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� Abstract: Background: DNA replication plays an indispensable role in the transmission of genetic 
information. It is considered to be the basis of biological inheritance and the most fundamental process 
in all biological life. Considering that DNA replication initiates with a special location, namely the 
origin of replication, a better and accurate prediction of the origins of replication sites (ORIs) is essen-
tial to gain insight into the relationship with gene expression. 

Objective: In this study, we have developed an efficient predictor called iORI-LAVT for ORIs identi-
fication. 
Methods: This work focuses on extracting feature information from three aspects, including mono-
nucleotide encoding, k-mer and ring-function-hydrogen-chemical properties. Subsequently, least abso-
lute shrinkage and selection operator (LASSO) as a feature selection is applied to select the optimal 
features. Comparing the different combined soft voting classifiers results, the soft voting classifier 
based on GaussianNB and Logistic Regression is employed as the final classifier. 
Results: Based on 10-fold cross-validation test, the prediction accuracies of two benchmark datasets 
are 90.39% and 95.96%, respectively. As for the independent dataset, our method achieves high accu-
racy of 91.3%. 

Conclusion: Compared with previous predictors, iORI-LAVT outperforms the existing methods. It is 
believed that iORI-LAVT predictor is a promising alternative for further research on identifying ORIs. 
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1. INTRODUCTION 

 DNA replication is considered as the basis of biological 
inheritance and always occurs in all organisms in which 
DNA is the genetic material. This biological process plays 
an important role in maintaining the stability of genetic in-
formation of biological species. Based on one of the origi-
nally double-stranded molecules as a template, it generates 
two exactly the same DNA molecules [1]. DNA replication 
includes three stages: initiation, extension and formation. In 
the initial stage, the replication initiation site is selected, the 
pre-replication complex (pre RC) is assembled, and then the 
activation of pre RC and the initiation of DNA replication 
are completed. In the extension phase, a variety of DNA 
polymerases work together to complete the DNA synthesis. 
In the termination step, the protein recognizes and binds to 
the replication termination site to prevent DNA replication 
and prevent the progress of the replication fork, resulting in 
DNA replication termination. 

 

*Address correspondence to this author at the School of Mathematics and 
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 In the whole process of DNA replication, the effective 
prediction and identification of replication initiation sites 
ensure the authenticity of the DNA replication. The genes of 
parents can be effectively inherited by the offspring to en-
sure biological stability inheritance, which is of great signif-
icance to reproduction and biological evolution. Although 
the replication machinery differs between species, they also 
share some commonalities, such as the origin of replication 
[2, 3]. Therefore, the valid prediction of the origins of repli-
cation sites is important for a further understanding of gene 
expression and regulation during cell division. To some ex-
tent, it could also accelerate the development process of 
specific drugs for diseases due to genome duplication prob-
lems [4-6]. 
 For this purpose, some laboratory methods, including 
chromatin immunoprecipitation (ChIP), ChIP-sequencing, 
DNase I footprinting technique, and electrophoretic mobility 
shift assays, have been employed to identify ORIs [2, 7]. 
Subsequently, to understand the genomic information more 
effectively, some biological sequence data modeling [8, 9] 
methods have begun to be applied to the construction of 
genome data, thus obtaining a large amount of biological 
data. They can also provide a large amount of data basis for 
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many researchers later. However, considering the explosive 
growth of biological sequences and the time-consuming and 
expensive defects of traditional laboratory methods, tradi-
tional experimental methods are not suitable for predicting 
ORIs. In this context, some computational tools have been 
developed and applied to the recognition of ORIs. For pro-
karyotic ORIs, an Ori-Finder system based on Z-curve 
method is constructed by Gao et al. [10, 11] to identify 
ORIs in bacterial and archaea genomes. Subsequently, a 
method based on motif [12] was proposed to identify the 
ORIs in Gammaproteobacteria. Based on the accumulation 
of experimental biological data, a recent review has summa-
rized the development of computational methods for the 
identification of eukaryotic ORIs [13]. Although these com-
putational tools can identify ORIs, they can only predict the 
ORIs of positive samples. Thus, faster and more valid com-
putational methods are urgently needed to identify ORIs. 
 To overcome the defects of above models, some new 
computational methods have been proposed to identify 
ORIs. Chen et al. [14] established the first predictor based 
on DNA structural properties and support vector machine 
(SVM). Then, Type-I PseKNC [15] and Type-II PseKNC 
[16] were proposed using pseudo k-tuple nucleotide compo-
sition and SVM. Soon afterwards, Xing et al. [17] designed 
a predictor using seven feature extraction methods and 
SVM. Subsequently, Do et al. [18] constructed a predictor 
using extreme gradient boosting (XGBoost), FastText and 
PseKNC. Recently, a model named iORI-Euk [19] was pro-
posed by Dao et al., which is based on sequence binary en-
coding and SVM. Furthermore, there are still some relevant 
researches focused on identifying ORIs, such as those of 
Manavalan et al. [20], Wei et al. [21], and iORI-ENST [22]. 
 Although there exist some methods to identify ORIs, 
their prediction performance is not ideal. Driven by previous 
predictors, a new and powerful model named iORI-LAVT 

