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ABSTRACT: Background: Biallelicmutations in
the GBA1 gene encoding glucocerebrosidase cause
Gaucher’sdisease,whereas heterozygous carriers are at risk
for Parkinson’s disease (PD). Glucosylsphingosine is a clini-
cally meaningful biomarker of Gaucher’s disease but could
not be assayedpreviously in heterozygousGBA1 carriers.
Objective: The aim of this study was to assess
plasma glucosylsphingosine levels in GBA1 N370S
carriers with and without PD.
Methods: Glucosylsphingosine, glucosylceramide,
and four other lipids were quantified in plasma from
N370S heterozygotes with (n = 20) or without (n = 20)
PD, healthy controls (n = 20), idiopathic PD (n = 20),
and four N370S homozygotes (positive controls;
Gaucher’s/PD) using quantitative ultra-performance
liquid chromatography tandem mass spectrometry.
Results: Plasma glucosylsphingosine was significantly
higher in N370S heterozygotes compared with noncar-
riers, independent of disease status. As expected,
Gaucher’s/PD cases showed increases in both
glucocerebrosidase substrates, glucosylsphingosine and
glucosylceramide.
Conclusions: Plasma glucosylsphingosine accumulation
in N370S heterozygotes shown in this study opens up its
future assessment as a clinically meaningful biomarker of
GBA1-PD. © 2021 The Authors. Movement Disorders
published by Wiley Periodicals LLC on behalf of Interna-
tional Parkinson Movement Disorder Society.
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The GBA1 gene encodes the lysosomal enzyme, acid
β-glucocerebrosidase (GCase; EC 3.2.1.45). Biallelic
mutations in GBA1 cause the lysosomal lipid storage
disorder, Gaucher’s disease (GD).1 A common coding
variant of GBA1, N370S, is pathogenic for GD and
represents one of the most common genetic risk factors
for Parkinson’s disease (PD) in the heterozygous
carriers,2–4 but the mechanism underlying this increased
risk for PD remains unknown.
Pathogenic variants in GBA1, including N370S, decrease

GCase activity. GCase metabolizes glycosphingolipids, a
class of lipids essential for membrane structure and a range
of cellular functions. The prevailing hypothesis for PD
associated with GBA1 mutations (ie, GBA-PD) is that a
decrease in GCase activity alters the lipid composition of
membranes and results in increased α-synuclein aggrega-
tion and accumulation in the lysosomes.5 The two key sub-
strates of GCase are glucosylceramide (GluCer) and
glucosylsphingosine (GluSph). Recent studies suggest that
GluCer and GluSph accumulation may promote
α-synuclein aggregation,6–8 further indicating the impor-
tance of studying these lipids as biomarkers of GBA-PD.
However, accumulation of GluCer or GluSph in GBA-PD
brain or cerebrospinal fluid (CSF) has not been unequivo-
cally demonstrated,9–11 posing a major challenge to the
loss-of-function hypothesis for GBA-PD.
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GluCer is by far more abundant than GluSph and is
shown to accumulate in macrophages and plasma of
people with GD. However, it is not a clinically useful
biomarker for GD.12 By contrast, plasma GluSph levels
correlate with disease burden in GD,13 leading to its
routine use as a biomarker for GD severity, as well as
response to therapy.14 GluSph is also a key regulator of
the immune system. Thus, it would be important to
develop sensitive assays to monitor GluSph levels and
determine its utility as a biomarker of GBA-PD.
In this study, we measured GCase substrates, GluSph

and GluCer, as well as the product, ceramide, and addi-
tional lipids (galactosyl ceramide, galactosyl sphingosine,
and glucosyl cholesterol) as negative controls in a cohort
of GBA1 N370S mutation carriers and noncarriers with
and without PD. We aimed to test whether GluSph levels
were elevated in GBA1 N370S mutation carriers and
whether levels were associated with PD status. We
hypothesized, based on the GD literature, that plasma
GluSph would be a superior marker of reduced GCase
activity in comparison with plasma GluCer levels.

