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Abstract: This paper proposes an efficient and practical implementation of the Maximum Likelihood
Ensemble Filter via a Modified Cholesky decomposition (MLEF-MC). The method works as follows:
via an ensemble of model realizations, a well-conditioned and full-rank square-root approximation
of the background error covariance matrix is obtained. This square-root approximation serves as a
control space onto which analysis increments can be computed. These are calculated via Line-Search
(LS) optimization. We theoretically prove the convergence of the MLEF-MC. Experimental simulations
were performed using an Atmospheric General Circulation Model (AT-GCM) and a highly nonlinear
observation operator. The results reveal that the proposed method can obtain posterior error estimates
within reasonable accuracies in terms of `− 2 error norms. Furthermore, our analysis estimates are
similar to those of the MLEF with large ensemble sizes and full observational networks.

Keywords: ensemble-based data assimilation; EnKF; MLEF; line-search optimization; modified
cholesky decomposition

MSC: 49K10; 49M05; 49M15

1. Introduction

Remotely sensed observations by earth observing satellites are usually spatially and temporally
discontinuous as a result of the sensor, satellite, and target view geometries [1]. For instance,
polar orbiting satellites/sensors provide greater spatial details at a reduced temporal resolution,
while geostationary orbiting satellites provide a better temporal resolution at a reduced spatial
resolution [2]. Data Assimilation (DA) methods can be employed to make these observations more
coherent both in time and space [3,4]. In this context, information from observations and an imperfect
numerical forecast are optimally combined to estimate the state x∗ ∈ Rn of a dynamical system which
approximately evolves according to some imperfect numerical model:

xnext =Mtcurrent→tnext (xcurrent) , for x ∈ Rn , (1)
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whereM : Rn → Rn is a numerical model which encapsulates our knowledge about the dynamic
system of interest, n is the model resolution, and t stands for assimilation time. In sequential DA,
well-known formulations are based on the cost function:

J (x) =
1
2

∥∥∥x− xb
∥∥∥2

B−1
+

1
2
‖y−H (x)‖2

R−1 , (2)

where xb ∈ Rn is the background state, B ∈ Rn×n is the background error covariance matrix, y ∈ Rm

is a vector holding the observations, m is the number of observations, R ∈ Rm×m is the (estimated)
data-error covariance matrix, andH : Rn → Rm is the observation operator (which maps model states
to observations). Equation (2) is better known as the Three-Dimensional Variational (3D-Var) cost
function. The analysis state is estimated via the solution of the 3D-Var optimization problem:

xa = arg min
x
J (x) , (3)

where xa ∈ Rn is the analysis state. For linear observation operators, closed-form solutions can
be obtained for Equation (3), these are widely employed by ensemble-based methods. However,
for nonlinear observation operators, numerical optimization methods can be employed to iteratively
solve Equation (3). For instance, in the Maximum Likelihood Ensemble Filter (MLEF), vector states are
constrained to the space spanned by an ensemble of model realizations, which is nothing but a low-rank
square-root approximation of B. This method is widely accepted in the DA community owing to its
efficient formulation and relative ease of implementation. Nevertheless, since analysis increments are
computed onto an ensemble space, convergence is not ensured. We think that it is possible to replace
the ensemble square-root approximation by a full-rank, well-conditioned square-root approximation
of B via a modified Cholesky decomposition. In this manner, analysis increments are computed onto a
space whose dimension equals that of the model one. Moreover, convergence can be ensured as long
as the classic assumptions of Line-Search (LS) methods are satisfied.

The structure of this paper is as follows. In Section 2, we discuss ensemble-based methods for
(non) linear data assimilation. Section 3.1 proposes a Maximum Likelihood Ensemble Filter via a
Modified Cholesky decomposition (MLEF-MC); the theoretical aspects of this method as well as
its computational cost are analyzed. In Section 4, numerical simulations are performed using the
Lorenz-96 model and an Atmospheric General Circulation Model (AT-GCM). Section 5 states the
conclusions of this research.

2. Preliminaries

In this section, we briefly discuss ensemble-based data assimilation in linear and nonlinear
cases. Line-Search optimization methods are also discussed for the numerical solution of
optimization problems.

