metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,3-Bis(diphenylphosphino)pentane- $\kappa^2 P, P'$]tetracarbonylchromium(0)

Omar bin Shawkataly,^a* Daniel T. Thangadurai,^a Mohd. Aslam A. Pankhi,^a S. M. Shahinoor Dulal Islam^a and Hoong-Kun Fun^b

^aChemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-Ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia Correspondence e-mail: omarsa@usm.my

Received 7 October 2008; accepted 10 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.072; data-to-parameter ratio = 20.4.

In the title compound, $[Cr(C_{29}H_{30}P_2)(CO)_4]$, the Cr atom is octahedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr-P and Cr-C bond lengths are 2.377 and 1.865 Å, respectively.

Related literature

For chromium-carbonyl complexes see: Shawkataly et al. (1996, 1997, 2006); for Cr-C bond lengths see: Bennett *et al.* (1971); Ueng & Shih (1992). For Cr-C and C-O distances see Whitaker & Jeffery (1967); Jost et al. (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Crystal data

$[Cr(C_{29}H_{30}P_2)(CO)_4]$
$M_r = 604.51$
Orthorhombic, $P_{2_1}2_12_1$
a = 13.3013 (2) Å
b = 14.2333 (2) Å
c = 15.6694 (3) Å

Data collection

Siemens SMART CCD 24593 measured reflections diffractometer 7364 independent reflections Absorption correction: multi-scan 6364 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 2001) $R_{\rm int}=0.049$ $T_{\min} = 0.785, T_{\max} = 0.866$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.072$	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
S = 1.03	Absolute structure: Flack (1983),
7364 reflections	3256 Friedel pairs
361 parameters	Flack parameter: -0.001 (13)
H-atom parameters constrained	

V = 2966.55 (8) Å³

Mo $K\alpha$ radiation $\mu = 0.53 \text{ mm}^{-1}$

 $0.48 \times 0.42 \times 0.28 \text{ mm}$

T = 293 (2) K

Z = 4

Table 1

Selected geometric parameters (Å, °).

Cr1-C1	1.851 (2)	Cr1-C4	1.901 (2)
Cr1-C2	1.8650 (19)	Cr1-P2	2.3736 (5)
Cr1-C3	1.872 (2)	Cr1-P3	2.3847 (5)
P2-Cr1-P3	91.389 (18)		

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Malaysian Government and Universiti Sains Malaysia for support (IRPA grant Nos. 09-02-05-0008 and 190-9609-2801).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2106).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bennett, M. J., Cotton, F. A. & LaPrade, M. D. (1971). Acta Cryst. B27, 1899-1904.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jost, A., Rees, B. & Yelon, W. B. (1975). Acta Cryst. B31, 2649-2658.
- Shawkataly, O. bin, Islam, S. D., Fun, H.-K. & Didierjean, C. (2006). Acta Cryst. E62, m1086-m1087.
- Shawkataly, O. bin, Saminathan, T., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352-1355.
- Shawkataly, O. bin, Umathavan, A., Ramalingam, K., Fun, H.-K. & Ibrahim, A. R. (1997). Acta Cryst. C53, 1543-1545.

[‡] On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments

Inc., Madison, Wisconsin, USA.

Ueng, C.-H. & Shih, G.-Y. (1992). Acta Cryst. C48, 988–991. Whitaker, A. & Jeffery, J. W. (1967). Acta Cryst. 23, 977–984.

Acta Cryst. (2009). E65, m250-m251 [doi:10.1107/S1600536809001202]

[1,3-Bis(diphenylphosphino)pentane- $\kappa^2 P$, P']tetracarbonylchromium(0)

O. bin Shawkataly, D. T. Thangadurai, M. A. A. Pankhi, S. M. Shahinoor Dulal Islam and H.-K. Fun

Comment

It is generally believed that the metal (*M*) to carbon monoxide bond involves both OC—*M* σ -bonding and M—CO π -bonding. In view of this phenomenon, the bonding characteristics of metal carbonyls with a phosphine ligand in phosphine-substituted metal carbonyls are of interest. A search of the Cambridge Structural Database (Version 5.29; Allen, 2002) revealed only 88 complexes of group VI metal carbonyls with a 3-carbon backbone bidentate phosphine. However, there are only a few examples of chromium carbonyl complexes (Shawkataly *et al.*, 2006). Previously, we reported several crystal structures of phosphine-substituted group VI metal carbonyls (Shawkataly *et al.*, 1996,1997). We present here the crystal structure of the title compound.

