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The lepidopteran model silkworm, Bombyx mori, is an important economic insect.

Viruses cause serious economic losses in sericulture; thus, the economic importance

of these viruses heightens the need to understand the antiviral pathways of silkworm

to develop antiviral strategies. Insect innate immunity pathways play a critical role in the

outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency

(Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal

transducer and activator of transcription (JAK/STAT) pathway are the major antiviral

defense mechanisms, and these have been shown to play important roles in the

antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase

(PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular

signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation

in silkworms. In this review, we present an overview of the current understanding of the

main immune pathways in response to viruses and the signaling pathways modulated by

viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism

of silkworms furnishes a theoretical basis for the enhancement of virus resistance in

economic insects, such as upregulating antiviral immune pathways through transgenic

overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by

gene editing or inhibitors.
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INTRODUCTION

Virus infection poses a serious threat to human health and agricultural production. As the
only fully domesticated insect, the lepidopteran model silkworm, Bombyx mori, is economically
important for silk production. Sericulture is one of the main sources of income for farmers in
many developing countries (1, 2). However, viral diseases have caused losses of nearly 16% of the
potential cocoon production each year in sericulture, which are induced mainly by the Bombyx
mori nucleopolyhedrovirus (BmNPV), Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), or
the Bombyx mori bidensovirus (BmBDV) (1).

Insects mainly rely on innate immunity to defend against invading pathogens, and immune
pathways play an important role in this process. Although some host signaling pathways can be
modulated by viruses to elevate virus proliferation, targeting these pathways can also inhibit virus
infection. In this review, we present an overview of the main pathways involved in the antiviral
mechanism of silkworms. Such knowledge could provide a theoretical basis for strategies for control
of viral diseases in economic insects.
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CHARACTERISTICS OF SILKWORM
VIRUSES

Among the three major pathogenic viruses of silkworms, the
BmNPV, a member of the Baculoviridae family having a circular
double-stranded DNA genome (3), is the most prevalent threat to
sericulture in almost all countries (1). The viral DNA combines
with capsid proteins to form a nucleocapsid that is contained
within an envelope (1, 3). The BmNPV replication cycle has
two virion phenotypes: (1) the occlusion-derived virus that is
transmitted among hosts, and packaged and protected in an
occlusion body (4, 5), and (2) the budded virus that spreads
throughout the host. The BmCPV belongs to the Cypovirus
genus of the Reoviridae family, and its genome consists of
ten discrete double-stranded RNA (dsRNA) segments (6, 7).
The BmCPV particles contain nucleic acid and protein capsid,
and they are non-enveloped and occluded within polyhedral
bodies (6, 7). The BmBDV belongs to the Bidensovirus genus of
Bidnaviridae family, and has two geographical variants, BmDNV-
2 and BmDNV-Z (8–10). The BmBDV virions are non-enveloped
and assembled by a protein capsid and nucleic acid, with their
viral genome consisting of two linear non-homologous single-
stranded DNA segments (8–10).

These viruses invade the silkworm larvae mainly via oral
infection. The BmNPV can infect almost all tissues of the
silkworm whereas the BmCPV and BmBDV can only infect the
silkworm midgut (1). Some silkworm strains are resistant to the
viruses at any viral dose (1, 9). For example, the nsd-2 mutation
is caused by a 6-kb deletion in the open reading frame of
+

nsd−2 and imparts resistance to the BmDNV-2 (9). However, the
receptor and major resistance genes to the BmNPV and BmCPV
have not been identified in silkworm. The BmN and BmE are two
cell lines commonly used in silkworm research, which are derived
from the ovary and embryonic cells of silkworm, respectively.
The BmNPV can infect the two cell lines, unlike the BmCPV and
BmBDV; therefore, most silkworm antiviral research is focused
on the BmNPV (11–17), a few on the BmCPV (18, 19), and very
few on the BmBDV (20).

SILKWORM ANTIVIRAL IMMUNE
PATHWAYS

The antiviral defense mechanism of silkworms mainly relies
on innate immunity, including the RNA interference (RNAi),
NF-kB-mediated pathways, and Janus kinase/signal transducer
and activator of transcription (JAK/STAT) pathway (19, 21–24).
Among these immune responses, RNAi is the major defense
strategy against viruses in insects (23, 25).