2.1. Ensemble-Based Data Assimilation

Ensemble-based methods estimate prior error distributions via an ensemble of
model realizations [5]:

Xb =
[
xb[1], xb[2], . . . , xb[N]

]
∈ Rn×N , (4)

where N is the ensemble size, and xb[e] ∈ Rn stands for the e-th ensemble member, for 1 ≤ e ≤ N.
The empirical moments of Ensemble (4) are employed to estimate the moments of the prior
error distributions:

xb ≈ xb =
1
N

N

∑
e=1

xb[e] ∈ Rn , (5)
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and

B ≈ Pb =
1
N

∆X∆XT ∈ Rn×n , (6)

where ∆X is the matrix of background anomalies:

∆X = Xb − xb1T ∈ Rn×N , (7)

and 1 is a vector whose components are all ones. A well-known method in the ensemble context
is the Ensemble Kalman Filter (EnKF) [6]. In the EnKF, a posterior ensemble can be built via the
use of synthetic observation [7,8] or by employing an affine transformation on prior members [9,10].
Regardless which method is employed to estimate the analysis members, sampling errors impact the
quality of the analysis members. This obeys the fact that, in practice, ensemble sizes are much smaller
than model dimensions [11]. To counteract the effects of sampling noise, localization techniques are
commonly employed during the assimilation steps. Localization relies on the idea that, for most
geophysical systems, distant observations are weakly correlated [11,12]. Covariance localization and
domain localization are frequently employed in operational scenarios. Furthermore, another possible
choice is to make use of inverse covariance matrix estimation. In the EnKF based on a modified
Cholesky decomposition [13–15], the precision covariance B−1 is estimated via the Bickel and Levina
covariance matrix estimator [16]. This estimator has the form

B̂−1 = L̂TD̂−1L̂ ∈ Rn×n , (8)

where the nonzero components of L̂ ∈ Rn×n are obtained by fitting linear models of the form

x[i] = ∑
q∈Π(i, r)

{
−L̂
}

iq
x[q] + η[i] ∈ RN , (9)

where x[i] ∈ RN is a vector holding the i-th model component across all ensemble members in
Equation (7), for 1 ≤ i ≤ n, and Π(i, r) denotes components within a local box of i for a radius size
r. Note that the L̂ factor is sparse since local neighborhoods are assumed for each model component.
Moreover, it is possible to obtain sparse lower triangular factors by exploiting the mesh structures
of numerical grids, that is, the sparsity pattern of L̂ relies on the selection of r. Likewise, η ∈ RN is
Gaussian with zero-mean and uncorrelated errors with unknown variance σ2. Some structures of L̂
are shown in Figure 1 for a one-dimensional grid and different values of r, cyclic boundary conditions
are assumed for the physics/dynamics.

0 10 20 30 40

nz = 80

0

5

10

15

20

25

30

35

40

(a) δ = 1

0 10 20 30 40

nz = 160

0

5

10

15

20

25

30

35

40

(b) δ = 3

0 10 20 30 40

nz = 240

0

5

10

15

20

25

30

35

40

(c) δ = 5

Figure 1. Structure of the Cholesky factor L̂k as a function of the localization radius r.
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The ordering of model components plays an important role in an efficient manner to perform
computations [17,18]. Thus, one can potentially exploit the special structure of the numerical mesh to
obtain estimates which can be efficiently applied during the analysis steps [19]. However, the current
literature proposes a modified Cholesky implementation, which can be applied without a prespecified
ordering of model components [20].

EnKF methods commonly linearize observation operators when these are (highly) nonlinear [21],
and as a direct consequence, this can induce bias on posterior members [22]. To handle nonlinear
observation operators during the assimilation steps, optimization-based methods can be employed
to estimate analysis increments. A well-known method in this context is the Maximum Likelihood
Ensemble Filter (MLEF) [23]. This square-root filter employs the ensemble space to compute analysis
increments [24,25]:

xa − xb ∈ range {∆X} ,

which is nothing but a pseudo square-root approximation of B1/2. Thus, vector states can be written
as follows:

x = xb + ∆Xw , (10)

where w ∈ RN is a vector in redundant coordinates to be computed later. By replacing Equation (10)
in Equation (2), one obtains [26,27]

J (x) = J
(

xb + ∆Xw
)
=

N − 1
2
‖w‖2 +

1
2

∥∥∥y−H
(

xb + ∆Xw
)∥∥∥2

R−1
. (11)

The optimization problem to solve reads

w∗ = arg min
w
J
(

xb + ∆Xw
)

. (12)

This problem can be numerically solved via Line-Search (LS) and/or Trust-Region methods. However,
convergence cannot be ensured as long as gradient approximations are performed onto a reduced
space whose dimension is much smaller than that of the model.

2.2. Line-Search Optimization Methods

The solution of optimization problems of the form in Equation (3) can be approximated via
Numerical Optimization [28,29]. In this context, solutions are obtained via iterations:

xk+1 = xk + ∆xk , (13)

wherein k denotes the iteration index, and ∆xk ∈ Rn is a descent direction, for instance, the gradient
descent direction [30–33]

∆xk = −∇J (xk) , (14a)

the Newton’s step [34–36],

∇2J (xk)∆xk = −∇J (xk) , (14b)

or a quasi-Newton-based method [37–39],

Pk∆xk = −∇J (xk) , (14c)
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where Pk ∈ Rn×n is a positive definite matrix. A concise survey of Newton-based methods can be
consulted in [40]. Since step sizes in Equation (14) are based on first or second-order Taylor polynomials,
the step size can be chosen via Line-Search [41–43] and/or Trust-Region [44–46] methods. Thus,
we can ensure global convergence of optimization methods to stationary points of the cost function (2).
This holds as long as some assumptions regarding the functions, gradients, and (potentially) Hessians
are preserved [47]. In the context of Line-Search, the following assumptions are commonly made:

C-A A lower bound of J (x) exists on Ω0 = {x ∈ Rn, J (x) ≤ J
(
x†)}, where x† ∈ Rn is available.

