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Deconvolution of bulk tumors into distinct immune cell
states predicts colorectal cancer recurrence

Donghyo Kim,1,9 Jinho Kim,2,9 Juhun Lee,1,9 Seong Kyu Han,1 Kwanghwan Lee,1 JungHo Kong,1

Yeon Jeong Kim,3Woo Yong Lee,4 Seong Hyeon Yun,4 Hee Cheol Kim,4 Hye KyungHong,5 Yong BeomCho,4,6,*

Donghyun Park,7,* and Sanguk Kim1,8,10,*

SUMMARY

Predicting colorectal cancer recurrence after tumor resection is crucial because
it promotes the administration of proper subsequent treatment or management
to improve the clinical outcomes of patients. Several clinical or molecular factors,
including tumor stage, metastasis, andmicrosatellite instability status, have been
used to assess the risk of recurrence, although their predictive ability is limited.
Here, we predicted colorectal cancer recurrence based on cellular deconvolution
of bulk tumors into two distinct immune cell states: cancer-associated (tumor-
infiltrating immune cell-like) and noncancer-associated (peripheral blood mono-
nuclear cell-like). Prediction model performed significantly better when immune
cells were deconvoluted into two states rather than a single state, suggesting
that the difference in cancer recurrence was better explained by distinct states
of immune cells. It indicates the importance of distinguishing immune cell
states using cellular deconvolution to improve the prediction of colorectal cancer
recurrence.

INTRODUCTION

The prediction of recurrence in colorectal cancer patients is a challenging task. Colorectal cancer is the sec-

ond leading cause of cancer-related deaths, with approximately 551,000 fatalities globally in 2018 (Bray

et al., 2018). In particular, recurrence following surgery is one of the leading causes of patient mortality.

After tumor excision, which is the most common treatment for colorectal cancer, 30–50% of patients

experience recurrence and show a poor prognosis (Ryuk et al., 2014). For patients at a high risk of recur-

rence, adjuvant chemotherapy or intensive follow-up is advised to minimize the recurrence rate or detect

recurrent tumors early (Desch et al., 2005; Osterman and Glimelius, 2018). Several clinical characteristics of

patients are currently utilized to predict the risk of recurrence after surgery, such as tumor stage (Osterman

and Glimelius, 2018), metastasis (Ryuk et al., 2014), or MSI status (Walker et al., 2014), although the predic-

tion performance is still poor. The identification of new predictive markers for colorectal cancer recurrence

is highly required in the field.

Recently, tumor-infiltrating immune cells (TIICs) have been proposed as promising prognostic markers, as

their cellular and molecular mechanisms in cancer immunity have been elucidated (Fridman et al., 2012,

2017). Immune cells infiltrate into tumors and affect cancer progression and development by recognizing

antigens expressed by tumor cells. Thus, the type and characteristics of immune cells in tumors have been

evaluated as promising indicators for predicting the clinical outcomes of colorectal cancer patients, such as

the survival rate (Galon et al., 2006). Tumor-infiltrating dendritic cells (TIDCs), for example, initiate tumor

immunity by transporting tumor-associated proteins from the tumor to the lymph nodes in a CCR7-depen-

dent manner (Gardner and Ruffell, 2016). The presence of immunogenic TIDCs in the tumor microenviron-

ment correlated with a favorable outcome (Schwaab et al., 2001). As another example, colorectal cancer

patients who have a high infiltration of CD8 effector and memory T cells in tumors have better overall

survival (Pagès et al., 2009).

The relevance of TIICs in cancer prognosis has led to the development of cellular deconvolution methods,

which calculate the immune cell proportions in tumors. Deconvolution methods are widely applied in

cancer research (Chakravarthy et al., 2018; Craven et al., 2021) because they can be used to estimate the
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fraction of cell types using omics data of bulk tumors. The methods use mathematical equations to calcu-

late the proportion of each cell type in a bulk tumor, assuming that the gene expression of bulk tumors is a

weighted sum of expression profiles of various cell types. MethylCIBERSORT (Chakravarthy et al., 2018), for

example, dissects each cell type’s contribution to the aggregatedmethylation signals in bulk tumors based

on the methylation reference profiles of various cell types. Since those deconvolution methods heavily rely

on the availability of accurate references, the investigation of the cell types for which reference omics data

are not offered is limited.

Despite reports that the transcriptome and epigenome of immune cells might be drastically altered after

tumor infiltration (Mehdi and Rabbani, 2021), omics data of immune cells from peripheral blood are still em-

ployed as reference profiles to examine the prognostic landscape of TIIC using deconvolution methods

(Chakravarthy et al., 2018; Craven et al., 2021). The tumor microenvironment can influence the expression

and methylation patterns of immune cells, causing them to differentiate into cancer-associated (procancer

or anticancer) cell types (Mehdi and Rabbani, 2021). Upon dendritic cell maturation or CD8+T cell differen-

tiation, DNA sequences containing transcription binding sites and promoters of the genes that control

immune cell functions show dramatic alterations in methylation patterns, resulting in gene expression

changes (Scharer et al., 2013; Zhang et al., 2014).

In this study, we examined the landscape of distinct immune cell states in bulk tumors and constructed

a machine learning (ML) framework to predict colorectal cancer recurrence. To do so, we generated

methylome data of various immune cell types from both tumors and peripheral blood and trained a cell

deconvolution method to estimate the cellular proportion of TIIC-like and peripheral blood mononuclear

cell (PBMC)-like cells in bulk tumors. We postulated that state-altered (TIIC-like, such as procancer or anti-

cancer) and state-maintaining (PBMC-like, such as immature or bystander) immune cells coexisted in bulk

tumors, each playing a different role in cancer immunity. We built an ML model to predict the recurrence of

colorectal cancer patients based on the inferred proportion of TIIC- and PBMC-like cells in bulk tumors. The

predictive performance of the ML model was tested using independent internal and external datasets. The

ML model exhibited the best predictive performance when immune cells were deconvoluted into two

different states rather than a single state, thus implying that separating the immune cell states is crucial

for correctly predicting recurrence. Furthermore, our model outperforms conventional models using

clinical data from patients, TNM stage, metastasis, and/or MSI status. We also examined the interpret-

ability of the model by observing that the methylation biomarkers identified by our method were

associated with the genes that control immune cell migration or activation.

