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Drought is the major abiotic stress with adverse effects on citrus, decreasing the agronomical yield and influencing the fruit quality.
In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was used to investigate the transcriptional
profile changes and identify drought-responsive genes in “Amakusa” tangor (C. reticulata × C. sinensis), a hybrid citrus sensitive
to water stress. The 255 out of 6,245 transcript-derived fragments (TDFs) displayed altered expression patterns including (A)
induction, (B) repression, (C) upregulation, and (D) downregulation. With BLAST search, the gene products of differentially
expressed fragments (DEFs) could be classified into several categories: cellular processes, transcription, transport, metabolism,
stress/stimuli response, and developmental processes. Downregulated genes were highly represented by photosynthesis and basic
metabolism, while upregulated ones were enriched in genes that were involved in transcription regulation, defense, energy, and
transport. Present result also revealed some transient and up- and then downregulated genes such as aquaporin protein and
photosystem enzyme. Expression patterns of 17 TDFs among 18 homologous to function-known genes were confirmed by qRT-
PCR analysis. The present results revealed potential mechanism of drought tolerance in fruit crop and also provided candidate
genes for future experiments in citrus.

1. Introduction

Drought is the most severe and complex limiting factor for
plant growth and crop production. The improved drought
tolerance of crops is an urgent and strategic goal for plant
biotechnology [1]. When exposed to drought stress, many
plants have evolved mechanisms to cope with a restricted
water supply. Plant adaptation to drought includes a series
of morphological, physiological, and biochemical changes
that are directly or indirectly under genetic control [2–
5]. Finally, plant can modify growth and development to
withstand drought environment through the changes in
gene expression. The products of these genes not only play
important roles in stress tolerance but also regulate the gene
expression and signal transduction [6, 7].

Identification of drought-related genes is a key step for
improving drought tolerance of crops by either breeding or
genetic transformation. As a result of extensive studying in
model plant Arabidopsis, great progress has been achieved in

understanding the drought tolerancemechanism and various
drought-responding genes involved in many different path-
ways were revealed and identified [8]. The products of these
genes can be classified into functional proteins and regulatory
proteins,mainly acting as regulation, signaling, and encoding
proteins that support cellular adaptation to drought stress [9].
Significantly, many reports have investigated that the gene
introduction can enhance drought tolerance in transgenic
plants by regulating the biosynthesis of compatible solutes,
such as amino acids, quaternary and other amines, and a
variety of sugars and sugar alcohols [10–13]. Additionally,
late embryogenesis abundant (LEA) proteins, heat shock
proteins, and some transcription factors influencing the
expression of a number of stress-related target genes have also
been used to improve drought tolerance in transgenic plants
[14, 15]. Thus, function analysis of stress-related genes is
very important for understanding themolecularmechanisms
of stress tolerance and improving the stress resistance of
crops by gene manipulation [16, 17]. Although a great deal of
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drought-induced genes have been identified, most researches
regarding plant drought tolerance have been focused on
the model species Arabidopsis and the molecular basis of
tolerance to water stress remains far from being completely
understood in many other crops, especially in fruit crops.

Citrus is the most important fruit crop in the world. In
China, plant region of citrus trees is mostly water deficit
hilly area and hillside, which is frequently restricted by water
deficiency in natural conditions, affecting both vegetative
and reproductive processes. Thus, drought tolerance is one
of the major traits that determine the ability of citrus to
expand. Moreover, seasonal drought often occurs in summer
and autumn. Almost every year, some region of China is
hit by drought; for instance, severe drought reduced the
citrus yields sharply in Zhejiang province during 2013. Thus,
drought tolerance is necessary for citrus. Traditional breeding
based on the drought tolerance has been always the important
strategy in citrus, but it is much more time-consuming
because of its complex reproductive biology, such as high
heterozygosity, apomixis, polyembryony, cross- and self-
incompatibility, and long juvenility. Genetic transformation
may avoid genetic segregation and nowadays has been used
as an effective tool to improve the target traits by introducing
specific genes in citrus varieties [18]. Many efforts have been
made to isolate and identify genes associated with stress
response and several drought-responsive genes have been
successfully obtained from citrus or its related genera [19–
22]. Along with extensive use of genome-wide expression
analysis technology, the abundance of EST data provides
the basis for successfully obtaining drought-responsive genes
from citrus by in silico cloning [20, 23, 24]. Though great
progress has been made in gene isolation and functional
characterization, more works on citrus in comparison with
Arabidopsis thaliana and rice still need to be devoted to the
study for gene functions identification and explanation of key
signal pathways.

