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A muscular synergy is a theory suggesting that the central nervous system uses few

commands to activate a group of muscles to produce a given movement. Here, we

investigate how a muscle synergy extracted from a single muscle can be at the origin

of different signals which could facilitate the control of modern upper limb myoelectric

prostheses with many degrees of freedom. Five pairs of surface electrodes were

positioned across the biceps of 12 normal subjects and electromyographic (EMG) signals

were collectedwhile their upper limbswere in eight different static postures. Those signals

were used to move, within a virtual cube, a small red sphere toward different targets. With

three muscular synergies extracted from the five EMG signals, a classifier was trained to

identify which synergy pattern was associated with a given static posture. Later, when a

posture was recognized, the result was a displacement of a red sphere toward a corner

of a virtual cube presented on a computer screen. The axes of the cube were assigned

to the shoulder, elbow and wrist joint while each of its the corners was associated with

a static posture. The goal for subjects was to reach, one at a time, the four targets

positioned at different locations and heights in the virtual cube with different sequences

of postures. The results of 12 normal subjects indicate that with the muscular synergies

of the biceps brachii, it was possible, but not easy for an untrained person, to reach a

target on each trial. Thus, as a proof of concept, we show that features of the biceps

muscular synergy have the potential to facilitate the control of upper limb myoelectric

prostheses. To our knowledge, this has never been shown before.

Keywords: biceps brachii, muscle synergy, upper limb posture classification, target reaching, virtual cube,

myoelectric prosthesis

INTRODUCTION

Important progress has recently been made in the design of multiple degrees of freedom
(DoF) upper limb myoelectric prosthesis (Lenzi et al., 2016) and this has led the production
of commercially available units, such as the Luke Arm (Mobius Bionics, 2017). Such
advanced prostheses can be most valuable to amputees in their daily living. Multiple
DoFs implies that multiple control signals have to be derived from EMG signals. To
that end, Daley et al. (2012) used a linear discriminant analysis (LDA) to classify 12
different wrist and hand movements of normal subjects using eight optimally placed
electrodes on the forearm. Similarly, Ameri et al. (2014) used an artificial neural network
(ANN), where visual training was considered better than force training to simultaneously
estimate intended movements of multiple joints. Comparing the classifiers performance,
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Adewuyi et al. (2016) found for non-amputees and partial-hand
amputees that LDA and ANN perform better than the quadratic
discriminant analysis. Betthauser et al. (2018) developed a
robust sparsity-based adaptive classification method to get a
classification system which is appreciably less sensitive to signal
deviations between training and testing. When they tested it on
eight able-bodied and two transradial amputee subjects with eight
electrodes pairs regularly spaced around the proximal forearm, it
was found that their approach significantly outperformed other
movement classification methods.

In addition to such approaches, the concept of muscle
synergy was proposed to examine how the brain could efficiently
command various muscles to produce different movements.
For instances, to understand the posture balancing reaction
of humans on a platform submitted to various perturbations
in the horizontal plane, Torres-Oviedo and Ting (2007) used
muscle synergies between 16 leg and lower-back human muscles.
Muceli et al. (2010) found synergy among 12 muscles of the
upper limb of eight subjects when reaching tasks were performed
in the horizontal plane. To extract muscle synergies, various
approaches can be used such as principal component analysis
(PCA), independent component analysis (ICA) and non-negative
matrix factorization (NMF). Amongst those, Tresch et al. (2006)
considered that the NMF algorithm (Lee and Seung, 2001) was
more physiologically relevant than the others given that a muscle
can only be active at various contraction levels (positive) but
never below rest (negative).

Features of muscle synergies are often used for classification
purposes (Delis et al., 2013). For instance, Naik and Nguyen
(2015) used NMF processed data to classify the finger gesture of
two forearmmuscles. Similarly, Rasool et al. (2016) used forearm
muscles for real-time classification of hand open/close, wrist
flexion/extension and forearm pronation/supination. Antuvan
et al. (2016) used extreme learning machines and muscle synergy
features to classify upper limb postures involved in elbow
flexion/extension and shoulder flexion/protraction/retraction
and rest posture. Muscle synergy has also been applied to
upper limb muscles for proportional control related to prosthetic
applications (Jiang et al., 2009; Ma et al., 2015).