has been developed for predicting ORIs. Firstly, mono-
nucleotide encoding, k-mer and ring-function-hydrogen-
chemical properties are used to extract sequence infor-
mation. Secondly, LASSO is employed as a feature selection 
to choose the optimal feature set. Finally, the soft voting 
classifier based on GaussianNB and Logistic Regression is 
selected as the final classifier to identify ORIs. After that, 
10-fold cross-validation test and independent dataset test are 
carried out to evaluate the feasibility of our model. In order 
to facilitate the understanding of the readers regarding our 
article, Fig. (1) shows the flow-chart diagram of iORI-
LAVT. 

2. MATERIALS AND METHODS 

2.1. Dataset  

 To establish a statistical predictor, the key step is to se-
lect reliable datasets for the experiment. In this paper, three 
datasets are used to validate our model. Within three da-
tasets, S1 and S2 are training datasets, and S3 is an independ-
ent dataset. S1 is a dataset constructed by Li et al. [15], 
which belongs to the Saccharomyces cerevisiae 
(S.cerevisiae) genome. The first 704 S.cerevisiae ORI se-
quences were derived from the database OriDB 
(http://www.oridb.org/). To ensure that the constructed da-
taset was reliable, we removed those suspected ORI se-
quences and kept only the "confirmed" 410 ORI sequences. 
Then, CD-HIT software [23] was used to eliminate samples 
with more than 75% redundancy and bias. Finally, 405 ORI 
sequences were obtained and 406 non-ORI sequences have 
been obtained in the same way. S2 and S3 are derived from 
Arabidopsis thaliana (A. thaliana) genome and have been 
created by Dao et al. [19]. The experimental samples were 
taken from the database Deori (http://origin.tubic.org/  
deori/). Moreover, CD-HIT software [23] was used to elimi-
nate samples with more than 80% redundancy and bias. S2 

 
Fig. (1). The flow-chart diagram of iORI-LAVT. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle). 
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contains 1015 ORI sequences and 1015 non-ORI sequences, 
and S3 is made of 500 ORI sequences and 500 non-ORI se-
quences. In addition, to retain the information as much as 
possible and reduce the noise of different lengths, the length 
of all the given DNA sequences is 300bp. Table 1 presents 
the composition of the experimental dataset. 

2.2. Feature Extraction 

 Feature extraction is an important step in constructing 
effective predictors. In this process, it converts the original 
biological sequences into digital vectors which can be pro-
cessed by a computer. In addition, with the development of 
bioinformatics, some multi-feature extraction methods have 
been widely applied to various pattern recognitions. Many 
studies have also shown that multi-feature can not only ex-
tract more complete sequence information but also improve 
the performance of the model. In this study, three feature 
extraction methods, including mono-nucleotide encoding, k-
mer and ring-function-hydrogen-chemical properties, have 
been employed to extract the sequence information. 

2.2.1. Mono-nucleotide Encoding 

 Mono-nucleotide encoding is an efficient and popular 
feature extraction method, which can convert the four single 
nucleotides of DNA into a 4-dimensional 0/1 vector, respec-
tively. In this way, A is encoded as (1,0,0,0), C is encoded as 
(0,1,0,0), G is encoded as (0,0,1,0) and T is encoded as 
(0,0,0,1). For example, given a DNA sequence ‘AACGT’, it 
can be transformed into [1,0,0,0,1,0,0,0,0,1,0,0,0,0,1, 
0,0,0,0,1]. In this way, a DNA sequence with the length of 
300 bp is transformed into a 300 * 4 = 1200-dimensional 
feature [24]. 