Currently, next generation sequencing technology (NGS)
has been applied to provide global gene expression profiles
of whole transcriptome. NGS expression studies are greatly
facilitated by the availability of annotated genome sequence
(reference or otherwise). As an alternative toNGS, the cDNA-
AFLP technique is a widely adopted gene expression profiling
method. This is especially true for crop plants which are
awaiting whole genome- or whole transcriptome-sequence
data. As a sensitive and efficient technology, the cDNA-
AFLP has been widely used to seek and identify genes with
changed expression under different environment conditions
[25, 26]. This technique can avoid the possibility of different
transcript-derived fragments (TDFs) arising from a single
gene/cDNA by further improving [27, 28]. Moreover, its
results correlate well with real-time PCR (Q-PCR) analysis
[29]. In this study, we employed the cDNA-AFLP technique
to investigate genome-wide transcriptome profiles of tangor
plant under water deficit, identify the genes associated with
drought stress response, and further validate the expression
patterns for some candidate genes by quantitative real-time
PCR (qRT-PCR). Present results will give us insight into
the molecular mechanisms underlying drought tolerance in
citrus.

2. Materials and Methods

2.1. Plant Material and Drought Treatments. Two-year-old
“Amakusa” tangor (C. reticulata × C. sinensis) seedlings,
grafted on trifoliate orange [Poncirus trifoliata (L.) Raf.],
were used for this investigation. The “Amakusa” tangor is
sensitive to water deficiency and its drought tolerance is
inferior to that of satsuma mandarin and Ponkan mandarin.
Young uniform plants were selected and grown in plastic pots
(33 cm diameter at the top, 25 cm diameter at the bottom, and
44 cm height) that were filled with 70% sand and 30% silt
and clay. Seedlings were first established for 3 months with
regular irrigation and fertilization under uniform greenhouse
conditions (28∘C, 16 h light, relative humidity oscillating
between 50% and 70%) and then treated plants were severely
deprived of water to the desired stress level.The control plants
were watered daily throughout the stress period and kept
the relative humidity oscillating between 50% and 70%. Leaf
samples of treated plants were harvested at 9 a.m. on 3th
day, 5th day, 8th day, and the 11th day. All samples were
immediately frozen in liquid nitrogen after being harvested
and stored at −80∘C for subsequent RNA isolation.

2.2.Measurement of LeafWater Status. Fully expanded leaves
were detached at different time intervals (unstressed, 3, 5, 8,
and 11 days after stresswas initiated) from three representative
plants of the three replications for relative water content
(RWC) measurement described by White et al. [30]. RWC
was calculated as follows: RWC (%) = (FW − DW)/(TW −
DW)100. Leaf water potential (𝜓) was measured by using HR
33T (Wescor Inc., Logan, USA) in “dew point” mode, and
measurements were carried out bymeans of leaf discmethod.

2.3. RNA Isolation and cDNA Synthesis. Total RNA was
extracted from approximately 4 g of frozen tissues using
the Large-Scale Column Plant RNAout kit (Tiandz, Inc.,
Beijing, China). To eliminate the remaining genomic DNA,
the RNA was treated with DNase I (Takara, Dalian, China)
according to the manufacturer’s instructions. The integrity
of the total RNA was assessed by running a 2 𝜇l aliquot of
the RNA sample on 1% formaldehyde denaturing agarose gel
with ethidium bromide (EtBr). The concentration of RNA
was estimated using a U-0080D spectrophotometer (Hitachi,
Tokyo, Japan). Poly (A)+ RNA was isolated from 500 𝜇g
of total RNA with PolyATtract mRNA Isolation Systems
(Promega, Madison, WI, USA). Double-stranded (ds) cDNA
was synthesized from poly (A)+ using the SMART� cDNA
Library Construction Kit (Clontech, USA) according to
the manufacturer’s instructions and then purified using the
QIAquick PCR Purification Kit (QIAGEN, Germany).

2.4. cDNA-AFLP Analysis. To select the perfect primer pairs
for this study, a total of 256 primer pairs that flowed from
the permutation and combination of A, T, C, and G were
synthesized. The polymorphism levels of all primers were
evaluated by using of tangor under drought stress for 11
days and its normal control. Finally, 122 marker pairs with
highly polymorphism and better amplification were picked
out and performed in this study. The cDNA-AFLP procedure



BioMed Research International 3

was performed as previously described by Bachem et al. [27]
with somemodifications. Approximately 1𝜇g of ds cDNAwas
digested with 10U of AseI at 37∘C for 4 h and then digested
with 10U ofTaqI at 65∘C for 4 h, followed by heat inactivation
at 80∘C for 20min.The two steps of digestion were conducted
in NEBuffer 3 (New England Biolabs, Inc., Beverly, MA) in a
total volume of 50𝜇l.The digested products were purified and
ligated to adapters using 1U of T4 ligase supplemented with
T4 DNA ligase buffer (Takara, Dalian, China).