Materials and Methods

Participants in this study were participants of the Spot
study, which was previously described.15 The Spot study
is an ongoing biomarker recruitment effort at Columbia
University Irving Medical Center and the Icahn School of
Medicine at Mount Sinai (ISMMS), through which we
have identified (and reported on) 218 carriers of various
GBA1 pathogenic variants, including 135 carriers with
PD and 83 carriers without PD.15,16 In brief, GBA1 car-
riers with and without PD were recruited among Colum-
bia University Irving Medical Center patients with PD
and spouse controls, and GBA1 carriers without PD were
recruited among family members of patients with GD
(ie, parents or children, who are by definition obligate car-
riers) at the Lysosomal Storage Diseases Program at
ISMMS. Demographics, as well as the Unified Parkinson’s
Disease Rating Scale (UPDRS) score in the on state and
the Montreal Cognitive Assessment score, were collected
from all participants. To reduce heterogeneity, we
included only GBA1 N370S heterozygotes in this study
(and not other GBA1 pathogenic variants). We further
excluded LRRK2 G2019S mutation carriers. In addition,
we included four samples of N370S homozygotes with
PD, who also by definition have GD (ie, GD/PD). Two of
the four GD/PD participants were treated with enzyme
replacement therapy at the time of recruitment. A total of
10 mL of whole blood per subject was collected in
Ethylenediaminetetraacetic acid (EDTA) tubes, which
were centrifuged, and from which 1 mL plasma aliquots
per subject were extracted within 60 minutes of collection.
Samples were stored in a −80�C freezer until processing.
All clinical study procedures were approved by the

Columbia University Institutional Review Board (and
ISMMS Institutional Review Board, if collected at Mount
Sinai, NY, USA), and all participants signed informed
consents. All samples were shipped to Nextcea (Woburn,
MA, USA) on dry ice in one batch.

Quantitative Ultraperformance Liquid
Chromatography Tandem Mass Spectrometry

Analyses
The bioanalytics were conducted by Nextcea, where

scientists remained blinded to participants’ PD status
and genotype before analysis.
A multiplexed quantitative ultraperformance liquid chro-

matography tandemmass spectrometry method was used to
simultaneously quantitate plasma ceramides (Cer
d18:1/16:0, d18:1/18:0, d18:1/20:0, d18:1/22:0, d18:1/24:0,
d18:1/24:1), GluCers (GluCer d18:1/16:0, d18:1/18:0,
d18:1/22:0, d18:1/24:0, d18:1/24:1), galactosylceramides
(GalCer d18:1/16:0, d18:1/18:0, d18:1/22:0, d18:1/24:0,
d18:1/24:1), GluSph (GluSph 18:1), galactosylsphingosine
(GalSph 18:1), and glucosylcholesterol. The GluSph
(GluSph 18:1) was well separated from
galactosylsphingosine (GalSph 18:1). Standard curves were
prepared from related standards using a class-based
approach. Internal standards were used for each analyte
reported. A SCIEX Triple Quad 7500 mass spectrometer
was used in positive electrospray ionization mode for detec-
tion (SCIEX, Framingham,MA,USA). Injectionsweremade
using a Shimadzu Nexera XR UPLC (ultraperformance liq-
uid chromatography) system (Shimadzu Scientific Instru-
ments, Kyoto, Japan). The instruments were controlled by
SCIEXOS2.0 software.
The parameters for assay validation included 3-day

intra-assay and interassay accuracy and precision, sensi-
tivity (lower limit of quantitation [LLOQ]), specificity,
carryover, recovery, matrix effect, dilution integrity, and
stability in human plasma. The LLOQ for all lipids mea-
sured was 5 pg/mL. Interassay and intra-assay coeffi-
cients of variation for all dilutions (including LLOQ)
were ≤20%. The specificity of the GluSph versus GluCer
assay was evaluated at the LLOQ in six different lots of
human plasma with stable isotope-labeled GluCer and
GluSph, where we observed no interference.

Calibration and Data Processing
The intensities of the analytes and internal standards

were determined by integration of extracted ion peak
areas using SCIEX OS 2.0 software. Calibration curves
were prepared by plotting the peak area ratios for each
analyte to internal standard versus concentration. The
model for the calibration curves was linear with (1/x2)
weighting. The concentrations of all lipids were quanti-
tated in nanograms per milliliter (ng/mL) of plasma.
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FIG. 1. Legend on next page.
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Statistical Analysis
Demographics and disease characteristics were com-

pared across the four groups based on PD status and
genotype (GBA−/PD−, GBA+/PD−, GBA−/PD+, GBA+/
PD+). Groups were a priori matched by sex and age
(PD− versus PD+). We then compared the lipid species
concentrations across the four groups. We computed
total concentrations of ceramides, GluCer and Gal-
Cer, by summing all fatty acid analogs for each spe-
cies. Although primary analyses compared the four
groups, we included the four GD/PD subjects (posi-
tive controls) in Figure 1 for illustrative purposes. We
further constructed regression models to predict
GBA1 mutation status (outcome), including sex, age,
PD status, and lipid concentrations as predictors.
Analyses were computed in SPSS. Figure 1 (and post
hoc Tukey analyses) was computed using GraphPad
Prism version 9.1.1 for macOS, GraphPad Software
(GraphPad, San Diego, CA, USA; https://www.
graphpad.com).