2.2.2. K-mer  

 K-mer [25, 26] is a common and valid feature represen-
tation method, which represents the local sequence infor-
mation and is widely used in many fields of bioinformatics. 
Given a sequence, k-mer is the occurrence frequency of all 
possible k-tuple nucleotides in the sequence. When the value 
of k is determined, the feature of k-mer is obtained with the 
dimension of 4k.  
Suppose a DNA sequence with the length of L, the feature 
can be obtained by the following formula: 

1 2 4
, , , kM m m m⎡ ⎤= ⎣ ⎦� ,                      (1) 

where, im represents the occurrence frequency of the ith k-

tuple nucleotides in the sequence. And im  is defined as: 

1
i

i
n

m
L k

=
− +  

,  
                                                            (2) 

where, in is the occurrence number of the ith k-tuple nucle-
otides in the sequence.  
For example, when k=2, the feature of 2-mer is: 

( )( ), ( ), ( ), , ( )f AA f AC f AG f TT� ,                      (3) 

where, ( )f XY  is the occurrence frequency of 
{ }( , , , , )XY X Y A C G T∈ in the given DNA sequence and then 

the feature of 2-mer is obtained with the dimension of 16. 
Likewise, 3-mer and 4-mer are obtained using this way. 
However, with the increase of k, the dimension of k-mer 
feature is also gradually increasing, thus leading to distorted 
dimension. Therefore, the value of k is set as 2, 3 and 4 in 
this study. Eventually, each DNA sequence is transformed 
into 

2 3 44 4 4 336+ + = dimensional vectors. 

2.2.3. Ring-function-hydrogen-chemical Properties 
(RFHCP) 

 Any DNA sequence consists of four basic nucleotides: 
adenine (A), cytosine (C), guanine (G) and thymine (T). 
Some studies have shown that the four nucleotides of DNA 
have significant chemical property differences in ring struc-
ture, hydrogen bond strength and functional group [27-31]. 
As far as ring structure is concerned, there are two rings in A 
and G, while one ring is formed in C and T. Based on the 
strength of the hydrogen bond, four basic nucleotides can be 
divided into two groups: A and T, C and G. Considering the 
different functional groups, A and C are amino groups while 
G and T are ketone groups. On the basis of these properties, 
every nucleotide is transformed into ( ), ,i i ix y z : 
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 .     (4) 
 In brief, the four basic nucleotides A, C, G, and T are 
transformed as (1,1,1), (0,0,1), (1,0,0), and (0,1,0), respec-
tively. 
 Considering the relevance of a single nucleotide within 
the DNA sequence, a density method is designed by evaluat-
ing the importance of frequency and position:  

 
( ) ( ) { }
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⎩
∑

 . (5) 

Table 1. The composition of the experimental dataset. 

Dataset ORI Sequences Non-ORI Sequences Total 

S1 405 406 811 

S2 1050 1050 2030 

S3 500 500 1000 
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where, L is the length of the given DNA sequence, iN  is 

the length of the ith string ( )1 2 300, , , , ,iX X X X� �  in the given 

DNA sequence, and ( )jf X  is the occurrence number of 
( ), , ,j jX X A T C G∈ from starting nucleotide to the ith  nucle-

otide. In this way, a nucleotide is expressed as 
( ), , ,i i i ix y z d .  
 For example, a sequence of ‘AACT’ can be transformed 
into [[1,1,1,1], [1,1,1,1], [0,0,1,0.33], [0,1,0,0.25]]. Finally, 
a 1200-dimensional feature is obtained. 

2.3. Least Absolute Shrinkage and Selection Operator  

 Least absolute shrinkage and selection operator (LAS-
SO) proposed by Robert Tibshirani is a compressive estima-
tion method [32, 33]. By constructing an L1 penalty func-
tion, a more refined model is obtained, which compresses 
some regression coefficients and set some regression coeffi-
cients to 0. Therefore, it retains the advantage of subset con-
traction and is a biased estimation for processing complex 
linear data. 