The 2.5 𝜇l diluted (1 : 10) ligated products was used as
the cDNA template to perform preamplification in a 25 𝜇l
reaction mixture containing 0.4 𝜇M of each primer (TaqI:
5󸀠- GACGATGAGTCCTGACCGA -3󸀠, AseI: 5󸀠- CTCGTA-
GACTGCGTACCTAAT -3󸀠), 2.5𝜇l 10x amplification buffer,
and 1U Taq DNA polymerase (Takara). The PCR was carried
out using the following cycling parameters: 94∘C for 5min;
25 cycles of 94∘C for 30 s, 56∘C for 30 s, 72∘C for 1min,
and 72∘C for 10min. For further selective amplification, the
PCR solution included 1 𝜇l of 10-fold diluted preamplification
products, 1.5 𝜇l 10x amplification buffer, 0.5U Taq poly-
merase, and 0.4 𝜇Mof each primer with selective nucleotides
on the 3󸀠 end (TaqI/AseI: AA, AC, AG, AT, CA, CC, CG,
CT, GA, GC, GG, GT, TA, TC, TG, TT) in 15 𝜇l total
reaction volume. The PCR reaction was conducted following
the program: 12 cycles: 94∘C, 30 s; 65∘C (−0.7∘C/cycle), 30 s;
72∘C, 1min and 23 cycles: 94∘C, 30 s; 56∘C, 30 s; 72∘C, 1min;
followed by a final extension step of 7min at 72∘C.

The PCR product was denatured at 95∘C for 5min after
adding 10 𝜇l of 98% formamide loading buffer and then
chilled on ice before loading onto gels. Four microliters
of denatured PCR product was separated on 6% polyacry-
lamide gels containing 7M urea at 75W constant power for
2.5 h using a DNA sequencing gel system (Junyi, Beijing,
China). The cDNA bands were visualized by silver staining
according to the Silver Sequence� DNA Sequencing System
Technical Manual (Promega, Madison, WI, USA). The gel
was naturally dried at room temperature and was then
scanned using an EPSON V30 scanner. A representative
picture of a sliver-stained cDNA-AFLP gel was presented
in Figure S1 in Supplementary Material available online at
https://doi.org/10.1155/2017/8068725. Gel images were ana-
lyzed and all visible AFLP fragments were scored in each
lane. All of the oligonucleotides (adapters and primers) in
the present study were commercially synthesized by Sangon
(Shanghai, China). All of the amplification reactions of
experimentwere performed on aT1Thermocycler (Biometra,
Göttingen, Germany) according to the procedures described
by JinPing et al. [31].

2.5. Cloning and Sequencing of Transcript-Derived Fragments
(TDFs). Differentially expressed cDNA bands, or transcript-
derived fragments (TDFs), were excised from the polyacry-
lamide gel and used as templates to reamplify cDNA frag-
ments.The reamplified products were purified with a 3S PCR
Product Purification Kit (Biocolor BioScience & Technology
Company, Shanghai, China) and cloned into the pEASY�-
T1 vector (TransGen Biotech, Beijing, China) following the
manufacturer’s protocol; then the vector was transformed
into competent Escherichia coli (TransGen Biotech) and

finally sequenced using an ABI 3730 DNA analyzer (Applied
Biosystems, Foster City, CA) by Sangon Biological Engineer-
ing Technology & Services Co., Ltd. (Shanghai, China).

2.6. Sequence Analysis and Functional Annotation. The hom-
ologs of TDFs sequences (with vector sequences trimmed off)
were determined against the public nonredundant protein
database (nr) at the National Center for Biotechnology Infor-
mation (NCBI) (https://www.ncbi.nlm.nih.gov/BLAST/)
using the BLAST algorithm [32]. The function-known genes
from BLASTX search were compared to proteins from
TAIR [33] and searched against MAtDB to assign functional
classification based on the MIPS FunCat schema [34, 35].

2.7. qRT-PCR and Data Analysis. The gene expression was
quantified using the 7300 Real-Time PCR System (Applied
Biosystems, FosterCity, CA,USA). The transcript-specific prim-
ers that were used in the qPCR (Table S1) were designed using
an online Real-Time PCRPrimerDesign tool fromGenScript
Corporation (http://www.genscript.com/ssl-bin/app/primer).
The citrus house-keeping gene 𝛽-actin was selected as the
reference gene to normalize the amplification efficiency. For
real-time PCR analysis, 1 𝜇l of 10-fold diluted cDNA samples
was used in 25 𝜇l reactions containing 0.2 𝜇M each primer
and 12.5 𝜇l of SYBR� Premix Ex Taq� (Takara, Dalian,
China). The PCR cycling conditions were 95∘C for 30 s,
40 cycles at 95∘C for 5 s, and 60∘C for 31 s. To check the
specificity of the amplified products, a dissociation curve
was generated immediately after amplification, and, in the
case of primer dimmers, a new set of primers was designed.
Eight microliters of each sample was run on a 2% agarose
gel and the images were visualized with ethidium bromide
(EtBr). To determine the PCR efficiency of the target and
reference genes, calibration curves were constructed using
serial dilutions of the cDNA template.

The output data were analyzed by the instrument on-
board SDS software (PEApplied Biosystems). All of the qPCR
reactions were normalized using the CT value of 𝛽-actin
gene. The relative expression levels of the target genes were
calculated with the formula 2−ΔΔCT [36]. For each sample,
triplicate quantitative assays were performed to ensure the
reproducibility of the results, and the data were presented as
means ± SE (𝑛 = 3).