C-B There is a constant L such as

‖∇J (x)−∇J (z)‖ ≤ L ‖x− z‖ , for x, z ∈ B, and L > 0 ,

where B is an open convex set which contains Ω0. These conditions together with iterates of
the form

xk+1 = xk + α∆xk , (15)

ensure global convergence [48] as long as α is chosen as an (approximated) minimizer of

α∗ = arg min
α≥0
J (xk + α∆xk) . (16)

In practice, rules for choosing step size such as the Goldstein rule [49], the Strong Wolfe rule [50],
and the Halving method [51] are employed to partially solve Equation (16).

3. A Maximum Likelihood Ensemble Filter via a Modified Cholesky Decomposition

In this section, we develop an efficient and practical implementation of an MLEF-based filter via
a modified Cholesky decomposition.

3.1. Filter Derivation

To solve the optimization problem (Equation (3)), we consider the matrix of anomalies
(Equation (7)) to estimate B−1 via a modified Cholesky decomposition. We then employ the
square-root approximation

B̂1/2 =
[
L̂TD̂1/2

]−1
, (17a)

as a control space onto which analysis increments can be estimated. Note that

rank
(

B1/2
)
= rank

(
B̂1/2

)
.

We constrain vector states to the space spanned by Equation (17a):

x = xb + B̂1/2η , (17b)

where η ∈ Rn is a vector of weights to be computed later. The 3D-Var cost function (Equation (2)) onto
the space (Equation (17a)) reads

J (x) = J
(

xb + B̂1/2η
)
=

1
2
‖η‖2 +

1
2

∥∥∥y−H
(

xb + B̂1/2η
)∥∥∥2

R−1
, (17c)
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with the corresponding optimization problem:

η∗ = arg min
η
J
(

xb + B̂1/2η
)

. (17d)

To approximate a solution for Equation (17d), we consider iterates of the form

xk+1 = xk + B̂1/2ηk , for 0 ≤ k ≤ K , (18a)

with x0 = xb, where k denotes iteration index, and K is the maximum number of iterations. The weights
ηk can be computed as follows: at iteration k, we linearize the observation operator about xk, this is

H (x) ≈ H (xk) + Hk

[
B̂1/2ηk

]
, (18b)

where Hk is the Jacobian of H(x) at xk. By employing this linear Taylor expansion, we obtain the
following quadratic approximation of Equation (17c):

J
(

xk + B̂1/2ηk

)
≈ Jk (ηk) =

1
2

∥∥∥∥∥ηk +
k−1

∑
p=0

ηp

∥∥∥∥∥
2

+
1
2

∥∥∥δk − Q̂kηk

∥∥∥2

R−1
, (18c)

where δk = y−H (xk) ∈ Rm, and Q̂k = HkB̂1/2 ∈ Rm×n. The gradient of Equation (18c) reads

∇Jk (ηk) = ηk +
k−1

∑
p=0

ηp − Q̂T
k R−1

[
δk − Q̂kηk

]
, (18d)

from which an estimate of the optimal weight η∗k is as follows:

η∗k =
[
I + Q̂T

k R−1Q̂k

]−1
Q̂T

k R−1δk −
k−1

∑
p=0

η∗p. (18e)

Since η∗k is obtained via a quadratic approximation of Equation (2), the step size (Equation (18e)) can
be too large. Thus, we employ a Line-Search on Equation (17c) in the direction B̂1/2η∗k :

ρ∗k = arg min
ρk
J
(

xk + ρk

[
B̂1/2η∗k

])
, (18f)

and therefore, by letting ηk ≈ ρ∗k η∗k in Equation (18a), we obtain

xk+1 = xk + B̂1/2 [ρ∗k η∗k ] . (18g)

This process is repeated until a maximum number of iterations K is reached. Hence, an approximation
of the optimal weight (Equation (17d)) reads

η∗ ≈
K

∑
k=0

ηk ≈
K

∑
k=0

ρ∗k η∗k , (19a)

from which an estimate of the analysis state (Equation (3)) can be computed as follows:

xa ≈ xa = xb + B̂1/2

[
K

∑
k=0

ρ∗k η∗k

]
. (19b)
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The posterior covariance can be readily obtained from Equation (18d). Posterior weights can be
sampled as follows:

ηa[e] ∼ N
(

η∗,
[
I + Q̂T

KR−1Q̂K

]−1
)

, for 1 ≤ e ≤ N , (19c)

and therefore, the analysis ensemble members read

xa[e] = xb + B̂1/2ηa[e] . (19d)

The analysis members (Equation (19d)) are then propagated in time until new observations
are available:

xb[e]
next =Mtcurrent→tnext

(
xa[e]

next

)
.