( ) ( ) ( ){ }1 1 2 2, , , , , , ,m mD x y x y x y= � { } 0,1i d ix R y∈ ∈ is a given 

dataset. 
ix  is a data sample, 

iy  is a class label, d  is the 
dimension of the sample and m is the number of the dataset. 
We refined a simple linear regression model with the square 
error as a loss function. The optimization goal is: 

( )
2

2

1

1min min
m

i T i

i
y x y X

mω ω
ω ω

=

− = −∑
                                           (6) 

where, ( )1 2, , ,
TmX x x x= � is a m dR × data matrix, 

( )2, , ,
Ti my y y y= �  is a column matrix consisting of labels, and 

ω is the weight coefficient. Therefore, the problem has an 
analytical solution: 

 ( ) 1T TX X X yω
Λ −
=  .                       (7) 

 If d m> , it is not full rank and there will be infinite 
solutions. We are not sure which is the optimal solution, so 
it is easy for the problem of overfitting to occur. In addition, 
for an ordinary linear model, its complexity is related to the 
number of variables. And the more the variables, the more 
likely for overfitting to occur. Therefore, we need filter vari-
ables to obtain a better performing parameter and reduce the 
complexity of the model. Lasso is a common method, which 
invovles L1 penalty function: 

( )
2

1
1

min
m

i T i

i
y x

ω
ω λ ω

=

− +∑
,                      (8) 

where, ω  is the weight coefficient, λ is the regularization 
parameter, and m is the number of samples. It is equivalent 
to the following formula: 

21min y X
mω

ω−
                       (9) 

s.t. 1
Cω ≤  ,                      (10) 

where, C corresponds to a constant. In other words, we re-
strict the model space by limiting the size of the norm, thus 
avoiding overfitting to some extent. Based on the advantage, 
LASSO is widely used in the field of pattern recognition 
[34, 35]. 

2.4. Soft Voting Classifier 

 Soft voting classifier is an important type of ensemble 
learning, which predicts the probability of different classifi-
ers for a certain class, and then compare their average values 
to select the category of their maximum value as the final 
result. Compared to the traditional single classifier, soft vot-
ing classifier model is more stable and accurate. Therefore, 
the soft voting classifier is also beneficial in constructing 
predictors. In this paper, these classifiers are used to test the 
model, including Logistics Regression [36], GaussianNB 
[37], eXtreme Gradient Boosting [38], Support Vector Ma-
chine [39] and Random Forest [40]. Through a series of 
analyses and comparisons in section 3.3, a soft voting classi-
fier based on GaussianNB and Logistics Regression is es-
tablished for identifying ORIs. 

2.4.1. GaussianNB 

 GaussianNB [37] is a probability method that can make 
predictions based on sample data. The algorithm's essence is 
to classify the given classification items by determining the 
probability of each category under this condition. Finally, it 
is estimated as to which category has the highest probability 
of occurrence. 

 ( ) ( ) ( ){ } { }1 1 2 2  1, , , , , , , ,  0,i d im mD x y x y x y x R y∈ ∈= � is a given dataset, 

where d is the dimension of the feature and m is the number 
of the dataset. ( )1 2, , ,

TmX x x x= � is a m dR × dataset matrix, 

( )2, , ,
Ti my y y y= � is a column matrix consisting of labels. 

Assuming that { }1 2, , , dx x x x= �  is a category to be classi-

fied, then 1 2, dx x x� is the sample x of feature and d is the 
dimension of sample x. While C={ }1 2, , ly y y�  is the possi-
ble category of prediction for the dataset, where l is the 
number of all possible categories. The detailed algorithm 
steps are as follows:  
(I). Calculate the probabilities of different categories in the 
total samples: 

he total number of class ( )
The total number of samples

i
i

T yP y =
 .                                  (11) 

(II). Calculate the conditional probabilities that x belongs to 
each category in turn: 
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   (13)  

where, lyη and lyσ are respectively the mean value and var-

iance of feature item ix in the training sample category jy
. 