RESULTS

Study design

We constructed a predictive framework that infers the composition of tumor-associated immune cells

(TAICs) and PBMC-like immune cells from bulk methylome data and utilizes them to predict the risk of

recurrence of patients with colorectal cancer. To identify epigenetic markers of TAICs, we compared the

methylation patterns of tumor-infiltrating immune cells (TIICs) containing a relatively large number of

TAICs with those of peripheral blood mononuclear cells (PBMCs) containing a relatively small number of

TAICs. Specifically, we isolated epithelial cells, fibroblasts, and four types of TIICs (CD4+, CD8+T cells,

DCs, and macrophages) in tumors and four types of PBMCs (CD4+, CD8+T cells, DCs, and monocytes) in

peripheral blood from seven colorectal cancer patients. Then, we obtained the methylation patterns of

CpG sites from the isolated cells by targeted bisulfite sequencing (Figure 1). Through a principal compo-

nent analysis, we observed that the methylation patterns were distinct depending on whether they infil-

trated into cancer or not, even for the same type of immune cells (Figure S1), suggesting that TIICs and

PBMCs can be distinguished by epigenetic markers. Using the dataset, we (i) built a cell deconvolution

model inferring TIIC- and PBMC-like immune cells in bulk tumors and (ii) developed a machine learning-

based model predicting the recurrence of colorectal cancer patients by using the inferred cellular compo-

sitions. To validate the prediction performance, we used 114 colorectal cancer patients from the Samsung

Medical Center (SMC) cohort, with 46 exhibiting recurrence and 64 exhibiting nonrecurrence based on an

average 5-year follow-up after tumor resection.

We built a deconvolution model for the TIIC + PBMC approach and two negative control models using only

methylation patterns of either TIICs (TIIC-based approach) or PBMCs (PBMC-based approach) (Figure S2).

To construct deconvolution models, we leveraged MethylCIBERSORT (Chakravarthy et al., 2018), which
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automatically detects signature methylation patterns and created a model to infer the proportions of cell

types from bulk tumor data. Using MethylCIBERSORT, we defined three methylation signatures for TIIC +

PBMC-, TIIC-, and PBMC-based approaches, each of which consists of 1,616, 423, and 538 CpG sites,

respectively (Table S1), and subsequently trained three deconvolution models for the three approaches.

Using the trained deconvolution models, we inferred cellular compositions in bulk tumors of 114 colorectal

cancer patients, which were later used to predict the recurrence of the patients.

With the inferred cellular compositions, we developed machine learning-based models to predict the

recurrence of colorectal cancer patients. In antitumor immunity, interactions between various immune

cell types are crucial (Luca et al., 2021; Steen et al., 2021). To train the association of immune cell propor-

tions with cancer recurrence, we used a machine learning technique, the ExtraTree classifier (Geurts et al.,

2006). We expect that there will be certain combinations of immune cells that can predict cancer recur-

rence. To this end, we tested all combinations of ten cell types in our machine learning pipeline. To obtain

reliable accuracy estimation, we randomly split the dataset of 114 patients at a ratio of 7:3 to obtain 70% as

the training set and the remaining 30% as the test set. We repeated this random splitting 100 times and

obtained 100 accuracy measurements for each cell type combination. Based on the average accuracy

measurement, we chose the top performing cell type combinations.

Performance of the TIIC + PBMC approach to predict recurrence of colorectal cancer

We compared the predictive performance of the three approaches, TIIC + PBMC, TIIC-based, and TBMC-

based, and found that the TIIC + PBMC approach outperformed the others. The area under the curve (AUC)

of the top 10 performing cell combinations of the TIIC + PBMC approach ranged from 0.67 to 0.69 (Fig-

ure 2A). In contrast, the AUCs of the top 10 cell combinations of the TIIC- and PBMC-based approaches

ranged from 0.55 to 0.61 and from 0.50 to 0.57, respectively. The AUC of the top performing cell combina-

tion of the TIIC + PBMC approach was significantly higher than those of the TIIC- and PBMC-based ap-

proaches (p value = 4.5 3 10�10 and 8.3 3 10�18, respectively). Specifically, when the proportions of

TIIC-like CD8+T cells, DCs, and PBMC-like DCs were trained, the performance to predict recurrence was

the best (AUC = 0.69). DCs infiltrate the tumor to take up antigens and activate CD8+T cells through

cross-presenting exogenous antigens to kill cancer cells (Fu and Jiang, 2018). The interaction between

the two cell types is crucial for antitumor immunity. DCs and CD8+T cells are frequently used as good

Figure 1. Overview of recurrence predictions based on immune cell deconvolution

Recurrence in 114 colorectal cancer patients (SamsungMedical Center (SMC) cohort, 46 recurrent and 64 nonrecurrent patients) was predicted using the cell

deconvolution results of patients’ bulk tumors. A deconvolution method, MethylCIBERSORT (Chakravarthy et al., 2018), selected 1,616 signature CpG sites

whose methylation levels are distinct across fibroblasts, epithelial cells, tumor-infiltrating immune cells (TIICs), and peripheral blood mononuclear cells

(PBMCs). TIIC and PBMC indicate CD4+, CD8+T cells, dendritic cells, and macrophages/monocytes from tumor and peripheral blood. The method trained

the methylation levels of significant CpG sites to infer the proportion of cells in patients’ bulk tumors. A 5-year recurrence of patients was predicted with the

inferred cellular compositions using a machine learning technique, ExtraTree (Geurts et al., 2006), Random Forest (RF) (Breiman, 2001), Extreme Gradient

Boosting (XGBoost) classifiers (Chen and Guestrin, 2016).
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Figure 2. Recurrence prediction using the proportions of TIIC- and PBMC-like immune cells inferred by the bulk tumor’s methylation pattern

(A) Performance comparison of predicting recurrence of 114 colorectal cancer patients based on a method of inferring the proportions of TIIC- and PBMC-

like cells in a patient’s bulk tumor (TIIC + PBMC) with those of inferring the amounts of only TIIC- or PBMC-like cells (TIIC or PBMC, respectively). The AUCs of

the top 10 ranked combinations of cell types are presented. Black boxes denote the combination of cell types used for prediction. Mann-Whitney U test was

performed to measure significance.

(B) Performance to predict recurrence of 106 colorectal cancer patients (R: 18, NR: 88) from the independent dataset TCGA. The AUCs of the top 1 ranked

combination in the TIIC + PBMC, TIIC, or PBMC methods are shown.

ll
OPEN ACCESS

4 iScience 25, 105392, November 18, 2022

iScience
Article



prognostic markers in cancer studies (Fridman et al., 2017). As reflected in these reports, TIIC-like DCs and

CD8+T cells are frequently included in the top 10 cell type combinations (10 and 5, respectively).

