional activity for p16INK4a 
transcription. 

 
Figure 2. p21WAF1/Cip1 up-regulates the SP-1 transcriptional activity on p16INK4a promoter. 
Transfection of SP-1 and increased amount of p21WAF1/Cip1 was accessed by jetPEI poly transfection 
reagent on COS-7 cells. Transcriptional activity of SP-1 was determined by p16INK4a promoter 
luciferase activities. Relative p16 luciferase activity was determined (n = 6, data shown as mean ± SEM, 
** p < 0.05 as determined by paired t-test). 

Figure 1. hYSK1 interacts with p21WAF1/Cip1. GST-hYSK1 interacts with in vitro transcribed and
translated p21WAF1/Cip1. After pull-down with GST-hYSK1, western blots of in vitro translated and
bound proteins are shown (upper panel). p21WAF1/Cip1 expression represents that even amount of
p21WAF1/Cip1 protein incubated with GST-hYSK1 or GST only (middle panel). Coomassie blue-stained
gels showed GST–hYSK1 and GST as a loading control (lower panel).

2.2. Interaction between hYSK1 and p21WAF1/Cip1 Regulates SP-1 Transcriptional Activities

We first examined the role of p21WAF1/Cip1 in p16INK4a expression by assessing the SP-1
transcription factor activity through the p16INK4a promoter luciferase assay (Figure 2). As shown
in Figure 2, with the increasing amount of p21WAF1/Cip1 SP-1 transcriptional activity, as revealed by
SP-1-mediated p16INK4a luciferase activity, was significantly induced (Figure 2). To identify the role of
hYSK1 on p16INK4a expression by regulation of p21WAF1/Cip1 and SP-1, we transfected hYSK1 under
the p16INK4a promoter luciferase gene, SP-1 and p21WAF1/Cip1 together (Figure 3A). The results showed
that p16INK4a gene transcription was induced by transfection of SP-1 and it is enhanced by transfection
of p21WAF1/Cip1, however p16INK4a gene transcription was decreased by transfection of hYSK1 in
an amount-dependent manner (Figure 3A). This phenomenon was verified by immunoprecipitation
analysis (Figure 3B). After immunoprecipitation with anti-hYSK1, we detected p21WAF1/Cip1 (Myc
tag) but not SP-1 (Figure 3B). Conversely, hYSK1 expression was not detected but p21WAF1/Cip1

expression was observed after immunoprecipitation with anti-SP-1 (Figure 3B). It means that the
interaction between hYSK1 and p21WAF1/Cip1 causes to block the SP-1 transcriptional activity for
p16INK4a transcription.
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Figure 2. p21WAF1/Cip1 up-regulates the SP-1 transcriptional activity on p16INK4a promoter.
Transfection of SP-1 and increased amount of p21WAF1/Cip1 was accessed by jetPEI poly transfection
reagent on COS-7 cells. Transcriptional activity of SP-1 was determined by p16INK4a promoter luciferase
activities. Relative p16 luciferase activity was determined (n = 6, data shown as mean± SEM, ** p < 0.05
as determined by paired t-test).
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Figure 3. hYSK1 down-regulates SP-1 transcriptional activity of p16INK4a by interaction with 
p21WAF1/Cip1. (A) The effect of hYSK1 on p16INK4a expression was determined by luciferase activity with 
transfection of pGL2-p16-luc, SP-1, p21 and pcDNA3.1-V5-hYSK1 in COS-7 cells. p16 promoter activity 
was determined by luciferase assay (n = 6, data shown as mean ± SEM, ##, ** and $$ p < 0.05 as 
determined by paired t-test). (B) Immunoprecipitation was performed using anti-hYSK1 or SP-1 in 
cells and performed western blotting with target antibodies, p21 (Myc), hYSK1 (V5) or SP-1 (HA). 
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Transcription and Accelerates Cell Migration under Hypoxia Conditions 