(III). Comparing all the conditional probabilities in (II), the 
category of its maximum value is the prediction classifica-
tion result: 

( ) ( ) ( ) ( ){ }1 2| max | , | , , | ,  k l kP y x P y x P y x P y x x y= ∈�    (14) 

2.4.2. Logistic Regression 

 Logistic regression [36], also known as logistic regres-
sion analysis, is a generalized linear regression analysis 
model. It is widely used in the fields of data mining, auto-
matic diagnosis of diseases and economic prediction. Com-
pared to common linear regression, it adds a sigmoid func-
tion and is often used in classification problems. The algo-
rithm principle of logistic regression is as follows: 
a) Constructing a prediction function (a sigmoid function), 
the expression of the function is 

 
( ) ( )1( )     0,1

1
T

T
X

h X g X h
e

θ θθ
θ

−
= = ∈

+                      (15), 

where the optimum parameter is [ ]1 2, , , dθ θ θ θ= � ,
( )1 2, , , mX x x x= �  is a m dR × data matrix, m is the number 

of samples, and d is the dimension of samples. 
b) Establish the loss function of Logistic Regression: 

( ) ( )( )
1

1 Cos ,
m

i i

i
J t h x y

m θθ
=

= ∑
                                    (16) 

( )( )
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( )( )
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log 1    0

h x if y
t h x y

h x if y
θ

θ

θ

⎧− =⎪
= ⎨

− − =⎪⎩

                (17) 

where, ( )2, , ,
Ti my y y y= � is a column matrix consisting of 

labels. 
c) Solve the minimum value of loss function using gradient 
descent method: 

( ) ( ) ( ) ( )( )( )
1

1 log 1 log 1
m

i i i i

i
J y h x y h x

m θ θθ
=

= − + − −∑
    (18) 
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Finally, the parameter update formula is: 

( )( )
1

m
i i i

j j j
i

a h x y xθθ θ
=

= − − ⋅∑
                             (20)  

2.5. Performance Evaluation 

 To further illustrate the feasibility and rationality of our 
model, 10-fold cross-validation test and independent dataset 
testing were adopted to evaluate our model. Here, we have 
analyzed our model with the following four indicators: ac-
curacy (ACC), sensitivity (Sn), specificity (Sp) and Mat-
thew’s correlation coefficient (MCC) [41-54]. The calcula-
tion formulas of these four evaluation indexes are as fol-
lows: 

1

1

1

1

(1 )(1 )

N N
ACC

N N
N

Sn
N
N

Sp
N

N N
N N

MCC
N N N N

N N

+ −
− +
+ −

+
−
+

−
+
−

+ −
− +
+ −

− + + −
+ − − +

+ −

⎧ +
= −⎪ +⎪

⎪
= −⎪

⎪
⎪⎪ = −⎨
⎪
⎪ ⎛ ⎞

− +⎜ ⎟⎪
⎝ ⎠⎪ =

⎪ − −
⎪ + +
⎪⎩            (21) 

where, N +
is the total number of ORI sequences, N −

is the 

total number of non-ORI sequences. N −
+  represents non-

ORI sequences incorrectly predicted as ORI sequences, 

while N +
−  represents ORI sequences incorrectly predicted as 

non-ORI sequences. 

3. RESULTS AND DISCUSSION 

3.1. Comparison of Feature Representation Methods 

 To a great extent, the determination of feature extraction 
methods plays a decisive role in the quality of a prediction 
model. Furthermore, to achieve better results for experi-
mental model, we have carried out three experiments. They 
are MEK, RFHCP, and combined features of MEK and 
RFHCP. MEK is the combination of mono-nucleotide en-
coding and k-mer. Mono-nucleotide encoding represents the 
location information of four single nucleotides in a se-
quence. K-mer is the frequency information of the occur-
rence of all possible K-tuple nucleotides in a sequence. Fi-
nally, we can obtain a 1536-dimensional feature vector by 
MEK. RFHCP involves the information of ring-function-
hydrogen-chemical properties and the relevant information 
of a single nucleotide within a sequence. The feature of 
RFHCP is obtained with a 1200-dimensional feature vector. 
The feature of ‘MEK+RFHCP’ comprises the combined 
features of MEK and RFHCP, and it is a 2736-dimensional 
feature vector. To facilitate the readers’ understanding of the 
observation results, Figs. (2 and 3) have been provided that 
compare the performance of combined feature extraction 
and single feature extraction representation on S1 and S2 
datasets, respectively. It can be clearly seen that the perfor-
mance of the method combining MEK and RFHCP is 
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Fig. (2). The performance comparison of different feature representation methods on S1. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 

 
Fig. (3). The performance comparison of different feature representation methods on S2. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

superior to the single feature representation method. It indi-
cates that the combined feature of MEK and RFHCP can not 
only obtain more DNA sequence information but also im-
prove the prediction result of the model. 