In the TIIC + PBMC approach, we deconvoluted bulk tumors into TIIC- and PBMC-like cells because we

assumed that the states of immune cells in the patients’ bulk tumors are heterogeneous, and each has a

different effect on cancer recurrence. We confirmed that our assumption was valid in predicting the recur-

rence of colorectal cancer. We found that the proportion of TIIC-like immune cells significantly better

predicts cancer recurrence when considering the methylation pattern of PBMCs together (Figure S3). Spe-

cifically, we observed that the performance using only the proportions of TIIC-like immune cells from the

TIIC + PBMC approach was significantly higher than that using the proportions of TIICs from the TIIC-based

approach (p value = 3.9 3 10�7). Similarly, the predictive performance using the proportions of PBMC-like

immune cells from the TIIC + PBMC approach was higher than those from the PBMC-based approach

(p value = 9.3 3 10�3).

We confirmed that our results are consistent when we use other tree-based machine learning techniques,

random forest (RF) classifiers (Breiman, 2001) and extreme gradient boosting (XGBoost) (Chen and

Guestrin, 2016). When we used the RF classifier, the AUC of the top performing cell combination in the

TIIC + PBMC approach was 0.67, which was significantly higher than the AUC of the top performing cell

combination in the TIIC- (AUC = 0.64 and p value = 7.3 3 10�3) or PBMC-based methods (AUC = 0.60

and p value = 1.53 10�7) (Figure S4). When we used the XGBoost classifier, the AUC of the top performing

cell combination in the TIIC + PBMC approach was 0.67, which was significantly higher than the AUC of the

top performing cell combination in the TIIC- (AUC = 0.60 and p value = 4.6 3 10�7) or PBMC-based

methods (AUC = 0.56 and p value = 3.8 3 10�15) (Figure S4). This means that the successful prediction

of cancer recurrence using the TIIC + PBMC deconvolution approach is robust regardless of the machine

learning techniques.

We validated that the process of cell deconvolution of the patient’s bulk tumor had a significant effect on

predicting colorectal cancer recurrence. When predicting cancer recurrence by training the methylation

levels of the 1,616 signature methylation features from the deconvolution model, the AUC was 0.63,

which was significantly lower than the AUC using the cell deconvolution result (Figure S5, p value =

1.4 3 10�6). Moreover, we also found that the AUC training the methylation levels of 985 signature

methylation features related to TIIC-like CD8+T cells, DCs, and PBMC-like DCs, which were the best

cell combination for predicting cancer recurrence, was still significantly lower than the AUC using the

cell deconvolution result (p value = 2.1 3 10�6). This suggests that the inferred cellular composition,

which is the cell type-level abstraction, is more useful in predicting cancer recurrence than unprocessed

loci-level methylation patterns.

We further validated the predictive performance of our model using an independent dataset, The Cancer

GenomeAtlas (TCGA). It provides recurrence data, clinical data, andmethylation data for primary tumors in

98 colon adenocarcinoma patients (TCGA-COAD) and 8 rectal adenocarcinoma patients (TCGA-READ).

We found that using the proportions of fibroblasts, epithelial cells, TIIC-like macrophages, PBMC-like

CD4+T cells, and monocytes from the TIIC + PBMC approach, cancer recurrence was predicted with an

AUC of 0.69 (Figure 2B). In contrast, the AUCs of the top performing cell combinations of the TIIC- and

PBMC-based approaches were 0.61 and 0.58, respectively, which were significantly lower than the AUCs

of the TIIC + PBMC approach (p values are 1.3 3 10�34 and 1.1 3 10�34, respectively). Specifically, we

deconvoluted the bulk tumors of TCGA patients using three deconvolution methods and predicted

recurrence using a machine learning model trained with the deconvolution results of 114 colorectal cancer

patients from the SMC cohort. This result suggests that our predictive strategy is also applicable to other

races or cohorts, although the best feature of cell combinations was different across cohorts.

Figure 2. Continued

(C) Predictive performance using cell deconvolution results and clinical data (metastasis, MSI, and TNM stages). Light blue areas of bar graphs indicate the

performance improvements when the clinical data were combined with cell deconvolution in predicting recurrence. Filled boxes are the features used in

predictions.

(D) Performances of predicting recurrence of colorectal cancer patients from TCGA using the cell deconvolution results and clinical data (MSI).

(E) The recurrence annotation, the inferred proportion of cell types, and the clinical data annotation of the top 30% of patients predicted as nonrecurrence

(NR) or recurrence (R). TIIC: Tumor-infiltrating immune cell; PBMC: peripheral bloodmononuclear cell; TCGA: The Cancer Genome Atlas; MSI: microsatellite

instability. Data are represented as mean G SEM.
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Clinical data of patients at the time of surgery, such as metastasis, microsatellite (MSI) status, and TNM

stage, are associated with the recurrence of colorectal cancer after surgical excision of the primary tumor

(Osterman and Glimelius, 2018; Ryuk et al., 2014; Walker et al., 2014). We found that integrating the clinical

data with the cell deconvolution results improved the performance of cancer recurrence prediction

(Figure 2C). Specifically, we evaluated the performance of models that integrate all combinations of clinical

data with the deconvolution result of the top performing cell combination. The performance significantly

increased when training the TNM stage, metastasis, and MSI status with the deconvolution result of the

TIIC + PBMC approach (AUC = 0.74) compared to when only the deconvolution result was used (AUC =

0.69 and p value = 8.2 3 10�6). On the other hand, in the case of the TIIC- and PBMC-based approaches,

even when integrated with clinical data, the AUCs were 0.57 and 0.64, respectively, confirming that the

performance was significantly lower than that of the TIIC + PBMC approach integrated with clinical data

(p values are 1.9 3 10�24 and 8.5 3 10�14, respectively). In the TCGA cohort, we reconfirmed that inte-

grating the TIIC + PBMC approach with MSI status significantly improved performance (AUC = 0.70,

p value = 3.0 3 10�12). In contrast, the AUCs of the integrating TIIC- and PBMC-based approaches with

MSI status were significantly lower than the AUC of the integrating TIIC + PBMC approach with MSI status

(Figure 2D, p values are 1.33 10�34 and p value = 1.33 10�34, respectively). For the cross-cohort validation

with TCGA cohort, the integration of TNM stage with the deconvolution result showed poor prediction

performance (Figure S6). Notably, we observed that the contribution of the deconvolution result to the

-prediction performance is significant in the integrative approach with the clinical data. When only the

clinical data were used, performances were significantly lower than using the deconvolution results

together in both SMC and TCGA cohorts (Figures 2C and S6, SMC cohort: AUC = 0.61 and p value =

9.2 3 10�22; TCGA cohort: AUC = 0.50 and p value = 2.8 3 10�39).