As for our research it is focused on the multifunctional
biceps brachii muscle which is involved in shoulder elevation,
elbow flexion, and forearm supination (Landin et al., 2008;
Jarrett et al., 2012). There is also anatomical evidence to support
its multifunctionality: besides its division into two heads, its
inner surface appears to be further divided into up to six
compartments which are each innervated by a branch of the
musculocutaneous nerve (Segal, 1992)1. Multifunctionality is
also supported by physiological evidence: ter Haar Romeny
et al. (1984) found that during different functional tasks of the
upper limb, motor units of the biceps were activated at different
locations within the muscle, probably due to activity in different
compartments. These individual compartments can then be
considered as muscles within a muscle working together to

1Anatomically, compartments are not unique to the biceps brachii. They are also

present in the deltoid, the pectoralis major and the latissimus dorsi at the shoulder

level (Brown et al., 2007) which are less frequently studied than the biceps.

TABLE 1 | Information on our 12 subjects with their body mass index (BMI) and

mid-upper arm circumference (MUAC).

Subject ID Height

(cm)

Weight

(kg)

BMI MUAC

(cm)

S1 169 50 17.5 23

S2 163 48 18.1 22

S3 167 55 19.7 24

S4 157 52 21.1 25

S5 160 58 22.7 24

S6 172 80 27.0 29

S7 183 70 20.9 28

S8 180 75 23.1 30

S9 170 72 24.9 28

S10 173 77 25.7 28

S11 179 83 25.9 32

S12 183 112 33.4 37

MEAN 171.3 69.3 23.3 27.5

±SD 8.7 18.3 4.4 4.3

accomplish functional roles. This situation is somewhat similar to
the one where anatomically differentmuscles work synergistically
together (Bizzi and Cheung, 2013).

This paper reports on an experimental study where the biceps
EMG signals are the only ones used to identify a static arm
posture, out of five or eight. The study examines how successive
postures could be used to develop a trajectory so as to reach a
specified target in a virtual environment.

MATERIALS AND METHODS

The study was approved by the ethical committee of the Faculty
of Medicine at the Université de Montréal and the 12 subjects
signed a written informed consent form in accordance with
the Declaration of Helsinki. To participate to the project, the
inclusion criteria for each subject were: to be without any known
history of neuromuscular disorders, be right-handed and aged
between 20 and 35 years old; additional personal information is
presented in Table 1.

For each subject, the borders of the biceps brachii were
identified by palpation and the mid-point considered separating
the short head (SH) from the long head (LH). As shown
in Figure 1A, three pairs of surface electrodes were placed
across the SH and two pairs across the LH while a reference
electrode was placed over the acromion. To avoid the muscle’s
innervation zone, the upper row of electrodes was positioned
10mm below the middle of the biceps. Ag/AgCl disc electrodes
of 10mm in diameter (Kendall H69P) were used with a
2 cm vertical and horizontal distance between center to
center distances. Acquisition of the five EMG signals was
done with customized electronic circuits using a differential
amplifier (AD8226, Analog Devices) with a gain of 200. The
amplified signals were rectified with an op amp (TL084,
Texas Instruments), high-pass (6.67Hz) and low-pass (1,240Hz)
filtered. Following the low-pass filter, a second gain of 10
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FIGURE 1 | (A) Five bipolar surface electrodes were placed across the biceps brachii: two over the long head (LH) and three across the short head (SH). (B) Eight

different static postures of the right upper arm were used. They are identified with a 3-tuple system [*,*,*] respectively representing shoulder, elbow, and wrist joints.

For the first * it can be F (flexion) or E (extension) for shoulder joint posture, second * can be F or E for elbow joint posture, and third * can be P (pronation) or S

(supination) for wrist joint posture.

FIGURE 2 | (A) Each of the eight chosen static postures is assigned to a corner of a virtual cube displayed on a computer screen. Each axis of the cube represents

the normalized angular changes at the shoulder, the elbow, and the wrist joint. Experiments were done with the eight illustrated postures and with a subset of five

postures which are identified with a blue font. On the Elbow axis, the distance between 0 and 1 is used as the reference length to which distance, length and diameter

measures are compared. (B) 3D view of the 5 targets within the cube. In each trial, the initial position of the red sphere is in the center of the cube and subjects have

to move it so that it reaches one of the targets, which have a diameter of 0.2 including their grayed surrounding. The red sphere is only a point in the program, but it is

displayed with a given diameter to make it visible to the subjects. (C) 3D coordinates of the five targets.