3. Results

3.1. Changes in Leaf Relative Water Content. The RWC was
measured to investigate the water status during drought
treatment and to determine the water deficit quantitatively
in leaf tissues. During the entire 11 days, the control plants
remained green and grew well, while the stressed plants were
normal for the first 4 days after water withdrawing and then
showed significant chlorosis and leaf rolling from the fifth day
after dehydration. The detailed phenotypes under drought
stress were presented in Figure 1.

When drought started, the leaf RWC of the plants that
were subjected to stress decreased gradually with drought
time from 73% to 21% between the third day and the eleventh
day of drought stress (Figure 2). In particular, the RWC of
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(a) (b) (c) (d) (e)

Figure 1:The detailed phenotype of leaf samples under drought stress. (a)The control sample; (b) leaf sample under drought stress for 3 days;
(c) leaf sample under drought stress for 5 days; (d) leaf sample under drought stress for 8 days; (e) leaf sample under drought stress for 11 days.
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Figure 2: Changes of relative leaf water content and leaf water
potential of “Amakusa” tangor during the drought treatment.

stressed plants experienced a rapid decline, from 62% to
33% from the fifth day to the eighth day of stress treatment.
Changes in the leaf RWC under different drought conditions
were also accompanied by changes in leaf water potential
(𝜓). Within 5 days between the 3th day and the 8th day,
a decrease in 𝜓 to approximately −3.84MPa was observed
(Figure 2). These results indicated that the stressed plants
showed obvious changes in the phenotype and physiology.
Thus, in the present experiment, the 11-day period was
considered as an entire drought process including dynamic
changes in drought responding.

3.2. Identification ofDrought-Regulated Transcripts. To inves-
tigate the possibility of differential genes being induced by
plant development or changes in the greenhouse environ-
ment during drought stress, the cDNA-AFLP procedure was
conducted on the control plant using 3 randomly selected
primer combinations (AseI + AA/TaqI + AT, AseI + CG/TaqI

+ GT and AseI + TG/TaqI + CA). The results showed that no
differentially expressed fragments were detected across the 11
days in the control plant (Figure S2).

The transcript expression of leaf samples across time
intervals during the entire stress process was determined
by cDNA-AFLP analysis. Approximately 6,245 TDFs were
defined using 122 primer combinations with two selective
nucleotides per primer. Each primer pair averagely produced
40 to 60 TDFs and these fragments varied from 50 to 800 bp
in length, depending on their primer combinations and
treatment period. For the statistics of differentially expressed
TDFs, only the fragments that greater than 100 bp were con-
sidered. Polymorphic cDNA fragments were identified based
on presence/absence (qualitative variants) and difference
in expression intensity (quantitative variants). In general,
quantitative variants were more predominant in number
compared to qualitative variants. Figure 3 showed an example
of the expression patterns. A total of 255 TDFs with altered
expression patterns were detected in comparison with the
control, accounting for 4.1% of the obtained fragments. The
expression pattern of 255 TDFs, including A: upregulated
(115, 45%), B: downregulated (56, 22%), C: induced-expressed
(69, 27%), and D: repressed-regulated (15, 6%) (A, B, C,
and D represented genes that were upregulated, downreg-
ulated quantitatively, induced qualitatively, and repressed
under drought stress in comparison with control, resp.)
(Figure 4). The transcriptional profile appeared to be highly
reproducible, as both the banding patterns and intensity of
the amplified products were similar in the three biological
replications for each treatment. All of the 255 TDFs were
further analyzed, 229 of these were recovered, and 209 were
sequenced.

3.3. Sequence Analysis and Functional Annotation. Within
sequenced 209 TDFs, 175 produced reliable (>100 bp)
sequences. The rest of 34 TDFs could not give unique
sequence, probably due to being contaminated with comi-
grating fragments. Each sequence was conducted on a sim-
ilarity search using the BLAST program against the GenBank
nonredundant (nr) public sequence database.
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Figure 3: An example of cDNA-AFLP profile on stress-treated tangor. D0∼D11: 0, 3, 5, 8, and 11 days after drought stress treatment,
respectively; (a) and (b) cDNA-AFLP profile with AseI-CT/TaqI-GG and AseI-AT/TaqI-TC primer combination.The differentially expressed
TDFs showed four expression patterns. A: upregulation; B, D, and F: induction; C: downregulation; E: repression.The TDFs of genes induced
were present in drought stress but not in control.TheTDFs of genes repressedwere present in control but not in drought stress.The expression
of upregulated and downregulated genes could be detected in both control and drought stress, with increased and decreased expression
intensity under drought stress, respectively, when compared with control.
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With the BLAST algorithm, 44% of the 175 sequences
were found to have homology to genes with known function
in the database (Table 1), whereas the majority of them
belonged to either unknown proteins (24%) or zero matches
(32%), indicating the enriched novel genes were included in