The class of recurrent and nonrecurrent CRC patients for the SMC cohort was balanced (42%:58%), but that

for the TCGA cohort was not (17%:83%). To evaluate the performance insensitive to the class imbalance of

the TCGA cohort, wemeasured an additional metric, Cohen’s Kappa, which assess the agreement between

two raters. Consistent with our previous results, we observed that the performance of the TIIC + PBMC

approach was significantly higher than those of TIIC- and PBMC-based approaches (Figure S7, p values

are 5.5 3 10�30 and 2.3 3 10�35, respectively.) Specifically, the average of Cohen’s Kappa of the TIIC +

PBMC was 0.19, whereas those of TIIC- and PBMC-based approaches were 0.13 and 0.11, respectively.

In addition, the improved performance was consistently observed in the results integrating clinical data

(Figure S8).

Recently, tumor location and the presence of adjuvant therapy has been suggested to have prognostic

impact in colorectal cancer (Shida et al., 2020). We investigated the impacts of the two clinicopathological

characteristics in predicting cancer recurrence and found that they were not effective in the prediction.

There was no significant difference in tumor location and treatment between recurrent and nonrecurrent

patients from the SMC cohort (Figure S9). When it comes to using machine learning, tumor location and

treatment showed poor performances to predict cancer recurrence (Figures S10 and S11, AUC ranged

from 0.50 to 0.58). In addition, the integration of the two characteristics with the immune cell deconvolution

resulted in no improvement of predictive performances. We excluded the features of tumor location and

adjuvant therapy from the following analyses.

To interpret the machine learning model to predict the recurrence of patients with colorectal cancer, we

compared the distributions of cell type proportions and clinical data used as prediction features for pa-

tient groups predicted as nonrecurrence or recurrence. We found that the patient groups predicted as

nonrecurrence and recurrence were divided into three and two groups, respectively (Figure 2E). The first

group predicted to have nonrecurrence (NR-1) showed a high frequency of TIIC-like DCs in patients’ bulk

tumors. Immunogenic DCs play an important role in anticancer immunity, such as presenting tumor an-

tigens and delivering antigens to lymph nodes for adaptive immunity against tumors (Gardner and Ruf-

fell, 2016). This group corresponds to the report that colorectal cancer patients with a large amount of

DC infiltration have better overall survival than those who do not (Schwaab et al., 2001). The second

group predicted to have nonrecurrence (NR-2) had a large distribution of TIIC-like CD8+T cells and

DCs. DCs activate CD8+T cells through cross-presenting exogenous antigen and kill tumor cells (Fu

and Jiang, 2018). Crosstalk between CD8+T cells and DCs is crucial for antitumor immunity (Fu and Jiang,

2018). The patients in the third group predicted to have nonrecurrence (NR-3) had MSI, and their bulk

tumors included a large proportion of PBMC-like DCs. Since tumors with MSI have a large amount of
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Figure 3. Characterization of signature CpG sites used in the integrative (TIIC + PBMC), TIIC-, and PBMC-based approaches

(A) Venn diagram presenting the number of CpG sites leveraged in three approaches as signature features.

(B)Number of differentially methylated CpG sites (DMCs) between TIICs and PBMCs of the same immune cell type (TIIC-PBMC) or between distinct immune

cell types of TIICs (TIIC-TIIC) or PBMCs (PBMC-PBMC).

(C) Functional analysis of TIIC-PBMC, TIIC-TIIC, and PBMC-PBMC DMCs in the integrative approach. To do so, we mapped CpG sites and regulatory

elements and calculated the functional enrichment of their targets. Immune response-related Gene Ontology terms are only presented. The significances of

the functional enrichment were corrected with Benjamini-Hochberg multiple testing correction.
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neoantigen, various immune cells, including antigen-presenting cells from peripheral blood, rapidly

infiltrate into the tumor (Llosa et al., 2015), and as a result, it is associated with a favorable prognosis

(Deschoolmeester et al., 2011). In contrast, the first group predicted as recurrence (R-1) had a small pop-

ulation of TIIC-like CD8+T cells and DCs, showing the opposite distribution of immune cells to the NR-2

group. The second group predicted to have recurrence (R-2) was characterized by metastasis, which is

consistent with reports that patients with lymph node metastasis have a high recurrence rate after cancer

resection surgery (Asano et al., 2017).

Functional analysis of genes mapped to CpG sites used in cell deconvolution

We observed that the CpG sites used in the TIIC + PBMC approach tended to show significantly different

methylation levels between TIICs and PBMCs of the same immune cell types. To deconvolute patients’

bulk tumors, the TIIC + PBMC-, TIIC-, and PBMC-based approaches utilized methylation patterns of

1,616, 423, and 538 CpG sites, respectively (Figure 3A). Of the 1,616 signature CpG sites used in the

TIIC + PBMC approach, 636 CpG sites showed significantly different methylation levels between TIICs

and PBMCs of the same immune cell types. However, in the case of TIIC- and PBMC-based approaches,

only 53 and 72 sites were differentially methylated between TIIC and PBMCs, respectively (Figure 3B).

These two approaches are not suitable to differentiate distinct immune states, TIIC- and PBMC-like

immune cells.

We found that the DMCs between TIICs and PBMCs used in the TIIC + PBMC approach tended to be

located near genes that regulate the migration of immune cells (Figure 3C). For functional characterization

of TIIC-PBMC, TIIC-TIIC, and PBMC-PBMC DMCs used in the TIIC + PBMC approach, we discovered the

regulatory elements (REs) located within 1,250 bp from each CpG site and mapped REs to their target

genes. Using a functional enrichment test, we found that the TIIC-PBMC DMCs were significantly enriched

in genes that control the process of immune cell migration to tissues, such as ‘thymocyte migration

(GO:0072679)’, ‘positive regulation of cellular extravasation (GO:0002693)’, and ‘dendritic cell migration

(GO:0036336)’. On the other hand, the TIIC-TIIC DMCs were significantly enriched in genes that regulate

the activation of various immune cells, such as ‘positive regulation of immune response (GO:0050778)’ and

‘neutrophil activation (GO:0042119)’. The PBMC-PBMC DMCs were significantly enriched in genes impor-

tant for maintaining immune cells in peripheral blood, such as ‘negative regulation of lymphocyte migra-

tion (GO:2000402)’ and ‘myeloid cell homeostasis (GO:0002262)’.

For the functional characterization by normalizing the CpG density present in base-level methylation data,

functional annotation of signature CpG sites was also performed using GOmeth (Maksimovic et al., 2021;

Phipson et al., 2016). We observed a similar tendency (Figure S12) to the previous results. The TIIC-PBMC

DMCs are associated with genes that control immune cell migration, such as ‘positive regulation of

leukocyte migration (GO:0002687)’, and genes that modulate immune cell activation, such as ‘leukocyte

activation (GO:0045321)’. The TIIC-TIIC DMCs are associated with genes that regulate various immune

cell activation, such as ‘myeloid leukocyte activation (GO:0002274)’. On the other hand, the PBMC-

PBMCDMCs are associated with genes crucial for immune cell homeostasis, such as ‘regulation of lympho-

cyte chemotaxis (GO:1901623)’. These results suggest that without prior knowledge, our deconvolution

model captured biologically valid information.