was obtained using the same TL084 op amp. Following this
analog processing, signals were digitized (2,000Hz, 12 bits)
with a microcontroller (ROBOTIS OpenCM9.04). On an ARM
Cortex-M3 processor (72 MHz clock), a root mean squared
(RMS) function was implemented with a window width of

250ms and a large 70ms step size due to the communication
rate of 15Hz between the microcontroller and a laptop which
hosted the MATLAB software that provided data processing
and a graphical user interface (GUI) for interaction with
the subject.
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FIGURE 3 | Five raw EMG signals from the biceps are smoothed ① with a RMS filter. ② sEMG signals from paired postures are concatenated before extracting

muscle synergy with a non-negative matrix factorization (NMF) program. ③ Cluster mean values of the muscle synergy from pairwise postures are used to train a

classifier. ④ To improve the classification accuracy, the clusters formation is evaluated with the Silhouette clustering index. ⑤ Classification of paired postures is

obtained using the minimum Euclidean distance between them. In stage ⑤ a “winner takes all” method is used to make simultaneous posture classifications. In ⑥, the

virtual cube, a switched system is used to move the red sphere toward a target within the cube.

While seated, subjects had to take one of eight different static
postures (Figure 1B) while facing a computer screen where a
cube was displayed. As shown in Figure 2A, each corner of the
cube was assigned to one of the eight static postures (SP). The
normalized axes of the cube were defined so the [−1 to 1] range
represented the full excursion of the shoulder and elbow joints
which were either extended or flexed and to the wrist joint which
had the hand set either in pronation or in supination. Each
intermediate position in the three axes is interpolated linearly.
The distance measured between 0 and 1 on the vertical elbow
axis is used as the unit against which each trajectory length
and distance is measured within the cube. Before each trial
(Figure 2B) the red sphere was positioned at the center of the
cube and it has to be moved toward one of the targets and touch
its grayish sphere (diameter: 0.2) within 120 s to be a success
otherwise the trial is a failure. The coordinates of each target
are shown in Figure 2C. Each subject made three trials to reach
a target.

Figure 3 presents a flow chart of the MATLAB program used
from EMG pre-processing up to displaying the position of the
red sphere within the virtual cube. An NMF algorithm was
used to extract muscle synergies from pairwise postures as done
previously (He and Mathieu, 2018); details of the method are
presented inAppendix 1, 2. Themuscle synergy is extracted from
concatenated EMG signals of two different postures and since
no labeling information of the data is required, when a muscle

synergy is extracted from concatenated EMG, the classifier
should have the power to detect a difference between each paired
posture. This power is determined by a signal-to-noise ratio
(SNR) where the signal is the difference between paired postures
and noise is the dissimilarity of the clusters associated to each
posture in the pair. The silhouette index of Rousseeuw (1987) was
used to measure the discrimination power of the muscle synergy
(i.e., how easy to identify different clusters). Some details of the
silhouette index are also presented inAppendix 1. In the absence
of a unique solution, the NMF algorithm was applied many times
(n = 30) on the same pairwise posture of EMG data to find the
best solution, as shown in Appendix 2.

For an online classification of the eight SPs of the upper limb,
binary classifiers (Fürnkranz, 2002) were used with a round robin
method (Park and Fürnkranz, 2007) which transforms binary
classifiers into a posture classifier. The number of postures to
be classified is a parameter of the classifier which determines
the number of binary classifiers. With eight static postures, the
number of pairwise posture classifiers needed to obtain a posture
classification is 8 × (8–1)/2 = 28. The governing equation in the
binary classifier is the measured Euclidean distance between the
tested pattern and the learned class reference (equations A1.3,
A1.4 in Appendix 1). In Figure 4, the 21 thin lines connecting
a pair of eight postures represent a trained binary classifier and
the seven thick lines related to the round robin method are used
to identify a posture such as FFS. For the five SP condition (a
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FIGURE 4 | Posture classification example where the maximum number of

paired posture classification is 8*(8–1)/2 = 28. Out of those there are 21 thin

blue lines representing paired posture classifier associated with postures other

than FFS which were taken by a subject. Associated with FFS are seven

paired classifiers (large blue lines) which make correct classification with FFS.

subset of the eight SPs), 10 pairwise posture classifiers are used.
The posture identified with the posture classifier is fed to an
intermittent controller.