Results
Demographic Comparisons

Demographic and disease characteristics of the four
groups (GBA−/PD−, GBA+/PD−, GBA−/PD+, GBA+/
PD+) are presented in Table 1. The groups were mat-
ched by sex and age (PD versus non-PD), and the PD
groups were also similar in age at onset, disease dura-
tion, education, Montreal Cognitive Assessment perfor-
mance, levodopa-equivalent daily dose, and Unified
Parkinson’s Disease Rating Scale, Part III scores.
Figure 1 demonstrates the plasma concentration of total
ceramides, total GluCer, and GluSph d18:1 in GBA1
N370S heterozygotes and noncarriers with and without
PD and in four patients with GD/PD. The plasma lipid
concentrations across the four groups are presented in
Table 1 and Supporting Information Table S1. Next,
we performed logistic regression models to test the
association between GBA1 status and plasma lipid con-
centrations, including age, sex, PD status, and the six

FIG. 1. Plasma lipid concentration for glucolipids in GBA−/PD−, GBA+/PD−, GBA−/PD+, GBA+/PD+, and Gaucher’s disease (GD)+/PD+, including: (A)
glucosylsphingosine d18:1 (GluSph), (B) glucosylceramide (GluCer), (C) total ceramides, (D) glucosylcholesterol (GluChol), (E) galactosylceramide
(GalCer), and (F) galactosylsphingosine d18:1 (GalSph). Patients with GD/PD had significantly higher plasma levels of GluSph and GluCer than all other
groups (A and B). GBA+/PD− and GBA+/PD+ had significantly higher GluSph levels than GBA−/PD− and GBA−/PD+ (A: GBA−/PD− vs. GBA+/PD−,
P = 0.0002; GBA−/PD− vs. GBA+/PD+, P < 0.0001; GBA−/PD+ vs. GBA+/PD−, P = 0.0012; GBA−/PD+ vs. GBA+/PD+, P < 0.0001). **P < 0.005;
***P < 0.0005; ****P < 0.0001. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Demographics, disease characteristics, and lipid concentration data

GBA−/PD− GBA+/PD− GBA−/PD+ GBA+/PD+ P valuea

n 20 20 20 20

Sex (male/female) 10/10 10/10 10/10 10/10

Age, y 71.1 (9.1) 59.8 (9.2) 65.9 (12.8) 66.2 (9.5) 0.010

AAO N/A N/A 59.4 (14.2) 60.6 (9.6) 0.756

Education, y 16.6 (3.1) 18 (3.5) 16.4 (3.5) 16.4 (2.7) 0.329

MoCA score 26.6 (3.1) 26.5 (1.8) 24.9 (3.2) 25.1(2.9) 0.108

UPDRS III score 16.0 (8.3) 15.8 (7.7) 0.944

LEDD 593 (560) 447 (359) 0.332

Glucosylsphingosine d18:1 0.48 (0.14) 0.73 (0.20) 0.50 (0.14) 0.82 (0.24) <0.001

Total glucosylceramides 2443.75 (706.45) 3217.22 (814.86) 2910.08 (1030.44) 2701.03 (1139.59) 0.071

Total ceramides 3038.51 (1554.18) 2338.91 (876.27) 2719.79
(1260.67)

2350.19
(1148.74)

0.228

Glucosylcholesterol 165.92 (178.04) 99.33 (63.37) 116.45 (80.43) 130.16 (148.91) 0.401

Total galactosylceramides 323.08 (110.55) 387.35 (154.74) 341.73 (144.46) 324.25 (81.96) 0.341

Galactosylsphingosine d18:1 0.11 (0.05) 0.13 (0.07) 0.13 (0.06) 0.14 (0.08) 0.417

Values are presented as mean (standard deviation). Data were analyzed by one-way ANOVA. Participants were grouped by the presence or absence of either Parkinson’s disease
(PD− or PD+) or the GBA1 N370S mutation (GBA− or GBA+).
aP value represents overall effect by ANOVA.
AAO, age at motor onset; MoCA, Montreal Cognitive Assessment; UPDRS III, Unified Parkinson’s Disease Rating Scale, Part III; LEDD, levodopa-equivalent daily dose; N/
A, not applicable.
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lipid groups tested. GluSph was the only variable (and
the only lipid) associated with GBA mutation status
(P < 0.001).