As an example of TIIC-PBMC DMCs, four signature CpG sites of the TIIC + PBMC approach are located

around the enhancer regulating the DOCK8 gene (Figure 3D). These CpG sites are likely to affect the

expression of the DOCK8 gene because they are close to the DOCK8 gene and 608 bp, 619 bp, 653 bp,

and 655 bp apart. The four sites were significantly hypermethylated in the TIICs of CD4+, CD8+T cells,

DCs, and macrophages compared to the corresponding PBMCs (Figure 3E, p values ranged from

2.63 10�2 to 6.53 10�3). DOCK8 is a guaninenucleotide exchange factor that activates CDC42, which reg-

ulates actin polymerization and cytoskeleton rearrangement to control the migration of T cells (Xu et al.,

2017) and DCs (Harada et al., 2012). DOCK8 deficiency results in immunodeficiency and increased cancer

risk, thus supporting that the epigenetic marker for DOCK8 is associated with recurrence in colorectal can-

cer patients.

Figure 3. Continued

(D) Genomic locations of TIIC-PBMC DMCs proximal to an enhancer regulating a DOCK8 gene.

(E) Methylation levels of TIIC-PBMC DMCs in TIICs (T) and PBMCs (B) across four immune cell types. Significances of methylation level differences were

corrected with Benjamini-Hochberg multiple testing correction. *: adjusted p value < 0.01.
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Hypomethylation of the CpG sites near immunogenic DC markers in TIIC DCs

As shown in the previous results in Figure 2, we observed a lower risk of recurrence in colorectal cancer

patients with a high proportion of TIIC-like DCs. We also discovered that the TIIC-like DCs is crucial for pre-

dicting cancer recurrence. Specifically, we measured feature contribution using pRF, which estimates the

significance of feature importance by permutating the response variable. The TIIC-like DCs showed signif-

icant feature importance (Figure S13, p value = 9.93 10�3), which means that they are capable of increasing

the performance in predicting cancer recurrence.

However, according to recent studies, not all tumor-infiltrating DCs show a favorable prognosis for colo-

rectal cancer (Gardner and Ruffell, 2016). Tumor-infiltrating immunogenic DCs transport cancer-associated

antigens to the draining lymph node and induce T cell priming to initiate anticancer immunity (Roberts

et al., 2016). Thus, immunogenic DCs in the patient’s bulk tumor are associated with a favorable prognosis

of patients with colorectal cancer (Schwaab et al., 2001). However, some tumor-infiltrating DCs become

suppressive in the presence of cytokines such as IL-6 and M-CSF secreted by cancer cells and inhibit anti-

cancer immunity by inactivating immune cells (Zong et al., 2016).

To examine whether the TIIC DCs used in our study were immunogenic or suppressive, we compared the

methylation levels of the CpG sites near REs regulating the gene markers of immunogenic DCs between

TIIC and PBMC DCs. It is based on a report that DC development and maturation are associated with a

great loss of DNA methylation of RE regulating immunogenic DC gene markers, such as IL10 and CCR7

(Zhang et al., 2014). We found that the sites near REs that control immunogenic DC markers tended to

be significantly hypomethylated in TIIC DCs compared to PBMC DCs (Figure 4A). Specifically, we investi-

gated the DMCs between TIIC and PBMC DCs from colon cancer patients and checked the distribution of

DMCs on the sites near REs associated with seven immunogenic DC markers. The DMCs near the REs

regulating five immunogenic DC gene markers (HLA-DRA, CCR7, CD40, CCL22, IFNG) were significantly

hypomethylated in TIIC DCs (p values ranged from 3.9 3 10�3 to 4.3 3 10�24). These results showing

that TIIC DCs are immunogenic support the validity of our model because patients with a high proportion

of TIIC-like DCs are anticipated to have a low recurrence rate.

As an example of immunogenic DC markers, HLA-DRA constitutes the MHC class II (MHC-II) complex,

which plays a key role in antitumor immunity by displaying neoantigen peptides and activating T cells.

MHC class II molecules are frequently used as markers of immunogenic DCs (Hayashi et al., 2020). We

found 30 DMCs within 2,500 bp from enhancers that regulate HLA-DRA, and all of them were significantly

hypomethylated in TIIC DCs compared to PBMC DCs (Figure 4B). The 30 DMCs were distributed in the

regions near five enhancers regulating HLA-DRA, and their methylation levels were 32% less on average

in TIIC DCs than in PBMC DCs. These results indicated that the TIIC DCs used in this study show the prop-

erties of immunogenic DCs.

DISCUSSION

In this study, we predicted the recurrence of colorectal cancer using the deconvolution of bulk tumors into

distinct states of immune cell types based on the methylation profiles of TIICs and PBMCs. Our results indi-

cated that recurrence predictions were improved when using methylation profiles of TIICs and PBMCs

together compared with the profiles of TIICs or PBMCs alone (Figures 2A, 2B, and S3). Our approach is

based on the notion that the cellular phenotypes and functions of TIICs are heterogeneous, and they

differentially affect cancer recurrence. Consistent with our results, it has been found that the prognostic

capabilities of immune cell subtypes found in tumors are different. For example, in non-small-cell lung can-

cer (NSCLC), there were distinct amounts of subtypes of tumor-infiltrated T cells, such as naive, memory,

and effector T cells (Sheng et al., 2017). Moreover, the production levels of TNF-a, an important cytokine

in anticancer immunity, varied among individual subtypes of tumor-infiltrated T cells (Sheng et al., 2017). In

addition to T cells, tumor-infiltrated monocytes also play multifaceted roles in anticancer immunity. They

mediate both protumoral and antitumoral responses along with the tumor microenvironment (Guilliams

et al., 2018; Jeong et al., 2019).

There have been efforts to predict the clinical outcomes of cancer patients by using immune cell compo-

sitions, since infiltration of immune cells into tumors is one of the important factors for clinical outcomes

such as survival (Barnes and Amir, 2017), metastasis (Gonzalez et al., 2018), and drug response (Waldman

et al., 2020). Therefore, many studies utilize expression or methylation profiles derived from PBMCs to infer
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immune cell compositions for the prediction of patients’ clinical outcomes (Chakravarthy et al., 2018;

Craven et al., 2021). However, upon infiltration, the expression and methylation profiles of immune cells

were significantly changed, since the tumor microenvironment affected the cells (Figures 3B, 3D, 3E, and

4). For example, the expression profiles of tumor infiltrating regulatory T cells (Tregs) were distinct from

those of Tregs in PBMCs (DeSimone et al., 2016). Intriguingly, upregulated genes in tumor-infiltrating Tregs

were significantly enriched for the activation of immune cells (DeSimone et al., 2016). Consistent with this

finding, the methylation levels of genes related to immunogenic DCs were hypomethylated in TIIC DCs

compared to PBMC DCs (Figure 4). These results suggest that methylation profiles from TIICs provide

additional information about the role of immune cells in the tumor microenvironment, distinct from those

in peripheral blood, thereby enabling improvement of recurrence prediction.