3.2. Comparison Among Various Feature Selection 
Methods 

 Feature selection is a crucial step in the process of mod-
eling. In this work, we have tried to use Principal Compo-
nent Analysis (PCA) [55], mutual_info_classif (MIC), Light 
Gradient Boosting Machine (LGBM) and LASSO [32, 33] 
to reduce the dimension of the model. PCA is a statistical 
method, which transforms a set of variables that may be 
correlated to a set of linearly unrelated variables through 
orthogonal transformation. The parameters of PCA are  
n-components=150 in S1 and n_components=100 in S2. 
MIC is a filtering method that is used to capture the arbi-
trary relationship (including linear and nonlinear relation-

ship) between each feature and the label. The parameter of 
MIC is n_neighbors=3. LGBM is a method of feature selec-
tion by calculating the importance of each feature through 
information gain, and the parameter of LGBM is n-
estimators =100. Fig. (4) shows the experimental results of 
different feature selections. It can be seen from Fig. (4) that 
LASSO has an advantage over other three feature selection 
methods in both S1 and S2 datasets. Therefore, LASSO is 
chosen to reduce the dimension of the feature. In addition, 
the optimal parameters are searched from 0.001 to 0.1 with 
an interval of 0.001. 

3.3. Comparison of Multiple Classifiers 

 There are various methods of machine learning, and 
each method has its own advantage. In order to select a 
more suitable classifier for our model, we first tested the 
familiar classification methods, including Logistic Regres-
sion (LR) [36], GaussianNB [37], eXtreme Gradient Boost-
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ing (XGB) [38], Support Vector Machine (SVM) [39] and 
Random Forest (RF) [40]. The parameters of LR are penal-
ty='l2' and C=1; The parameters of GaussianNB are pri-
ors=None and var_smoothing=1e-09; the parameter of XGB 
is n-estimators =100; The parameters of SVM are C = 1 and 
gamma = ‘scale’; the parameter of RF is n-estimators =100. 
The experimental results of each classifier on S1 and S2 da-
tasets have been compared, as shown in Fig. (5). It can be 
seen from Fig. (5) that LR, GaussianNB and SVM perform 
well in predicting ORIs. These three classifiers exhibited 
88.29%, 89.65% and 87.92% performance metrics on S1 
dataset, and 93.69%, 95.71% and 95.91% on S2 dataset. 
 Considering that the combined effect of multiple classifi-
ers may be better than a single classifier, we carried out soft 
voting on the three classifiers, which are LR, GaussianNB 
and SVM. Then, we put three outstanding classifiers into dif-
ferent soft voting combinations. Table 2 provides the four 
performance metrics of different soft voting classifiers. Syn-
thesizing the results of S1 and S2 in various soft voting classi-
fiers, the soft voting effect of GaussianNB and LR combina-
tion was found to be better than other combinations. In this 

voting classifier, the four performance metrics of our model 
accounted for 90.39%, 89.65%, 91.13% and 81.02% on S1, 
and 95.96%, 96.25%, 95.67% and 91.93% on S2.  
 To judge whether the experimental model is superior to a 
single classifier, the accuracy comparison between the soft 
voting classifier combined with GaussianNB and LR and 
different single classifiers is also shown in Fig. (5). It has 
been proved that the soft voting combination of multiple 
classifiers is indeed better than the single classifier.  

3.4. Comparison with Previous Excellent Predictors 

 In previous studies, many predictors [14-19] have been 
used to predict the origin of DNA replication, but their pre-
diction results are not satisfactory, including Bendabil-
ity+cleavage intensity [14], Type-I PseKNC [15], Type-II 
PseKNC [16], those proposed by Xing et al. [17], Do et al. 
[18], and iORI-Euk [19]. In this paper, iORI-LAVT has been 
improved on the basis of previous research. Table 3

 
Fig. (4). Comparison of accuracy of different feature selection methods.  