citrus with drought stress. However, further study must be
performed to identify the TDFs carrying unknown proteins
or zeromatches and explored how they can be applied against
drought stress. The sequences with homology to functional
genes from GenBank were individually searched against The
Arabidopsis Information Resource (TAIR) and the Munich
Information Center for Protein Sequences (MIPS) MAtDB
databases. Sequence function was annotated according to the
MIPS FunCat schema and of the 78 sequences returning a
valid BLASTX hit, only 3.3% were found to encode function-
unknown proteins. The encoding products of these genes
could be subdivided into 12 functional categories and 7.2% of
themwere unclassified protein (Table 2). Most of the proteins
were found in exceeding one functional category.Meanwhile,
the number of the downregulation genes related to devel-
opment and cellular biogenesis was nearly twice that of the
upregulated. Additionally, as for transcription, energy, and
transduction, the amounts of the upregulated and induced
TDFs showed two times more than that of downregulated
and repressedTDFs.These results indicated that droughtmay
accelerate the degeneration ofmore development and cellular
biogenesis and that gene transcription and stress defense can
be enhanced by saving energy. These differentially expressed
TDFs reflected the changingneeds for sets of genes in defense,
metabolism, and cellular processes during drought response
in plants (Figure 5). A total of 18 TDFs were randomly picked
for further expressional studies based on different expression
patterns, including 6 induction, 1 repression, 9 upregulation,
and 2 downregulation TDFs, all those TDFs were homology
to function-known genes.
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Table 2: Distribution of the differentially expressed fragments (DEFs) during drought stress by functional categories.

Functional category % Upregulated (%) Downregulated (%) Induced (%) Repressed (%)
Cellular processes 21.1 10.2 12.5 9.7 6.1
Development 3.9 2.5 5.8 4.4 10.7
Cell organization and
biogenesis 1.2 3.7 6.9 2.5 15.2

Metabolic processes 19.2 14.8 17.7 21.2 19.8
Protein metabolism 4.3 5.2 6.7 1.4 0.0
DNA or RNA metabolism 0.7 0.0 1.4 0.0 2.3
Stress response 14.1 17.6 11.4 18.1 18.7
Response to abiotic or
biotic stimulus 13.0 9.8 7.1 10.7 5.3

Signal transduction 1.1 3.2 2.2 0.6 0.0
Transport 6.2 9.8 7.8 15.8 6.7
Electron transport or
energy 1.8 4.1 3.3 5.6 0.0

Transcription 2.9 8.6 0.0 1.8 0.0
Unclassified protein 7.2 4.4 6.9 3.3 4.5
Unknown function 3.3 6.1 10.6 4.9 7.4
Classification was performed for 119 DEFs with statistical similarity to GenBank plant protein sequence (𝐸 values lower than 1.00𝐸 − 05) by BLAST search.
The functional category was assigned based on function classification criteria in the website of Munich Information Center for Protein Sequences (MIPS)
(https://www.helmholtz-muenchen.de/ibis/).

21.1%

24.2%

28.2%

5.1%

8%

2.9%

7.2%

3.3%

5 10 15 20 25 300
(%)

Cellular processes

Metabolism

Response to stimuli

Developmental processes

Transport

Transcription

Unclassified protein

Unknown function

Figure 5: The functional distribution of differentially expressed
fragments (DEFs) by modified MIPS based functional classification
for “Amakusa” tangor. BLASTX comparisons to the predicted
proteins from Arabidopsis were used to assign DEFs based on
functional annotation after MIPS FunCat schema.

3.4. Validation of Differential Transcripts. Theexpression pat-
terns of the 18 TDFs were analyzed by qRT-PCR to investigate
the reliability of cDNA-AFLP analysis and to quantitatively
assess the relative abundance of the transcripts. In most of
the cases, qRT-PCR analyses showed the consistent results
with cDNA-AFLP tests, except for TDF4 (being identified as
upregulated during the stress), which gave significant varia-
tion, presumably on account of isolating a wrong fragment.
In addition, the discrepancy of the results between qRT-
PCR and cDNA-AFLP might also be due to their different
sensitivity. However, further study should pay attention to
TDF4 to explore its potential character in drought-related
tangor.

Among the 14 genes that were upregulated or induced,
the expression of 9 genes increased and peaked at 3 to
5 d after stress, while the expression of the other 5 genes
peaked at 8 to 11 d after stress (Figure 6). The expression of 4
genes, TDF26 (encoding carboxypeptidase), TDF82 (encod-
ing hypoxia responsive), TDF99 (encoding mitochondrial
carrier), and TDF136 (encoding xyloglucan endotransglu-
cosylase/hydrolase protein 9 precursor) rapidly increased,
peaking from 3 to 8 d after drought and then sharply
decreasing to the almost same level as the control. Moreover,
qPCR analysis showed that the expression of only 4 TDFs
continued to increase during stress, while the expression of
the remaining 10 was up- and then downregulated. These
results indicated that some genes might be triggered first
by stress and play an active role during the early drought,
thereafter being inactivated by continued or severe stress.
The other 2 genes, cytochrome P450 (TDF13) and pyruvate
kinase (TDF42), were continuously downregulated, while
zinc finger protein (TDF64) was repressed after drought
compared with normal plants. The expression of TDF13 in
particular, a photosynthesis-related gene, showed significant
downregulation at 3 d after stress, followed by a slight increase
and then a rapid decrease to dozens of times the level at 11 d
after treatment.