Putting it all together, the entire assimilation process is condensed in Algorithm 1. We call this
filter formulation the Maximum Likelihood Ensemble Filter via a Modified Cholesky decomposition
(MLEF-MC). Note that our goal is to obtain a minimizer (local optimum) of the 3D-Var optimization
problem (Equation (3)). Other families of methods such as the Cluster Sampling Filters [52] target
entire posterior density functions, that is, their goal is to draw samples from posterior kernels and
using their empirical moments, to estimate posterior modes of error distributions.

3.2. Computational Cost of the MLEF-MC

We detail the computational cost of each line of Algorithm 1, and in this manner, we can estimate
the overall computational cost of the MLEF-MC. We do not consider the computational cost of
the Line-Search in Equation (18f), which will depend on the algorithm chosen for computing the
optimal steps.

1. In Line 1, the direct inversion of matrix B1/2 is not actually needed. Note that the optimization
variable in Equation (17d) can be expressed in terms of a new control variable ςk as follows:[

L̂TD̂−1/2
]

ςk = η∗k , (20)

and in this manner, we can exploit the special structure of L̂ and D̂ to perform forward and
backward substitutions on the optimal weights η∗k . Thus, the number of computations to solve
Equation (20) reads O

(
ϕ2n

)
where ϕ is the maximum number of nonzero entries across all rows

in L̂ with ϕ� n. ϕ is commonly some function of the radius of influence r.

2. The computation of Q̂k = Hk

[
L̂TD̂−1/2

]−1
in Line 5 can be performed similarly to Equation (20).

On the basis of the dimensions of Hk, a bound for computing Q̂k is as follows: O
(

ϕ2nm
)
.

3. In Line 7, the bounds for computations are as follows:

η∗k =
[
I + Q̂T

k R−1Q̂k

]−1
Q̂T

k R−1δk︸ ︷︷ ︸
O(m2)︸ ︷︷ ︸

O(nm)

−
k−1

∑
p=0

η∗p ,

where the implicit linear system involving I + Q̂T
k R−1Q̂k can be solved, for instance, via the

iterative Sherman Morrison formula [53] with no more than O
(

ϕ2nm
)

computations. Thus,
the computational effort of computing Equation (18e) reads

O
(

ϕ2nm + nm + m2
)

.
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This bound is valid for Lines 9, 12, and 13. Since Lines 12 and 13 are performed N times,
their computational cost readsO

(
ϕ2Nnm + nNm + Nm2). Since all computations are performed

K times, the overall cost of the MLEF-MC is as follows:

O
(

K
[

ϕ2n + ϕ2nm + ϕ2nm + nm + m2
])

. (21)

Algorithm 1 Forecasts and Analysis Steps of the MLEF-MC

Require: Background ensemble members
{

xb[e]
}N

e=1

Ensure: An estimate of analysis members
{

xa[e]
}N

e=1

1: Estimate B̂1/2 =
[
L̂TD̂−1/2

]−1
via

{
xb[e]

}N

e=1
. Control space estimation

2: Set x0 ← xb . Best estimation before observations

3: for k← 0→ K do . Iterative solution of optimization problem (Equation (17d))

4: Compute the Jacobian Hk ofH(x) at xk.

5: Set Q̂k ← HkB̂1/2

6: Let dk ← y−H (xk)

7: Compute: . k-th weight estimation

η∗k =
[
I + Q̂T

k R−1Q̂k

]−1
Q̂T

k R−1δk −
k−1

∑
p=0

η∗p

8: Solve: . Line-Search optimization

ρ∗k = arg min
ρk
J
(

xk + ρk

[
B̂1/2η∗k

])
,

9: Let xk+1 ← xk + B̂1/2 [ρ∗k η∗k
]

10: Set η∗ ← ∑K
k=0 ρ∗k η∗k . Analysis weight

11: for e← 1→ N do . Analysis members computation

12: Set ηa[e] ∼ N
(

η∗,
[
I + Q̂T

KR−1Q̂K

]−1
)

13: Let xa[e] ← xb + B̂1/2ηa[e]

14: for e← 1→ N do . Forecast step

15: Let xb[e]
next ←Mtcurrent→tnext

(
xa[e]

current

)

3.3. Global Convergence of the Analysis Step in the MLEF-MC

To prove the global convergence of the proposed MLEF-MC in the analysis step, we consider the
assumptions in Conditions (C-A), (C-B), and

∇J
(

xk + B̂kη∗k

)T
Ĵk (η

∗
k ) < 0, for 0 ≤ k ≤ K . (22)

In the next theorem, we state the necessary conditions to ensure global convergence in the
MLEF-MC method.
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Theorem 1. If the Conditions (C-A), (C-B), and Equation (22) hold, then the MLEF-MC with exact Line-Search
generates an infinite sequence {xk}∞

k=0, then

lim
k→∞

−∇J (xk)
T B̂1/2η∗k∥∥∥B̂1/2η∗k

∥∥∥
2

= 0 (23)

holds.