 

 
Fig. (5). Comparison of accuracy of single classifier with the voting classifier. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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Table 2. The performance of different soft voting classifiers on S1 and S2. 

Dataset Classifier ACC(%) Sn(%) Sp(%) MCC(%) 

S1 

GaussianNB+LR 90.39 89.65 91.13 81.02 

GaussianNB+SVM 89.77 88.17 91.36 79.80 

LR+SVM 89.03 88.65  89.42 78.29 

GaussianNB+LR+SVM 89.89 89.90  89.90  79.98 

S2 

GaussianNB+LR 95.96 96.25 95.67 91.93 

GaussianNB+SVM 95.81 95.86 95.76 91.63 

LR+SVM 94.43 94.37 94.48 88.93 

GaussianNB+LR+SVM 95.86 96.25 95.47 91.75 

 
Table 3. The comparison results of iORI-LAVT with previous predictors on S1 and S2. 

Dataset Method ACC (%) Sn (%) Sp (%) MCC(%) 

S1 

Bendability+cleavage intensity [14] 80.76 81.23 80.3 61.53 

Type-I PseKNC [15] 83.72 84.69 82.76 67.46 

Type-II PseKNC [16] 87.79 89.63 85.96 75.64 

Do et al. [18] 89.51 85.19 93.83 79.31 

iORI-LAVT 90.39 89.65 91.13 81.02 

S2 

Xing et al. [17] 89.9 90.64 89.16 79.81 

iORI-Euk [19] 93.79 94.78 92.81 87.60 

iORI-LAVT 95.96 96.25 95.67  91.93 

 
Table 4. Comparison with previous predictors on independent dataset S3. 

Method ACC (%) Sn (%) Sp (%) MCC(%) 

iORI-Euk [17] 88.00  91.60  84.40  76.20  

iORI-LAVT 91.30  94.2 88.40  82.74  

 
shows the performance comparison between iORI-LAVT 
and the existing predictors on S1 and S2. On the S1 dataset, 
the four performance metrics were estimated as 90.39%, 
89.65%, 91.13% and 81.02%, respectively. The observed 
improvements in ACC, Sn and MCC accounted for 0.88%, 
0.02%, and 1.71%, respectively, for S1 dataset. On the S2 
dataset, our model exhibited 95.96%, 96.25%, 95.67% and 
91.93% of ACC, Sn, Sp and MCC, respectively, with the 
improvement estimated at 2.17%, 1.47%, 2.86% and 4.33% 
in terms of ACC, Sn, Sp and MCC, respectively. Compared 
to previous methods, the results show iORI-LAVT as supe-
rior to the existing predictors. To test whether the model is 
overfitted, employing an independent dataset test also con-
stitutes an important step. Based on S2, S3 served as an inde-
pendent dataset to verify the mobility of our model. In addi-
tion, Table 4 shows the comparison results of iORI-LAVT 
with previous predictors on the independent dataset S3. The 

four metrics of iORI-LAVT were estimated at 91.30%, 
94.2%, 88.40% and 82.74%, respectively. Thus, it can be 
observed that it outperforms other indicators well on the 
basis of four performance metrics and improves ACC, Sn, 
Sp and MCC by 3.3%�2.6%�4%, and 6.54%, respective-
ly.  

CONCLUSION 

 Efficient prediction of origin of DNA replication sites is 
important for further understanding gene expression and 
regulation during cell division. Although there are models 
for identifying the origin of replication sites, the effect is 
still suboptimal. In this study, we have established a new 
predictor called iORI-LAVT for identifying the origin of 
replication sites, which is based on LASSO selection and 
soft voting classifier. In addition, extraction methods, in-
cluding mono-nucleotide encoding, k-mer and ring-
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function-hydrogen-chemical properties, are utilized to rep-
resent sequence information. Furthermore, 10-fold cross-
validation test and independent dataset test are employed to 
evaluate our model performance. After 10-fold cross-
validation test, the prediction accuracies of S1 and S2 have 
been observed as 90.39% and 95.96%, respectively. As for 
the independent dataset S3, our method achieves high accu-
racy of 91.3%. In contrast with other models, our model 
proves to be an effective tool for prediction of the origin of 
replication sites. 
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