RNAi Pathways
There are three RNAi-related pathways in insects, including the
small interfering RNA (siRNA) pathway, microRNA (miRNA)
pathway, and the PIWI-associated RNA (piRNA) pathway (26).
When challenged with viruses, the siRNA pathway is activated
by the dsRNA that is commonly generated as a byproduct of
viral replication (27, 28). The Dicer2 enzyme recognizes viral

dsRNA and processes the dsRNA into siRNAs. One strand of
duplex siRNA is associated with Ago2 to form the RNA-induced
silencing complex (RISC), and then directs RISC to the viral
RNA target through base pairing. Subsequently, Ago2 cleaves the
viral RNA, inhibiting viral replication (25, 27, 28) (Figure 1A).
The expressions of both Ago2 and Dicer2 were not induced by
silkworm viruses (21). However, the results of deep sequencing
revealed that a large number of viral siNRA (∼20 nucleotides)
was generated in insect hosts infected with baculovirus (29) and
BmCPV (30), indicating that the RNAi response is an important
antiviral defense of hosts. Overexpression of Ago2 andDicer2 can
improve the susceptibility of silkworm to dsRNA (31). Expression
of dsRNA targeting the viral genes of BmNPV (13), BmCPV (18),
and BmBDV (20) in transgenic silkworms substantially decreased
the viral mRNA content and silkworm mortality after viral
infection. The siRNA pathway is the predominant mechanism
responsible for antiviral activity in insects (27, 28). For the
applications and challenges of insect RNAi, please refer to the
recent reviews (32, 33).

The miRNAs are small noncoding RNAs that can bind
to target genes and regulate their expression (34). The
miRNA pathway is involved in the interaction between
silkworm and viruses (23, 35). Virus-encoded miRNA can
facilitate viral multiplication. For example, BmNPV-miR-1 (35)
and BmNPV-miR-3 (36) can enhance BmNPV infection via
regulating the exportin-5 cofactor Ran and the viral P6.9
expression, respectively; BmCPV-miR-1 could facilitate target
gene BmIAP expression and BmCPV replication (37). Similarly,
silkworm-encoded miRNA could be regulated to promote viral
proliferation. For example, bmo-miR-274-3p, whose inhibition
enhances target viral NS5 expression and facilitates BmCPV
replication, was downregulated in a BmCPV-infected silkworm
midgut (38). Additionally, host miRNA can inhibit viral
proliferation. For example, bmo-miR-2819 can downregulate
the ie-1 gene of BmNPV to suppress viral multiplication (39);
although bmo-miR-278-3p could decrease target gene IBP2
expression and increase BmCPV mRNA, it is downregulated
and IBP2 is upregulated in BmCPV-infected silkworms (40).
The contribution of the miRNA pathway is minor in the RNAi
antiviral defense of insects. In contrast to siRNAs and miRNAs,
piRNAs are derived from single stranded RNA precursors (23).
The role of the piRNA pathway in the antiviral response of insect
models has been reviewed recently (41), however, of which the
exact roles in the interaction between silkworm and its major
pathogenic viruses are unclear, having few relevant reports so far
(42, 43).

NF-kB-Mediated Antiviral Pathways
The Imd and Toll pathways are canonical NF-kB-dependent
pathways involved in the innate immunity of insects, wherein
they activate the downstream antimicrobial peptide (AMP) genes
transcription mediated by two distinct orthologs of the NF-kB
transcription factor (19, 25, 44). The NF-kB ortholog Relish is
the terminal transcription factor for the Imd pathway, whereas
the Dorsal and Dorsal-related immune factor (Dif) function
in the Toll pathway (25). Toll pathway responds to Gram-
positive bacteria and fungi infections, whereas Imd pathway
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FIGURE 1 | Antiviral pathways in silkworm. (A) The siRNAi pathway is activated by viral dsRNA, which is cleaved into siRNAs by Dicer2. Ago2 is associated with one

strand of siRNA to form RISC that can target and cleave the viral RNA to inhibit viral replication. (B) The NF-kB-mediated, Imd, and STING pathways. BmCPV induces

the extracellular BmPGRP-S2 to active Imd and the downstream NF-kB ortholog Relish; BmNPV infection triggers the production of cGAMP to activate BmSTING for

processing Relish. Activated Relish is translocated to the nucleus to initiate the transcription of AMP. Whether AMPs have antiviral function in silkworms needs further

study. (C) The JAK/STAT pathway. The extracellular ligands bind to JAK associated receptors upon stimulation, leading to the activation of JAKs, and then cytosolic

