
Citation: Muraduzzaman, A.K.M.;

Illing, P.T.; Mifsud, N.A.; Purcell,

A.W. Understanding the Role of HLA

Class I Molecules in the Immune

Response to Influenza Infection and

Rational Design of a Peptide-Based

Vaccine. Viruses 2022, 14, 2578.

https://doi.org/10.3390/v14112578

Academic Editor: Charles J. Russell

Received: 8 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Understanding the Role of HLA Class I Molecules in the
Immune Response to Influenza Infection and Rational Design
of a Peptide-Based Vaccine
A. K. M. Muraduzzaman , Patricia T. Illing , Nicole A. Mifsud * and Anthony W. Purcell *

Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery
Institute, Monash University, Clayton, VIC 3800, Australia
* Correspondence: nicole.mifsud@monash.edu (N.A.M.); anthony.purcell@monash.edu (A.W.P.);

Tel.: +61-3-9902-9265 (A.W.P.)

Abstract: Influenza A virus is a respiratory pathogen that is responsible for regular epidemics
and occasional pandemics that result in substantial damage to life and the economy. The yearly
reformulation of trivalent or quadrivalent flu vaccines encompassing surface glycoproteins derived
from the current circulating strains of the virus does not provide sufficient cross-protection against
mismatched strains. Unlike the current vaccines that elicit a predominant humoral response, vaccines
that induce CD8+ T cells have demonstrated a capacity to provide cross-protection against different
influenza strains, including novel influenza viruses. Immunopeptidomics, the mass spectrometric
identification of human-leukocyte-antigen (HLA)-bound peptides isolated from infected cells, has
recently provided key insights into viral peptides that can serve as potential T cell epitopes. The
critical elements required for a strong and long-living CD8+ T cell response are related to both HLA
restriction and the immunogenicity of the viral peptide. This review examines the importance of
HLA and the viral immunopeptidome for the design of a universal influenza T-cell-based vaccine.
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1. Introduction

Whilst Hippocrates described influenza disease in 412 BC (reviewed in [1]), the first
influenza A virus (IAV) pandemic, known as the Russian Flu, was not reported until
1889 [2]. This was followed by the isolation of the virus half a century later in 1933 [3]. Since
then, IAV has affected a significant percentage of the world’s population through regular
seasonal epidemics and occasional pandemics, causing millions of deaths [4]. The best way
to limit influenza’s medical, social, and economic burdens is through annual vaccination,
as the World Health Organization (WHO) recommended in their Global Action Plan [5].
Unfortunately, the current antibody-inducing trivalent or quadrivalent flu vaccines have
several limitations, including their inadequate boosting of cellular immunity via cytotoxic
T cell (CTL) responses [6–10]. Due to antigenic drift, which generates genetic changes or
mutations in cell surface glycoproteins, hemagglutinin (HA), and neuraminidase (NA),
the current influenza vaccines sometimes fail to produce neutralizing antibodies against
seasonal or emerging influenza virus strains [11–13]. The United States Centers for Disease
Control and Prevention (US-CDC) vaccine effectiveness study showed that the efficacy of
the current strain-based vaccines can vary from as low as 10% in an unmatched season
to 60% in the case of a very well-matched vaccine [14]. The currently available trivalent
(composed of surface glycoproteins from two IAVs and one influenza B virus (IBV)) and
quadrivalent (consisting of surface glycoproteins from two IAVs and two IBVs) vaccines
require annual reformulation and administration to circumvent the effects of antigenic
drift. In addition to humans, IAV can infect a wide range of animals, including pigs, horses,
marine mammals, cats, dogs, and birds. Due to this wide host range, antigenically novel
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strains or IAV subtypes can emerge [15], triggering global pandemics, as observed in the
last century (1918 Spanish flu, 1957 Asian flu, 1968 Hong Kong flu) and, more recently, the
2009 H1N1 pandemic (pdmH1N1) [2,16].

There is considerable evidence to suggest that, in both humans [17–19] and mice [20–22],
CD8+ T cells are important in providing protection against influenza through viral clearance,
thereby limiting the disease severity. Therefore, T-cell-inducing vaccines, particularly CD8+