Proof. By Taylor series, the cost function (Equation (2)) can be expanded as follows:

J
(

xk + ρ∗k B̂1/2η∗k

)
= J (xk)

+ ρ∗k

∫ 1

0
∇J

(
xk + ρ∗k tB̂1/2η∗k

)T

B̂1/2η∗k dt ,

and therefore,

J (xk)−J (xk+1) ≥ −ρ∗k

∫ 1

0
∇J

(
xk + ρ∗k tB̂1/2η∗k

)T

B̂1/2η∗k dt

for any xk+1 on the ray xk + ρkB̂1/2η∗k , with ρ ∈ [0, 1], we have

J (xk)−J (xk+1) ≥ J (xk)−J
(

xk + ρ∗k B̂1/2η∗k

)
,

hence,

J (xk) − J (xk+1) ≥ −ρ∗k∇J (xk)
T B̂1/2η∗k

− ρ∗k

∫ 1

0

[
∇J

(
xk + ρ∗k tB̂1/2η∗k

)
−∇J (xk)

]T

B̂1/2η∗k dt ,

by the Cauchy–Schwarz inequality, we have

J (xk) − J (xk+1) ≥ −ρ∗k∇J (xk)
T B̂1/2η∗k

− ρ∗k

∫ 1

0

∥∥∥∇J (xk + ρ∗k tB̂1/2η∗k

)
−∇J (xk)

∥∥∥∥∥∥B̂1/2η∗k

∥∥∥ dt

≥ −ρ∗k∇J (xk)
T B̂1/2η∗k

− ρ∗k

∫ 1

0
L
∥∥∥ρ∗k tB̂1/2η∗k

∥∥∥ ∥∥∥B̂1/2η∗k

∥∥∥ dt

= −ρ∗k∇J (xk)
T B̂1/2η∗k

− ρ∗k L
∥∥∥B̂1/2η∗k

∥∥∥ ∫ 1

0

∥∥∥tρ∗k B̂1/2η∗k

∥∥∥ dt

= −ρ∗k∇J (xk)
T B̂1/2η∗k −

1
2

ρ∗k
2L
∥∥∥B̂1/2η∗k

∥∥∥2
,
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and choose

ρ∗k = −
∇J (xk)

T B̂1/2η∗k

L
∥∥∥B̂1/2η∗k

∥∥∥2 ,

therefore,

J (xk) − J (xk+1) ≥

[
∇J (xk)

T B̂1/2η∗k

]2

L
∥∥∥B̂1/2η∗k

∥∥∥2

− 1
2

[
−∇J (xk)

T B̂1/2η∗k

]2

L
∥∥∥B̂1/2η∗k

∥∥∥2

=
1

2L

−∇J (xk)
T B̂1/2η∗k∥∥∥B̂1/2η∗k

∥∥∥
2

.

By Condition (C-A), and Equation (22), it follows that {J (xk)}∞
k=0 is a monotone decreasing

number sequence and it has a bound below, therefore {J (xk)}∞
k=0 has a limit, and consequently

Equation (23) holds.

3.4. Further Comments

Note that the proposed filter implementation performs the analysis step onto a control space
whose dimension is equal to that of the model. This space is obtained via a modified Cholesky
decomposition to mitigate the impact of sampling errors. Furthermore, its computational cost
is linear with regard to the model size, which makes the MLEF-MC formulation for operational
settings attractive. Moreover, the analysis step globally converges to posterior modes of the error
distribution. The next section assesses the accuracy of our proposed filter implementation in several
experimental settings.

4. Numerical Simulations

In this section, we test the proposed MLEF-MC implementation and compare our results with
those obtained by the well-know MLEF method. We make use of two surrogate models for the
experiments: the Lorenz-96 model [54] and an Atmospheric General Circulation Model (AT-GCM).
In both cases, we consider the following general settings:

• Starting with a random solution, we employ the numerical model to obtain an initial condition
which is consistent with the model dynamics. In a similar fashion, the background state, the actual
state, and the initial ensemble are computed;

• We consider the following nonlinear observation operator [55]:

{H(x)}j =
{x}j

2

[( |{x}j|
2

)γ−1

+ 1

]
, (24)

where j denotes the j-th observed component from the model state, for 1 ≤ j ≤ m. Likewise, we
vary γ in γ ∈ {1, 3, 5}. Note that we start with a linear observation operator and end up with a
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highly nonlinear one. Since this observation operator is nondifferentiable, we employ the sign
function to approximate its derivative:

∂H(x)
∂{x}j

=

(
|{x}j|

2

)γ−1

2
+

x sign
(
{x}j

) ( |{x}j|
2

)γ−2

(γ− 1)

4
+

1
2

;

• The `− 2 norm measures the accuracy of analysis states at assimilation stages,

λt = E
(

x∗[t], xa
[t]

)
=
√
[x∗t − xa

t ]
T [x∗t − xa

t ] , for 0 ≤ t ≤ M , (25)

where x∗t and xa
t are the reference and the analysis solution at the assimilation step t, respectively;

• We employ the Root Mean Square Error (RMSE) as a measure of accuracy (average) for an entire
set of time-spaced observations,

λ =

√√√√ 1
M

M

∑
t=0

λ2
t ; (26)

• We employ a Truncated Singular Value Decomposition (T-SVD) to fit the models (Equation (9));
• All experiments were performed under perfect model assumptions. No model errors were present

during the assimilation steps;
• We employ the MLEF formulation proposed by Zupansky in [23].

4.1. The Lorenz-96 Model

The Lorenz-96 model is described by the following ordinary differential equations [56]:

dxj

dt
=


(x2 − xn−1)xn − x1 + F for j = 1,
(xj+1 − xj−2)xj−1 − xj + F for 2 ≤ j ≤ n− 1,
(x1 − xn−2)xn−1 − xn + F for j = n,

(27)

where n is the number of model variables, and F is the external force. Periodic boundary conditions
are assumed. When F = 8 and n = 40, the model exhibits chaotic behavior, which makes it a relevant
surrogate problem for atmospheric dynamics [57]. One time unit in the Lorenz-96 represents 7 days
in the atmosphere. Details regarding the construction of the reference solution, background state,
initial background ensemble member, and experimental settings are as follows:

• We create an initial pool X̂b of N̂ = 1000 ensemble members. For each experiment, we sample
N = 20 members from X̂b to obtain the initial ensemble Xb. Two-dimensional projections of the
initial pool making use of its two leading directions are shown in Figure 2;
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Figure 2. 2D projections of the initial pool X̂b. Its two leading directions are employed for
the projections.

• The assimilation window consists of M = 100 time-spaced observations. Two observation
frequencies are employed during the experiments: 16 h (time step of 0.1 time units) and 80 h (time
step of 0.5 time units). We denote by δt ∈ {16, 80} the time between two subsequent observations;

• At assimilation times, observational errors are characterized by Gaussian distributions
with parameters

y ∼ N (H (x∗) , σ2
o I), for 0 ≤ t ≤ M ,

where x∗ is the actual state of the system, and σo is the noise level. We tried three different noise
levels for the observations σo = {0.01, 0.1, 1};

• We consider two percentage of observations (s): 70% of model components (s = 0.7) and
100% of model components (s = 1). The components are randomly chosen at the different
assimilation steps;

• The radii of influence to compute control spaces are ranged in r ∈ {1, 3, 5};
• The ensemble size for the MLEF-MC reads N = 40;
• For a reference, we employ a MLEF method with an ensemble size of N = 100 members and

a full observational network s = 1. Note that this ensemble size is more than twice the model
resolution n = 40. In this manner, we can have an idea about how errors should evolve for large
ensemble sizes and full observational networks. We refer to this as the ideal case.

The evolution of errors for the proposed filter implementation is detailed in Figures 3 and 4 for
the percentage of observations s = 1 and s = 0.7, respectively. We employ a log-scale of `− 2 error
norms for ease of reading. Note that as the noise level σo increases, the accuracy of the MLEF-MC
degrades. This should be expected since more uncertainty is injected into the observations and as a
direct consequence, the expected posterior errors increased. Nevertheless, in all cases, the evolution
of errors are visually bounded (they do not blow up), and therefore, filter convergence is evidenced.
For full observational networks, increments in the observation frequencies do not degrade the quality
of the analysis increments; however, for observation coverages of s = 0.7, the initial accuracies
(spin-up period) can be impacted slightly as the observation frequency increases. However, this does
not prevent errors from becoming stable (and to decrease) in time. Note that the degree γ of the
observation operator does not impact the quality of analysis corrections in the MLEF-MC method.
One can see that errors are stable in time regardless of the degree of H(x). On the other hand,
the radius coverage plays an important role in the assimilation of observations as the time frequency
of observations increases. For instance, as δt increases, the forecast steps are longer, and therefore,
more information about background error correlations can be properly captured in our estimate B̂−1.
Recall that background error correlations are driven by the nonlinear dynamics of the model (Equation
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(27)), and given the special structure of the ODE system (Equation (27)), it is reasonable to think that
radius lengths larger than one can provide useful information to unobserved components during the
analysis corrections. Thus, as the radius length increases, errors in the MLEF-MC behave similar to
those in the ideal case.