In the hypoxia condition (1% O2), we found that the SP-1 transcriptional activity was decreased 
against p16INK4a promoter in a time-dependent manner (Figure 4A). For knock down of hYSK1, SK-
MEL-28 cells were transfected with siRNA-hYSK1 and the cells were incubated in 5% CO2 incubator 
for 12 h then moved to 1% O2 hypoxic chamber and incubated for 0, 6 or 24 h (Figure 4B). The p16INK4a 
transcription was increased at 24 h under hypoxia as compared to transfection with siRNA-control or 
pGL2 control (Figure 4B). However, MMP2 transcription was decreased at the same time and 
conditions (Figure 4B). We also examined the expression of above genes in hypoxic conditions by 
time dependent manner (Figure 5A). The results revealed that the expression of hYSK1, MMP-2 and 
HIF-1α was increased and that of p21WAF1/Cip1 was decreased. The p16INK4a expression was increased 
at 6 h and decreased at 24 h. Interestingly, we precipitated the cell lysate by SP-1 antibody and 
phosphorylated SP-1 expression was increased but intact form of SP-1 was decreased in hypoxic 
condition by the time course (Figure 5A). When hYSK1 was deficient by transfection of siRNA-
hYSK1, the increased hYSK1 and MMP-2 expression by siRNA-control was disrupted in hypoxia 
condition (Figure 5B). However, p16INK4a expression was increased by knock-down of hYSK1 
compared to control. Although p21WAF1/Cip1 expression was not much different, phosphorylated Rb 

Figure 3. hYSK1 down-regulates SP-1 transcriptional activity of p16INK4a by interaction with
p21WAF1/Cip1. (A) The effect of hYSK1 on p16INK4a expression was determined by luciferase activity
with transfection of pGL2-p16-luc, SP-1, p21 and pcDNA3.1-V5-hYSK1 in COS-7 cells. p16 promoter
activity was determined by luciferase assay (n = 6, data shown as mean ± SEM, ##, ** and $$ p < 0.05 as
determined by paired t-test). (B) Immunoprecipitation was performed using anti-hYSK1 or SP-1 in
cells and performed western blotting with target antibodies, p21 (Myc), hYSK1 (V5) or SP-1 (HA).

2.3. Regulation of SP-1 Transcriptional Activities by Interaction of hYSK1 and p21WAF1/Cip1 Increases MMP-2
Transcription and Accelerates Cell Migration under Hypoxia Conditions

In the hypoxia condition (1% O2), we found that the SP-1 transcriptional activity was decreased
against p16INK4a promoter in a time-dependent manner (Figure 4A). For knock down of hYSK1,
SK-MEL-28 cells were transfected with siRNA-hYSK1 and the cells were incubated in 5% CO2 incubator
for 12 h then moved to 1% O2 hypoxic chamber and incubated for 0, 6 or 24 h (Figure 4B). The p16INK4a