4. Discussion

Water deficit alters plant gene expression and leads to specific
gene induction [37]. The identification and detailed analysis
of a large number of candidate genes that are involved
in drought tolerance may enable the elucidation of the
molecular basis of drought resistance complexity. To fully

https://www.helmholtz-muenchen.de/ibis/


10 BioMed Research International

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
) TDF42

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
) TDF13

TDF26TDF24

TDF38

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF43

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF72

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF82 TDF99

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF120

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF33

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF34

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF60
Re

lat
iv

e e
xp

re
ss

io
n 

(fo
ld

)

TDF92

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

TDF109

TDF136

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
)

0
1
2
3
4
5

0
1
2
3
4
5
6
7
8
9

10

0
10
20
30
40
50

0

5

10

15

20

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
) TDF64

D0 D3 D5 D8 D11

0.01

0.1

1

10

D0 D3 D5 D8 D11D0 D3 D5 D8 D11

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
) TDF4

D0 D3 D5 D8 D11

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

D3 D5 D8 D11D0D8D5 D11D0 D3

D3 D5 D8 D11D0 D3 D5 D8 D11D0 D3 D5 D8 D11D0 D3 D5 D8 D11D0

D3 D5 D8 D11D0D3 D5 D8 D11D0D3 D5 D8 D11D0D3 D5 D8 D11D0

D3 D5 D8 D11D0 D3 D5 D8 D11D0 D3 D5 D8 D11D0 D3 D5 D8 D11D0
0

10
20
30
40
50

0
1
2
3
4
5

0
20
40
60
80

100
120

0
1
2
3
4
5
6
7
8
9

0
2
4
6
8

10

0
2
4
6
8

10

0
1
2
3
4
5

0
2
4
6
8

10
12
14
16
18
20

0
2
4
6
8

10

0
1
2
3
4
5

Figure 6: Quantitative real-time PCR (qRT-PCR) analyses of 18 differentially expressed transcripts for “Amakusa” tangor under drought
treatments. Leaf tissues were sampled from plants on days 0, 3, 5, 8, and 11 after the start of water withdrawal. Three independent biological
replications were performed. The relative expression level for stress-treated plants from 3 to 11 days was calculated as fold of control plants
(0 day treatment) using the comparative ΔΔCT method. All data were normalized to 𝛽-actin. The mean expression value was calculated for
every transcript-derived fragment (TDF) with three replications. (Induced genes: TDF24, TDF26, TDF38, TDF43, and TDF82; upregulated
genes: TDF33, TDF34, TDF60, TDF72, TDF92, TDF99, TDF109, and TDF120, TDF136; downregulated genes: TDF13 and TDF42; repressed
gene: TDF64; inconsistent gene: TDF4.)

uncover the TDFs existing on citrus with drought stress,
122 core marker pairs that were derived from 256 marker
combinations were used. With the cDNA-AFLP technique,
we detected 6,245 reproducible TDFs, demonstrating that the
cDNA-AFLP technique is an efficient tool to study the genes
that are involved in tolerance or resistance to environmental
stress, the banding patterns of which are highly repro-
ducible in cDNA-AFLP compared to other techniques, such
as differential display [38]. Furthermore, each primer pair

averagely produced 40 to 60 TDFs, indicating the efficiency
and comprehensively of our selected markers. Although the
present results showed minor differences in the expression
data between cDNA-AFLP and qPCR due to the different
detection sensitivities, these differences do not prevent a clear
determination of expression patterns.

Previous studies have reported thatmany identified genes
or transcripts are stress-inducible or upregulated, while the
downregulated or repressed genes have been frequently
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underestimated [39, 40]. However, the expression profile
analysis of our experiment found some transiently expressed
and up- and then downregulated genes that could not be
detected when only one or two time-point stresses were
measured. Similar results have also been obtained in Festuca
mairei, a xerophytic adapted grass [41]. The plant response
to stress has a complicated regulation network underly-
ing numerous physiological and biochemical changes. Var-
ious genes, including those that are downregulated or that
undergo other types of regulation, are involved in drought
response or even drought tolerance. In this experiment, four
kinds of expression patterns were uncovered by the cDNA-
AFLP analysis.

4.1. Drought-Inducible Genes. A large number of drought-
induced genes with diverse functions have been identified
by molecular and genomic analysis in a wide range of plant
species, such as the dehydration responsive element-binding
protein (DREB)/C-repeat binding factor (CBF) family [9, 42],
and some of these genes via gene transfer have resulted in
improved plant stress tolerance [10, 11]. Based on current
knowledge, the functions of these genes mainly included
directly protecting against environmental stresses and indi-
rectly resisting by regulating gene expressions and signal
transductions in the stress response.