STATs are phosphorylated, forming the STAT dimers, which are translocated to the nucleus to regulate the expression of antiviral genes. (D) The PPO pathway is

initiated by recognizing invading microbes, and then the extracellular cSP cascade is activated to convert the zymogen PPO to active PO. PO catalyzes the formation

of melanin, resulting in melanization that kill the microbes. This pathway is negatively regulated by serpins, and baculovirus can induce serpins to suppress the

melanization response of host insects for survival. (E) The PI3K/Akt pathway. Activated PI3K converts PIP2 into PIP3 to cause Akt phosphorylation (p-Akt). PTEN is a

negative regulator of the PI3K/AKT pathway. BmNPV induces BmPGRP2-2 to suppress PTEN, resulting in increased p-Akt that inhibits cell apoptosis. Upregulated

p-Akt also causes the inhibitory phosphorylation of the transcription factor FOXO, decreasing the expression of BmPEPCK-2 and resulting in reduced autophagy

genes (ATGs) expression, thereby blocking host autophagy. The inhibited apoptosis and autophagy are beneficial for viral replication. The PI3K inhibitor AZD8835 can

decrease the mortality of silkworms infected with BmNPV. (F) The ERK pathway. Upon viral infection, the extracellular ligands activate EGFR (a receptor tyrosine

kinase) to promote ERK phosphorylation (p-ERK) through the activation of Ras to the Raf/MEK/ERK phosphorylation cascade. p-ERK can regulate the transcription of

viral genes and inhibit apoptosis. The Spry protein is a negative regulator of EGFR/ERK pathway that inhibits Ras or Raf, and both DNA and RNA viruses can

downregulate Spry to increase p-ERK to ensure viral reproduction. AG1478 is a specific inhibitor of EGFR and U0126 binds to MEK to prevent p-ERK. The EGER also

participates in the activation of PI3K by BmNPV. These pathways are integrated and are responsive to one another, which are complex and merit further investigation.

Frontiers in Immunology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 639092

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Jiang Insights Into Silkworm Antiviral Pathways

responds Gram-negative bacteria (19, 25). The transmembrane
receptors peptidoglycan recognition protein (PGRP)-LC and
the intracellular PGRP-LE sense the diaminopimelic acid-type
peptidoglycan of Gram-negative bacteria, and transmit the signal
to the adaptor molecule Imd, which is essential for the activation
of Relish (25, 45). The Imd and Toll pathways have been shown
to play a role in the antiviral immunity ofDrosophila (25, 46–48).
AMPs seems to have antiviral function in Drosophila, but their
exact antiviral mechanisms are still unknown and more in-depth
researches are needed (49).

Our research showed that BmPGRP-S2 was induced by
BmCPV in the silkworm midgut (7). Further experiments
revealed that BmPGRP-S2 was a secreted protein, which may
recognize a certain viral component and then transmit the
signal to downstreammolecules, and its overexpression increased
the expression of BmImd, BmRelish, and AMPs and decreased
silkworm mortality after BmCPV infection (19) (Figure 1B).
These results indicate that the Imd pathway is involved in
the defense against the RNA virus in silkworms. However,
the function of this pathway in DNA virus-infected silkworms
is not yet known. There have been few reports on the
Toll pathway involved in antiviral immunity in silkworms.
Recently, the stimulator of interferon genes (STING) has been
reported to provide antiviral immunity against BmNPV in
silkworms by promoting NF-kB activation (22). Production
of cyclic guanosine monophosphate–adenosine monophosphate
(cGAMP) is triggered upon BmNPV infection, inducing the
BmSTING activation to process BmRelish, and then the
activated BmRelish is translocated to the nucleus to initiate the
transcription of AMP (22) (Figure 1B). The aforementioned
result revealed that the NF-kB-mediated, Imd, and STING
pathways play important roles in silkworm antiviral defense, but
the antiviral mechanisms of the two pathways are only partially
elucidated and need more experimentation. Deciphering the
roles of Toll pathway in silkworm antiviral immunity remains a
challenging task.

JAK/STAT Pathway
JAK/STAT signaling is an important pathway involved in
multiple cellular processes such as cell proliferation and immune
regulation in insects (21, 25). This pathway contains a diverse
family of extracellular ligands such as cytokine and growth
factors, transmembrane receptors, JAK tyrosine kinases that are
associated with the intracellular part of the receptor, and STAT
proteins (25, 50). Following stimulation, a ligand binds to the
extracellular part of the JAK-associated receptors, leading to the
activation of JAKs. Subsequently, cytosolic STATs are recruited
to the JAK/receptor complex, and then phosphorylated, forming
the STAT dimers, which are translocated into the nucleus and
bound to the DNA promoters of the target genes to regulate their
expression (25, 50) (Figure 1C).