Intermittent Controller
For each trial, the initial location of the red sphere is at the center
of the cube and when a first static posture taken by the subject
to reach a target is identified by the classifier (Figure 5), the
intermittent controller (Gawthrop et al., 2011) moves the red
sphere toward the corner of the cube associated to the detected
posture. If the target is not reached, additional posture changes
are produced up to when the target is reached or when a 120 s
time limit expires. Within the intermittent controller a discrete
state switch control is used to compare the new joint posture
with the previous one. Then, the activated joints are only those
where a change had occurred. For example, in a FFS to FEP
posture change, the shoulder joint (first F in both postures) will
be inactivated and the red sphere will move, from flexion (F) to
extension (E) along the elbow axis, and simultaneously on the
wrist axis, from supination (S) to the pronation (P). When a
change occurs simultaneously at the three joints as from EFS to
FEP, the shoulder joint will only be activated and the red sphere
will move, along the shoulder axis from extension (E) to flexion
(F). As for the two other joints, they will remain inactive until the
subject makes another posture change which does not involve
the shoulder joint.

FIGURE 5 | The input of an arm posture classifier is fed to an intermittent controller that determines which switch to close in order to move the red sphere accordingly

with the subject’s posture. The movement of the red sphere in each of the three joint axes is produced with a 2nd order system whose transfer function is given by

Equation 1. The subject used the movement of the red sphere within the cube as visual feedback to produce sequential posture changes, and the objective was to

reach a target in the cube.
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Red Sphere Displacement
The position of the red sphere in the cube corresponds to the
position of the three joints of the upper limb of a subject and a
static posture change is associated with a step function input to a
second-order system and the output is a continuous displacement
of the red sphere toward the appropriate corner. For this second-
order system (Equation 1), the resistance to the movement of
the red sphere is associated with ωn (a large value produces a
larger resisting force to the displacement) and resistance to speed
change of the red sphere is associated with δ (a larger value
produces a larger resisting force). The transfer function of the
second-order system is:

C(s)

R(s)
=

ωn
2

s2+2δωns+ωn
2

(1)

where C(s) is the output to the red sphere and R(s) is a step
function associated with each static posture change made by the
subject. The dynamic parameters of the red sphere’s movement
(ωn = 0.39 and δ = 1) were the same for each subject.
When a new posture is identified while the red sphere is still
moving; the red sphere immediately changed its direction under
the actuation of the intermittent controller. To move the red
sphere anywhere within the cube, at least four static postures
are needed.

Protocol
The day before the experiment, each subject came to the
laboratory to view a short video demonstrating how to produce
each of the eight static postures illustrated in Figure 1B and
during ∼150min, they practiced controlling the movements of
the red sphere. The next day, during the experiment, targets
1, 2, 3, 4 had to be reached in succession with five SPs and
targets 1, 2, 3, 5 with eight SPs. Targets 1, 2, 3 were thus
considered with both the five and eight SP groups for comparison
purposes. Performance of target reaching wasmeasured with four
measures: (1) time in seconds to reach a target; (2) trajectory
length made by the red sphere from its initial position up to
reaching a target, or in a failed trial, up to its end position
when 120 s was reached; (3) number of posture changes taken
to reach a target or to reach the 120 s for a failed trial; (4) the
distance between the red sphere and the target when 120 s was
reached for a failed trial. The Runge-Kutta 4 (RK4) method is
used to obtain the trajectory length of the red sphere, which is
obtained from the cumulative sum of Euclidean distances along
the numerical solutions.

During the classifier training and evaluation, subjects kept
their arm in each of the eight static postures for 10 s, from which
themuscular synergies were extracted for classifier training. Next,
they kept three times each of the five or eight static posture for 5 s,
from which the obtained synergies were compared online with
the trained classifier. For each trial, 30 iterations were produced
by the classifier and a percentage of good classification was
obtained and a mean value obtained for each subject for the five
and eight SPs condition.

The NASA task load index (TLX) survey form (Appendix 3)
was filled by each subject after the experiment. This is a

self-evaluation of six items: mental, physical, temporal demand,
and level of effort, frustration, and performance during the
experiment. That feedback could provide valuable information to
improve the experimental protocol and software programs used
to process the information.

Statistics
A paired t-test was used to compare mean results obtained by
the 12 subjects when five or eight SPs were used. The tested
hypothesis was that with five SPs, the mean classification results
and the number of targets reachedwould be better thanwith eight
SPs because remembering how to reproduce with some fidelity
eight different postures is more mentally demanding than for
only five. Where numbers of subjects were different for targets or
postures (Figures 7, 8), independent sample t-test were used to
test the difference between the compared results. A difference was
considered significant when p < 0.05 and the IBM SPSS Statistics
software was used.