In Figures 5 and 6, we report the gradient norms of the initial assimilation step for s = 1
and s = 0.7, respectively, for the MLEF-MC implementation. Note that for small γ and σo values,
gradient norms are similarly decreased for different values of r among iterations in the MLEF-MC
context. As the noise level increases, high accuracies demand more iterations for large r values. Thus,
the noise level plays an important role as long as radius lengths are increased. As should be expected,
the rate of convergence can be impacted by the degree of the nonlinear observation operator. Recall
that we employ a second-order approximation of J (x) to estimate its gradient, and therefore, as the
degree γ increases, small step lengths will be employed by the Line-Search method, among iterations.

For the first assimilation cycle, we show two-dimensional projections of the optimization steps
using the two leading directions of X̂b in Figures 7 and 8 for observation coverages of s = 1 and s = 0.7,
respectively. We report the actual state x∗, some samples from the background error distribution X̂b,
and the iterates for different r values. The ideal case is also reported. Note that as the degree γ increases,
more iterations are needed before we obtain a reasonable estimate of x∗. As we mentioned before,
second-order Taylor-based approximations can poorly estimate ∇J (x) as γ increases. As can be seen,
as the noise level increases, the analysis estimate for the different radius lengths can be impacted.

In Figure 9, we report the average of elapsed times for computing analysis increments across
M = 100 assimilation steps. As can be seen, as the radius of influence increases, the elapsed
time of assimilation steps slightly increases. This agrees with the bound (Equation (21)) wherein
the computational cost of the MLEF-MC formulation linearly depends on the model resolution n.
Recall that the factor r is strictly related to ϕ, which in turn is bounded by n. In practice, ϕ� n.

It is essential to note that by employing a modified Cholesky decomposition (Equation (8)),
the degree of freedom of the control space (Equation (10)) is artificially increased. Thus, we have
more directions (which are consistent with the model dynamics) onto which error dynamics can be
captured. This is similar to having a localized square-root approximation of B. In this manner, we can
decorrelate distant model components based on our prior knowledge about the model dynamics.
Moreover, we can also decrease the impact of sampling errors. All these properties are possessed by
our set of basis vectors (Equation (17a)), which can explain why our proposed filter implementation
can decrease initial background errors by several orders of magnitudes. This obeys two important
facts: the control-space dimension is equal to that of the model, and more importantly, MLEF-MC
ensures convergence as long as the conditions of Theorem 1 are satisfied.
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Figure 3. Error evolution in the log-scale of the compared filter implementations. Different time
frequencies of observations were employed during the experiments. The percentage of observations
from the model state reads s = 100%.
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Figure 4. Error evolution in the log-scale of the compared filter implementations. Different time
frequencies of observations were employed during the experiments. The percentage of observations
from the model state reads s = 70%.
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Figure 5. Gradient norms in the log-scale of the Maximum Likelihood Ensemble Filter via a Modified
Cholesky decomposition (MLEF-MC) for the initial assimilation step. Different time frequencies of
observations were employed during the experiments. The observation coverage from the model state
reads s = 100%.
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Figure 6. Gradient norms in the log-scale of the MLEF-MC for the initial assimilation step. Different
time frequencies of observations were employed during the experiments. The observation coverage
from the model state reads s = 70%.
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Figure 7. Snapshots of iterates for the initial analysis step. Different time frequencies of observations
were employed during the experiments. The percentage of observations from the model state reads
s = 100%.
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Figure 8. Snapshots of iterates for the initial analysis step. Different time frequencies of observations
were employed during the experiments. The percentage of observations from the model state reads
s = 70%.



Sensors 2020, 20, 877 20 of 26

MLEF-MC + Parameter Configuration

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

T
im

e
 i
n

 S
e

c
o

n
d

s
 (

s
)

Figure 9. Average of elapsed times (in seconds) of the assimilation step for the MLEF-MC. Different
parameters r were tried during experiments.

4.2. An Atmospheric General Circulation Model (AT-GCM)

In this section, we study the performance of the MLEF-MC method by using a highly nonlinear
model: the SPEEDY model. This model is an atmospheric general circulation model that mimics the
behavior of the atmosphere across different pressure levels [58,59]. The number of numerical layers in
this model is seven, and we employ a T-30 spectral model resolution (96× 48× 7 grid components)
for the space discretization of each model layer [60,61]. We employ four model variables. These are
detailed in Table 1 with their corresponding units and the number of layers.

Table 1. Physical variables of the SPEEDY model.

