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To understand the functioning and dynamics of microbial communities is a
fundamental challenge in current biology. To tackle this challenge, the
construction of computational models of interacting microbes is an indispen-
sable tool. There is, however, a large chasm between ecologically motivated
descriptions of microbial growth used in many current ecosystems simu-
lations, and detailed metabolic pathway and genome-based descriptions
developed in the context of systems and synthetic biology. Here, we seek
to demonstrate how resource allocation models of microbial growth offer
the potential to advance ecosystem simulations and their parametrization.
In particular, recent work on quantitative resource allocation allow us to for-
mulate mechanistic models of microbial growth that are physiologically
meaningful while remaining computationally tractable. These models go
beyond Michaelis–Menten and Monod-type growth models, and are capable
of accounting for emergent properties that underlie the remarkable plasticity
of microbial growth. We outline the utility and advantages of using bio-
chemical resource allocation models by considering a coarse-grained
model of cyanobacterial growth and demonstrate how the model allows
us to address specific questions of relevance for the simulation of marine
microbial ecosystems, including the physiological acclimation of protein
expression to different environments, the description of co-limitation by sev-
eral nutrients and the differential use of alternative nutrient sources, as well
as the description of metabolic diversity based on our increasing knowledge
about quantitative cell physiology.
1. Introduction
Microbial organisms are integral parts of the Earth’s biogeochemical cycles and
play key roles in almost all environments and ecosystems. Microbes typically
form complex, interacting, and dynamically changing communities, with
examples ranging from marine plankton communities to the human micro-
biome. To understand the organizing principles and the functioning of such
communities is of paramount importance for a vast number of basic and
applied research questions, including questions pertinent to biotechnology, cli-
mate change and human health [1–4]. Despite the significant advances in our
ability to observe and characterize biological systems, however, understanding
the interactions and the emergent dynamics of microbial communities remains
a fundamental, and truly transdisciplinary, challenge [5–9].

Traditionally, ecosystem dynamics and microbial communities are the realm
of microbial ecology, with a long history and a wealth of results concerning the
organization, stability and functioning of (microbial) ecosystems [1,10]. In the
past century, a variety of modelling approaches have been developed to address
fundamental ecological questions, ranging from understanding patterns of bio-
diversity to predicting the response of ecosystems to changing environmental
conditions [5,7,10–12]. In this context, descriptions of microbial growth range
from phenomenological ‘black box’ models to more elaborate trait-based
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models of growth [5,7]. It has been noted, though, that current
theoretical approaches to microbial growth are still dominated
by the classic Monod or Michaelis–Menten functional form
[6,13]. While undoubtedly highly successful, Monod-type
models of growth exhibit a number of limitations. For example,
it has been argued that the constant parameters used in the
Monod equation cannot account for the observed plasticity of
microbial physiology [14]. Likewise, it has been emphasized
that, despite the significant advances in genome sequencing
and quantitative high-throughout methods, the complexity of
mechanistic ecosystem models, and in particular the descrip-
tion of microbial growth within these, have not changed
substantially since they were developed in the 1970s [13].

Parallel to progress in theoretical and experimental
microbial ecology, the past two decades have seen an unprece-
dented advance in our understanding of microbial molecular
physiology—mainly driven by advances in our ability to
monitor, measure and modify the inner workings of cells.
Theoretical and computational descriptions of microbial
metabolism, facilitated by large-scale metabolic network
reconstruction and constraint-based analysis, have become
established tools in molecular systems biology [15–17].
Curated genome-scale reconstructions (GSRs) of metabolic net-
works are available for an increasing number of microbial
organisms [18–20], and are increasingly recognized as a prom-
ising resource for studying metabolic interactions within
microbial communities [2–4,8,9,21,22],

More recently, also the quantitative growth physiology of
bacteria has gained renewed attention, with numerous studies
providing novel insights into the principles of microbial growth
and resource allocation [23–27]. Key observations concern the
‘laws’ and trade-offs of microbial growth. In continuation of
the classic studies of bacterial growth physiology [23], a
number of studies have recently addressed the covariation
between the cellular composition and the growth rate of micro-
organisms [24,25]. Theoretical descriptions of microbial
resource allocation include coarse-grained models that describe
the fundamental processes of cellular growth by partitioning
the proteome into few essential classes [26,28–31], as well as
large-scale constraint-based models that take into account the
costs and benefits of each individual gene [32–35]. In particular,
the concept of resource balance analysis [32,34,36] and related
methods, such as metabolism and macromolecular expression
models [33], metabolic modelling with enzyme kinetics [37],
and conditional flux-balance analysis (FBA) [31], show that
quantitative models that predict quantitative protein expression
are feasible on the genome-scale—and can be extended to time-
varying environments [35,38]. As yet, however, quantitative
modelling of microbial resource allocation is mostly restricted
to well characterized model organisms in typical laboratory
or biotechnological environments.

The purpose of this work is therefore to outline a bridge
between these recent studies on microbial resource allocation
and current models of microbial ecology. We argue that bio-
chemical resource allocation models offer significant potential
to advance ecosystem simulations beyond current applications
of constraint-based analysis of microbial metabolism. In par-
ticular, we seek to demonstrate that biochemical resource
allocation models, as defined below, can be constructed and
parametrized for large classes of microbial organisms based
on available biochemical and physiological data; and are,
unlike Monod-type models, capable of exhibiting emergent
properties of growth, such as photoacclimation or a preferential
hierarchy of nutrient sources. Our study is motivated by recent
calls for a new generation of plankton models to better capture
the emergent properties of marine ecosystems [6,13]. As will be
demonstrated below, biochemical resource allocation models
follow the rationale described by Allen & Polimene [6] to
design a generic cell model that captures the essence of key
physiological activities and that is based on a robust physiologi-
cal formulation of competing physiological activities—and
therefore is able to reproduce biogeochemical and ecological
dynamics as emergent properties.

The paper is organized as follows: in the first section, we
briefly recapitulate computational models of microbial
growth. In the second section, we provide an overview of
metabolic network reconstruction and recent biochemical
models of cellular resource allocation. In the following sec-
tion, we consider a coarse-grained model of phototrophic
(cyanobacterial) growth and describe its parametrization. In
the subsequent section, we discuss properties of relevance
for the simulation of microbial ecosystems, such as metabolic
plasticity, cellular growth laws and co-limitation by several
nutrients, as well as the representation of microbial diversity
and the emergence of a preferred hierarchy of nutrient
uptake. In the sixth and seventh sections, we briefly present
a case study: the co-existence of two phytoplankton species
with a gleaner–opportunist trade-off. In the final section,
we provide a discussion and outlook.
2. Models of microbial growth
Assuming a chemostat-like setting, the growth dynamics of a
population of (genetically homogeneous and well mixed)
cells can be described by an ordinary differential equation,

dr
dt

¼ m � r�D � r, (2:1)

where ρ denotes the concentration of cells (described here in
units of cells per volume), μ denotes the specific growth rate
and D is the dilution or death rate. The specific growth rate μ
is a function of the respective environment, and depends on
the concentrations of one or more nutrients. Typically, a limit-
ing nutrient n with concentration [n] is considered that is
supplied with the inflow of fresh medium at a concentration
[nx]. The respective nutrient dynamics are then described by

d[n]
dt

¼ D � ([nx]� [n])� Y�1 � m � r, (2:2)

where Y denotes the yield coefficient, defined as the number
of microbial cells (or units biomass) per unit of nutrient.