transcription was increased at 24 h under hypoxia as compared to transfection with siRNA-control
or pGL2 control (Figure 4B). However, MMP2 transcription was decreased at the same time and
conditions (Figure 4B). We also examined the expression of above genes in hypoxic conditions by
time dependent manner (Figure 5A). The results revealed that the expression of hYSK1, MMP-2
and HIF-1α was increased and that of p21WAF1/Cip1 was decreased. The p16INK4a expression was
increased at 6 h and decreased at 24 h. Interestingly, we precipitated the cell lysate by SP-1 antibody
and phosphorylated SP-1 expression was increased but intact form of SP-1 was decreased in hypoxic
condition by the time course (Figure 5A). When hYSK1 was deficient by transfection of siRNA-hYSK1,
the increased hYSK1 and MMP-2 expression by siRNA-control was disrupted in hypoxia condition
(Figure 5B). However, p16INK4a expression was increased by knock-down of hYSK1 compared to
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control. Although p21WAF1/Cip1 expression was not much different, phosphorylated Rb expression was
markedly decreased in hypoxia condition (Figure 5B). The promoter activity of p16INK4a is attenuated by
hYSK1 through the interaction of hYSK1 with p21WAF1/Cip1 and subsequent blockade of p21WAF1/Cip1-
and SP-1-mediated transactivation of p16INK4a. To address the functional significance of hYSK1 and
p21WAF1/Cip1, we have conducted real-time cell migration analysis (Figure 5C,D). After knockdown of
hYSK1, the cell migration was decreased in a time-dependent manner as compared to control cells
under hypoxic condition (Figure 5C). Also when we silenced p21WAF1/Cip1 in SK-MEL-28 cells, the
cell migration was significantly increased under hypoxia condition compared to normoxia, and it was
abolished by knockdown of hYSK1 (Figure 5D).
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Figure 4. hYSK1 regulates the transcription of p16INK4a and MMP-2 in hypoxia. (A) The effect of SP-1
binding on the p16INK4a promoter under hypoxic conditions (1% O2). Nuclear fraction of cell lysate
was separated by EMSA analysis. (B) The effect of hYSK1 on p16INK4a and MMP-2 transcription. After
transfection of siRNA-control, siRNA-hYSK1, pGL2-p21-luc and pGL2-MMP-2-luc in HT1080 cells, cells
were incubated in hypoxia condtion for 24 h and measured the luciferase activities (n = 6, data shown
as mean ± SEM, ** p < 0.05 as determined by paired t-test).
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Figure 5. hYSK1 regulates the expression of p16INK4a and MMP-2 in hypoxia. (A) The expression of
HIF-1α, hYSK1, p16INK4a, p21WAF1/Cip1 and MMP-2 under hypoxic (1% O2) conditions by time course.
(B) The effect of hYSK1 on p16INK4a and MMP-2 expression. After transfection of siRNA-control and
sRNAi-hYSK1 in HT1080 cells, cells were incubated under hypoxia condition for 0, 6, 12 and 24 h,
and the expression of indicated proteins was detected by western blotting. (C) Cell migration after
knockdown of hYSK on SKMEL28 cells under hypoxia. The pictures represented the closed gap of
SKMEL28 cell with siRNA-control or siRNA-hYSK1 at 2 h, 20 h and 30 h. (D) Cell migration index
after knockdown of hYSK, p21WAF1/Cip1 or both of hYSK and p21WAF1/Cip1 in SKMEL28 cells. Cells were
seeded at 10,000 cells per well in fibronectincoated CIM 96 well plates and the migratory behavior
of cell was monitored for 30 h under normoxia and hypoxia. (n = 6, data shown as mean ± SEM,
** p < 0.05 as determined by paired t-test).

3. Discussion

The perturbation of cell cycle checkpoint proteins, especially cyclin-Cdk inhibitor’s function is
common in many cancers. Among the cyclin-Cdk inhibitors, the p16INK4a and p21WAF1/Cip1 have
been extensively studied for their role in neoplastic transformation of cells. The p16INK4a alteration
has caused by genetic and epigenetic regulation such as promoter hyper-methylations and histone
modifications [13,14]. The p16INK4a is involved in arresting cell cycle at G0 and early G1 phase
by disrupting cyclin-Cdk4/6 interaction. The inactivation of Cdk4/6 activity results in reduced
phosphorylation of pRb and compromised interaction between phospho-pRb and E2F transcription
factor, thereby reducing the transcription of genes encoding proteins involved in cell proliferation [15].
Besides blocking cyclin-Cdk4/6-mediated pRb phosphorylation, p16INK4a also causes cell cycle arrest
by binding with transcription factor TFIIH, resulting in reduced phosphorylation of RNA polymerase
II [16]. It is also reported that p16INK4a interacted with c-Jun N-terminal kinases (JNKs) and inhibits
the UV-induced cell transformation by activation of c-Jun transcription factor [17]. We have previously
reported that p16INK4a function is lost by its interaction with eukaryotic elongation factor 1A2 and
hYSK1, thereby increasing proliferation and migration of various cancer cells [7,18]. The p21WAF1/Cip1

is another cell cycle regulatory protein that also inhibits cyclin dependent kinases by working as a
downstream signaling molecule to p53. Although initially identified as a kinase inhibitor to induce
apoptosis, there is paradoxical findings that p21WAF1/Cip1 allows cell cycle exit and promotes cell
proliferation [8]. It has been reported that p21WAF1/Cip1 regulates the expression of p16INK4a by binding
of SP-1 transcription factor on GC region (−449~−459) of p16INK4a promoter [19].