Name Notation Units Number of Layers

Temperature T K 7
Zonal Wind Component u m/s 7

Meridional Wind Component v m/s 7
Specific Humidity Q g/kg 7

Note that the total number of model components to be estimated is n = 133,632. We set the number
of model realizations (ensemble size) as N = 30 for all experimental scenarios. In this case, the model
resolution is approximately 4454 times larger than the sample size (n� N), which is very common
under operational DA scenarios. Additional details of the experimental settings are described below,
some are similar to those detailed in [62]:

• Starting with a system in equilibrium, the model is integrated over a long time period to obtain
an initial condition whose dynamics are consistent with those of the SPEEDY model;

• The initial condition is perturbed N times and propagated over a long time period from which
the initial background ensemble is obtained;

• We employ the trajectory of the initial condition as the reference. This reference trajectory serves
to build synthetic observations;
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• We set the standard deviations of errors in the observations as follows:

– Temperature 1 K;
– Zonal Wind Component 1 m/s;
– Meridional Wind Component 1 m/s;
– Specific Humidity 10−3 g/kg;

• Two percentages of observations are tried during the experiments: s = 0.7 and s = 1. Figure 10
shows an example of this operator;

• Observations are available every six hours (6 h);

1

0.5

0

-0.5

-11

0.5

0

-0.5

-1

-0.5

0

0.5

1

-1

Figure 10. Linear observation operator during assimilation steps. Shaded regions denote observed
components (observations) from the model state. The operator is replicated across all numerical layers.

• The experiments are performed under perfect model assumptions;
• The number of assimilation steps is M = 12. Thus, the total simulation time is 7.5 days.

Table 2 shows the RMSE values for the MLEF-MC method. We vary the nonlinear degree of
γ, and the percentage of observations s. Likewise, the radius of influence r is 1. As can be seen,
the proposed filter implementation can decrease forecast errors for all model variables by, in some
cases, several orders of magnitudes. As the degree of the observation operator increases, analysis errors
can impact the analysis corrections, but all analysis errors are within the same orders of magnitude.
Moreover, filter convergence is evident for all synthetic scenarios which agrees with Theorem 1.
Note that as the number of observations increases, the accuracy of posterior estimates improves.
This is expected since more information regarding the error dynamics is injected into the numerical
forecast.

Figures 11 and 12 show the time evolution of errors for s = 0.7 and s = 1.0, respectively. Clearly,
initial errors are drastically decreased by the proposed filter implementation. This behavior is obtained
regardless of the degree γ of the nonlinear observation operator (Equation (24)). As we mentioned
before, the more observations employed during assimilation steps, the faster the posterior errors can be
decreased. Furthermore, on the basis of the number of observations, the differences between posterior
errors can be of orders of magnitude.

Figure 13 shows snapshots of the first assimilation step. The results are reported for the
first numerical layer of the SPEEDY model and the model variables u and T. As can be seen,
background errors are drastically improved by the MLEF-MC method. Spurious waves near the poles
of the T and u variables are quickly dissipated, and the numerical model retains the actual shapes (and
magnitudes) of these variables.



Sensors 2020, 20, 877 22 of 26

Table 2. Root Mean Square Error (RMSE) values for different values of s and γ.

Variable NODA s = 0.7 s = 1

γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5

u (m/s) 330.7048 0.6315 0.7113 0.7990 0.4703 0.5447 0.6232
v (m/s) 336.0850 0.5974 0.6742 0.7717 0.4708 0.5436 0.6266
T (K) 196.0983 0.6828 0.7416 0.8029 0.5402 0.6048 0.6629
Q (g/kg) 0.1010 0.0032 0.0070 0.0135 0.0026 0.0058 0.0113
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Figure 11. Time evolution of analysis errors for different values of parameters γ and r (MLEF-MC).
s = 1 (full observational network).
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Figure 12. Time evolution of analysis errors for different values of parameters γ and r (MLEF-MC).
s = 1 (full observational network).
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Figure 13. Snapshots of the SPEEDY model for the reference solution, the background estimate,
and the analysis of the MLEF-MC. Results are shown for the first numerical layer (100 hPa), and the
first assimilation step.

5. Conclusions

Satellite remote sensing with a wide range of sources, for instance, on-board sensors, platforms,
and satellite data (which provides genuine earth observation information), has transformed our view
of the Earth and its environment. These sensors offer different types of observations on large scales
and over decades. Typically, observations (data) are nonlinearly related to model states. This paper
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proposes a Maximum Likelihood Ensemble Filter method via a Modified Cholesky decomposition
(MLEF-MC) for nonlinear data assimilation. This method works as follows: snapshots of an ensemble
of model realizations are taken at observation steps; these ensembles are employed to build control
spaces onto which analysis increments can be estimated. The control spaces are obtained via a modified
Cholesky decomposition. The control-space dimension is equal to that of the model, which mitigates
the impact of sampling errors. Experimental tests were performed by using the Lorenz-96 model
and an Atmospheric General Circulation Model (AT-GCM). The well-known Maximum Likelihood
Ensemble Filter (MLEF) was employed with an ensemble size of 100 and a full observational network
as a reference method to compare solutions. The results reveal that the proposed filter implementation
performs similarly to the MLEF implementation (ideal case) in terms of `2 error norms and Root Mean
Square Error values.
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