Discussion

The link between GBA1 pathogenic variants and PD
has opened a window of opportunity for multiple ther-
apeutics targeting the GCase pathway. The mechanisms
of interventions range from augmentation of GCase
activity via chaperones or allosteric activators, inhibi-
tion of GluCer synthase, and GBA gene therapy.17–19

The therapeutic development trials require reliable bio-
markers to establish target engagement/modulation and
inform effective dose range. Furthermore, the pene-
trance of PD among carriers of pathogenic variants in
GBA1 is estimated at 10–30%, indicating that the
majority of mutation carriers will never develop PD.20–
23 Thus, biomarkers that can prognosticate which
GBA1 pathogenic variant carriers are more likely to
develop PD are required to conduct patient-enriched
trials.
To the best of our knowledge, this is the first study to

successfully detect GluSph in the plasma of non-GD
GBA1 mutation carriers. Importantly, our data demon-
strate that a single allele of GBA1 N370S is sufficient
to result in a significant elevation in plasma GluSph
levels. This effect was specific for GluSph among the
panel of six lipids tested, including GluCer (Table 1,
Fig. 1). The validity of our assays is also confirmed by
the elevation in GluSph and GluCer in the four GD/PD
cases. Thus, plasma GluSph offers a promising bio-
marker of target engagement/modulation in GCase-
targeted therapies for PD. However, it is possible (given
our sample size) that we were underpowered to detect
differences of smaller effect size, for example, in GluCer
levels between carriers and noncarriers, or in GluSph
levels between carriers with and without PD. Previous
studies support the hypothesis that we were underpow-
ered to identify small differences in GlucCer levels
between carriers and noncarriers. Specifically, in the
Parkinson’s Progression Markers Initiative study, non-
carriers had lower GluCer levels in CSF than carriers,
but similar analysis in plasma (as done in this study)
was not reported.24

It is important to note that GluSph, rather than
GluCer, is emerging as a more disease-relevant bio-
marker. A recent study reported higher levels of GluCer
in the CSF in conjunction with a decrease in blood
GCase activity in GBA-PD compared with idiopathic
PD, but the differences were observed primarily in
those with severe GBA mutations (eg, L444P), but not
the mild GBA mutation, N370S11 (GluSph was not
assayed in this study). When GCase activity is deficient,
the enzyme acid ceramidase metabolizes GluCer into

GluSph.25 GluSph has been shown to cause oligomeri-
zation of α-synuclein in vitro more efficiently than
GluCer.7 More importantly, GluSph, and not GluCer,
induced pathogenic templating of α-synuclein in cells,
including in induced pluripotent stem cell–derived neu-
rons.7 Furthermore, a role of GluSph in immune cell
activation is well documented,26 and GluSph levels in
the brain correlated with neurological manifestations in
GD.27 Because aberrant immune activation in PD is
thought to contribute to pathogenesis, the elevation in
plasma GluSph in N370S mutation carriers suggests
that this lipid has the potential to be a disease patho-
physiology marker even for prodromal GBA-PD. How-
ever, the exact mechanism by which GBA mutations
cause PD remains to be determined. For example, it is
possible that reduced activity of GCase leads to lower
intralysosomal levels of ceramide, which negatively
affect the maturation and activation of cathepsin-
D.28,29

We have not identified an association between
plasma GluSph levels and PD status in the current sam-
ples of N370S carriers or with idiopathic PD. However,
because GluSph levels were numerically higher in car-
riers with PD compared with carriers without PD
(0.82 � 0.24 versus 0.73 � 0.20), and in noncarriers
with PD compared with controls (0.50 � 0.14 versus
0.48 � 0.14), we posit that a larger cohort of GBA
mutation carriers and noncarriers will be needed to
investigate whether GluSph levels are associated PD sta-
tus. Furthermore, future studies should include a wide
range of GBA1 pathogenic variants (eg, E326K) to test
potential correlation between variant severity and
GluSph levels. Studies that will examine GluSph levels
in the brain and CSF in addition to blood plasma may
firmly test its relevance as a disease marker, as is the
case for GD.
In summary, these results indicate that plasma

GluSph levels may be a useful target engagement/
modulation biomarker for interventions aiming to
increase GCase activity. Studies on larger cohorts
would be required to test whether elevated GluSph
levels are associated with PD risk or progression.
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