To evaluate the dynamics of the system requires knowledge
of the specific growth rate μ as a function of the concentration
of the limiting nutrient n. To this end, among the most widely
used approaches is to make use of the hyperbolic dependency
proposed by Monod in 1949 [39],

m([n]) ¼ mmax � [n]
KA þ [n]

, (2:3)

where μmax denotes the maximum specific growth rate of
the microorganism in this environment and KA denotes the
half-saturation constant, i.e. the concentration of the limiting
substrate at which the specific growth rate is half the maximal
rate. The Monod equation is identical to the Michaelis–Menten
equation of enzyme kinetics and represents an empirical
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description of microbial growth. Its constant parameters are
typically estimated for specific environmental conditions and
reflect a particular strain or species, and its respective functional
traits relate to nutrient uptake and growth [7,14]. Over the past
decades, there have been several advances and alternative for-
mulations of growth models, such as the Droop model [40]
that introduces internal nutrient quotas. For phototrophicmicro-
organisms, modifications are typically required to account for
the effects of photoinhibition—the decrease of the specific
growth rate for high light intensities [26]. A widely used
equation to describe phototrophic growth in dependence of
the light intensity I is the Haldane equation [16],

m(I) ¼ mmax � I
KA þ I þ (I=KI)

2 , (2:4)

whereKIdenotes the impact of photoinhibition. In the absence of
photoinhibition (KI→∞) the model is identical to the Monod
equation with light as the limiting substrate. See, for example,
Lee et al. [41] for a review on empirical growth models and
their parametrization for different microalgae.

Equations of the form (2.1) and (2.2) have been studied
extensively [10] and are commonly used in ecosystem simu-
lations [5,10,11,42]. The description can be readily extended
to multiple microbial strains with concentrations ρi and sev-
eral nutrients nk. We also note that term ‘nutrient’ refers
here to any compound or variable that may affect the specific
growth rate, including temperature or modulation of growth
by quorum sensing. In this case, knowledge of the functional
forms of all specific growth rates μi in dependence of the vari-
ables is required (typical examples for multi-nutrient rate
equations are discussed below in the section ‘Acclimation,
trade-offs and co-limitation’).

The use of such multi-variable phenomenological rate
equations remains ubiquitous in current models of ecosystems
[7,11,13,14,42,43]. It has been emphasized recently [6,13], how-
ever, that these empirical growth models do not necessarily
reflect our vast recent increase in knowledge about the quanti-
tative physiology of microbial growth. The challenge before us
is therefore to combine the conceptual simplicity of empirical
growth models with molecular properties of microbial growth.
3. Metabolic reconstructions and beyond
Models of microbial growth that incorporate internal structure
and aspects of physiology are not new. Examples include the
(still empirical) model of Droop [40] as well as other ‘internal-
quota’ models—each representing a cell with one or more
internal variables, and typically allowing for adjustments in
the composition of cellular biomass [5]. Likewise, models that
incorporate cost–benefit consideration have been proposed,
most notably by JARaven [44] and RJGeider [45]. In the follow-
ing, we build on these ideas and incorporate recent approaches
to biochemical models of microbial growth [16,17].

In particular, over the past two decades, GSRs of microbial
metabolism have reached maturity and are available for a
rapidly increasing number of (sequenced) microbial organ-
isms [18–20]. GSRs provide a comprehensive account of
biochemical interconversions between small molecules
(metabolites) within a cell or organism. Constraint-based
methods, such as FBA, then allow to efficiently interrogate
GSRs, and thereby enable accurate estimation of the stoichio-
metric and energetic synthesis costs of cellular constituents.
The predictive success of FBA is based on the fact that the
analysis does not require extensive knowledge about kinetic
parameters and regulatory interactions. Rather, the implemen-
tation of FBA and related methods are based only on
knowledge of the stoichiometric matrix (i.e. the GSRs itself)
and typically involve the assumption of evolutionary optimal-
ity: unknown regulatory interactions are replaced by the
assumption that the resulting flux solutions satisfy a given
optimality criterion, such as the maximization of a biomass
objective function [15]. Based on the combination of GSRs
with linear programming, FBA and related methods have
been highly successful to predict maximal growth yields of
microbial organisms and other properties of biotechnological
relevance [15].

Despite their predictive success, however, the convention-
al formulation of FBA also exhibits several shortcomings. In
particular, traditional analyses of GSRs fail to account for
the enzymatic costs required for cellular metabolism, and
hence growth. To this end, among other improvements
detailed elsewhere [46], a new generation of constraint-
based models were recently developed that offer significant
potential to advance our understanding of ecosystems.
4. Models of cellular resource allocation
Building upon GSRs, a new generation of constraint-based
microbial growth models has been developed recently, based
on the concept of cellular resource allocation [32–36]. Different
from FBA, these models aim to predict protein expression and
cell compositions of microbes in specified (albeit, with the
exception of [31,35,38], constant) environments. Resource
allocation models are based on the insight that the (maximal)
flux of an enzyme-catalysed biochemical reaction is typically
constrained by the amount of the respective enzyme. Since
enzymes are themselves the products of metabolism, incor-
porating enzyme-dependent flux constraints gives rise to a
self-consistent description of microbial growth: for any given
growth rate μ the set of cellular enzymes must be sufficient
to sustain the synthesis of the required precursors to allow
for the translation of the set of catalysing enzymes itself,
as well as for the synthesis of all other (non-enzymatic)
compounds within a cell.

In the following, while many of our arguments hold also
for a more general class of resource allocation models [26,28],
wewill focus on a particular implementation of resource balance
models based on linear constraints [31,32,34,35]. These models
are formulated as linear programs (LPs) and are based (only)
on linear constraints between reaction rates and intracellular
macromolecules, and hence can be solved efficiently.