The title compound has an expected octahedral geometry (Fig. 1). The Cr—C bond lengths of the *cis* carbonyl ligands (with respect to the P atom) are slightly longer than those for the *trans* carbonyl group (Table 1). This trend was also observed in Cr[Ph₂P(CH₂)₂PPh₂](CO)₄ (Bennett *et al.*, 1971) and Cr[Ph₂P(CH₂)₄PPh₂](CO)₄ (Ueng & Shih, 1992). The bidentate phosphine bite angle [91.389 (18)°] is intermediate between that observed in Cr[Ph₂P(CH₂)₂PPh₂](CO)₄ (83.41 (8)°] and that in Cr[Ph₂P(CH₂)₄PPh₂](CO)₄ (93.29 (5)°]. Comparison of the mean Cr—C and C—O distances in the title compound [1.872 (2) and 1.145 (6) Å, respectively] with those in Cr(CO)₆ [1.909 (3) and 1.137 (4) Å, respectively (Whitaker & Jeffery, 1967); and 1.918 (2) and 1.141 (2) Å, respectively (Jost *et al.*, 1975)], indicates stronger bonding owing to the back-bondi ng abilities of the bidentate phosphine. The Cr—P bond lengths, with an average values of 2.3792 (5) Å, are relatively short inspite of the presence of the bulky phosphine ligand.

Experimental

A mixture of $Cr(CO)_6$ (1.064 mmol) and $Ph_2P(CH_3)CH(CH_2)CH(CH_3)PPh_2$ (1.065 mmol) was refluxed in a purified mixture of petroleum ether (60–80 °C, 25 ml) and butanol (20 ml) for *ca* 12 h under nitrogen atmosphere. The solvent was evaporated and the crude product was dissolved in acetone (5 ml) and filtered. Yellow crystals (75% yield) were obtained by slow evaporation of the acetone solution at room temperature. Analysis calculated for C₃₃H₃₀CrO₄P₂: C 65.55, H 5.01%; found C 65.54, H 5.00%.

Refinement

All H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.98Å, C—H= 0.97 Å (methylene) and C—H= 0.96 Å (methyl) and $U_{iso}(H) = 1.2U_{eq}(C)$, aromatic, methylene) and $U_{iso}(H)=1.5U_{equ}(C)$ methyl). A rotating group model was used for the methyl group. The number of Friedel pairs are 3260.

Figures

Fig. 1. View of the title compound (50% probability displacement ellipsoids).

Hydrogen site location: inferred from neighbouring

H-atom parameters constrained

[2,4-Bis(diphenylphosphino)pentane- $\kappa^2 P$, P^1]tetracarbonylchromium(0)

Crystal data	
[Cr(C ₂₉ H ₃₀ P ₂)(CO) ₄]	$F_{000} = 1256$
$M_r = 604.51$	$D_{\rm x} = 1.354 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 427 reflections
a = 13.3013 (2) Å	$\theta = 2-27.5^{\circ}$
<i>b</i> = 14.2333 (2) Å	$\mu = 0.53 \text{ mm}^{-1}$
c = 15.6694 (3) Å	T = 293 K
V = 2966.55 (8) Å ³	Prism, yellow
Z = 4	$0.48 \times 0.42 \times 0.28 \text{ mm}$

Data collection

Siemens SMART CCD diffractometer	7364 independent reflections
Radiation source: fine-focus sealed tube	6364 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.049$
T = 293 K	$\theta_{\text{max}} = 28.3^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -17 \rightarrow 12$
$T_{\min} = 0.785, T_{\max} = 0.866$	$k = -18 \rightarrow 18$
24593 measured reflections	$l = -18 \rightarrow 20$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.031$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0349P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

sites

$wR(F^2) = 0.072$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
7364 reflections	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
361 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 3256 Friedel pairs
Consular store site lossificant differences Founier man	$E_{1,2}^{1} = 0.001 (12)$