The hYSK1, also known as STK25, is a member of the germinal center kinase III (GCK III)
subfamily of the sterile 20 (STE20) kinase superfamily [20]. Although much is known about the role
of this protein in targeting Golgi apparatus, in the regulation of cellular polarization, program cell
death and cell migration under stress conditions [21,22], role of this protein in cancer has not fully
elucidated. We have recently reported that hYSK1 promotes migration of melanoma and fibrosarcoma
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cells by repressing p16INK4a nuclear translocation via direct interaction, thereby resulting in increased
SP-1-mediated MMP2 transcription [7]. In the present study, we sought to interrogate if hYSK1 follows
additional mechanisms in promoting tumor cell proliferation and migration. We have identified
p21WAF1/Cip1 as a novel binding partner of hYSK1 (Figure 1). Moreover, by increasing the amount
of p21WAF1/Cip1, we noticed the enhancement of SP-1-mediated p16INK4a transactivation (Figure 2).
Furthermore, the p16INK4a expression was inhibited by increasing amount of hYSK1 because hYSK1
has interacted with p21WAF1/Cip1 but not SP-1, and reduced the binding of SP-1 on the p16INK4a

promoter (Figure 3).
Hypoxia condition is the main signature of cancer mass and promotes epithelial-mesenchymal

transition, migration and invasion of cancer cells [23,24]. Among the many different signaling pathways
involved in hypoxia-triggered tumor cell migration, hYSK1 has recently been identified as a potential
regulator, which diminishes p16INK4a function. Our study revealed that the binding activity of SP-1 on
p16INK4a promoter was decreased in hypoxia condition by time course (Figure 4). We also showed
that the hYSK1 inhibited p16INK4a expression but induced MMP-2 expression and cell migration in
hypoxia condition (Figure 5). Taken together, we identified a potential regulatory mechanism of
p16INK4a/MMP-2 expression in cancer by loss of function of p21WAF1/Cip1 through the interaction with
hYSK1 in hypoxia (Figure 6). Conversely, Wu et al. [25] have demonstrated that STK25 (a.k.a hYSK1)
suppressed the proliferation of human colorectal cancer cells and silencing STK25 enhanced xenograft
tumor growth in mice. Thus, additional studies are warranted to define the exact role of hYSK1 in
cancer. However, based on the result of present study, the antagonist development of hYSK1 would be
considered as a new therapeutic avenue for developing anticancer drugs.
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Figure 6. Schematic regulation of p16INK4a and MMP-2 expression by hYSK1. A representative scheme
of hYSK1 regulation of p16INK4a or p21WAF1/Cip1 function which inhibits CDKs/cyclins and cell
proliferation by directly interactions. Furthermore, interaction of hYSK against p21WAF1/Cip1 caused
to decrease of p16INK4a transcription by SP-1 transcription factor, thereby activating cell proliferation,
migration and metastasis. Interaction results of hYSK1 and p16 were published earlier [7].
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4. Materials and Methods

4.1. Cell Culture, Plasmids, and Transfection

SK-MEL-28 (human melanoma), HT-1080 (fibrosarcoma) and COS-7 (African green monkey
kidney) cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA,
USA). SK-MEL-28 cells and HT-1080 were cultured in MEM containing penicillin (100 units/mL),
streptomycin (100 µg/mL), sodium pyruvate (1 mM), and 10% fetal bovine serum (FBS) (Invitrogen,
Gibco, MA, USA). COS-7 cells were grown in DMEM containing penicillin (100 units/mL),
streptomycin (100 µg/mL), and 10% FBS. Cells were maintained at 37 ◦C in a humidified atmosphere
of 95% air/5% CO2.

pcDNA3.1-v5-hYSK1 was generated by PCR using the human cDNA clone-hYSK1 (Origene
Technologies, Rockville, MD, USA) as a template. The PCR product was purified, digested with
EcoRI/XhoI, and cloned into the EcoRI/XhoI sites of pcDNA3.1-v5-HisA (Invitrogen). The GST-hYSK1
was inserted in-frame into the BamHI/XhoI site of the pGEX-5X-1 vector (Amersham Biosciences,
Buckinghamshire, UK). The HA-SP-1 and Myc-p21WAF1/Cip1 were cloned into the EcoRI/XhoI site
of the pCMV-HA and pCMV-Myc vectors (Clontech Laboratories, Mountain View, CA, USA).
The pGL2-p16INK4a-luc vector was a gift from Dr. Gordon Peters (Cancer Research UK, London, UK)
and the pGL2-MMP-2-luc vector was a gift from Dr. Etty N. Benveniste (The University of Alabama at
Birmingham, Birmingham, AL, USA). Various expression vectors were amplified in E. coli XL1-blue or
BL21 cells and plasmids were purified using a Qiagen midi kit (Qiagen, Hilden, Germany). The DNA
sequences of all plasmids were confirmed by sequencing (Dye Terminator ABI Type Seq., Bionex,
NJ, USA).