The insect JAK/STAT pathway activationmechanism has been
well-established in Drosophila and mosquito (25, 51–53). There
has been growing evidence that the JAK/STAT pathway may
be functionally analogous to the mammalian interferon system
(51). The JAK/STAT pathway has been shown to respond to
viral infections in Drosophila by regulating the production of

downstream effectormolecules, including the AMPs (25, 53). The
BmNPV and BmBDV, unlike the BmCPV, induce the expression
of BmSTAT in silkworms, implying that the JAK/STAT pathway
could be activated by the DNA viruses in silkworms (21).
Overexpression of BmSTAT in BmN cells increased the number
of cells in the G2 phase of the cell cycle (54) and host resistance
to BmNPV, but not to BmCPV (55). Additionally, inhibition
of Hsp90 can cause upregulation of BmSTAT expression and
suppression of BmNPV replication in the BmN cell (56), but
it is not clear how Hsp90 can be linked to JAK/STAT. The
extracellular ligand and effector molecules of this pathway in
response to viral infection in silkworms have not been clearly
identified and merit further investigation.

VIRUS-MODULATED HOST SIGNALING
PATHWAYS

During the interaction between the insects and viruses, several
host signaling pathways including the prophenol oxidase (PPO),
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt),
and the extracellular signal-regulated kinase (ERK) pathways
have been reported to be modulated by viruses to elevate
viral proliferation. For example, baculovirus induces Bmserpin2
to inhibit the melanization reaction mediated by the PPO
pathway, which also induces BmPGRP2-2 to suppress PTEN,
resulting in increased p-Akt that can inhibit cell apoptosis
and autophagy. Meanwhile, silkworm viruses usurp the ERK
pathway by downregulating BmSpry (57–60). It is noteworthy
that targeting these hijacked host pathways can inhibit viral
proliferation in silkworm.

PPO Pathway
Melanization reaction, mediated by the PPO pathway, is an
important immune response in insect plasma and plays an
essential role in the wound healing and killing of microbes
(61, 62). This process is initiated by the recognition of invading
microbes, and then the extracellular clip-domain serine protease
(cSP) cascade is activated to convert the zymogen PPO to active
phenoloxidase (PO). PO catalyzes the oxidation of phenols to
form quinones and melanin, wherein the rapid polymerization of
melanin at infection sites can kill and immobilize microbes (61–
63) (Figure 1D). The melanization can kill baculovirus in vitro
(64, 65). However, the PPO pathway is negatively regulated
by serpins, and baculovirus can induce serpins to suppress
the melanization response of host insects for survival (57, 64).
Bmserpin2was upregulated in silkworms after BmNPV infection.
Furthermore, knockdown of Bmserpin2 can increase PO activity
and decrease viral multiplication (57). The mechanism by
which melanization contributes to the killing of pathogens
remains elusive.

PI3K/Akt Pathway
The PI3K /Akt pathway plays an important role in regulating
a number of cellular processes (66–68). Activation of PI3K can
occur through the binding of a variety of ligands, including
several growth factors to the receptor tyrosine kinases (RTKs).
Activated PI3K then converts the substrate phosphatidylinositol
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4, 5-bisphosphate (PIP2) into phosphatidylinositol (3,4,5)-
trisphosphate (PIP3), and PIP3 causes the phosphorylation of
Akt (p-Akt). Akt is considered a central mediator of the PI3K
pathway. Active Akt drives cell proliferation, survival, apoptosis,
and metabolism through the inhibitory phosphorylation of
several substrates, including related kinases, signaling proteins,
and the transcription factor forkhead box O (FOXO) (66, 69–71).
BmFOXO directly upregulates BmPEPCK-2, and overexpression
of BmFOXO and BmPEPCK-2 can increase the expression of
autophagy genesATG6/7/8 (17, 72). In addition, phosphatase and
tensin homolog (PTEN) protein causes the dephosphorylation of
PIP3, resulting in the suppression of the PI3K/AKT pathway (73).

A number of studies have demonstrated that many viruses can
activate the PI3K/AKT pathway for their efficient proliferation
(58, 66, 74, 75). The BmNPV induces the peptidoglycan
recognition protein BmPGRP2-2 to suppress PTEN, resulting in
increased p-Akt that can inhibit cell apoptosis (58). Meanwhile,
the upregulation of p-Akt attenuates the activity of FOXO and
decreases the expression of BmPEPCK-2 and ATG6/7/8, thereby
blocking host autophagy (17, 58, 72) (Figure 1E). The inhibited
apoptosis and autophagy are beneficial for viral replication.
However, which viral components are recognized by BmPGRP2-
2 is unclear and needs further study. The PI3K/AKT pathway
is a target for the treatment of many diseases (68, 70). The
PI3K inhibitor AZD8835 can decrease the mortality of silkworms
infected with BmNPV by blocking the p-Akt and suppressing
viral proliferation (76), implying a promising antiviral strategy
for silkworms.