CTLs, targeting the highly conserved internal proteins, may be an effective alternative
for the provision of universal protection against influenza virus subtypes [23,24]. To
stimulate the T cells, viral antigens are processed by the infected host cells and presented
as short peptides by HLA molecules encoded within the human major histocompatibility
complex (MHC) [25]. The human MHC is the most polymorphic gene system [26], and
the encoded HLA allotypes display a diverse peptide array to the T cells for immune
recognition (termed the immunopeptidome). Importantly, HLA polymorphisms have been
shown to influence peptide binding specificity, T cell receptor (TCR) interactions with
the peptide/HLA complex, and the nature of the ensuing anti-viral immune response.
Studies shown that some HLA alleles, such as HLA-B*27, that present a conserved epitope
from the p24 HIV capsid protein are protective, resulting in a significantly improved
survival by maintaining high CD4 counts and a low-level viral load without antiretroviral
therapy [27]. Conversely, some other HLA alleles, such as HLA-B*35, are associated with
rapid progression and a high viral load [28]. HLA associations have also been well reported
for chronic infectious diseases, including hepatitis B and hepatitis C [29–31]. However,
associations with the influenza virus pathogenesis are still emerging. This review focuses
on the identification of the contributions of classical HLA class I (HLA-I) allotypes to the
immunoregulation of influenza’s pathogenesis and implications for the development of a
universal T cell-inducing vaccine.

2. Influenza: An Unpredictable Virus with a High Pandemic Potential

Influenza viruses belong to the Orthomyxoviridae family and are classified into four
subtypes: IAV, IBV, influenza C (ICV), and influenza D (IDV) [32–34]. All influenza viruses
are enveloped and contain a negative-sense, single-stranded segmented RNA genome [32].
Although IAV and IBV virions contain eight viral RNA (vRNA) segments, ICV [35] and
IDV [34] contain seven vRNA segments. A schematic representation of IAV/IBV is shown
in Figure 1A. The influenza virion has three subviral components. The first is an envelope
lipid bilayer incorporating three virally encoded transmembrane proteins, HA, NA, and the
proton channel protein, matrix-2 (M2). Secondly, a matrix layer underneath the envelope,
composed of M1, interacts with the cytoplasmic tails of HA, NA, and M2 on the outer side
and vRNA and nucleoprotein (NP) on the inner side of this layer [36,37]. Thirdly, the viral
core consists of helical ribonucleoprotein complex (RNP) segments containing the negative-
stranded genomic vRNAs, NP, the nuclear export protein (NEP) and a 3-polymerase (3P)
complex. The 3P complex is heterotrimeric, being composed of the polymerase basic protein
1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA) [36–40].

Among the four subtypes of the influenza virus, IAV is the most important public
health consideration in regard to seasonal epidemics and potential pandemic threats. In
addition to humans, IAV can infect a large number of animal species, including ducks,
chickens, pigs, whales, horses, and seals [41,42]. Different combinations of IAV HA (1–18)
and NA (1–11) proteins can potentially give rise to 198 subtypes, although only 131 subtypes
have been naturally isolated [41]. Different IAV subtypes, such as H5N1, H7N9, and H9N2,
circulating in aquatic birds are called avian influenza viruses. These avian strains sometimes
switch between hosts to form new lineages and may emerge as antigenically novel human
IAVs that can promote pandemics [43]. Although human infections with avian influenza
viruses are rare, this can occur following exposure to infected poultry, either via direct
contact with chickens or by visiting a live poultry market [44–47]. In the last century, there
have been four instances where influenza viruses with genes originating from avian or
swine reservoirs emerged, either with or without reassortment with human influenza
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viruses, resulting in a pandemic wave [48]. As the IAV reservoirs cannot be eradicated from
wild aquatic birds, another influenza pandemic is inevitable, and based on past experience,
it is widely believed that the currently circulating avian influenza virus H5N1 or H7N9
may be the culprit subtype.
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Figure 1. Influenza virus structure and antigenic drift and shift in influenza infections. (A) Typical 
influenza virus spheroidal form showing all the viral components. HA, NA, and M2 proteins form 
the envelope, with M1 forming a critical bridge between the viral envelope and the vRNP core, 
which consists of helical RNP segments containing negative-stranded genomic vRNAs and NP, 
along with the 3-P complex. (B) Over time, small changes associated with antigenic drift can accu-
mulate and result in viruses that are antigenically different from their ancestors. The current vac-
cines that induce strain-specific antibodies do not afford complete protection, and as a result, we 
observe yearly epidemic outbreaks of seasonal influenza. Antigenic shift can result in a new influ-
enza A subtype which is either generated via an intermediate host where there is, for example, gene 
exchange between human and avian influenza viruses, forming a new strain capable of infecting 
humans, or, sometimes, influenza strains from other species can directly infect humans by crossing 
the species barrier (e.g., in the case of H5N1). When antigenic shift occurs, most people have little 
or no immunity against the new virus, thereby enabling pandemics. Image created with BioRen-
der.com. (Accessed on 14 September 2022) 
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Figure 1. Influenza virus structure and antigenic drift and shift in influenza infections. (A) Typical
influenza virus spheroidal form showing all the viral components. HA, NA, and M2 proteins form
the envelope, with M1 forming a critical bridge between the viral envelope and the vRNP core,
which consists of helical RNP segments containing negative-stranded genomic vRNAs and NP, along
with the 3-P complex. (B) Over time, small changes associated with antigenic drift can accumulate
and result in viruses that are antigenically different from their ancestors. The current vaccines that
induce strain-specific antibodies do not afford complete protection, and as a result, we observe yearly
epidemic outbreaks of seasonal influenza. Antigenic shift can result in a new influenza A subtype
which is either generated via an intermediate host where there is, for example, gene exchange between
human and avian influenza viruses, forming a new strain capable of infecting humans, or, sometimes,
influenza strains from other species can directly infect humans by crossing the species barrier (e.g.,
in the case of H5N1). When antigenic shift occurs, most people have little or no immunity against
the new virus, thereby enabling pandemics. Image created with BioRender.com. (accessed on 14
September 2022).