COS-7 cells were transfected with pGL2-p16INK4a-luc and, pcDNA3.1- p21WAF1/Cip1, HA-SP-1
or pcDNA3.1-v5-hisA-hYSK plasmids using the jetPEI poly transfection reagent (Polyplus, Illkirch,
France). For transient gene silencing, SK-MEL-28 cells were transfected using si-control and si-hYSK1
(Dharmacon, Lafayette, CO, USA). For the reporter gene assay, COS-7 cells were seeded in 24-well
plates and incubated for 24 h followed by transfection with, pGL2-p16-luc, or pGL2-MMP-2-luc
reporter plasmids using the jetPEI poly transfection reagent based on the manufacturer’s instructions.
The pRL-TK reporter plasmid was used as an internal control. Cells were harvested after 24 h and
disrupted with 5× lysis buffer. Luciferase activity was determined after normalization to pRL-TK
activity (Promega, Madison, WI, USA).

4.2. GST Pull-Down Assay

Full length of p21WAF1/Cip1 was translated in vitro with L-[35S] methionine using the TNT Quick
Coupled Transcription/Translation System (Promega). Full-length YSK1 proteins were produced in E.
coli BL21 as GST-fusion proteins and then purified on GST-Sepharose 4B beads. The 35S-Met-labeled
p21WAF1/Cip1 proteins were incubated with either GST or GST-YSK1 fusion proteins bound to Sepharose
beads and precipitated in a pull-down assay. The bound proteins were washed three times and boiled
with 2.5× sample buffer for 3 min, centrifuged, and then the supernatant fraction was examined by
15% SDS-PAGE analysis. The binding was detected by autoradiography.

4.3. Transfection and Luciferase Activity

The pcDNA3.1-p16INK4a or pcDNA3.1-v5-hisA-hYSK1 plasmid was transfected using the jetPEI
poly transfection reagent (Polyplus, Illkirch, France) into HT-1080, COS-1, or COS-7 cells to generate
p16INK4a- or p16INK4a-hYSK1-expressing cells. For transient gene silencing, si-control and si-hYSK1
(Dharmacon) were transfected into HT-1080, SK-MEL-28, and A2058 cells. shRNA-control and
shRNA-hYSK1 were transfected into HT-1080 and SK-MEL-28 cells. For the reporter gene assay,
COS-7 cells were seeded in 24-well plates and incubated for 24 h followed by transfection with
pcDNA3-p16INK4a, HA-SP-1, cyclin A, pGL2-p16-luc, or pGL2-MMP-2-luc reporter plasmids using the
jetPEI poly transfection reagent based on the manufacturer’s instructions. The pRL-TK reporter plasmid
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was used as an internal control. Cells were harvested after 24 h and disrupted with 5× lysis buffer.
Luciferase activity was determined after normalization to pRL-TK activity (Promega).

4.4. Electrophoretic Mobility Shift Assay (EMSA)

EMSA for SP-1 DNA binding was performed using a DNA–protein binding detection kit,
according to the manufacturer’s protocol (GIBCO BRL, Grand Island, NY, USA). Briefly, the SP-1
oligonucleotide probe 5′–GACCGAGTGCGCTCGGCGGCTGCGGAGAGGGGTAGAGCAGGCAG
CGGGCGGCGGGGAGCAGC–3′ (SP-1 binding site in p16INK4a promoter) [26] was labeled with
[γ-32P]ATP by T4 polynucleotide kinase and purified on a Nick column (Amersham Pharmacia Biotech,
Buckinghamshire, UK). The binding reaction was carried out in 25 mL of the mixture containing 5 mL
of incubation buffer (10 mM Tris–HCl, pH 7.5, 100 mM NaCl, 1 mM DTT, 1 mM EDTA and 4% glycerol),
10 mg of nuclear extracts and 100,000 c.p.m. of [γ-32P] ATP-end labeled oligonucleotide. After 50 min
incubation at room temperature, 2 mL of 0.1% bromophenol blue was added, and samples were
separated through 6% non-denaturing polyacrylamide gel at 150 V in a cold room for 2 h. Finally, the
gel was dried and exposed to an X-ray film.