Our results indicated that abstraction of methylation information to depict immune cell compositions

based on the deconvolution method improved the prediction of recurrence in colorectal cancer patients

(Figures 2 and S6). The performance of predicting cancer recurrence was reduced when the methylation

profiles derived from patients were directly used without immune cell deconvolution (Figure S5). This result

suggests that the transformation of the methylation profile from locus information into cellular information

using a deconvolution method enhances the predictive performance of cancer recurrence. The advantage

of the information transformation before constructing a predictive model can also be found in an example

of autonomous driving. Compared to directly using pixel data of camera images, known as end-to-end

learning, the performance of driving path planning was improved when camera images were processed

with nearby vehicles or pedestrians before planning (Ng, 2019). Camera images themselves contain too

B

A

Figure 4. Comparison of methylation levels of regulatory elements of activated DC markers in TIIC and PBMC

DCs

(A) Methylation levels of the CpG sites near the noncoding regulatory elements, promoter and enhancer, controlling

seven activated DC markers (HLA-DRA, CCR7, CD40, CCL22, IFNG, IL12A/B, and CD86) in TIIC and PBMC DCs. The

relationships between regulatory elements and target genes identified byMarbach et al. (Marbach et al., 2016) were used.

Red and gray lines indicate differentially methylated CpG sites (DMCs) relatively hypomethylated in TIIC and PBMC DCs,

respectively. Paired t test was performed to measure significance.

(B) Genomic locations and methylation levels of DMCs between TIIC and PBMC DCs. DMCs were discovered by using

DSS (Feng et al., 2014) (p value < 0.001). Black boxes in the ‘‘Enhancers’’ row indicate enhancers, and gray areas represent

the proximal regions within 1,250 bp from the enhancers.
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many features with unmeaningful pixels to train a model for planning a path. However, the information

transformation of image pixels into objects enables a model to be trained easier and more precisely by

specifying meaningful features. Likewise, because the deconvolution method transforms complicated in-

formation into simple and meaningful information, it has successfully been utilized in many cancer studies,

such as for finding prognostic markers (Gentles et al., 2015) and predicting the response to chemotherapy

(Ali et al., 2016) or immunotherapy (Charoentong et al., 2017).

We envision that our work here offers new perspectives for predicting colorectal cancer recurrence after

surgery. First, we developed a standard model ensuring the reproducibility of predicting colorectal cancer

recurrences. Briefly, we constructed a machine learning model based on cellular deconvolution of bulk

tumors into two distinct immune cell states to predict cancer recurrence. The model makes robust

performances in predicting cancer recurrence across independent cohorts with patients of different races

(Figure 2, SMC cohort: 100% Asian, TCGA cohort: 79% White, 18% Black or African American, and 3%

Asian). It suggests that recurrence prediction based on cell deconvolution across immune cell states can

be applied to diverse cohorts. Second, the platform we suggested in this study makes a recurrence predic-

tion without additional biopsy using residual tumor samples after surgery. Tumor resection is one of the

most preferred treatments for colorectal cancer patients. Our platform only needs to profile the methyl-

ation patterns of a few CpG sites in the bulk tumor obtained after tumor resection. We provide a list of

CpG sites to be profiled and a machine learning model for recurrence prediction through an open

resource, expecting the platform facile to be employed in clinical practice. Third, deconvolution signature

was synergistic to histologies which have been previously reported to have a prognostic impact on recur-

rence prediction. We observed that integrating the immune cell deconvolution with the clinical data

improved the performance of cancer recurrence prediction (Figures 2C and 2D). The performance

significantly increased when combining the immune cell deconvolution with histology currently employed

in clinical practice to predict recurrence (AUC = 0.74) compared to only the histology used (AUC = 0.61 and

p value = 9.2 3 10�22). This result suggests the applicability of cell deconvolution in clinical practice.

Limitations of the study

A potential limitation of using immune cell states for the cancer recurrence prediction is a limited perfor-

mance because of the use of a single omics layer. To improve the prediction performance, multi-omics in-

formation is required. We observed that the incorporation of clinical information such as TNM stage and

metastasis with immune cell composition improved the predictive performance of recurrence in colorectal

cancer patients (Figures 2C and 2D). It suggests that integration of data obtained from other layers could

enhance the predictive performance of recurrence in colorectal cancer patients because recurrence of

colorectal cancer is caused by heterogeneous molecular mechanisms (Augestad et al., 2017). Besides

this study, other multilayered information including transcriptome (Tian et al., 2017) or genomic mutations

(Hutchins et al., 2011) are used to predict the recurrence of colorectal cancer. We expect that our approach,

when combined with additional information, could improve the predictive ability of recurrence in colorectal

cancer patients.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Sanguk Kim (sukim@postech.ac.kr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Raw sequence data derived from human samples using bisulfite sequencing have been deposited at Eu-

ropean Nucleotide Archive (ENA) and publicly available as of the date of publication. The accession num-

ber is listed in the key resources table. Processed data matrix has been deposited at Zenodo and is publicly

available as of the date of publication. The DOI is listed in the key resources table.

All original code has been deposited at GitHub and is publicly available as of the date of publication. The

DOI is listed in the key resources table.
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Software and algorithms
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CIBERSORT Newman et al. (2015) https://cibersort.stanford.edu/

extraTrees CRAN https://cran.r-project.org/web/packages/

extraTrees

Xgboost CRAN https://cran.r-project.org/web/packages/
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Any additional information required to reanalyze the data reported in this paper is available from the lead

contacton request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient and sample collection

This study was approved by the institutional review boards of the Samsung Medical Center (approval no.

SMC 2018-04-074-004). Written informed consent was obtained from all subjects. All experimental

methods complied with the Helsinki Declaration. Seven colorectal cancer patients were recruited to iden-

tify signature CpG sites of TIICs and PBMCs. As a retrospective cohort to predict cancer recurrence within

5 years, 114 colorectal cancer patients were recruited. The retrospective cohort with 114 patients was

designated as SMC cohort in this study. Detailed information including age, sex, and clinical records of pa-

tients in SMC cohort at the time of surgery was provided in Table S2.