Secondary atom site location: difference Fourier map Flack parameter: -0.001 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
0.21688 (2)	0.11992 (2)	0.931300 (16)	0.03170 (7)
0.33880 (3)	0.10714 (3)	0.82130 (3)	0.03095 (10)
0.10424 (3)	0.01926 (3)	0.85607 (3)	0.03203 (10)
0.35830 (13)	0.24334 (14)	1.02996 (12)	0.0745 (5)
0.07737 (12)	0.14004 (13)	1.08126 (9)	0.0648 (5)
0.29780 (14)	-0.05494 (12)	1.01576 (10)	0.0644 (4)
0.11867 (14)	0.29523 (11)	0.85872 (12)	0.0696 (5)
0.30535 (15)	0.19547 (15)	0.99132 (13)	0.0448 (5)
0.12769 (14)	0.13194 (15)	1.02249 (12)	0.0434 (5)
0.26815 (15)	0.01112 (15)	0.98236 (11)	0.0417 (4)
0.15612 (16)	0.22871 (15)	0.88349 (12)	0.0436 (5)
0.01810 (14)	0.06112 (14)	0.77239 (11)	0.0382 (4)
0.05328 (15)	0.12712 (14)	0.71520 (12)	0.0425 (4)
0.1137	0.1577	0.7262	0.051*
0.00026 (19)	0.14868 (16)	0.64175 (14)	0.0573 (6)
0.0263	0.1915	0.6028	0.069*
-0.09146 (19)	0.10630 (19)	0.62657 (14)	0.0642 (7)
-0.1276	0.1210	0.5776	0.077*
-0.12896 (18)	0.0428 (2)	0.68371 (15)	0.0625 (7)
-0.1911	0.0150	0.6736	0.075*
-0.07513 (16)	0.01932 (17)	0.75678 (14)	0.0513 (5)
-0.1012	-0.0241	0.7952	0.062*
0.01881 (13)	-0.03718 (14)	0.93242 (12)	0.0390 (4)
-0.06244 (15)	0.01504 (18)	0.96266 (13)	0.0523 (5)
-0.0752	0.0743	0.9401	0.063*
	x 0.21688 (2) 0.33880 (3) 0.10424 (3) 0.35830 (13) 0.07737 (12) 0.29780 (14) 0.11867 (14) 0.30535 (15) 0.12769 (14) 0.26815 (15) 0.15612 (16) 0.01810 (14) 0.05328 (15) 0.1137 0.00026 (19) 0.0263 -0.09146 (19) -0.1276 -0.12896 (18) -0.1911 -0.07513 (16) -0.1012 0.01881 (13) -0.06244 (15) -0.0752	x y $0.21688(2)$ $0.11992(2)$ $0.33880(3)$ $0.10714(3)$ $0.10424(3)$ $0.01926(3)$ $0.35830(13)$ $0.24334(14)$ $0.07737(12)$ $0.14004(13)$ $0.29780(14)$ $-0.05494(12)$ $0.11867(14)$ $0.29523(11)$ $0.30535(15)$ $0.19547(15)$ $0.12769(14)$ $0.13194(15)$ $0.26815(15)$ $0.01112(15)$ $0.15612(16)$ $0.22871(15)$ $0.1810(14)$ $0.06112(14)$ $0.05328(15)$ $0.12712(14)$ 0.1137 0.1577 $0.00026(19)$ $0.14868(16)$ 0.0263 0.1915 $-0.09146(19)$ $0.10630(19)$ $-0.12896(18)$ $0.0428(2)$ -0.1911 0.0150 $-0.07513(16)$ $0.01932(17)$ $-0.07513(16)$ $0.01504(18)$ $-0.06244(15)$ 0.0743	x y z 0.21688 (2) 0.11992 (2) 0.931300 (16) 0.33880 (3) 0.10714 (3) 0.82130 (3) 0.10424 (3) 0.01926 (3) 0.85607 (3) 0.35830 (13) 0.24334 (14) 1.02996 (12) 0.07737 (12) 0.14004 (13) 1.08126 (9) 0.29780 (14) -0.05494 (12) 1.01576 (10) 0.11867 (14) 0.29523 (11) 0.85872 (12) 0.30535 (15) 0.19547 (15) 0.99132 (13) 0.12769 (14) 0.13194 (15) 1.02249 (12) 0.26815 (15) 0.01112 (15) 0.98236 (11) 0.15612 (16) 0.22871 (15) 0.88349 (12) 0.01810 (14) 0.06112 (14) 0.77239 (11) 0.05328 (15) 0.12712 (14) 0.71520 (12) 0.1137 0.1577 0.7262 0.00026 (19) 0.14868 (16) 0.64175 (14) 0.0263 0.1915 0.6028 -0.09146 (19) 0.10630 (19) 0.52657 (14) -0.1276 0.1210 0.5776 -0.12896 (18) 0.0428 (2) 0.68371 (15) -0.1911 0.0150 0.6736 -0.07513 (16) 0.01932 (17) 0.75678 (14) -0.1012 -0.0241 0.93242 (12) -0.06244 (15) 0.0743 0.9401