RESULTS

Classification % obtained during the training with five and eight
SPs are shown in Table 2A. With five SPs, the classification
of four subjects was very good (>90%), although it was quite
poor for S12 (31%). With eight SPs, the mean classification
value (of 72 ± 20%) was significantly lower (p = 0.001) than
with five SPs (82 ± 19 %). In Table 2B, each subject’s ratio of
the number of reached targets out of 12 (3 trials × 4 targets)
is presented. It can be observed that a good classification %
in the training session was not always associated with a large
ratio of reached targets. For instance, S2 and S8, who were
among the five subjects with high classification performance,
did not reach a single target in the eight SP condition. As
expected however, S12 with the lowest classification results
could only reach one target with five SPs and 0 with eight SPs
(ratio: 0.08 and 0.00). For the group, the mean ratio of target
reached was higher with five SPs (0.29 ± 0.18) than with eight
SPs (0.24 ± 0.23) but this difference was not significant (p
= 0.281).

Figure 6 illustrates two trajectories of the red sphere which
was controlled by S3 trying to reach target two with five SPs. In
Figure 6A, an example of a failed trial is shown, where in spite
of 72 posture changes made during 120 s, the red sphere was still
at a distance of 0.682 from target two after a trajectory length of
14.72. The same subject was far more successful in another trial
(Figure 6B) where the same target was reached with only four
posture changes within 9 s.

The mean time to successfully reach the targets is shown
in Figure 7A. Target one was the easiest to reach with a
mean time of 38 and 20 s for the five SP and eight SP
condition, respectively, and target three was the most difficult
to reach with 59 and 55 s. These mean values are the results
of significant variations among the subjects and no significant
difference was found between those results. Reaching target
one was achieved with a smaller number of posture changes

2Length is referenced to the 0 to1 distance on the elbow axis (Figure 2A).
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TABLE 2 | (A) In the training session, mean (± SD) classifier accuracy (%) for the 5 and 8 static postures (SP) conditions.

Subjects 5 SP 8 SP Subjects 5 SP 8 SP

Mean ± SD Mean ± SD Ratio Ratio

A B

S5 99 ± 2 87 ± 20 S3 0.67 0.75

S11 95 ± 4 68 ± 35 S8 0.50 0.00

S1 94 ± 6 88 ± 25 S7 0.50 0.25

S2 90 ± 10 83 ± 20 S1 0.42 0.58

S8 89 ± 9 79 ± 21 S6 0.33 0.33

S3 87 ± 14 75 ± 43 S5 0.25 0.25

S4 87 ± 21 90 ± 11 S9 0.25 0.25

S7 87 ± 15 85 ± 13 S11 0.17 0.17

S9 85 ± 15 72 ± 26 S4 0.17 0.17

S10 76 ± 16 64 ± 26 S2 0.08 0.00

S6 60 ± 36 49 ± 45 S10 0.08 0.08

S12 31 ± 45 22 ± 42 S12 0.08 0.00

Mean ± SD 82 ± 19 72 ± 20 Mean ± SD 0.29 ± 0.18 0.24 ± 0.23

Mean values of each subject are obtained from three trials of 5 s in each of the five or in each of the eight static postures. The subjects are sorted from highest to lowest performance
in the 5 SP condition. The difference between 5 and 8 SP results is significant (p < 0.05). (B) Success ratio [number of successful trials over 12 trials (4 targets × 3 times)] by each
subject. The subjects are sorted from highest to lowers performance in the 5 SP condition. S3 was the best performer. Between the 5 and 8 SP results the paired t-test value is 0.28.

FIGURE 6 | Trajectories taken by S3 to move the red sphere toward target 2 in the 5 SP condition. (A) An unsuccessful 1st trial in spite of 72 posture changes where

the final red sphere position after 120 s was at a distance of 0.68 (small black circle) from the target. (B) In the 3rd trial, the target was reached within 9 s with only 4

posture changes.

(Figure 7B) than for the other targets. With eight SPs, a
significant difference was found between targets one and two
and between one and five. For trajectory length (Figure 7C),
a significant difference was obtained with eight SPs between
targets one and three and with five SPs between targets two
and three.