More formally, the models are based on a description of
the intracellular protein allocation of growing cells. The con-
centration of a protein Pk can be described by the equation,

d[Pk]
dt

¼ gk � m � [Pk], (4:1)

where γk denotes the respective translation rate. In steady
state, the translation rate has to match the dilution term
μ · [Pk] of cellular growth (additional protein degradation
can be readily included). The sum of all translation rates is
constrained by the available ribosomal capacity and hence
by the number of ribosomes.
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version in colour.)
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To account for the synthesis of metabolic precursors
and other cellular components, the interconversion of internal
metabolites m is described by a stoichiometric matrix N
and a vector ν that denotes the rates of (spontaneous or
enzyme-catalysed) interconversion rates,

d[m]
dt

¼ N � n� m � [m]: (4:2)

Typically, intracellular metabolism is assumed to be at
steady state and the dilution terms for intracellular metabolites
are neglected due to the high turnover rate of metabolites
compared to their dilution rate by growth. Hence, the mass-
balance constraint on intracellular reaction fluxes simplifies
to N · ν = 0.

To account for biochemical resource allocation, the rates
of those reactions that are catalysed by proteins are con-
strained by the amount of the respective catalysing proteins

nk � kcat,k � Pk, (4:3)

where kcat,k denotes the specific activity of the enzyme or
protein. The maximal uptake rate νT of an external nutrient
nx can be further constrained by the concentration of
the respective nutrient and the amount of the respective
transporter complex PT,

nT � [nx]
KM þ [nx]

� kcat,T � PT : (4:4)

The uptake constraints can be modified, for example, to also
account for diffusion limitations of nutrient uptake as described
by Bonachela et al. [14] by adding an additional constraint.

The constraints and equations summarized above, together
with the assumption of a constant cell density, provide a quan-
titative description of microbial growth. To obtain a prediction
of the growth rate in a specific environment, themodel is solved
using the assumption of parsimonious resource allocation. That
is, the assumption that metabolic fluxes and the corresponding
protein levels are organized such that they give rise to a maxi-
mal growth rate in the respective environment (assumption
of evolutionary optimality). Hence, similar to FBA [15] and
other constraint-based analysis, the assumption of optimality
replaces unknown regulatory mechanisms.

The required parameters for model construction are: (i) the
metabolic network (as encoded in the stoichiometric matrix N
and the associated enzyme–reaction relationships). These data
are available as part of a metabolic network reconstruction;
(ii) the composition of the catalysing enzymes (in terms of
amino acids and possible co-factors). For most enzymes this
information is readily available and part of reaction databases;
as well (iii) as the specific activity kcat of each catalysing
enzyme and, if required, the half-saturation constants for trans-
porter reactions. While quantitative data are still scarce, in
particular for non-model organisms, specific activities for a
wide range of enzymes can be sourced from suitable data-
bases, such as BRENDA [47], and are therefore (at least
approximately) available. As we have argued previously
[31,35], reasonable estimates for all required parameters exist.

We note that the respective models may involve different
levels of complexity: the biochemical resource allocation
model can be constructed on a genome-scale. That is, the
models include all known individual enzymatic reaction
steps of the respective organisms, see for example Goelzer
et al. [34] or Reimers et al. [35]. Alternatively, to reduce the
computational burden, simplified models can be constructed
by defining coarse-grained enzyme complexes that represent
classes of reactions or pathways, see for example Rügen et al.
[31]. The definition of coarse-grained enzyme complexes, how-
ever, entails an approximation that has to reflect the specific
research question—and general rules are currently not estab-
lished. For future work, we envision automated
stoichiometric reduction algorithms (i.e. the merging of
several individual enzymatic steps into coarse-grained meta-
bolic processes) that preserve desired functionalities of the
network. Such algorithms were recently developed for
genome-scale metabolic reconstructions [48], but have yet to
be adapted for resource allocation models.

In the following, irrespective of their size, we refer to the
class of models outlined above as biochemical resource allo-
cation models (BRAMs). Computationally, for any given
growth rate, the resource allocation model gives rise to a LP
and hence can be solved efficiently. The maximal growth
rate is then identified using bisection, see Material and
methods for computational details.
5. A model of phototrophic growth
To exemplify the utility of BRAMs for microbial ecology, we
consider the construction and analysis of a coarse-grained
model of cyanobacterial growth. Model reduction was
based on previous works [26,31,35,49] to reflect the core limit-
ations of phototrophic growth by light, nitrogen and
inorganic carbon. The model is depicted in figure 1 and con-
sists of a light harvesting reaction, five metabolic reactions
involving six internal metabolites, as well as eight catalysing
protein complexes and their respective translation reactions.
In brief, inorganic carbon (Cx) is taken up using an energy-
dependent transporter (TC). Intracellular inorganic carbon is
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assimilated into organic carbon (C3) using inorganic carbon
concentrating mechanisms and the Calvin–Benson cycle
(CB). The metabolic intermediate C3 is converted into
amino acids (AA) by a coarse-grained metabolism (MC).

The biosynthesis of amino acids requires a source of nitro-
gen (N) that is taken up from the environment using an
energy-dependent transporter and associated nitrogen
metabolism (TN). For amino acid synthesis, we assume a
N : C ratio of ∼1/3 (the cellular N : C ratio is lower due to
the remaining non-protein biomass component Q). Light har-
vesting and the photosynthetic electron transport chain are
represented by a coarse-grained photosynthetic unit (PSU).
The PSU protein complex regenerates cellular energy units e
(combining ATP and the reductant NADPH into a single
energy unit). Amino acids are translated into proteins by
ribosomes (R), which are themselves protein complexes.
The fraction of non-enzymatic proteins is represented by a
(quota) protein component PQ. The remaining biomass is
lumped into a metabolic component Q that is synthesized
from the cellular precursor C3 by the protein complex MQ.
All proteins complexes represent aggregates of individual
proteins. The model assumes a constant cellular density.
The specific growth rate does not directly depend on cell
size, but cell size may constrain certain parameters, such as
the surface to volume ratio. The full set of equations is
provided in the Material and methods.

All enzyme-catalysed reactions are constrained by the
amount of the respective enzymes. For example, carbon
uptake is constrained by the equation

nTC � [Cx]
KC þ [Cx]

� kcat,TC � [TC], (5:1)

where [TC] denotes the amount of uptake transporter (in mol-
ecules per cell), kcat,TC denotes the specific catalytic activity of
the transport and KC denotes the half-saturation constant of
the uptake complex. We note that equation (5.1) provides
an upper limit only, the actual flux can be less (for example
by inactivating a fraction of the uptake transporter). Likewise,
additional constraints can be included, such as an upper limit
on the uptake flux induced by diffusion limitations [14].
Intracellular reactions are similarly constrained by the
maximal catalytic capacities of the respective enzymes and
their amounts, e.g. for the carbon assimilation reaction

nCB � kcat,CB � [CB]: (5:2)

The model is parametrized using information about the
individual enzymatic and biochemical processes. Using data
from Faizi et al. [26], the effective size of the (coarse-grained)
protein complexes can be approximated by the number of
enzymes involved in amino acid synthesis multiplied by the
average size (in units of amino acids) per enzyme. Catalytic
turnover numbers kcat are assigned according to typical
values for the respective reactions. For example, the rate of
translation per ribosome is approximately 20 amino acids
per second, the photosynthetic unit (with photosystems II as
rate limiting complex) is assumed to give rise to approximately
250 interconversion per second, the kcat,TC of the carbon trans-
porter is set to 20 s−1, the catalytic activity of central
metabolism (protein complex MC) is set to kcat,MC = 10 s−1.
Reasonable parameter ranges for many enzymatic processes
(for a generic cell) can be obtained, for example, from Milo
& Phillips [50]. The full set of parameters used in the following
is provided in the Material and methods.