ERK Pathway
ERKs are serine/threonine kinases activated by a variety
of extracellular stimuli such as growth factors, environmental
stresses, andmicrobial infections, and can transduce downstream
cellular responses, including cell differentiation, survival,
and apoptosis (77–80). Activation of the ERK pathway is
required for efficient infection by many viruses (59, 80).
One major class of ERK regulators is the RTK family. Upon
stimulation, the extracellular ligands activate RTKs to promote
the phosphorylation of ERK (p-ERK) by the activation of the
small GTPase Ras to the Raf (MAP3K)/MEK (MAP2K)/ERK
(MAPK) phosphorylation cascade. The ERKs then control
transcription by phosphorylating various transcription factors in
the nucleus or control targets in the cytoplasm (77, 78, 81, 82).

The epidermal growth factor receptor (EGFR) belongs to the
RTK family (78, 81). The BmEGFR plays an important role
in BmNPV infection, which participates in the activation of
ERK and PI3K/Akt pathways by the virus. Moreover, activated
ERK regulates the transcription of late viral genes and inhibits
apoptosis (83). Additionally, Spry is a negative regulator of the
EGFR/ERK pathway through the inhibition of Ras or Raf, and
the overexpression of BmSpry suppressed p-ERK and BmNPV
replication in BmE cells (84) (Figure 1F). Further research has
found that BmSpry was decreased and p-ERK was increased in
silkworms after infection with BmNPV, BmCPV, or BmBDV,
and the knockdown of BmSpry in transgenic silkworms caused
increased p-ERK, viral content, and mortality after infection
with the three viruses, revealing that both DNA and RNA

viruses usurp the ERK pathway to ensure viral reproduction (60).
AG1478 is a specific inhibitor of EGFR tyrosine kinase activity
(85) and the inhibitor U0126 binds to MEK to prevent p-ERK
(86). The two inhibitors can inhibit p-ERK and BmNPV in BmE
cells (83), but the inhibitory effect in silkworm larvae needs
further test. The ERK pathway plays important roles in regulating
the outcome of viral infection in silkworms, and the mechanisms
remain to be fully elucidated.

CONCLUSIONS AND FUTURE
PROSPECTS

Antiviral mechanisms are a worldwide problem and research
hotspot. Insect-virus interactions may provide information on
a vast repertoire of antiviral immune mechanisms (27). Results
from the silkworm-virus model clearly show that there are
multiple layers of antiviral defense that rely on conserved but also
divergent pathways. For example, RNAi is a conserved antiviral
mechanism among different insects, and it is the major antiviral
response against both DNA and RNA viruses in silkworms.
Meanwhile, NF-kB-mediated pathways are involved in antiviral
immunity in silkworms but divergent responses to different
viruses, such as BmCPV induces BmPGRP-S2 and Imd to activate
Relish whereas BmNPV activates cGAMP and STING to process
Relish. Additionally, RNAi inhibits viral replication by cleaving
the viral RNA while NF-kB-dependent antiviral immunity may
based on AMPs. The multi-level response is beneficial to antiviral
defense of host.

It is now apparent that these antiviral pathways are integrated
and are responsive to one another, providing a pathogen-
specific response. For example, the ERK and PI3K/Akt pathways
have all been reported to interact with the JAK/STAT pathway
(25), and the melanization and Toll pathways have also been
found to interact (63). However, the integrated mechanisms of
these pathways are complex, that is, the mechanisms by which
baculovirus activate the ERK and PI3K/Akt pathways through
EGFR may be different (83) and merit further investigation.
Meanwhile, some mechanisms are tissue-specific or virus-
specific, highlighting the importance of the investigation of
virus–host interactions in the right context.

Coevolution between hosts and viruses favors the
development of immune evasion mechanisms through
modulation of the host signaling pathways by the pathogen
(87). Targeting these hijacked pathways using inhibitors and
knocking out their key regulators via gene editing would be a
promising strategy to improve silkworm resistance. Meanwhile,
RNAi of viral genes and overexpression of antiviral genes
can enhance antiviral capacity of transgenic silkworms (1).
Additionally, upregulation of antiviral immune pathways in
transgenic silkworms is an available antiviral strategy. For the
enhancement of host antiviral capacity and major issues in
silkworm antiviral studies, please refer to our other review (87).
These studies on antiviral pathways would be very instructive as
they would reveal original antiviral strategies for the protection
of beneficial insects and the target pathways hijacked by viruses
for pest control.
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