Influenza viruses are constantly evolving via two different mechanisms known as
antigenic drift and antigenic shift (Figure 1B). Firstly, antigenic drift is the result of minor
changes or mutations due to error-prone RNA replication, which occurs in both IAV and
IBV as the virus replicates. Secondly, novel influenza viruses with pandemic potential can
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arise through the antigenic shift resulting from abrupt changes in, or the reassortment of,
gene segments between avian or swine influenza viruses, which cross the species barrier
and infect humans [49]. Due to these rapid antigenic drifts or shifts, vaccines against surface
glycoproteins may be ineffective against seasonal or novel influenza viruses [9,50–54]. In
contrast, influenza virus internal proteins (i.e., NP, PA, PB, NS and M) are highly conserved
across the different subtypes [49]. Importantly, studies have shown that CD8+ T cells
can recognize antigenic peptides derived from conserved internal proteins, including NP,
M1, and PB1 [55–58]. A recent study has shown that memory CD8+ T cells specific to a
conserved PB1 (A2-PB1413–422) peptide cross-reacted with homologous sequences from
IAV, IBV, and ICV, offering a degree of cross-strain immunity [59]. It is recognized that the
epitopes derived from conserved internal proteins are likely to elicit broader immunity
against a spectrum of influenza strains so as to promote lifelong protection [60]. Thus, T cells
against these conserved proteins have the potential to provide heterosubtypic protection
against influenza disease and are of substantial interest for the design of next-generation
universal vaccines.

3. Host Immunity to Influenza

When an individual is infected with influenza virus, both the innate and adaptive
arms of the host immune system are engaged to combat and clear the pathogenic assault.
The innate immune system is the first defense line that recognizes the viral components
called pathogen-associated molecular patterns (PAMPs) by the host pathogen recognition
receptors (PRRs). For example, in influenza virus infection, the retinoic-acid-inducible
gene-I protein (RIG-I) recognizes the viral RNA in the cytosol and induces the production of
pro-inflammatory cytokines and type I IFN. Toll-like receptor (TLR) 3 and TLR7 recognize
double-stranded and single-stranded RNA (dsRNA and ssRNA) and many more PRRs
which target different proteins of the influenza virus, also leading to the activation of innate
immune signaling and the induction of cytokine and antiviral molecule expression [61–63].
However, the professional antigen-presenting cells, e.g., dendritic cells (DCs), link the
innate and adaptive immune responses during the IAV infection [64]. After infection
with IAV, the conventional DCs (cDCs) migrate from the lungs to the lymph nodes and
present antigens derived from IAV with major histocompatibility complex (MHC) class I
molecules for the purpose of recognition by virus-specific CD8+ CTLs [65,66]. In addition,
viral proteins degraded in endosomes/lysosomes are associated with the MHC class II
molecule and are presented on the cell membrane for their recognition by CD4+ T helper
(Th) cells that leads to B cell proliferation and maturation into antibody-producing plasma
cells [67,68]. The humoral immune response is mediated by B cells that produce neutralizing
antibodies targeting viral surface proteins, such as HA and NA. These antibodies can
also induce antibody-dependent, cell-mediated cytotoxicity or complement activation by
directly binding to the surface of infected cells [52,69]. The cellular immune response is
primarily mediated by CD8+ T cells, which play a crucial role in the surveillance, detection,
and elimination of virus-infected cells (Figure 2) [70–72]. Indeed, T cells have been shown
to play an essential role in the clearance of many respiratory viruses [73–76].
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Upon engagement, the CD8+ T cells become activated and secrete cytotoxic granules (i.e., 
granzymes, perforin) targeting the infected cell to induce its death and produce proinflammatory 
cytokines (i.e., IFNs, TNF, and IL2). Image created with BioRender.com. (Accessed on 14 September 
2022) 
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In contrast, T cell-deficient mice (athymic mice bred on a BALB/c background) or trans-
genic mice lacking MHC-I showed delayed viral clearance and increased mortality [71,79]. 
Most importantly, heterosubtypic immunity, wherein host immune responses to highly 
conserved peptides across all the influenza virus subtypes take place, confers protection 
against infection and disease caused by different subtypes. Although the evidence regard-
ing humans is limited, T cell-mediated heterosubtypic immunity against influenza viruses 
has been confirmed in murine studies. When conserved NP-peptide-specific T cell clones 
(DbNP366 epitope) or H1N1-virus-specific T cell clones were transferred into naïve mice 
and then challenged with different IAV subtypes, these mice showed the early recruit-
ment of T cells in the lung tissues, leading to early viral clearance and increased survival 
[70,80–82]. CTL heterosubtypic immunity has also been confirmed in guinea pigs, in 
which priming with the 2009 pandemic H1N1 virus conferred protection against the 2013 
avian H7N9 IAV [83]. 