Given the stoichiometric constraints and the assigned par-
ameters, the model gives rise to a computational optimization
problem. The optimization problem can be solved as a series
of LPs to identify the maximal specific growth rate μ in
dependence of the availability of extracellular nitrogen and
carbon and light intensity I (assumption of evolutionary
optimality). Figure 2 shows the resulting growth curves as
a function of environmental parameters. Similar to previous
models [26], the resulting growth curves with respect to
external nitrogen (Nx) and carbon (Cx) concentrations are con-
sistent with Monod kinetics, the dependence of the specific
growth rate on the light intensity is consistent with the Hal-
dane equation. Figure 2 shows the respective comparison of
the growth rate with the phenomenological rate equations
(2.3) and (2.4).

We note that the growth curves shown in figure 2 are emer-
gent properties of the underlying constraints and parameters,
i.e. they result as a consequence of the constraints and par-
ameters that characterize the individual biochemical process.
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Table 1. Cellular protein allocation in dependence of environmental conditions. Values denote the relative abundance (% relative to total proteome) of protein
complexes under low and high nutrient conditions. The abbreviations are as in figure 1.

low high

protein nitrogen carbon light nitrogen carbon light

TC 26.5 25.4 9.0 34.2 1.8 34.8

TN 15.2 9.4 2.4 0.9 14.8 9.4

PSU 23.2 30.2 53.5 29.9 47.8 20.8

R 5.0 5.0 5.0 5.0 5.0 5.0

PQ 20.0 20.0 20.0 20.0 20.0 20.0

CB 8.3 7.8 9.4 7.8 7.1 7.8

MC + MQ 1.7 2.2 0.6 2.2 3.5 2.2
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While the dependencies on single nutrients are (in this case)
similar to the respective phenomenological rate equations,
changes inmodel constraints and parameters entail (sometimes
complex) changes in overall growth properties. For example,
the apparent half-saturation constants of the organismal
growth curves are markedly different from the half-saturation
constants of the respective transporter complexes, due to the
fact that cells can acclimate to low nutrient conditions by
changing the expression of the respective protein complex.
More importantly, biochemical resource allocation models
allowus to further address trade-offs in protein allocation, limit-
ations by multiple nutrients, including hierarchies of nutrient
uptake, as well as other properties relevant for computational
models in microbial ecology.
6. Acclimation, trade-offs and co-limitation
Biochemical resource allocationmodels go beyond phenomen-
ological rate equations, and provide insights into acclimation,
co-limitation and cellular trade-offs. In particular, concomitant
to the overall cellular growth rate, we obtain the distribution
of protein resources within the cell as a function of the
environmental parameters.

Figure 3 and table 1 show the relative protein fractions
invested into the different biochemical processes in depen-
dence on the environmental conditions. The resource
allocation framework allows cells to acclimate to the respective
environmental condition and to invest cellular resources into
processes that would otherwise limit growth. For example,
the maximal uptake rate of the nitrogen transporter complex
(Vmax ¼ kcat,TN � [TN]) and hence the affinity A =Vmax/KN for
the extracellular nitrogen source is not constant, but increases
with decreasing concentrations of the extracellular nitrogen
source. Figure 4a shows the maximal uptake rate Vmax, as
well as the actual nitrogen uptake flux, as a function of avail-
able extracellular nitrogen. Similar to the analysis by
Bonachela et al. [14], and unlike descriptions using the
Monod equation, the model accounts for the acclimation of
the cell to low nutrient availability—with important
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consequences for the estimation of phytoplankton abundances
in global ocean models. Likewise, protein investments in light
harvesting strongly depend on the light intensity, at the
expense of investments in other metabolic processes (figure 3
and table 1).

Importantly, several recent experimental studies on cyano-
bacterial growth physiology are in good agreement with the
predictions of biochemical resource allocation model [27,51],
with changes in protein allocation in vivo approximately
matching in silico predictions. We therefore consider the pre-
dictions from biochemical resource allocation models to be a
reasonable starting point also for ecological simulations.

Another challenge for phenomenological growth models
is to describe the dependence of growth on several potentially
limiting nutrients, see Saito et al. [52] for a discussion on the
concept and types of co-limitation. The most common
approaches to implement multiple limitation scenarios rely
on either Liebig’s law of the minimum,

m ¼ min
mmax
1 [n1]

Km1 þ [n1]
,

mmax
2 [n2]

Km2 þ [n2]

� �
, (6:1)

or the multiplicative form

m ¼ mmax � [n1]
Km1 þ [n1]

� [n2]
Km2 þ [n2]

, (6:2)

where [n1] and [n2] denote the concentrations of two
potentially limiting nutrients and Km1 Km2 the respective
half-saturation constants, respectively. As discussed by Saito
et al. [52] both functional forms are not without problems
and there is no clear empirical evidence to assess the merits
of either representation. Given its simplicity, the multiplicative
form is commonly employed in multi-nutrient models [11,42].

For biochemical resource allocation models the descrip-
tion of growth limitations as a function of two or more
nutrients emerges without further assumptions about the
functional form of growth equations. As expected, the
coarse-grained model described above is not consistent
with Liebig’s law of the minimum: growth on a single nutri-
ent, as shown in figure 2, does not exhibit any hard threshold.
The absence of such a threshold is due to the fact that, for
scarce nutrients, resources are increasingly invested into the
respective uptake reactions—hence the limitation between
two limiting nutrients is not independent.

More importantly, however, the interdependence of growth
limitations by two nutrients implies that the emergent growth
curve is also not consistent with the multiplicative functional
form: figure 4b shows a Lineweaver–Burk plot of the growth
rate as a function of nitrogen availability for different values
of the external carbon concentration. Parallel lines in a Line-
weaver–Burk plot correspond to non-competitive inhibition,
whereas the multiplicative functional form of equation (6.2)
would result in lines with an identical x-intercept. Hence, the
absence of carbon acts analogous to uncompetitive inhibition,
and affects both the apparent organismal half-saturation
constant of growth as well as the maximal growth rate of
the cell—again with important consequences when modelling,
for example, growth limitations and nutrient dynamics
in coupled ecosystem models. While we are not aware of
dedicated growth studies to quantitatively investigate the
functional dependencies of co-limitation in cyanobacteria,
the plasticity of metabolism and re-allocation of proteins
makes the strict multiplicative dependence of equation (6.2),
as assumed in most current models, highly implausible.
7. Metabolic diversity and the cost of regulation
Recent studies have emphasized the representation of microbial
community diversity as a fundamental requirement of model
ecosystems [5]. Several principles and mechanisms can be
used to describe microbial diversity in biochemical resource
allocation models. A shown above, cells may acclimate to differ-
ent environmental conditions, resulting in an inhomogeneous
population. If required, the possibility for physiological acclim-
ation can also be restricted within simulations. For example,
depending on its evolutionary history, a strain might not be
able to access the full range of possible proteins allocated
(such a restriction would, for example, be expected for cyano-
bacterial Prochlorococcus strains). The model definition may
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account for this fact by allowing only limited concentration
ranges for certain intracellular protein complexes.