4.5. Immunoprecipitation

Transfected COS-7 cells or SK-MEL-28 cells were harvested in NET-NL lysis buffer containing
50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl, 1 mM DTT, 0.01% NP-40, 0.2 mM PMSF, and a mixture
of protease inhibitors (Roche Diagnostics, Basel, Switzerland). Cell lysates (200 µg) were clarified by
centrifugation before overnight incubation at 4 ◦C with hYSK1 and SP-1 (Santa Cruz Biotechnology,
Dallas, TX, USA) antibodies in NET-NR buffer (50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl,
1 mM DTT, 0.01% NP-40, 2 µg/mL BSA, 0.2 mM PMSF), and a mixture of protease inhibitors
(Roche Diagnostics, Basel, Switzerland). An aliquot of 50 µL pre-washed protein A/G-agarose
beads (Roche Diagnostics; 50% slurry) was then added to the mixture and incubated for 2 h at 4 ◦C.
Immunoprecipitates were recovered by centrifugation, washed three times in NET-NW buffer (50 mM
Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl, 1 mM DTT, 0.01% NP-40, and 0.2 mM PMSF) and resolved
by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and western blotting.

4.6. Western Blot Analysis

Cells were disrupted on ice for 30 min in cell lysis buffer which contains 20 mM Tris (pH 7.5),
150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM
β-glycerophosphate, 1 mM sodium vanadate, 1 µg/mL leupeptin, and 1 mM phenylmethylsulfonyl
fluoride. After centrifuged at 14,000 rpm for 20 min, the cell lysates were collected, and protein
concentration was determined by using a protein assay reagent (Bio-Rad labs, Hercules, CA, USA).
The total cellular protein extracts were separated by SDS-PAGE and transferred to polyvinylidene
fluoride (PVDF) membranes in 20 mM Tris-HCl (pH 8.0), containing 150 mM glycine and 20% (v/v)
methanol. Membranes were blocked with 5% nonfat dry milk in 1× Tris-buffered saline (TBS)
containing 0.05% Tween 20 (TBS-T) and incubated with antibodies against p16INK4a, p21WAF1/Cip1,
hYSK1, pRb, Rb, HIF-1a, pSP-1, SP-1, MMP-2, and β-actin. The blots were washed three times in
1× TBS-T buffer followed by incubation with the appropriate HRP-linked IgG. The specific proteins in
the blots were visualized using an enhanced chemiluminescence (ECL) detection kit (GE Healthcare
Bioscience, Pittsburgh, PA, USA).

4.7. Cell Migration Assay

Wound migration of cells was measured using Culture-Inserts (Ibidi GmbH, Martinsried, Germany).
The Culture-Inserts were placed in 30 mm dish, and siRNA-control and siRNA-hYSK1-transfected
SK-EML-28 cells were seeded at a density of 5 × 104 cells in each well with the Culture-Inserts.
After 24 h of incubation, the Culture-Inserts were removed, a cell-free gap of 500 µm was created and
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then transferred to a hypoxic (1% CO2) chamber. The movement of cells was detected by an inverted
microscope (BX50, Olympus, Tokyo, Japan) by time course.

Cell movement was analyzed using AVI meta imaging software. For real-time cell migration,
we used the xCELLigence RTCA DP system and fibronectin-coated CIM plates (Roche Diagnostics,
Basel, Switzerland). Cells were seeded at 10,000 cells per well and the migratory behavior of each
cell line was monitored for 30 h. The assay was performed based on the manufacturer’s instructions
(Roche Diagnostics, Basel, Switzerland).

4.8. Statistical Analysis

Values were expressed as means ± S.E.M. from at least three independent experiments. Statistical
significance was determined by Student’s t-test and a p-value less than 0.05 was considered
statistically significant.
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