C13	-0.12452 (17)	-0.0206 (2)	1.02619 (15)	0.0691 (8)
H13	-0.1788	0.0144	1.0459	0.083*
C14	-0.10527 (18)	-0.1081 (2)	1.05985 (14)	0.0720 (8)
H14	-0.1470	-0.1322	1.1022	0.086*
C15	-0.0251 (2)	-0.1601 (2)	1.03155 (14)	0.0639 (7)
H15	-0.0126	-0.2190	1.0548	0.077*
C16	0.03757 (16)	-0.12478 (16)	0.96805 (12)	0.0475 (5)
H16	0.0922	-0.1600	0.9494	0.057*
C17	0.32879 (14)	0.20310 (13)	0.74299 (11)	0.0356 (4)
C18	0.29810 (16)	0.19096 (15)	0.65920 (13)	0.0486 (5)
H18	0.2886	0.1307	0.6378	0.058*
C19	0.2816 (2)	0.26759 (18)	0.60726 (16)	0.0643 (6)
H19	0.2594	0.2584	0.5516	0.077*
C20	0.29715 (19)	0.35629 (19)	0.63617 (18)	0.0676 (7)
H20	0.2856	0.4074	0.6006	0.081*
C21	0.33051 (18)	0.37031 (16)	0.71937 (18)	0.0620 (6)
H21	0.3426	0.4308	0.7392	0.074*
C22	0.34562 (16)	0.29421 (14)	0.77231 (14)	0.0477 (5)
H22	0.3672	0.3038	0.8281	0.057*
C23	0.47292 (13)	0.11750 (14)	0.84941 (12)	0.0374 (4)
C24	0.54190 (15)	0.14519 (15)	0.78829 (14)	0.0488 (5)
H24	0.5195	0.1622	0.7342	0.059*
C25	0.64357 (16)	0.14802 (18)	0.80620 (17)	0.0592 (6)
H25	0.6889	0.1676	0.7647	0.071*
C26	0.67731 (16)	0.12194 (17)	0.88523 (16)	0.0590 (6)
H26	0.7458	0.1230	0.8971	0.071*
C27	0.61055 (17)	0.09426 (16)	0.94707 (16)	0.0577 (6)
H27	0.6339	0.0768	1.0007	0.069*
C28	0.50785 (15)	0.09223 (15)	0.92967 (14)	0.0477 (5)
H28	0.4627	0.0739	0.9718	0.057*
C29	0.16603 (14)	-0.07883 (12)	0.79726 (11)	0.0348 (4)
H29	0.2055	-0.1151	0.8385	0.042*
C30	0.09214 (18)	-0.14639 (15)	0.75374 (14)	0.0520 (5)
H30A	0.0463	-0.1710	0.7954	0.078*
H30B	0.1287	-0.1972	0.7280	0.078*
H30C	0.0552	-0.1133	0.7106	0.078*
C31	0.23919 (13)	-0.04033 (13)	0.72887 (11)	0.0355 (4)
H31A	0.2505	-0.0899	0.6874	0.043*
H31B	0.2054	0.0105	0.6993	0.043*
C32	0.34278 (14)	-0.00379 (13)	0.75768 (11)	0.0356 (4)
H32	0.3806	0.0104	0.7056	0.043*
C33	0.40092 (16)	-0.08103 (14)	0.80401 (15)	0.0497 (5)
H33A	0.4652	-0.0572	0.8216	0.074*
H33B	0.4104	-0.1334	0.7663	0.074*
H33C	0.3637	-0.1009	0.8533	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.02906 (13)	0.03611 (14)	0.02992 (12)	0.00083 (12)	-0.00075 (11)	-0.00429 (12)
P2	0.0271 (2)	0.0337 (2)	0.0320 (2)	0.00001 (19)	-0.00125 (17)	-0.00244 (18)
P3	0.0275 (2)	0.0372 (2)	0.0314 (2)	-0.00126 (18)	-0.00068 (18)	-0.00108 (19)
01	0.0532 (10)	0.0809 (12)	0.0895 (13)	-0.0080 (9)	-0.0075 (9)	-0.0435 (11)
02	0.0598 (9)	0.0915 (13)	0.0432 (8)	0.0009 (9)	0.0148 (7)	-0.0130 (8)
03	0.0705 (11)	0.0641 (10)	0.0585 (9)	0.0125 (9)	0.0022 (8)	0.0236 (8)
04	0.0799 (12)	0.0527 (10)	0.0763 (11)	0.0254 (9)	-0.0090 (10)	0.0008 (9)