Results for failed trials are shown in Figure 8. In Figure 8A,
it is seen that mean distances separating the red sphere from
target two at the end of 120 s are smaller than those for the other
targets. For the five SP condition the differences are significant
between targets 1 2, 3, and 4 while for the eight SP condition the
difference is only significant between targets two and three.While
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FIGURE 7 | For successful trials, mean results (+sd) of the 12 subjects with 5 (blue bars) and with 8 static postures (orange bars). (A) Mean time needed to reach

each target. Number of subjects who reached a target at least once is shown in white. (B) Mean number of posture changes needed to reach each target. For 8 static

postures, there is a significant difference in the number of posture changes between targets 1 and 2 as well as between target 1 and 5. (C) Mean trajectory length

needed to reach each target. Differences between targets 1 and 3 are significant for 8 static postures as well as targets 2 and 3 for five postures. Significance of

independent samples t-test level is p ≤ 0.05.

mean distance varied between 0.8 and 1.3, the smallest distance
(0.1) was found with five SPs for target two and with eight SPs
for target one and the largest was 0.8 (white number) for the
eight SPs condition at target three. As for the number of mean
posture changes (Figure 8B), they were always smaller with five
SPs than with eight SPs and the only significant difference was for
five and eight SPs at target three. The mean trajectory lengths of
the red sphere (Figure 8C) were all equally elevated for five and
eight SPs.

The results of the NASA task load form are presented in
Table 3. As a group, subjects considered that physical and mental
demands to identify which static posture to choose to move the
red sphere were high (15.3/20 and 14.0/20). As for the temporal
demand, the limit of 120 s appeared adequate and the time spend

in the lab not too long (10.4/20). In general, subjects were not
very satisfied with their performance (7.2 ± 3.7) and somewhat
frustrated (12.8 ± 4.9) from not having reached the targets more
often. At the individual level, the best performer (S3) ranked
both the physical and mental demands at a high 17/20 and
frustration at the highest score of 20/20, for not being able to
reproduce the postures correctly in order to reach more targets.
While S2 got over 80% for the training classifier accuracy results
(Table 2A), this subject could only reach one target (Table 2B).
This subject considered the performance quite low (4/20) and
was very frustrated (16/20). While the other low performer (S12)
missed most of the targets, this subject considered, unexpectedly,
that the experiment was not very mentally demanding and was
not frustrating.
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FIGURE 8 | Results of failed trials. (A) Mean distance (+sd) between the red sphere and a target at 120 s for 5 (blue bars) and for eight static postures (orange bars).

White numbers represent the minimum distance between the red sphere and a target at 120 s. For the 5 SP condition, differences between targets 1 and 2, targets 2

and 3, and targets 3 and 4 are significant. For the 8 SP condition, the difference between targets 2 and 3 is significant. (B) Mean number of posture changes at the

end of each trial. For target 3 the difference between 5 and 8 SP conditions is significant. (C) For each target, the mean trajectory length of the red sphere during

120 s (independent samples t-test significance is p ≤ 0.05).

DISCUSSION

Modern upper limb myoelectric prostheses are now able to

produce many different movements. However, following an

amputation, the number of available muscles to control them

is reduced and strategies to alleviate that shortage have to

be developed. When the biceps brachii is still functional, one

strategy could be the extraction of more than one control signal

from that muscle. To investigate that possibility with non-
amputee subjects, five pairs of surface electrodes were put across

this multifunctional muscle.With two postures for each shoulder,

elbow and wrist joints eight different static postures in the

sagittal plane were used to control the displacement of a cursor

toward different targets placed within a virtual cube. Results were

obtained in two experimental conditions: one with five out of the
eight static postures and one with all eight static postures.

To associate a red sphere direction to each of the eight static
postures, a training phase was used. After having done that with
each subject, we verified the ability of a classifier to correctly
recognize each of the eight SPs. As shown in Table 2A, an
important difference is observed between results of S5 at the top
of the table and S12 at its bottom. Ability to remember how
to reproduce with high fidelity five or eight different static arm
postures was thus quite variable among our subjects. With, a
group mean value with five SPs being significantly larger than
with eight SPs (p = 0.001), this confirms that remembering how
to duplicate five postures is significantly easier than duplicating
eight SPs.
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TABLE 3 | NASA task load index (TLX) rates six factors (left column of the table)

that are used to assess the subjective workload associated with the experiment.