In this research, 69 TDFs were identified as drought-
induced gene fragments, and their encoded proteins included
fructose-bisphosphate aldolase, cold acclimationWCOR413-
like protein, multidrug resistance pump and DnaJ chaperone
protein, which have been reported in association with stress
response, the results were also validated by the previous
studies [43–46]. The PIP2 protein, an aquaporin that spe-
cializes in osmotic fluid transport [47], functions as a water
channel to transport water through the plasma membrane
and tonoplast to adjust the osmotic pressure under stress
conditions [48, 49], exhibiting an inducible expression pat-
tern during drought stress and peaking at expression level
in the early stress period (3 days after water withdrawal),
indicating that the expression of this genemight play a critical
role in early drought defense. In addition, the products
of these inducible genes include some regulatory proteins.
The cleavage and polyadenylation specificity factor [50],
cyclic nucleotide-gated ion channel [51] and auxin response
factor [52], which are encoded by transcripts TDF21, TDF38
and TDF80, respectively, are involved in the regulation of
signal transduction and stress-responsive gene expression
and were also induced under drought, possibly governing the
expression of stress-inducible genes either cooperatively or
independently. Sedoheptulose-1, 7-bisphosphatase (SBPase),
encoded by TDF3, is a key enzyme of the calvin cycle gov-
erning the photosynthetic rates and levels of Suc and starch
that accumulate during the photoperiod [53]. Interestingly,
induction-pattern SBPase showed up-then-down regulated
expression during the whole period of drought treatment,
indicating that the activity of SBPase may be stimulated by
minor drought but inhibited by severe drought. Different
cysteine proteases (TDF221) have been characterized in
plants, where they participate in various proteolysis activities.
Moreover, cysteine proteases have been reported to function

in relation to senescence and programmed cell death [54],
from our study, drought changed the expression of the genes
encoding cysteine proteases, which might indicated that
drought stress was mediated by senescence and programmed
cell death.

4.2. Drought-Repressed Genes. Drought-repressed genes, as
well as drought-induced genes, also have important functions
for the survival and eventual development of the plant
during water stress [37]. In this experiment, the number of
expression-repressed genes with high homology to function
genes was far less than that of inducible genes, suggesting
that the functions of most drought-repressible genes remain
unknown and require more study to increase our knowledge
of the gene network governing drought tolerance. Iron-sulfur
(Fe-S) clusters have been found in themitochondrial electron
transport chain [55] and function as important regulatory
sensors that respond to oxidative stress and intracellular iron
levels [56]. TDF115 encodes an iron-sulfur cluster assembly
scaffold protein, a NifU-like protein that helps to assemble or
repair iron-sulfur (Fe-S) clusters by acting as a scaffold, the
repressed expression of which might be due to the reduction
of photosynthesis. Recent research proved that succinate
dehydrogenase is a direct source of reactive oxygen species
(ROS) in plant mitochondria and regulate plant develop-
ment and stress responses, inhibition of which can increase
resistance of plants to abiotic stress [57]. Our results found
that TDF176 encoded succinate dehydrogenase, the results
revealed that ROSwas involved in the drought stress of citrus.
Recently, evidence has indicated that chromatin remodeling
is involved in abiotic stress responses and stress tolerance
[58], our study revealed that TDF 247 encoded chromatin
remodeling, indicating its potential role in drought stress.
However, the mechanism of the chromatin remodeling genes
that are involved in drought defense is still not clear and
requires more study.

The 26S proteasome subunit was presented in both the
repressed andupregulated groups in this study. Similar results
have also been found in Arabidopsis and rice [8, 59]. It is
impossible to estimate the role and importance of this subunit
in tolerance or sensitivity only based on controllable exper-
iment conditions. However, these differentially expressed
TDFs provide clues regarding the genes that are differentially
expressed with a reference database for later comparisonwith
data from natural field drought conditions.

4.3. Genes Upregulated to Drought Stress. Present results
showed that the upregulated express pattern contained the
most genes, with high homology to function proteins. Some
proteins for transcription and translation regulation were
upregulated, such as zinc finger protein, MYB transcription
factor, translation initiation factor, and global transcription
factor, indicating that the activity of partial stress-responsive
genes is increased by these factors for positive stress defense.
Small heat shock proteins (sHsps) encoded by TDF213 and
TDF251, a group of proteins with a molecular mass of 15
to 42 kDa, can be induced by environmental stresses and
developmental stimuli and function as molecular chaperones
that bind to partially folded or denatured substrate proteins,
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thereby preventing irreversible aggregation or promoting
correct substrate folding [60]. Positive relationships between
sHsp levels and tolerance to desiccation have also been
reported [61]. TDF120 has high homology to a beta-amylase,
which is known for its function in the breakdown of starch to
produce maltose. Maltose has the ability to protect proteins,
membranes, and the photosynthetic electron transport chain.
Beta-Amylase induction and the resultantmaltose accumula-
tion may function as a compatible solute-stabilizing factor in
the chloroplast stroma in response to acute temperature stress
[62], the upregulation of which can affect osmotic protection.
Brassinosteroid insensitive 1 (BRI1), acting as an essential
component of the BR receptor, participates in stress response
signaling through interactions with ligands and proteins that
are involved in plant defense responses [63]. TDF72 encodes a
BRI1-associated receptor kinase 1 (BAK1), a second LRR RLK
that interacts with BRI1 in vitro, and may play an important
role in BR signal transduction [64, 65]. This result suggests
that the production of brassinosteroid could start to increase
the tolerance of plants imposed by drought stress.