In humans, the control of influenza infection by the CD8+ T cells was first described 
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Figure 2. T cell recognition of influenza virus-infected cells. Upon infection, respiratory epithelial
cells and professional antigen-presenting cells (APCs), such as dendritic cells (DCs), process the
viral proteins and present them as peptides in complex with MHC-I on the cell surface. Specific T
cell receptors (TCR) expressed on the CD8+ T cells then recognize these peptide/MHC-I complexes.
Upon engagement, the CD8+ T cells become activated and secrete cytotoxic granules (i.e., granzymes,
perforin) targeting the infected cell to induce its death and produce proinflammatory cytokines (i.e.,
IFNs, TNF, and IL2). Image created with BioRender.com. (accessed on 14 September 2022).

Animal studies have demonstrated the protective role of CD8+ T cells against IAV
infection. When influenza virus-specific CD8+ T cells were injected into naïve mice, they
showed an increased survival and decreased weight loss after being challenged with a
lethal dose of virus, confirming the role of CTL in viral clearance and protection [77,78]. In
contrast, T cell-deficient mice (athymic mice bred on a BALB/c background) or transgenic
mice lacking MHC-I showed delayed viral clearance and increased mortality [71,79]. Most
importantly, heterosubtypic immunity, wherein host immune responses to highly conserved
peptides across all the influenza virus subtypes take place, confers protection against
infection and disease caused by different subtypes. Although the evidence regarding
humans is limited, T cell-mediated heterosubtypic immunity against influenza viruses
has been confirmed in murine studies. When conserved NP-peptide-specific T cell clones
(DbNP366 epitope) or H1N1-virus-specific T cell clones were transferred into naïve mice and
then challenged with different IAV subtypes, these mice showed the early recruitment of T
cells in the lung tissues, leading to early viral clearance and increased survival [70,80–82].
CTL heterosubtypic immunity has also been confirmed in guinea pigs, in which priming
with the 2009 pandemic H1N1 virus conferred protection against the 2013 avian H7N9
IAV [83].

In humans, the control of influenza infection by the CD8+ T cells was first described by
McMichael et al., who demonstrated that the IAV titers and clinical symptom severity were
inversely correlated with the magnitude of the pre-existing anti-influenza CD8+ T cells [84].
Furthermore, studies found that amino acid changes in the major viral NP CTL epitopes
(HLA-B*27:05-restricted epitope NP383–391 (SRYWAIRTR) and the HLA-B*08-restricted
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epitope NP380–388 (ELRSRYWAI)) [85] can rapidly accumulate in vivo, suggesting that
CD8+ CTLs exert selection pressure on the virus [85–89].