C1	0.0381 (10)	0.0484 (11)	0.0480 (11)	0.0004 (9)	0.0006 (9)	-0.0132 (9)
C2	0.0410 (10)	0.0521 (12)	0.0370 (10)	0.0002 (9)	-0.0035 (8)	-0.0068 (9)
C3	0.0394 (10)	0.0519 (11)	0.0337 (9)	-0.0011 (9)	0.0015 (8)	0.0012 (8)
C4	0.0415 (11)	0.0472 (11)	0.0422 (10)	0.0042 (10)	-0.0019 (9)	-0.0086 (9)
C5	0.0335 (9)	0.0448 (10)	0.0362 (9)	0.0057 (8)	-0.0038 (8)	-0.0019 (8)
C6	0.0423 (10)	0.0425 (11)	0.0428 (10)	0.0046 (9)	-0.0039 (8)	0.0008 (9)
C7	0.0696 (15)	0.0531 (13)	0.0493 (12)	0.0118 (12)	-0.0021 (12)	0.0099 (11)
C8	0.0666 (15)	0.0781 (17)	0.0478 (12)	0.0153 (14)	-0.0230 (11)	-0.0005 (12)
С9	0.0440 (12)	0.0866 (18)	0.0569 (14)	-0.0002 (12)	-0.0165 (11)	-0.0009 (13)
C10	0.0398 (11)	0.0650 (14)	0.0491 (12)	-0.0049 (10)	-0.0078 (9)	0.0047 (11)
C11	0.0296 (8)	0.0541 (11)	0.0333 (9)	-0.0074 (8)	-0.0019 (8)	-0.0020 (9)
C12	0.0381 (10)	0.0736 (15)	0.0451 (11)	0.0030 (11)	0.0015 (9)	0.0009 (11)
C13	0.0354 (11)	0.124 (2)	0.0482 (12)	0.0020 (14)	0.0072 (10)	0.0005 (15)
C14	0.0499 (13)	0.125 (2)	0.0411 (11)	-0.0204 (16)	0.0055 (10)	0.0173 (15)
C15	0.0670 (16)	0.0786 (17)	0.0461 (12)	-0.0227 (14)	-0.0002 (12)	0.0155 (12)
C16	0.0479 (11)	0.0541 (12)	0.0406 (10)	-0.0079 (11)	0.0025 (9)	0.0027 (10)
C17	0.0290 (9)	0.0384 (10)	0.0394 (9)	-0.0028 (8)	0.0018 (8)	0.0020 (8)
C18	0.0485 (12)	0.0506 (11)	0.0465 (11)	-0.0083 (10)	-0.0059 (9)	0.0091 (9)
C19	0.0620 (14)	0.0724 (16)	0.0585 (13)	-0.0095 (14)	-0.0087 (12)	0.0269 (12)
C20	0.0587 (14)	0.0624 (15)	0.0818 (17)	0.0047 (12)	0.0057 (14)	0.0332 (14)
C21	0.0523 (13)	0.0380 (11)	0.0958 (19)	-0.0006 (10)	0.0202 (13)	0.0070 (12)
C22	0.0428 (11)	0.0426 (11)	0.0577 (12)	-0.0026 (9)	0.0070 (10)	-0.0020 (9)
C23	0.0286 (8)	0.0377 (9)	0.0458 (9)	0.0011 (8)	-0.0039 (7)	-0.0074 (9)
C24	0.0366 (10)	0.0571 (13)	0.0528 (12)	0.0000 (9)	-0.0012 (9)	-0.0013 (10)
C25	0.0312 (10)	0.0642 (15)	0.0822 (16)	-0.0029 (10)	0.0048 (11)	-0.0068 (13)
C26	0.0320 (10)	0.0591 (14)	0.0857 (16)	0.0036 (10)	-0.0140 (11)	-0.0225 (13)
C27	0.0479 (12)	0.0627 (14)	0.0624 (14)	0.0135 (11)	-0.0213 (11)	-0.0126 (11)
C28	0.0408 (10)	0.0550 (12)	0.0472 (11)	0.0045 (9)	-0.0063 (9)	-0.0056 (10)
C29	0.0337 (9)	0.0345 (9)	0.0362 (9)	-0.0024 (8)	0.0010 (8)	-0.0023 (7)
C30	0.0532 (12)	0.0475 (12)	0.0553 (12)	-0.0159 (10)	0.0072 (10)	-0.0128 (10)
C31	0.0350 (9)	0.0388 (10)	0.0327 (8)	-0.0024 (7)	0.0014 (7)	-0.0058 (7)
C32	0.0302 (8)	0.0393 (9)	0.0373 (9)	0.0003 (8)	0.0057 (7)	-0.0054 (8)
C33	0.0403 (11)	0.0421 (11)	0.0665 (14)	0.0091 (9)	-0.0008 (10)	-0.0081 (10)
Geometric para	meters (Å, °)					