Additionally, some genes encoding proteins that are
involved in energy and metabolism appeared to be upreg-
ulated, including 2, 4-dienoyl-CoA reductase, triacylglyc-
erol lipase, pyridoxal biosynthesis protein (PDX1), xyloglu-
can endotransglucosylase/hydrolase protein 9 precursor,
hydrolyzing O-glycosyl compounds, and anthranilate phos-
phoribosyltransferase. The xyloglucan endotransglucosy-
lase/hydrolases (XTHs) are thought to play a role in cell
wall restructuring, cell expansion, and, therefore, root growth
[66]. XTHs may be recruited to alter tissue tensile strength
or flexibility, enabling adaptation to mechanically stressful
environments [67]. Pyridoxal biosynthesis protein (PDX1) is
involved in the biosynthesis of vitamin B6, playing a role
in the stress tolerance and photoprotection of plants; the
loss of this protein leads to shorter, pyridoxine-dependent
root growth and hypersensitivity towards oxidative stress
[68, 69]. In addition, 3 genes encoding transport-category
proteins (cationic amino acid transporter, mitochondrial car-
rier protein, and importin alpha) also showed upregulation,
and the expression alteration of these genes can drive some
physiological adaptation in plants by transferring energy and
protein molecules, contributing to drought tolerance. In this
study, an unknown gene containing WD40 domains was
upregulated under drought. WD40 repeated proteins are key
regulators of plant-specific developmental events [70–72],
and a correlation between WD40 proteins and salt stress in
crops has been reported [73, 74]. Further study aiming to
explore the function of WD40 is necessary for the utilization
on drought stress. According to the observations and results,
our study indicated that the upregulated genes that mediated
the drought stress might be through preventing irreversible
aggregation, affecting osmotic protection, and interacting
with ligands and proteins as well as energy and metabolism
transformation.

4.4. Genes Downregulated in Response to Drought Stress. The
identification and functional analysis of downregulated genes
related to drought stress will improve our knowledge of the
molecular mechanism controlling the drought resistance of

plants. A total of 18 differentially expressed TDFs showed
significant homology with previously identified proteins
(Table 2). The number of downregulated genes was almost
the same as that of induced genes (21), suggesting that
downregulated genes in response to drought stress also play
important and special roles in drought tolerance.

Downregulated genes were involved in a number of basic
metabolic or biosynthetic functions and systemic develop-
ment or growth, such as energy (hydroxyphenylpyruvate
reductase), oligopeptide synthesis (ATP binding protein),
amino acid metabolism (thiamin biosynthetic enzyme), car-
bohydrate metabolism (carbohydrate kinase family), and cell
division (ATP-dependent RNA helicase). In addition, several
proteins for transcription and signal transduction were also
downregulated, including DNA-binding protein, big map
kinase, and zinc finger protein. Some TDFs showing high
similarity with photosynthesis-related genes were downreg-
ulated by drought, including cytochrome P450 monooxyge-
nase, cytochrome P450, chloroplast chlorophyll a/b-binding
protein, and photosystem I P700 chlorophyll a apoprotein
A2. Photosynthesis depression seems to switch another
carbohydrate utilization pathway, leading to the production
of valuable stress tolerance molecules [75]. Altogether, it
seems that the downregulation of photosynthesis-related
genes possibly contributes to reduced photooxidation stress
in tangor.

Pyruvate kinase (PK) is a key regulatory enzyme that
catalyzes a rate-limiting step of glycolysis and has been
reported to participate in the plant defense signaling trans-
duction pathway [76]. The expression of the PK gene was
induced during an incompatible interaction in hot pepper but
downregulated during drought stress in this study, and the
obvious difference suggests that pyruvate kinase might play
different roles in biotic and abiotic stresses.

5. Conclusion

In summary, we successfully used the cDNA-AFLP technique
to determine gene expression patterns in response to the
drought stress of “Amakusa” tangor. A total of 255 TDFs with
altered patterns of gene expression during stress were identi-
fied. A sequence analysis of the 175 TDFs identified genes that
were involved in various molecular events during drought
stress. These results revealed a variety of drought-responsive
genes that related to drought stress of tangor at a com-
prehensive molecular regulation level. These genes mainly
governed the function of cellular biogenesis, metabolism and
cellular processes, and energy transportation,which provided
insight into the response of citrus to drought tolerance and
provide candidate genes for future function analysis. This
study also discovered some novel genes whose functions
remain unclear, indicating that tangormight apply a currently
unknown defense mechanism against water deficit stress.
The TDFs obtained in this study can provide a guidance for
further exploration of drought stress related genes, which
may lead to a comprehensive understanding of the molecular
basis of citrus drought tolerance and will be helpful for the
organization of genes that are involved in drought tolerance
and crop improvement.
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