Data curation of colorectal cancer patients (The cancer genome Atlas (TCGA) cohort)

We downloaded DNA methylation profiles of bulk primary tumors in colorectal adenocarcinoma (COAD)

and rectal adenocarcinoma (READ) patients from the GDC data portal repository. We only used tumor

samples from patients whose methylation profiles were measured by Illumina Human Methylation 450

(Infinium�HumanMethylation450 BeadChip). To avoid sample redundancy, meaning two or more samples

from one patient, we used a sample in which methylation levels of more CpG sites were measured. Beta

values were utilized as methylation levels of individual CpG sites.

Clinical data of the COAD and READ patients were downloaded from cBioPortal (https://www.

cbioportal.org/, Colorectal Adenocarcinoma (TCGA, PanCancer Atlas)). The patients annotated with

‘‘0: DiseaseFree’’ in the ‘‘DiseaseFree Status’’ column were labeled as nonrecurrence, whereas the pa-

tients annotated with ‘‘1: Recurred/Progressed’’ were labeled as recurrence. MSI MANTIS scores

higher than 0.4 were labeled microsatellite stable; otherwise, they were labeled microsatellite instable,

according to a previous study (Kautto et al., 2017). The patients with annotations of TNM stage, MSI,

and recurrence were analyzed for a prediction of cancer recurrence. Collectively, we curated 106

COAD and READ patients with methylation profiles and clinical information to predict the recurrence

of colorectal cancer patients in the TCGA cohort. To test the effect of tumor location on recurrence

prediction, we analyzed 98 COAD and READ patients having annotations of tumor locations (Colon/

rectum, left/right).

METHODS DETAILS

Fluorescent-activated cell sorting

Tissue dissociation was performed using a Tumor Dissociation Kit (Miltenyi Biotec) according to the

manufacturer’s instructions. Briefly, tissues were cut into 2–4 mm-long pieces and transferred to C tubes

containing an enzyme mix. Gentle MACS programs (h_tumor_01, 02 and 03) were run in a MACSmix

Tube Rotator (Miltenyi) with two 30-min incubation periods at 37�C between each run. The digested sam-

ples were filtered through a 70-mmstrainer, purified using a Ficoll Paque PLUS (GEHealthcare) gradient and

cryopreserved in CELLBANKER 1 (Zenoaq Resource) before fluorescent-activated cell sorting. Cell suspen-

sions were collected by centrifugation at 200 g for 3 min, washed twice and resuspended in flow cytometry

staining buffer (R&D system). Cells were stained with APC-H7–conjugated anti-CD45 at 1:200 (BD Biosci-

ences), APC-R700-conjugated anti-CD4 at 1:200 (BD Biosciences), Alexa Fluor 647-conjugated anti-CD31

at 1:200 (BD Biosciences), PerCP-Cy5-5-conjugated anti-CD79a at 1:50 (BD Biosciences), BB515-conju-

gated anti-CD11C at 1:200 (BD Biosciences), BUV395-conjugated anti-CD90 at 1:200 (BD Biosciences),

PE-Cy7-conjugated anti-CD68 at 1:200 (BD Biosciences), PE-CF594-conjugated anti-CD8 at 1:200 (BD

Biosciences) and PE-conjugated anti-EpCAM at 1:50 (BD Biosciences) antibody for 20 min at room temper-

ature. Tumor cells were identified by EpCAM+/CD45-; CD4+T cells were identified by CD4+/Thy-1+/

CD45+; CD8+T cells were identified by CD8a+/Thy-1+/CD45+; B lymphocytes were identified by

CD79A//CD45+; macrophages were identified by CD68+/CD45+; dendritic cells were identified

by CD11C+/CD45+; fibroblasts were identified by Thy-1+/CD45-; and endothelial cells were identified

by CD31+. Fluorescence-activated cell sorting was performed using a BD FACS Aria III SORP cell sorter

(BD Biosciences).
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Methylation profiling of bulk tumors and sorted cell types from colorectal cancer patients

To construct libraries for DNA methylation sequencing, 300 ng of genomic DNA was sonicated with a

Covaris S220 sonicator (Covaris, Woburn, MA, USA), which generated products of 150–200 bp. Using the

KAPA HyperPrep Kit (Roche, Indianapolis, IN, USA), the fragmented DNA was end-repaired, A-tailed

and ligated with methylated adapters with a sample index to create a precapture DNA library. Up to 8

libraries were pooled and subjected to capture-based target enrichment using RNA baits of SureSelect

Human methyl-seq (Agilent Technologies, Santa Clara, CA, USA). Hybridization was performed at 65�C
for 16 h. Hybridized products were purified with streptavidin beads and then subjected to bisulfite

treatment (64�C for 2.5 h) using the Zymo EZ DNA Gold kit (Zymo Research, Irvine, CA). After clean up,

the bisulfite-treated libraries were PCR-amplified for 15 cycles with SureSelect Methyl-Seq PCR master

mix (Agilent Technologies). Based on DNA concentration and average fragment size, libraries were

normalized to an equal concentration, denatured using 0.2 N NaOH and diluted to 20 pM using hybridiza-

tion buffer purchased from Illumina. Cluster amplification of denatured templates was performed accord-

ing to the manufacturer’s protocol (Illumina, San Diego, CA, USA). Flow cells were sequenced using HiSeq

2500 v3 Sequencing-by-Synthesis Kits (2 3 100 bp reads).

Preprocessing of methylation data from colorectal cancer patients

A Bismark pipeline (Krueger and Andrews, 2011) was used to align the reads and calculate read counts of

methylated or demethylated regions. We aligned sequence reads to the hg19 reference genome and

retrieved genome-wide cytosine methylation reports. Smoothing bisulfite sequencing data were pro-

cessed using the BSmooth function of the bsseq R package, and the CpG sites with a depth of less than

10 were filtered out. The beta values were calculated using the getMeth function of the bsseq R package

to quantify the methylation level of each CpG site from the read counts.

Construction of DNA methylation-based cell deconvolution models

To calculate the proportions of cell types in bulk tumors from individual patients using DNA methylation

profiles, we used MethylCIBERSORT (Chakravarthy et al., 2018), which is a DNA methylation-based cell

deconvolution model. MethylCIBERSORT utilizes nu–support vector regression (n-SVR) with a linear kernel

based onmethylation profiles of reference cell types to infer cellular proportions from the DNAmethylation

profiles of bulk tumors.