Cr1—C11.851 (2)C16—H160.9300Cr1—C21.8650 (19)C17—C181.386 (3)

Cr1—C3	1.872 (2)	C17—C22	1.394 (3)
Cr1—C4	1.901 (2)	C18—C19	1.379 (3)
Cr1—P2	2.3736 (5)	C18—H18	0.9300
Cr1—P3	2.3847 (5)	C19—C20	1.357 (4)
P2—C17	1.8409 (19)	С19—Н19	0.9300
P2—C23	1.8434 (17)	C20—C21	1.391 (4)
P2—C32	1.8680 (18)	С20—Н20	0.9300
P3—C11	1.8352 (19)	C21—C22	1.379 (3)
Р3—С5	1.8405 (18)	C21—H21	0.9300
P3—C29	1.8637 (18)	С22—Н22	0.9300
O1—C1	1.152 (2)	C23—C24	1.384 (3)
O2—C2	1.144 (2)	C23—C28	1.388 (3)
O3—C3	1.146 (2)	C24—C25	1.382 (3)
O4—C4	1.138 (2)	C24—H24	0.9300
C5—C6	1.380 (3)	C25—C26	1.368 (3)
C5—C10	1.397 (3)	C25—H25	0.9300
C6—C7	1.384 (3)	C26—C27	1.372 (3)
С6—Н6	0.9300	С26—Н26	0.9300
С7—С8	1.382 (3)	C27—C28	1.393 (3)
С7—Н7	0.9300	С27—Н27	0.9300
C8—C9	1.367 (3)	C28—H28	0.9300
С8—Н8	0.9300	C29—C30	1.535 (3)
C9—C10	1.391 (3)	C29—C31	1.548 (2)
С9—Н9	0.9300	С29—Н29	0.9800
C10—H10	0.9300	C30—H30A	0.9600
C11—C16	1.389 (3)	С30—Н30В	0.9600
C11—C12	1.395 (3)	С30—Н30С	0.9600
C12—C13	1.389 (3)	C31—C32	1.540 (2)
C12—H12	0.9300	C31—H31A	0.9700
C13—C14	1.376 (4)	C31—H31B	0.9700
C13—H13	0.9300	C32—C33	1.528 (3)
C14—C15	1.371 (4)	С32—Н32	0.9800
C14—H14	0.9300	С33—Н33А	0.9600
C15—C16	1.392 (3)	С33—Н33В	0.9600
C15—H15	0.9300	С33—Н33С	0.9600
C1 - Cr1 - C2	87 81 (8)	C18—C17—C22	118 39 (18)
C1 - Cr1 - C3	91 82 (9)	C18 - C17 - P2	124.08 (15)
C_2 C_1 C_3	88 86 (9)	$C_{22} = C_{17} = P_{2}$	127.00(15) 117.33(15)
C1 - Cr1 - C4	89.84 (9)	C19-C18-C17	1205(2)
C_2 — C_1 — C_4	87 52 (9)	C19-C18-H18	119.7
$C_2 = C_1 = C_4$	175 96 (9)	C17 - C18 - H18	119.7
C1— $Cr1$ — $P2$	88 80 (6)	C_{20} C_{19} C_{18}	119.7 121.0(2)
C^2 — $Cr1$ — P^2	176 35 (6)	$C_{20} - C_{19} - H_{19}$	119.5
$C_2 = C_1 = P_2$	89.89 (6)	C_{18} C_{19} H_{19}	119.5
C4— $Cr1$ — $P2$	93.83 (6)	C19 - C20 - C21	119.5 119.7(2)
C1 - Cr1 - P3	178 55 (7)	C19—C20—H20	120.2
C_2 — C_1 — P_3	91 96 (6)	C21—C20—H20	120.2
C_3 — C_1 — P_3	86 74 (6)	C_{22} C_{21} C_{20} C_{20}	119.8 (2)
C4— $Cr1$ — $P3$	91 58 (6)	C22—C21—H21	120.1
0. 011 15	/1.50(0)	022 021 1121	140.1