Beyond different acclimation states, however, cellular
diversity also arises due to genetically encoded differences
between organisms. Firstly, microbial organisms exhibit
metabolic diversity with respect to the encoded metabolic
functionality within their genomes. As shown by recent
studies of the cyanobacterial pan-genome and pan-metab-
olism [53–55], genome sizes differ significantly—reflecting
the different adaptations and lifestyles of organisms. Differ-
ences in the set of encoded proteins correspond to different
metabolic strategies that are accessible to an organism. For
example the accessible modes of energy generation depends
on the genetic repertoire of strains [56]. Likewise the accessi-
bility of different nutrient sources may be restricted by the
lack of the respective transporter proteins. Secondly, diversity
may arise due to differences in enzyme-kinetic parameters.
The evolution of enzyme-kinetic parameters is constrained
by physico-chemical limits that result in trade-offs between
parameters. The protein complex ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO) is a prominent example
[57]. As will be shown below, such differences and trade-
offs between parameter values may give rise to different
cellular growth curves.

To illustrate how BRAMs may represent such genetic
diversity, and to illustrate the functional consequences of
different metabolic strategies in model simulations, we con-
sider the uptake of two alternative sources of extracellular
nitrogen. We assume that, in addition to the nitrogen source
Nx considered above, there is a second source of extracellular
nitrogen Ny that is permanently available in the environment
(analogous to, e.g. atmospheric dinitrogen). The uptake of the
permanently available nitrogen source Ny and its conversion
to the intracellular nitrogen precurser N is facilitated by a set
of proteins that is represented in our models by a coarse-
grained protein complex TY. The synthesis of the protein
complex TY, however, requires more amino acids and its cata-
lytic turnover number is lower, as compared to the complex
TN. Within their genome, the cyanobacterial strains may
either encode one of the two (coarse-grained) uptake protein
complexes, TN or TY, or both. The respective strains are
denoted as (TN)-strain, (TY)-strain and (TN + TY)-strain. The
inclusion of both protein complexes within a single genome
entails additional cellular costs: a larger genome corresponds
to a (slightly) higher fraction of the non-protein biomass Q.
In addition, further protein machinery is required to facilitate
cellular decisions that control the expression of both enzyme
complexes. The increased protein machinery is represented
by an increased fraction of non-catalysing (quota) proteins
PQ. The exemplary parametrization of the three strains is
provided in the Material and methods.

Figure 5a shows the growth curves of all three strains as a
function ofNx in the presence of a constant basal availability of
Ny (figure 5a). Figure 5b shows the expression of the respective
uptake complexes for the (TN + TY)-strain harbouring both
uptake complexes. As expected, the (TY)-strain exhibits a con-
stant growth rate, due to the constant basal availability of NY.
The (TN)-strain exhibits a Monod-type dependence on the
availability of Nx, as already shown in figure 2. The combined
(TN + TY)-strain, however, exhibits a switch between two
growth regimes: for low availability of external Nx, the strain
expresses the protein complex TY and uses the nitrogen
source NY. In this regime, the (constant) specific growth rate
is slightly below the rate observed for the (TY)-strain due to
the increased burden of non-catalytic biomass. If the avail-
ability of Nx exceeds a certain threshold, the (TN + TY)-strain
switches its preferred nitrogen source and expresses the
protein complex TN. The growth rate then increases with
increasing availability of Nx, but always remains below the
growth rate of the (TN)-strain (again due to the increased
burden of non-catalytic biomass). Hence, we expect that the
(TN + TY)-strain will be outcompeted in any constant environ-
ment, but will have a competitive advantage in (some)
environments with variable nitrogen availability.

For our purposes, the example serves to illustrate the follow-
ing points: (i) biochemical resource allocationmodels allowus to
represent genetic diversity within strains, including differences
in genome size and genomes that encode several potential
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metabolic strategies; (ii) the associated costs of larger genomes,
including the costs for additional expression of regulatory
proteins can be incorporated into the parametrization of the
model (see also Lynch & Marinov [58] for a discussion on the
bioenergetic costs of a gene); (iii) the optimal metabolic strategy
for any given environment does not have to be specified in
advance but is an emergent outcome of model simulation.
Strains may switch between different strategies depending on
the environment—with important implications for ecosystem
models; (iv) within simulations, cells typically exhibit a hierar-
chy of preferred nutrients. That is, if two nutrient sources
are available in the environment, these might either be sequen-
tially consumed (with a preferred nutrient first) or they are
simultaneously consumed. Such behaviour is non-trivial to
represent within phenomenological Monod-type growth
models but emerges naturally for resource allocation models,
as recently shown by Wortel et al. [59] and Müller et al. [60]. A
recent study highlights this fact [61] and argues that arguments
based on optimal protein allocation indeed enable prediction of
microbial nutrient uptake hierarchies in good agreement with
experimental observations. The fact that BRAMs can represent
and predict such hierarchies in nutrient uptake has again
implications for the simulation of ecosystem models.
8. A case study: seasonal variation and
co-existence

To exemplify the use of BRAMs within ecosystem simu-
lations, we consider a model of phytoplankton diversity
recently proposed by Tsakalakis et al. [42]. In the following,
we do not aim to recapitulate the full study of Tsakalakis
et al. [42], but focus only on the competition outcomes
between different strains of phytoplankton in a constant
versus a time-varying environment.

As shown above, the growth physiology of BRAMs is an
emergent property of the underlying biochemical parameters.
We therefore assume that the biochemical parameters of
carbon uptake, as well as nitrogen uptake and metabolism,
differ between strains—reflecting microbial diversity of
strains. As noted above, our premise is that enzyme-kinetic
parameters are subject to physico-chemical trade-offs, for
example trade-offs between the half-saturation constant and
the maximal catalytic rate of an enzyme. We emphasize
that such trade-offs are not an outcome of our modelling
approach but need to be specified independently, for example
based on detailed biochemical surveys and analysis [57].