The first evidence of heterosubtypic protection against a pandemic strain was de-
scribed by Epstein in the Cleveland family study during the 1957 H2N2 pandemic [90].
The results showed that adults who had laboratory-confirmed H1N1 seasonal influenza
virus infections between 1950 and 1957 were three times less likely to have symptomatic
laboratory-confirmed pandemic H2N2 influenza virus compared to those who were not
previously infected with the seasonal H1N1 influenza virus [90]. Recently, during the 2009
H1N1 influenza virus pandemic, individuals with pre-existing IAV-specific CD8+ T cells
showed a decreased risk of fever, fewer influenza-like symptoms of illness, reduced illness
severity scores, and the absence of viral shedding [17]. In addition, the flu watch cohort
study also observed a positive correlation between pre-existing IAV-specific CD8+ T cells
and less symptomatic IAV infections during three seasonal epidemics and the 2009 H1N1
pandemic, which was independent of baseline antibodies, confirming the heterosubtypic
protection delivered by CD8+ T cells in influenza virus infection [19]. Many other studies
have also described the potential cross-reactive response of the CD8+ T cells to different
influenza virus strains, including the highly pathogenic H7N9 and H5N1 avian influenza
viruses [18,56,82,91–95]. Indeed, H7N9-infected patients with early H7N9-specific, IFN-
γ-producing CD8+ T cell populations recovered more rapidly from severe infection. In
contrast, patients with delayed or absent CD8+ T cell responses had increased morbidity
and mortality [18]. These studies, collectively, confirm the role of the CD8+ T cells in
influenza recovery.

4. Immunodominance and MHC Genotype in the Antiviral Response

Immunodominance is a central feature of immune responsiveness to viruses. It refers
to the phenomenon whereby the antiviral CTL population tends to be dominated by T
cells restricted to a small number of antigenic MHC-peptide complexes (i.e., presenting
immunodominant epitopes) among the available MHC peptides [96]. Indeed, immun-
odominant epitopes have been shown to play a critical role in eliminating virus-infected
cells and contributing to the development of a memory T cell pool so as to combat subse-
quent encounters [96–99]. The mechanism of immunodominance is complex, involving
features associated with (i) epitope abundance, (ii) the proteasomal processing of anti-
gens, with immunoproteasomes playing an important role in the establishment of the
immunodominance hierarchy of CD8+ T cells [100], (iii) IFN-γ production [101], (iv) TCR
repertoire and affinity [102], and (v) the structural features of the antigen (disulfide bonds,
protease-processing sites), all of which contribute to the overall CTL response [103–109].
A number of studies demonstrated that the co-expression of different MHC (or HLA)
allotypes influences both the magnitude and specificity of the CTL response to influenza
infection. Peripheral blood mononuclear cells (PBMCs) isolated from an individual co-
expressing HLA-A2 and HLA-B37 were stimulated with either infectious virus, influenza A
(A/PR8 (H1N1)), or synthetic peptides, HLA-A2-restricted M57–68 and HLA-B37-restricted
NP335–349, and only an HLA-B37-restricted CTL response was observed [110]. Although
the immunodominance of the HLA-A2–restricted response to the conserved IAV M57-68
peptide has been well-established [111,112], the immunodominance of NP335–349 over the
HLA-A2-restricted M57–68 was observed in individuals co-expressing HLA-A2 and B37.
In two separate studies, Boon et al. observed that the magnitude of influenza-A-virus-
specific CTL responses depended on the HLA-A and -B alleles expressed [112,113]. Here,
the frequency of HLA-B8-restricted NP380–388-specific CTLs were 3-fold lower in HLA-
B27+ carriers compared to HLA-B27- individuals (n = 5). Additionally, HLA-A1-restricted
NP44–52-specific CTLs were 3-fold higher in individuals (n = 4) that co-expressed HLA-A1,
HLA-A2, HLA-B8, and HLA-B35, which indicated that the overall CTL response was
influenced by an individual’s complete HLA genotype [112]. In their second study, it was
demonstrated that both HLA-B*08:01 and HLA-A*01:01 influenza-A-virus-specific CTL
responses were much higher in HLA-B*27:05+ and HLA-B*35:01+ individuals [113]. Indeed,
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in the presence of HLA-B*27:05, the magnitude of the HLA-B*08:01-restricted response was
even lower [113]. The effects of different HLA genotypes on immunodominant peptide
presentation was examined by Wu et al. [57]. After comparing the immunogenicity to-
wards the influenza M58–66 epitope in healthy HLA-A*02:01+ donors, they reported that the
response was only immunodominant in three out of eight individuals. The remaining five
HLA-A2+ carriers demonstrated a prominent CD8+ T cell response to the NP380–388 epitope
that was restricted to HLA-B*08:01+ [57]. Indeed, HLA-B allotypes have been shown to
significantly (p = 0.012) generate a more robust polyfunctional (via the production of IFN-γ
and IL-2) CD8+ T cell response to different viral antigens, encompassing HIV-1, CMV, EBV,
and the influenza virus, compared to HLA-A allotypes [114].