TLX Mean ± SD

(n = 12)

Best

performer

(S3)

Lowest

performer 1

(S2)

Lowest

performer 2

(S12)

Physical demand 15.3 ± 2.8 17 14 13

Mental demand 14.0 ± 3.6 17 15 9

Temporal demand 10.4 ± 6.0 11 14 13

Own performance 7.2 ± 3.7 15 4 5

Own frustration 12.8 ± 4.9 20 16 8

Own effort 12.4 ± 3.4 15 13 11

The three top factors are related to constraints associated with the tasks to be realized
(demand) and the three bottom factors are related to the feelings associated with those
tasks (own). Each factor is scaled from 0 to 20: higher values represents higher demand
or higher performance. Mean values of the 12 subjects are shown in the second column
of the table. Individual results are shown for the best performer and for the two lowest
performing subjects.

Since the classifier accuracy of the above results were obtained
online, no data was available for an offline cross-validation.
However, the classifier training was with unsupervised synergies
and their features formed non-overlapping clusters. Thus, the
discrimination capacity of the learned linear classifier is not an
important concern since the receiver operating characteristic
curve (ROC) of those features always occupies the upper
half triangle. However, it is still possible that when a subject
chooses a static posture, a misclassification occurs, causing the
cursor to move in an unexpected direction, which is confusing
for the subject. To prevent such situations, the use of a
sparse representation of the classified postures as proposed by
Betthauser et al. (2018) has to be added to our programs.

From the starting position of the red sphere (Figure 2B),
targets one and five (which are located near a corner of the
cube) could easily be reached by taking the FFS or EFS posture,
respectively because the initial posture that starts the movement
of the red sphere actives movement in all three joint axes toward
the corner corresponding to that posture. Those easy reaching
strategies were used by only few subjects. Targets located at a
distance from a corner were more difficult to reach since different
postures had to be sequentially taken to reach them.

Among the eight SPs, different subsets of five postures could
have been chosen. The present choice was based on the main
contribution of the biceps to the elbow flexion and forearm
supination. As for the low mean target reaching ratios (<0.30,
Table 2B) and especially for subjects S2 and S12 who reached
only one target over 12 trials with five SPs and 0 targets with
eight SPs, classification accuracy could be improved by replacing
the present classifier by a support vector machine or an artificial
neural network classifier. Also, the short training period the
day before the experiment could be replaced by more training
sessions as illustrated by one person of the lab who, having
repeated the protocol four times, reached a 90% success rate with
five SPs and 58% with eight SPs (unpublished results).

Classification results could also be improved by the addition
of anatomical information on the biceps when the upper limb
is in different postures. With an ultrasound probe placed at
the biceps level where recording electrodes had been previously
placed, changes in its shape and displacements relative to the skin

surface were observed (unpublished results). In the future, with
ultrasound images obtained before an experiment, position of the
electrodes over the biceps could be optimized.

From the results of the NASA task load index, physical
and mental demands have the highest scores indicating that
our present approach to reach targets is not very intuitive.
The difficulty of controlling their prostheses frequently leads
amputees to leave them in a closet. Thus, it is suggested to replace
the step by step cursor control of a red sphere in a virtual cube
by a more realistic situation where the biceps’ synergy would
control a small humanoid robot for reaching objects within an
arm’s length. This would be a more realistic situation to the
one shown in a video where the experimented person of the lab
controlled a small humanoid robot arm with muscular synergies
of the biceps (http://www.igb.umontreal.ca/).

CONCLUSION

We present a proof of concept that the muscular synergy
extracted from a single muscle, the biceps brachii, could facilitate
the control of an upper limb prosthesis. This was demonstrated
by collecting five surface EMG signals of the biceps of 12 normal
subjects who put their arm in eight different static postures. Using
a non-negative matrix factorization program, three muscular
synergies were extracted and following a training session, a
classifier could identify each of those eight postures. Then, within
a virtual cube displayed on a screen, subjects could, with five
and eight different static postures, move a red sphere toward
the targets. The number of targets reached was higher with five
choices of posture than with eight choices. The reasons for a low
mean number of reached targets (around 30%) were a lack of
training of our subjects before the experiment and a classifier that
was not lenient enough.While the biceps may not be available for
above elbow amputees, a muscular synergy may then be extracted
frommuscles near the shoulder such as the deltoid, the pectoralis
major and the latissimus dorsi, which are also multifunctional.
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