In the following, we consider two strains of cyanobacteria
(or other phytoplankton). The differences between both
strains reflect trade-offs between the maximal specific cataly-
tic activities and the substrate affinities in the protein
complexes involved in carbon and nitrogen uptake. The para-
metrization of both strains is provided in Material and
methods and table 2. Differences in parameters give rise to
two functional groups of phytoplankton, gleaners (K-strate-
gists) and opportunists (r-strategists). The respective growth
curves are shown in figure 6. Gleaners are characterized by
a higher affinity towards extracellular nitrogen, and an over-
all lower maximal growth rate. Opportunists are
characterized by a high overall specific growth rate, but a
lower affinity for extracellular nitrogen.

Following Tsakalakis et al. [42], we simulate the growth of
both strains in two different environments: a constant light
environment (control) and an environment with seasonal vari-
ations in average light intensity. Extracellular inorganic carbon
is assumed to be constant, a (single) source of extracellular
nitrogen is supplied via a constant influx. The dynamics of
the abundances of gleaners (ρG) and opportunists (ρO) are
described by the following ODEs

drG
dt

¼ mG � rG �D � rG
drO
dt

¼ mO � rO �D � rO,

)
(8:1)

and the dynamics of external nitrogen is described by

d[Nx]
dt

¼ VN �D � [Nx]� nn,O � rO � nn,G � rG, (8:2)

where VN denotes a constant influx, and νn,O and νn,G denote
the specific cellular uptake rates (as emergent properties of the
respective models) of external nitrogen by the gleaners and
opportunists, respectively. The population dynamics of both
strains in constant and time-varying environments are
shown in figure 7. Simulations were performed using a
Python ODE solver, the growth models are implemented a
(series of) LP problems and solved at each time step. The pro-
cedure is computationally similar to dynamic FBA (dFBA), an
established method for constraint-based analysis [66]. See
Material and methods for details.

As shown in figure 7, gleaners outcompete opportunists in
a constant light environment, consistent with the competitive
exclusion principle. Seasonally changing light intensities,
however, induce changes in strain abundances, and hence
nitrogen availability. Temporal changes in nitrogen avail-
ability then result in the co-existence of both strains. During
periods of low light availability, overall strain abundance
decreases and the availability of extracellular nitrogen
increases. With increasing light intensities, opportunists have
a competitive advantage and quickly increase in abundance,
thereby decreasing the availability of extracellular nitrogen
and shifting the competitive advantage to gleaners until a
decreasing light intensity restart the cycle. The simulation
results are consistent the corresponding simulations of Tsaka-
lakis et al. [42] and demonstrate the feasibility of using
biochemical resource allocation models to generate diverse
microbial populations for ecosystem simulations.
9. Discussion and outlook
As noted by Follows & Dutkiewicz [5], there is currently a vast
chasm between the ecologically and biogeochemically oriented
parametrizations of growth used in ecological modelling and
the metabolic-pathway perspective of microbial growth orig-
inating from systems biology and modern genomics. The
purpose of this study was therefore to outline the manifold
connections between both fields and to show how recent bio-
chemical models of microbial growth may contribute to close
the chasm. To this end, we described recent computational
models of microbial growth that are based on a description
of cellular resource allocation [17,26,30,32,35]. These models
allow us to obtain a quantitative account of protein expression
that constrain biochemical processes and growth.

The aim of our study was to heed the call of Allen &
Polimene [6] to provide growth models based on a robust
physiological formulation that allow for trade-offs between



Table 2. Parameters of the model. The parameter values follow the data used in Faizi et al. [26]. If no data were available in the literature, the remaining
parameters are estimatedS based on generic values. The column for ‘Gleaner’ represents the default values.

symbol definition gleaner/default opportunist source

Vcell cell volume (μm3) 1.8 1.8 [62]

D rate of dilution (d−1) 0.25 0.25 [63]

d average cell density (aa cell−1) 1.4 × 1010 1.4 × 1010 [26]

kd rate of photo damage 0.56 0.56 S

σ effective absorption (m2 μmol PSU−1) 0.2 0.2 S

nPSU size of photosynthetic unit PSU (aa molec−1) 95 451 95 451 [26]

nTC size of carbon transporter TC (aa molec
−1) 1681 1681 [26]

nCB size of Calvin–Benson (CB) proteins (aa molec−1) 2000 2000 S

nc size of carbon metabolism (MC) proteins (aa molec
−1) 20 000 20 000 S

nTN size of nitrogen transporter TN (aa molec
−1) 10 000 10 000 S

nP size of protein P (aa molec−1) 1000 1000 S

nq size of metabolism protein MQ (aa molec
−1) 20 000 20 000 S

nR size of ribosome R (aa molec−1) 7358 7358 [26]

γmax maximal translation rate (aa s−1 molec−1) 22 22 [64]

KC half-saturation constant of TC (μM) 15 15 [65]

KN half-saturation constant of TN (μM) 10 50 S

kcat,PSU catalytic activity of PSU (s−1) 250 250 [50]

kcat,TC catalytic activity of TC (s
−1) 20 200 S

kcat,CB catalytic activity of CB (s−1) 1 1 S

kcat,MC catalytic activity of MC (s
−1) 10 10 [50]

kcat,TN catalytic activity of TN (s
−1) 50 200 S

kcat,P catalytic activity of PQ (s
−1) 100 100 S

kcat,Q catalytic activity of MQ (s
−1) 100 100 S

Q relative abundance of Q w.r.t. biomass 0.5 0.5 S

PQ relative abundance of PQ w.r.t. total proteome 0.2 0.2 S
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Figure 6. The growth curves of two competing strains of phytoplankton,
opportunists and gleaners, in dependence of external nitrogen availability
Nx. The strains differ in the enzyme-kinetic parameters of their constituent
enzyme complexes. Gleaners (K-strategists) have a growth advantage
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resource allocation of competing physiological activities. We
propose that biochemical resource allocation models, such
as the ones described here, fulfil this paradigm towards a
new generation of plankton models. While mechanistic
growth models [67], resource-allocation and cost–benefit
analysis [5,7,44,45], as well as models based on optimality
[68,69], are well established in ecological modelling, bio-
chemical resource allocation models directly build upon
metabolic network reconstruction and constraint-based
analysis—and therefore reflect the advances in quantitative
growth physiology. The predictions from biochemical
resource allocation models are often in excellent agreement
with detailed physiological and biochemical studies of
model strains [27,34,51]. The premise of our study is therefore
that these model are a suitable and reasonable starting
point for the description of microbial growth also within
ecosystems simulations.

Biochemical resource allocation models can be formulated
for almost all microbial strains for which a reference genome is
available. Supported by recent analysis of the cyanobacterial
pan-genome [53–55], and the diversity of energy metabolism
in microbes [56], we hypothesize that such models will
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follow a modular paradigm: there is only a limited number of
fundamentally different metabolic strategies available and
microbial organisms are a mix-and-match conglomerate of
these strategies (with many combinations excluded for bio-
physical or energetic reasons). The enormous diversity of
microbial metabolism then arises from further variations and
adaptations of biochemical parameters (including physico-
chemical trade-offs), as well as from differences in cellular
resource allocation. For example, recent studies indicate that
the observed significant differences in the maximal specific
growth rates between genetically similar cyanobacterial strains
are linked to differences in resource allocation strategies (such
as the amount of storage compounds or differences in the
PSII/PSI ratio), see Zavrěl et al. [27] for a brief discussion.