MethylCIBERSORT requires a ‘‘mixture’’ matrix, which consists of DNAmethylation levels of the sites in bulk

tumors from patients (CpG sites in rows and patients in columns, in this study), and a ‘‘signature’’ matrix,

which describes the DNA methylation level of each CpG site in cell types (CpG sites in rows and cell types

in columns). To construct the ‘‘signature’’ matrix, we first utilized methylation levels of sorted cells (TIICs:

CD4+T cells, CD8+T cells, dendritic cells, macrophages, epithelial cells, and fibroblasts; PBMCs: CD4+T

cells, CD8+T cells, dendritic cells, and monocytes) from 7 colorectal cancer patients, which was an indepen-

dent group of patients for recurrence prediction using machine learning models. Then, we selected the

CpG sites simultaneously investigated in the sorted cells and the bulk tumors. Finally, to extract signature

CpG sites from sorted cells, we used FeatureSelect. V4 function provided by MethylCIBERSORT, which

identifies signature CpG sites of individual cell types, based on the identification of differentially methyl-

ated CpG sites among cell types. To construct the ‘‘mixture’’ matrix, we extracted the methylation

levels of the CpG sites of the bulk tumors from patients corresponding to the CpG sites in the ‘‘signature’’

matrix. Using the two matrices, we ran CIBERSORT (Newman et al., 2015) according to the manual of

MethylCIBERSORT to obtain inferred cellular proportions of each patient.

Machine learning-based prediction of cancer recurrence using cell proportions inferred from

MethylCIBERSORT

We used extremely randomized trees (Geurts et al., 2006), extreme gradient boosting (Chen and Guestrin,

2016), and random forest (Breiman, 2001), which are decision tree-based ensemble machine learning

models, for the prediction of recurrence in colorectal cancer patients. To predict patient recurrence, the

cellular proportions of bulk tumors from individual patients were used as an input for machine learning

models. To incorporate clinical data with cellular proportions to predict patient recurrence, we used

TNM stage, metastasis, and microsatellite instability (MSI), tumor locations (colon/rectum, left/right) as in-

puts for machine learning models. To test the effect of adjuvant chemotherapy on recurrence prediction,

we used the clinical data whether the patients were treated or not for SMC cohort as inputs for machine
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learning models. Ascending colon, hepatic flexure colon, transverse colon, and cecum were assigned as

right-sided. Rectum, sigmoid colon, splenic flexure colon, st, rectosigmoid junction rectum, and descend-

ing colon were assigned as left-sided. To validate the performance in predicting the recurrence of the SMC

cohort, we used Monte Carlo cross-validation. We randomly selected 70% of the SMC cohort to train the

models, and the prediction performances of the models were investigated using the remaining 30% of

patients. The model constructions and performance measurements were performed 100 times iteratively

(100 times Monte Carlo cross-validation).

To validate the prediction performance of the model for the TCGA cohort, we trained the model using the

immune cell proportions (or incorporating clinical information) of the SMC cohort and predicted the

recurrence of TCGA patients. The model constructions and performance measurements were performed

100 times iteratively. The performances of machine learning models were measured by the area under the

receiver operating characteristic curve (AUC). For TCGA cohort, Cohen’s kappa was additionally used to

measure performance of machine learning models because of the imbalance between recurrence and non-

recurrence. The prediction procedures were implemented in R by using the extraTrees package for

extremely randomized trees, xgboost package for extreme gradient boosting, randomForest package

for random forest, and ROCR package for AUC measurement, psych package for Cohen’s kappa

measurement.

Functional characterization of the signature CpG sites used in the deconvolution model

For functional characterization of the signature CpG sites used in the deconvolution models, we mapped

each CpG site into a gene whose expression is likely affected by the methylation of the CpG site. To do so,

we discovered regulatory elements (REs) upstream and downstream of 1,250 bp from each CpG site based

on the report that methylation levels near REs can affect the expression of their target genes (Xiong et al.,

2018). We downloaded promoter-gene and enhancer-gene mappings annotated in Marbach et al. (2016)

from http://regulatorycircuits.org/. Marbach et al. provided the regions of REs and their target genes

defined by cap analysis of gene expression (CAGE) data from the FANTOM5 project (Forrest et al.,

2014) for approximately 1,000 human tissue and cell lines, which enabled the mapping of transcription start

sites with high sensitivity. Then, we analyzed GO term enrichment for the genes mapped by the CpG sites.

We used immune response-related GO terms obtained from all child terms of ‘immune response

(GO:0006955)’. Enrichment tests were performed to calculate an adjusted p value using the hypergeomet-

ric test and Benjamini–Hochberg correction procedure.

For the functional characterization by normalizing the CpG density, we calculated GO term enrichment of

DMCs using GOmeth function from the missMethyl R package (Maksimovic et al., 2021; Phipson et al.,

2016). TIIC-PBMC, TIIC-TIIC, and PBMC-PBMC DMCs were used as input of GOmeth function, and all

CpG sites in the panel were used as background.We used the option, plot.bias=TRUE, and default settings

were used for any other options.

Measurement of feature importance using pRF

To evaluate the feature importance of each cell type proportion for patient recurrence prediction, we

adopted pRF (https://cran.r-project.org/web/packages/pRF), which estimated statistical significance of

feature importance by permuting the response variable. The cellular proportions deconvoluted by

TIIC + PBMC were used as an input of pRF, and hyperparameters, n.perms = 100, mtry = 10, and type =

‘‘classification’’ were used.

Comparison of the methylation levels of CpG sites near immunogenic DC markers between

TIIC and PBMC DCs

To compare the methylation levels of TIIC and PBMC DCs, we used dispersion shrinkage for sequencing

(DSS) (Feng et al., 2014), which is a statistical method to detect differentially methylated regions based

on a beta-binomial regression model. Differentially methylated CpG sites (DMCs) between TIIC and

PBMC DCs were identified using DSS v.2.38.0 (smoothing = TRUE and p value < 0.001). We analyzed the

distributions of DMCs located 1,250 bp upstream and downstream from the REs regulating immunogenic

DC marker genes. We used seven well-established DC activation/maturation marker genes, HLA-DRA,

CCR7, CD40, CCL22, IFNG, IL12, and CD86. For IL12, we used REs of IL12A and IL12B, since IL12 is a

complex of them. We compared the methylation levels of DMCs obtained by DSS between TIIC and
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PBMCDCs. The significant differences in methylation levels were quantified by paired, two-tailed and two-

sample Student’s t tests.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of predictive performance were conducted by Mann-Whitney U test using scipy.stats

modules of python. Functional enrichment tests in Figure 3 were performed using the hypergeometric

test and Benjamini–Hochberg multiple testing correction. To compare methylation levels of TIIC-PBMC

DMCs in TIICs and PBMCs across 4 immune cell types (Figure 3E), Student’s t test was used and adjusted

by Benjamini-Hochberg correction (*: adjusted pvalue < 0.01). To compare methylation levels of regulatory

regions near activated DC marker genes (Figure 4A), paired t test was used.
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