Additionally, Quiñones-Parra et al. demonstrated that HLA-A*03:01 NP265–273, HLA-
B*08:01 NP225–233, HLA-B*18:01 NP219–226, HLA-B*27:05 NP383–391, and HLA-B*57:01 NP199–207
epitopes were capable of eliciting robust CTL responses to any IAV strain in individuals
carrying these HLA allotypes. Contrary to this, limited CTL responses were observed in
the ethnicities in which HLA-A*01:01, HLA-A*24:02, HLA-A*68:01, and HLA-B*15:01 are
prominent [115]. Moreover, HLA-B*37:01 showed promising results in presenting different
NP peptide variants capable of producing robust CTL reactivity to protect against H1N1,
pH1N1, H3N2, H5N1, H7N9, and possibly other novel IAV strains [116]. Furthermore,
HLA-A*02:01 PB1413–421 can exhibit universal cross-reactivity across IAV, IBV, and ICV, and
HLA-A*01:01 PB1591–599 and HLA-B*37:01 NP338–345 peptides could exhibit cross-reactive
CD8+ T cell responses in IAV and IBV infections [59].

A recent study reported that serologically defined HLA-A2 homozygous lymphocytes,
in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA
or protein after exposure to the virus. Meanwhile, the HLA-A2 homozygous lymphocytes
could internalize the infectious viruses, and they were not susceptible to lysis by autologous
virus-specific CTLs. Similar findings were also observed in the case of HLA-A1, -A11, and
-B44 homozygous lymphocytes, suggesting that individuals carrying homozygous HLA
class I allotypes may possess lymphocytes that are not susceptible to influenza virus
infection and CTL lysis, which is a unique HLA-associated lymphocyte defense mechanism
against influenza virus [117]. Therefore, the combination of HLA allotypes expressed by an
individual may impact peptide presentation, the modulation of surface expression, and the
competition for overlapping peptides (this can lead to a decrease in the ability to generate a
CTL response). Moreover, HLA carriage can also shape the activation and proliferation of
T cells during infection [112,118–124].

5. HLA Association with Influenza Disease Susceptibility: Population-Based Studies

Population studies examining the HLA-associated influenza pathogenesis provide
critical information regarding disease protection or susceptibility. Global indigenous
population studies have reported higher incidences of morbidity and mortality during
both seasonal and pandemic influenza virus infections than in non-indigenous popula-
tions [125–136]. The lesser degree of HLA diversity exhibited by indigenous communities
is likely to have arisen from an evolutionary bottleneck that established a small ancestral
pool with little HLA diversity. This evolutionary effect is amplified by limited outbreed-
ing to other populations, which may explain the low prevalence of protective HLA (e.g.,
only ~15% HLA-A2 among the Indigenous peoples of Australia) against influenza virus
infection [135]. To analyze the preferential antigen binding and capability of the T cell
responses of different HLA alleles, Hertz et al. introduced a computational prediction tool
called the “targeting efficiency”. This tool analyzes the Spearman correlation coefficient
of a given HLA molecule binding to the conserved regions of a protein [137]. When an
HLA preferentially binds the conserved regions, it provides a positive score, and a negative
score indicates the preferential binding of variable regions. To determine whether the
targeting efficiency is correlated with the CD8+ T cell response in influenza virus infection,
thirteen pH1N1-positive individuals were recruited in the 2009–2010 influenza season
and ranked based on their average HLA-A and HLA-B allele targeting efficiency scores
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over the entire pH1N1 proteome. The enzyme-linked immunosorbent spot (ELISpot) was
used to detect IFN-γ secretion patterns from PBMCs and showed that the HLA targeting
efficiency scores were correlated with IFN-γ spot-forming units (SFUs) in regard to pH1N1
(r = 0.54, p = 0.054) [134]. To assess the broader implications of the targeting efficiency
on the population level, 95 of the most prevalent HLA class I alleles against a wide va-
riety of influenza virus subtypes, including 2009 pH1N1, previously circulating H1N1
and H3N2 subtypes, and H5N1 and 1918 H1N1 subtypes, were computed. The study
identified three HLA alleles (HLA-A*24, HLA-A*68, HLA-A*39) which had a low targeting
efficiency score and, hence, were positively correlated with pH1N1 mortality. The high
prevalence of HLA-A*24 in the Indigenous peoples of Australia (where HLA-A*02:01 (17%),
HLA-A*11:01 (16%), HLA-A*24:02 (22%), and HLA-A*34:01 (24%) account for 79% of the
HLA-A allotypes) may underpin the vulnerability of this population in an influenza virus
pandemic or even cases of seasonal influenza [135]. Another study aiming to examine the
susceptibility to avian influenza virus (H7N9) among different ethnicities identified six
conserved epitopes from the matrix and NP proteins of H7N9 influenza virus, which are
restricted to HLA-A*03:01(NP265