In this study, our aim was not a comprehensive review of
computational resource allocation models, but rather to high-
light the specific aspects and properties that are of particular
importance in simulations of ecosystems, specifically acclim-
ation to different growth environments, co-limitation, and the
representation of metabolic diversity. In this respect, the
merits of biochemical resource allocation models are as follows:

— BRAMs can be formulated using different levels of com-
plexity, ranging from GSRs that take into account the
comprehensive set of cellular proteins and enzymes
[34,35], to intermediate representations [31] and smaller
coarse-grained models that describe protein complexes
that correspond to (agglomerated) cellular processes (an
example of the latterwas provided in thiswork).While sys-
tematic rules for model reduction are still lacking, we
envision algorithmic approaches, similar to the method
of Erdrich et al. [48], that facilitate the construction ofmean-
ingful coarse-grained models is a semi-automated way.

— Model parametrization can be based on available bio-
chemical knowledge provided in databases, such as
BRENDA [47], as well as on our increasing knowledge
about quantitative cell physiology [50]. The models
therefore provide a link between the physico-chemical
constraints of enzyme-kinetic parameters and observed
growth kinetics. Key quantities for model parametriza-
tion are enzyme costs (in terms of amino acids and
cofactor requirements) and enzymatic catalytic activities.
Information about regulatory mechanisms is not
required, but may be added as an additional constraints.

— BRAMs allow us to represent metabolic diversity by taking
distributions of parameters (and possible physico-chemical
trade-offs between them) into account. Biochemical
resource allocation models therefore enable imple-
mentation of selection-based approaches—following the
Baas-Becking paradigm ‘everything is everywhere but
environment selects’ (cited after Follows&Dutkiewicz [5]).

— The analysis of biochemical resource allocation models
reveals complex metabolic behaviour, such as switches
between different metabolic strategies. Most microbes
are capable of more than one metabolic strategy and phe-
nomenological Monod-type models face difficulties to
describe transitions between different metabolic strat-
egies. For biochemical resource allocation models the
modes of energy generation or nutrient uptake strategies
(and their respective hierarchies) emerge as part of the
optimization procedure without further specification.

— The latter fact also enables consideration of resource allo-
cation models from an evolutionary perspective to
explain how different metabolic strategies and strains
with different genome sizes emerge and coexist. Likewise,
while the trade-offs affecting individual biochemical par-
ameters are not an outcome of the analysis, the models
can provide insights into what factors shape the trade-
offs in kinetic parameters within their physico-chemical
limits, for example under which environmental conditions
would a faster catalytic rate of an enzyme outweigh a
reduced specificity?

— Biochemical resource allocation models of the mathemat-
ical form discussed here only require linear optimization
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and hence are computationally tractable. While it is (cur-
rently) not possible to formulate kinetic models at the
genome-scale, the implementation of biochemical resource
allocationmodels is computationally feasible even for large
models [34,35]. Coarse-grainedmodels, such as the one dis-
cussed above, can typically be solved fast and efficiently
and hence are suitable for ecosystems simulations. In case
computational capacity is limiting, it is possible to devise
approximate computational schemes (such as lookup
tables and interpolation). We note, however, that not all
possible constraints may be formulated as a LP problem.

Despite their merits, however, current biochemical
resource allocation models are not (yet) the panacea for eco-
logical simulations. We expect that diverse approaches are
still needed, along with further improvements of biochemical
resource allocation models and other whole-cell systems
biology models. In particular, current biochemical resource
allocation models may be extended and improved along the
following lines: (i) current simulations typically focus on
steady state analysis.While it has been shown that biochemical
resource allocation models can be solved for time-varying
environments [31,35], the computational burden is still signifi-
cant. It is also of paramount importance to be able to represent
phenomena such as storage, bet-hedging or luxury uptake of
scarce nutrients (i.e, the uptake of nutrient beyondwhat is cur-
rently required in anticipation of possible future limitations)
for ecosystems simulations. These phenomena are, in prin-
ciple, aspects of resource allocation strategies and hence can
be represented by appropriate models; (ii) currently models
are based on a metabolic perspective of growth. However,
also trade-offs between growth and other cellular properties
can be considered, such as the resilience against stress or pre-
dation (and the energetic expenses associated with it).
Likewise, effects of parameters like temperature and pH cur-
rently cannot be adequately described by resource allocation
models; (iii) a better understanding of physico-chemical
trade-offs in enzyme-kinetic parameters is required, as well
as further quantitative growth studies, similar to Zavrěl et al.
[27]. In particular, as yet, laboratory studies concerning
resource allocation are often motivated by biotechnological
applications and typically do not consider limitations by nutri-
ents other than (inorganic) carbon and light—whereas
applications in ecology require that the focus be shifted on
limitations typically encountered in natural environments.

Overall, we are confident that biochemical resource allo-
cation models, whose construction is based on reference
genomes and increasingly automated [36], offer significant
potential for the the computational study of ecosystems and
microbial communities—and go beyond current growth
models based either on Monod-type equations or application
of FBA. Biochemical resource allocation models will allow us
to represent the microbial diversity observed in almost all
environments and will open up new avenues to interface bio-
geochemical and ecological questions with recent knowledge
obtained from quantitative microbial growth physiology.
10. Material and methods
10.1. Biochemical resource allocation models
We consider a particular variant of biochemical resource allocation
models following the methods and algorithms described in
[31,32,35]. A model consists of two types of components: steady-
state metabolites and cellular macromolecules (which include
catalytic protein complexes and quota components). We assume
that the internal metabolites are at a quasi-steady state, i.e. metab-
olites adjust faster than any changes in the environment. Thus,
the concentrations of internal metabolites are not explicitly rep-
resented in the model, and the metabolic network is assumed to
be balanced at all times. We also neglect dilution by growth of
internal metabolites. Catalytic components (including enzymes
and ribosomes) are synthesized from the precursors provided by
cellular metabolism. The amounts of catalytic components provide
an upper bound to the respective rates of the reaction catalysed by
the components. The quota components (protein PQ and remain-
ing biomass Q) fulfil no explicit functional role within our model
and their synthesis is enforced using fixed quotas (except other-
wise noted, the quota protein component PQ is assumed to be
20% of total protein, the non-protein biomass Q is assumed to
be 50% of total biomass).
10.2. The biochemical resource allocation model of
phototrophic growth