P2—Cr1—P3	91.389 (18)	C20—C21—H21	120.1
C17—P2—C23	99.78 (9)	C21—C22—C17	120.6 (2)
C17—P2—C32	105.87 (8)	C21—C22—H22	119.7
C23—P2—C32	99.66 (8)	С17—С22—Н22	119.7
C17—P2—Cr1	112.20 (6)	C24—C23—C28	118.61 (17)
C23—P2—Cr1	118.79 (6)	C24—C23—P2	119.95 (14)
C32—P2—Cr1	118.14 (6)	C28—C23—P2	121.31 (15)
C11—P3—C5	102.74 (9)	C25—C24—C23	121.1 (2)
C11—P3—C29	105.52 (9)	С25—С24—Н24	119.4
C5—P3—C29	99.48 (9)	C23—C24—H24	119.4
C11—P3—Cr1	109.25 (6)	C26—C25—C24	119.8 (2)
C5—P3—Cr1	123.28 (7)	С26—С25—Н25	120.1
C29—P3—Cr1	114.67 (6)	C24—C25—H25	120.1
O1—C1—Cr1	178.18 (18)	C25—C26—C27	120.3 (2)
O2—C2—Cr1	176.29 (17)	С25—С26—Н26	119.8
O3—C3—Cr1	177.93 (18)	С27—С26—Н26	119.8
O4—C4—Cr1	176.72 (18)	C26—C27—C28	120.1 (2)
C6—C5—C10	118.50 (18)	С26—С27—Н27	119.9
C6—C5—P3	118.16 (14)	С28—С27—Н27	119.9
C10—C5—P3	122.65 (16)	C23—C28—C27	120.0 (2)
C5—C6—C7	121.2 (2)	C23—C28—H28	120.0
С5—С6—Н6	119.4	C27—C28—H28	120.0
С7—С6—Н6	119.4	C30—C29—C31	108.47 (15)
C8—C7—C6	119.8 (2)	C30—C29—P3	113.99 (14)
С8—С7—Н7	120.1	C31—C29—P3	110.76 (13)
С6—С7—Н7	120.1	С30—С29—Н29	107.8
C9—C8—C7	119.9 (2)	С31—С29—Н29	107.8
С9—С8—Н8	120.1	Р3—С29—Н29	107.8
С7—С8—Н8	120.1	С29—С30—Н30А	109.5
C8—C9—C10	120.7 (2)	С29—С30—Н30В	109.5
С8—С9—Н9	119.7	H30A—C30—H30B	109.5
С10—С9—Н9	119.7	С29—С30—Н30С	109.5
C9—C10—C5	119.9 (2)	H30A—C30—H30C	109.5
С9—С10—Н10	120.0	H30B-C30-H30C	109.5
C5—C10—H10	120.0	C32—C31—C29	118.62 (15)
C16—C11—C12	118.76 (19)	C32—C31—H31A	107.7
C16—C11—P3	122.94 (15)	C29—C31—H31A	107.7
C12—C11—P3	117.91 (16)	C32—C31—H31B	107.7
C13—C12—C11	120.6 (2)	C29—C31—H31B	107.7
C13—C12—H12	119.7	H31A—C31—H31B	107.1
C11—C12—H12	119.7	C33—C32—C31	110.44 (16)
C14—C13—C12	119.6 (2)	C33—C32—P2	111.66 (13)
C14—C13—H13	120.2	C31—C32—P2	114.61 (12)
C12—C13—H13	120.2	С33—С32—Н32	106.5
C15-C14-C13	120.6 (2)	C31—C32—H32	106.5
C15—C14—H14	119.7	Р2—С32—Н32	106.5
C13—C14—H14	119.7	С32—С33—Н33А	109.5
C14—C15—C16	120.2 (3)	С32—С33—Н33В	109.5
C14—C15—H15	119.9	H33A—C33—H33B	109.5