+), HLA-A*02:01(M158
+), HLA-B*27:05 (NP383

+), HLA-
B*57:01(NP199

+), HLA-B*18:01(NP219
+), and HLA-B*08:01(NP225

+), that displayed robust
CD8+ T cell responses. Unfortunately, the identified HLA alleles that produced robust
CD8+ T cell responses were found at a very low frequency in the Alaskan and Australian
Indigenous populations (16%) compared to higher frequency in other ethnicities (African,
37%; European descent, 57%; Oriental, 37%; Amerindian, 36%). Thus, the influenza disease
severity could therefore show an ethnic bias in the face of an H7N9 pandemic [115].

Different HLAs may also be more efficient in presenting specific influenza virus pro-
teins. Most studies have shown that the NP, M, and PA are the sources of most T cell
epitopes in both humans and mice [58,111,138–140]. This result may have some bias, as
these influenza proteins were mostly studied in the context of the most prevalent HLA
alleles, such as HLA-A2. Even then, when Hensen L et al. identified the immunopep-
tides of IAV by LC-MS/MS restricted to HLA-A*24, they discovered that the majority
(62%) of the peptides are from PB1 and PB2, with none derived from the NA or M pro-
teins [141]. These findings highlight the importance of the including PB1- and PB2-derived
peptides in a universal influenza vaccine design so as to cover vulnerable global Indigenous
populations [141].

In a case–control study in the Mexican-Mestizo population, a lower frequency of HLA-
A*24:02:01 in patients compared to asymptomatic contacts suggested a possible protective
effect [142], which conflicts with the low targeting efficiency of HLA-A*24 described by
Hertz et al. [134]. The same study also identified the HLA-A*68:01:01 as a susceptible
allele, as it was found only in the influenza-positive patient group [142], which, again,
corelates with the low HLA targeting efficiency score of HLA-A*68:01 but not the closely
related allotype, HLA-A*68:02 [134]. The examination of the HLA-B allotypes in the same
Mexican population revealed HLA-B*39:06:02 and HLA-B*51:01:05 as susceptible allotypes,
which were observed at a high frequency in individuals who experienced the 2009 in-
fluenza A H1N1 [142]. Additionally, a Northeast Indian study reported that, during the
2009 pandemic, the HLA-A*11 and HLA-B*35 allotypes conferred susceptibility to IAV
(H1N1) [143]. In contrast to these influenza-susceptible alleles, different studies have shown
that HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-B*08:01, HLA-B*18:01, HLA-B*27:05,
HLA-B*37:01, and HLA-B*57:01 present highly conserved influenza viral peptides and
were associated with universal protective CD8+ T cell-mediated immunity [59,115,144].
Although not statistically significant, a higher prevalence of HLA-C*03:02 (3.98% in the
influenza positive group compared to 1% in the influenza contact group) was observed
in the Mexican IAV H1N1/09 patient group. In contrast, HLA-C*03:03 (1.44% patients vs.
5.44% contact), HLA-C*03:04 (4.34% patients vs. 10.66% contact), and HLA-C*07:01 (5.07%
patients vs. 9.33% contact) were reported at lower frequencies in the patient group [142].
There is minimal information regarding the influenza viral epitopes presented by HLA-C,
with only 30 entries in the Immune Epitope Database (IEDB) [145]. Interestingly, com-
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pared to the known GILGFVFTL–HLA-A*02:01 structure (PDB 2VLL), the structure of
GILGFVFTL–HLA-C*08:01 (PDB 4NT6) demonstrated near-identical conformations and
elicited CTL responses in both HLA-A*02- and HLA-C*08-positive individuals [141]. This
finding provided evidence for the degenerate antigenicity between HLA products derived
from separate loci and could provide new insights for the future development of universal
IAV vaccines.

6. Towards a Universal T Cell Epitope Vaccine

The most recent pandemic of severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) and the rapid emergence of novel variants have reminded us how crucial it
is to possess an effective vaccine when the treatment options are limited. The ideal and
most effective vaccine is likely to employ both cellular and humoral immune responses.
Unfortunately, the appearance of the variants of viruses such as SARS-CoV2, IAV, or some
persisting viral infections, such as HIV and hepatitis C, that evade vaccines or pre-existing
antiviral immunity has often raised the issue of the use of antibody-inducing vaccines alone.
The T cells play a critical role in the duration and cross-reactivity of vaccines. Moreover,
pre-existing T cell immunity is associated with the decreased severity of infectious diseases.