The biochemical resource allocation model shown in figure 1 is
assembled using the stoichiometry and data described by Faizi
et al. [26] (with modifications described below). We note that
the model of Faizi et al. [26] is a nonlinear kinetic ODE model,
hence computationally different from the model described here.
Growth is facilitated by eight protein complexes: six enzyme
and transport complexes, ribosome R and a non-catalysing
quota protein component PQ. The enzyme and transporter
complexes catalyse the following reactions:

vPSU(PSU): 8 � photons �! 8 � eþO2

vTC(TC): Cx þ e �! Ci

vCB(CB): 3 � Ci þ 10 � e �! C3

vMC(MC): 2 � C3 þ 2 �N þ 35 � e �! AA
vTN(TN): Nx þ e �! N

and vMQ(MQ): C3 �! Q: (10:1)

Protein translation is described by the equation

gP(R): np �AAþ 3np � e �! protein, (10:2)

where np denotes the size of the respective protein in amino
acids. Protein decay is neglected except for the protein complex
PSU that is damaged by light (photoinhibition), such that its
abundance follows the equation

d[PSU]
dt

¼ gPSU � vd � m � [PSU], (10:3)

with

vd: PSU �! nPSU �AA: (10:4)

The dynamics of all other protein complexes are modelled
according to equation (4.1).
10.3. Capacity constraints of catalytic enzymes
All enzyme-catalysed reactions are constrained by the amount of
the respective catalysing enzyme, according to equation (4.3).
The constraints for nutrient uptake and light harvesting also
depend on the availability of the respective external substrates.
In particular, for the uptake of inorganic carbon,

vTC � Cx

KC þ Cx
� kcat,TC � TC, (10:5)



Table 3. Specific parameters used to model growth on two alternative sources of external nitrogen. The remaining parameters are same as described in table 2.

symbol definition (TN)-strain (TY)-strain (TN + TY)-strain

eN energy units per uptake reaction TN 1 — 1

eY energy units per uptake reaction TY — 2 2

kcat,TY catalytic activity of TY (s
−1) — 30 30

kcat,TN catalytic activity of TN (s
−1) 50 — 50

nTN size of TN (aa molec
−1) 10 000 — 10 000

nTY size of TY (aa molec
−1) — 20 000 20 000

Q relative abundance of Q w.r.t. biomass 0.5 0.5 0.6

PQ relative abundance of PQ w.r.t. total proteome 0.2 0.2 0.22
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for uptake of extracellular nitrogen,

vTN � Nx

KN þNx
� kcat,TN � TN, (10:6)

and for light harvesting and photosynthesis

vPSU � kcat,PSU � sI
sI þ kcat,PSU þ kd � sI � PSU

and vd ¼ kd(sI)
2

sI þ kcat,PSU þ kd � sI � PSU: (10:7)

The equations for light harvesting, photosynthesis and
photodamage, are derived from a simple two-state model of
photosynthesis, see [26] for details. We note that, different from
most other constraints, the rate of photodamage is subject to an
equality constraint. That is, the reaction is enforced to proceed
according to the specified rate. Along similar lines, also other
external parameters or chemical compounds may modulate or
enforce specific reactions if required for a specific model.

The constraints on the ribosomal capacity areX
p

gp � np � gmax � R, (10:8)

where np denotes the protein size (in amino acids per molecule),
γp its translation rate and γmax denotes the maximal translation
rate of ribosomes. We note that all capacity constraints are
implemented as linear constraints.
10.4. Solving the resource allocation model as a LP
For any given set of external parameters Cx, Nx, I and specific
growth rate μ, the model implemented as a LP(μ). The LP pro-
blem is described by three matrices N, W≤, and W=, as well as
the vector of reaction rates v = (vi, γk)

T (combining metabolic
and translation rates), the vector P of (the concentrations of)
macromolecules,

P ¼ (R, TN, TC, PSU, MC, MQ, CB, PQ, Q)T , (10:9)

and a vector ω that describes the sizes of the macromolecules
(in units of amino acids per molecule). For each macromolecule,
we define a lower bound that ensures the synthesis of quota
components,

Plb ¼ (Rlb, Tlb
N, T

lb
C , PSU

lb, Mlb
C, M

lb
Q, CB

lb, Plb
Q, Q

lb)T : (10:10)

The matrix N describes the stoichiometry of the system,
including metabolic and translation reactions, as well as the stoi-
chiometry of the decay of the PSU as a result of photodamage
(vd). The matrices W≤ and W= describe the relationship between
reaction fluxes and P. The entries of both matrices may depend
on the external parameters Cx, Nx and I.
The full set of constraints is

N � v ¼ m � 0
P

� �
, (10:11)

v � 0, (10:12)
W� � v � P, (10:13)
W¼ � v ¼ P, (10:14)

P � Plb (10:15)
and v � P ¼ d: (10:16)

Constraint (10.11) enforces mass-balance at steady-state, includ-
ing the growth-induced dilution of macromolecules (with
dilution of metabolites neglected). Constraint (10.13) describes
the (linear) enzymatic capacity constraints with the concen-
tration of macromolecules as upper bounds. The matrix W≤ is
largely diagonal, except for the constraints on the translation
rate. Constraint (10.14) describes enforced reactions that are pro-
portional to the abundance of a macromolecule (such as
photoinhibition). Constraint (10.15) provides a lower bound
for the abundance of each macromolecules (zero except for
the quota components). Constraint (10.12) ensures positive
fluxes in the LP problem. Constraint (10.16) enforces a constant
cell density, the parameter d denotes the cell density (in units of
amino acids per cell).

The above described LP is solved as a feasibility problem for
a given μ. To obtain a solution for the maximal specific growth
rate in a given environment, the global optimum of μ is found
using bisection as described in [31].

10.5. Model parametrization
A complete list of model parameters is provided in table 2. Para-
metrization follows the data used in Faizi et al. [26]. The size of
macromolecules is estimated using the size of an average
enzyme times the approximate number of steps used in the path-
way. The size of the protein complex PQ and the biomass
component Q is arbitrary. Turnover rates are chosen according
to average values described in [50]. The description of the photo-
system is adopted from Faizi et al. [26], with σ denoting the
effective absorption cross-section per photosystems, and kd the
rate of photodamage.

To simulate the growth on two alternative sources of
external nitrogen, we used the set of additional parameters
given in table 3.

10.6. The computational modelling framework
A computational model is developed using Python as a pro-
gramming language. The framework uses functionality from
the following packages: numpy [70], scipy [71], matplotlib [72],
pandas [73], sundials [74] and Gurobi [75]. In particular, we
use Gurobi for solving the LP-based optimization and CVODE
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integrator from the sundials package to solve the system of
ODEs. The version of the modelling framework used to produce
the results presented in this manuscript is publicly available with
instructions to install and run simulations at (https://github.
com/surajsept/cyanoRBA).

Data accessibility. The code used in the simulations is available at
https://github.com/surajsept/cyanoRBA.
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