C16—C15—H15	119.9	С32—С33—Н33С	109.5
C11—C16—C15	120.2 (2)	H33A—C33—H33C	109.5
С11—С16—Н16	119.9	H33B—C33—H33C	109.5
C15—C16—H16	119.9		
C1—Cr1—P2—C17	-87.62 (9)	C13—C14—C15—C16	-0.2 (4)
C3—Cr1—P2—C17	-179.44 (9)	C12-C11-C16-C15	1.3 (3)
C4—Cr1—P2—C17	2.15 (9)	P3—C11—C16—C15	173.94 (17)
P3—Cr1—P2—C17	93.82 (7)	C14—C15—C16—C11	-0.6 (3)
C1—Cr1—P2—C23	28.07 (10)	C23—P2—C17—C18	121.48 (17)
C3—Cr1—P2—C23	-63.75 (10)	C32—P2—C17—C18	18.42 (19)
C4—Cr1—P2—C23	117.84 (10)	Cr1—P2—C17—C18	-111.79 (16)
P3—Cr1—P2—C23	-150.49 (8)	C23—P2—C17—C22	-63.80 (17)
C1—Cr1—P2—C32	148.80 (10)	C32—P2—C17—C22	-166.86 (15)
C3—Cr1—P2—C32	56.98 (9)	Cr1—P2—C17—C22	62.93 (16)
C4—Cr1—P2—C32	-121.44 (9)	C22—C17—C18—C19	-2.1 (3)
P3—Cr1—P2—C32	-29.76 (7)	P2-C17-C18-C19	172.58 (18)
C2—Cr1—P3—C11	-23.62(10)	C17—C18—C19—C20	1.5 (4)
C_{3} — C_{r1} — P_{3} — C_{11}	65.13 (9)	C18—C19—C20—C21	0.2 (4)
C4-Cr1-P3-C11	-111.19 (9)	C19—C20—C21—C22	-1.3(4)
P2-Cr1-P3-C11	154 94 (7)	C_{20} C_{21} C_{22} C_{17}	07(3)
$C_2 - C_{r1} - P_3 - C_5$	96 96 (10)	C18 - C17 - C22 - C21	10(3)
C_{3} C_{1} P_{3} C_{5}	-17429(9)	P_{2} C_{17} C_{22} C_{21}	-174.05(17)
C4-Cr1-P3-C5	9 39 (10)	C17 - P2 - C23 - C24	-3381(18)
P_{2} C_{r1} P_{3} C_{5}	-84 48 (8)	$C_{17} = 12 = C_{23} = C_{24}$	74 30 (18)
C_{2} C_{1} P_{3} C_{29}	-141 81 (9)	Cr1 - P2 - C23 - C24	-155.96(14)
$C_2 = C_1 = 13 = C_2 = C_2$	-53.06.(9)	$C17_P2_C23_C28$	150.00(14)
C4-Cr1-P3-C29	130.62 (9)	$C_{17} = 12 = C_{23} = C_{28}$	-10149(17)
$P_2 = Cr_1 = P_3 = C_2 P_3$	36 75 (7)	$C_{1} = P_{2} = C_{23} = C_{28}$	28.25(19)
$C_{11} = P_{3} = C_{5} = C_{6}$	164.12(15)	C_{28} C_{23} C_{24} C_{25}	-0.1(3)
$C_{11} = 13 = C_{5} = C_{6}$	-87.46(16)	$P_2 = C_2^3 = C_2^4 = C_2^5$	-176.02(18)
$C_{2} = 13 = C_{3} = C_{6}$	40 56 (18)	12 - 023 - 024 - 025 - 026	170.02(10)
$C_{11} = P_{3} = C_{5} = C_{10}$	-255(2)	$C_{23} - C_{24} - C_{23} - C_{20}$	-0.9(4)
$C_{29} = P_{3} = C_{5} = C_{10}$	23.3 (2) 82 87 (18)	$C_{24} = C_{25} = C_{20} = C_{27}$	0.2(4)
$C_{2} = 13 = 0.000$	-140 11 (15)	$C_{23} - C_{20} - C_{27} - C_{28}$	-0.6(3)
$C_{11} = C_{12} = C_{10} = C_{10}$	-20(2)	$C_{24} = C_{23} = C_{26} = C_{27}$	175 27 (16)
$P_{10} = C_{5} = C_{6} = C_{7}$	-5.0(5)	$r_2 = c_{23} = c_{26} = c_{27}$	1/3.27(10)
r_{3} c_{3} c_{6} c_{7} c_{8}	107.71(10)	$C_{20} - C_{27} - C_{20} - C_{25}$	0.3(3)
$C_{5} = C_{0} = C_{7} = C_{8}$	2.5(3)	$C_{11} = F_{3} = C_{29} = C_{30}$	-40.00(16)
$C_{0} = C_{1} = C_{0} = C_{1}$	-0.0(4)	C_{3} $-F_{3}$ $-C_{29}$ $-C_{30}$ C_{20} C_{20}	-49.99(10)
$C^{2} = C^{2} = C^{10}$	-0.8(4)	C11 = P3 = C29 = C30	170.40(12)
$C_{6} = C_{9} = C_{10} = C_{9}$	0.2(4)	$C_{11} = F_{3} = C_{29} = C_{31}$	170.04(12)
$P_{3} = C_{5} = C_{10} = C_{9}$	1.7(3) -169.62(19)	$C_{5} = F_{5} = C_{29} = C_{51}$	-60.80(12)
r_{3} c_{3} c_{10} c_{9}	-100.03(10) 124.04(16)	$C_{11} = C_{29} = C_{31}$	-00.89(13) -156.27(17)
$C_{20} = P_{2} = C_{11} = C_{10}$	134.04(10)	$C_{30} - C_{29} - C_{31} - C_{32}$	-130.37(17)
C_{29} r 3 $-C_{11}$ $-C_{10}$	-0251(16)	r_{3} $$	11.02 (19) 58 2 (2)
$C_1 - r_2 - C_{11} - C_{10}$	-52.51(10)	$C_{29} = C_{31} = C_{32} = C_{33}$	-680(2)
$C_{20} = P_{2} = C_{11} = C_{12}$	-33.21(17) -156.00(15)	$C_{29} = C_{31} = C_{32} = F_2$	-00.9(2)
C_{29} r $_{7}$ C_{11} C_{12}	-130.99(13)	$C_1 / - r_2 - C_{32} - C_{33}$	131.39 (14)
$C_{11} = P_{3} = C_{11} = C_{12}$	19.24 (15)	C_{23} P_{2} C_{32} C_{33} C_{21} P_{22} C_{22} C_{22}	48.44 (15)
C10—C11—C12—C13	-1.1 (3)	Cr1 - P2 - C32 - C33	-81.72 (14)

P3-C11-C12-C13	-174.20 (17)	C17—P2—C32—C31	-81.88 (14)
C11—C12—C13—C14	0.3 (4)	C23—P2—C32—C31	174.97 (14)
C12—C13—C14—C15	0.4 (4)	Cr1—P2—C32—C31	44.80 (15)