The most significant advantage of a T cell-inducing influenza vaccine is based on its
cross-protective capability against different strains, engendered by conserved epitopes.
Substantial progress has been made in the identification of conserved peptides that generate
cross-protective CTL responses across all three influenza virus subtypes [59] or individual
peptides that can generate a robust immune response in vulnerable indigenous popula-
tions [141]. Still, there is a considerable knowledge gap in regard to the formulation of a
universal vaccine due to the complexity of HLA diversity and restricted T cell responses.

In the last ten years, more than 20 T cell-based vaccines have been in various stages of
clinical development, with the majority of studies focusing on NP and M1 epitopes using
different vaccine delivery platforms (Table 1). Notably, most of the vaccines have shown
a promising safety and efficacy via the induction of CD8+ T cell responses. However, no
candidate vaccine has proven to be effective in HLA-diversified populations. Although
some data are available regarding specific HLA (especially HLA-A2), there is limited
information on the magnitude, quality, and breadth of influenza virus-specific T cell
responses in African, Latin American, and Asian populations. Therefore, we must map the
conserved antigenic epitopes across the different HLAs prevalent in diverse populations
to design a genuinely universal influenza vaccine. It is likely that there will need to
develop different formulations so as to address the HLA diversity across global populations,
including the highly vulnerable indigenous people.

Table 1. Universal vaccine candidates in clinical trials (December 2021).

Vaccine Name Target Platform Targeted
Age Group Adjuvant Phase and Major Findings Reference

MVA-NP+M1 NP, M1 Viral vector 50 and over None

Phase I:

• Safe and induces NP- and M1-
specific CD8+IFNγ+ T cells

[146–148]

Phase IIa:

• Increased T-cell-killing capacity

Reduced duration of virus shedding

[149,150]

Phase IIb:

• Completed. Result to be published
[151,152]
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Table 1. Cont.

Vaccine Name Target Platform Targeted
Age Group Adjuvant Phase and Major Findings Reference

M-001 HA, NP,
M1

Recombinant
protein 65 and over Montanide

ISA-51

Phase I/II:

• Well-tolerated and safe
• Enhanced seroconversion
• Significant elevation in influenza-

specific CMI

[153]

Phase II:

• Induced broad protective T cells ef-
fective against different strains

[154]

Phase III:

• Results submitted on 16th June 2021 [155,156]

FLU-v NP, M1,
M2

Peptide-
based

18–40 Montanide
ISA-51

Phase I:

• Safe and well-tolerated
• IFN-γ responses > 2-fold

[157]

Phase II:

• Well-tolerated
• IFN-γ 38.2-fold
• TNF-α 7.0-fold
• IL-2 1.7-fold

[158]

VGX-3400X HA, NA,
NP DNA Unknown None

Phase I:

• Not available [159]

FP-01.1 NP, M1,
P1, P2

Peptide-
based 22–55 None

Phase I

• Acceptable safety and tolerability
• Generated robust anti-viral T cell

responses
[160–164]

ChAdOx1-
NP+M1 NP. M1 Viral vector 18–50 None

Phase I:

• Highly immunogenic and well-
tolerated

[165]

VXA-A1.1 HA Viral Vector 18–49
TLR

Agonist
(dsRNA)

Phase I:

• Well-tolerated
• 4-fold HAI

[166]

Phase II:

• 48% of participants were protected [167]

Avian influenza
virus VLP HA NA Viral vector VLP

Phase I:

• Not available [168]

MER4101 Whole
virus

Attenuated
virus

Phase I:

• Ongoing

VAL-506440 HA Lipid
nanoparticle 18–64

Phase I:

• H10N8–78.3% (HAI) and 87.0%
(MN)

• H7N9–96.3% (HAI) and 100% (MN)
[169]
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Table 1. Cont.

Vaccine Name Target Platform Targeted
Age Group Adjuvant Phase and Major Findings Reference

M2SR M2 Attenuated
virus

Phase I:

• Ongoing [170]

Immunose Flu
HA

Whole
virus

Split virion

Phase I/II:

• Completed
• Results not yet published

[171]

NanoFlu

Phase I/II:

• Completed
• Results not yet published

[172]

Phase III:

• Ongoing [173]

cH8/1N1,
H5/1N1 HA stalk Attenuated

virus 18–39 ASO3A

Phase I:

• High-level cross-reactive serum IgG
antibodies.

[174]

VRCFLUDNA081-
00-VP HA Ferritin

Nanoparticle

Phase I:

• Ongoing [175]

OVX836 NP
Recombinant

protein 18–65

Phase I:

• 10-fold HAI titre [176]

Phase II:

• Ongoing
[177]
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