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A B S T R A C T

Introduction. Chronic kidney disease (CKD) is a recognized
risk factor for cognitive impairment. Identification of those at
greatest risk of cognitive impairment may facilitate earlier ther-
apeutic intervention. This study evaluated associations between
estimated glomerular filtration rate (eGFR) and cognitive
function in the Northern Ireland Cohort for the Longitudinal
Study of Ageing.
Methods. Data were available for 3412 participants �50 years
of age living in non-institutionalized settings who attended a
health assessment between February 2014 and March 2016.
Measures of serum creatinine (SCr) and cystatin C (cys-C) were
used for eGFR. Cognitive function was measured using the
Montreal Cognitive Assessment (MoCA) and the Mini-Mental
State Examination (MMSE).
Results. Following adjustment for potential confounders, a
single unit decrease in eGFR was significantly associated with
reduced cognitive function defined by an MMSE�24/30
feGFR calculated using serum cys-C [eGFRcys]: b ¼ �0.01
[95% confidence interval (CI) �0.001 to �0.01], P¼ 0.01g and
MoCA <26/30 [b ¼ �0.01 (95% CI �0.002 to �0.02),
P¼ 0.02]. Similarly, CKD Stages 3–5 were also associated with a
moderate increase in the odds of cognitive impairment
(MMSE�24) following adjustment for confounders [eGFRcys:
odds ratio 2.73 (95% CI 1.38–5.42), P¼ 0.004].
Conclusions. Decreased eGFRcys was associated with a signif-
icantly increased risk of cognitive impairment in a popula-
tion-based cohort of older adults. However, there was no

evidence of an association between cognitive impairment and
the more commonly used eGFR calculated using SCr. eGFRcys
may offer improved sensitivity over eGFRcr in the determi-
nation of renal function and associated risk of cognitive
impairment.
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I N T R O D U C T I O N

Improvements in healthcare have resulted in longer lifespans,
leading to a greater prevalence of cognitive impairment [1].
Mild cognitive impairment (MCI) is a transitional stage between
normal age-related decline and dementia and is characterized by
problems with memory, language, thinking or judgement while
the individual is able to function independently. MCI prevalence
has been reported to be as high as 21% in individuals >60 years
of age [2], with �6% of individuals having dementia [3].
Dementia prevalence is �20–25% among those in the UK who
survive beyond their ninth decade of life [3].

Chronic kidney disease (CKD) is characterized by impaired
renal function and may represent a significant independent risk
factor for cognitive decline, although the basis for this associa-
tion is not well understood. Pathological cerebral changes char-
acteristic of dementia exacerbated by reduced renal function
have also been reported in those with cognitive impairment in
the absence of overt dementia [4–6]. CKD may contribute to
the pathoaetiology of vascular dementia (VaD) via traditional
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cardiovascular disease risk factors, including diabetes, hyper-
tension, dyslipidaemia, smoking and family history [7], as well
as the non-traditional cardiovascular risk factors, including
endothelial dysfunction, uraemic neurotoxins and calcification.
Impaired flow-mediated dilatation and arterial stiffness have
been reported in small [8] and large [9, 10] arterial vessels in
those with CKD, where homocysteine clearance is diminished
[11] and reduced erythropoietin production results in lower ox-
ygen-carrying capacity [12]. Moreover, variations in mineral
metabolite concentration that result in calcification of soft
tissues and bone remodelling is another recognized feature of
CKD [13]. Although vascular calcification is more prominent
in later-stage CKD [14, 15], it may result as a consequence
of only moderate renal impairment with perturbed mineral
metabolism contributing to neuronal cell death [13, 16].

In addition to VaD, CKD may also contribute to
Alzheimer’s disease (AD)-related pathology [characterized by
an accumulation of cerebral extracellular amyloid-b (Ab) pla-
ques and neurofibrillary tangles caused by intracellular hyper-
phosphorylated tau protein [17] via impaired Ab clearance].
Many molecular mediators of cognitive decline remain in the
circulation as a consequence of renal impairment in CKD, lead-
ing to complex changes in blood composition. CKD patients
undergoing dialysis have been reported to have serum Ab levels
similar to cognitively intact controls, while those with CKD not
receiving dialysis had relatively higher serum Ab levels that
negatively correlated with estimated glomerular filtration rate
(eGFR) [18]. Systemic reduction in serum Ab following haemo-
dialysis has also been demonstrated [19], with associated
improvements in cognitive function [20]. In addition, murine
studies have shown renal clearance of peripheral Ab leading to
reduced cerebral levels in APPswe/PS1dE9 mice that spontane-
ously produced amyloid plaques by 6 months [21].
Furthermore, structural cerebral changes associated with AD
and VaD, such as Ab deposition and white matter lesion

formation, are also commonly found in individuals with MCI,
suggestive of an overlapping pathophysiology across a disease
continuum [4].

As such, individuals with CKD may be at increased risk of
cognitive impairment, and impaired renal function is a recog-
nized risk factor associated with cognitive decline. Moreover,
reductions in renal function correlate strongly with older
age [22], increasing the risk of cognitive impairment, although
potentially confounding the associations observed. Cognitive
decline has been reported in association with the presence and
magnitude of albuminuria [23–25] and the duration of kidney
disease following adjustment for the confounding influence of
age [26]. Early identification of those at increased risk of cogni-
tive impairment may enable earlier therapeutic intervention.
Estimates suggest that between 22% and 46% of those with MCI
progress to dementia, representing a significant risk of progres-
sion to advanced neurodegenerative disease [2, 27, 28].
Dementia is a significant contributor to global mortality [29]
and carries a high burden of morbidity, affecting memory,
reasoning, physical functioning and emotional regulation asso-
ciated with greater socio-economic burden [30, 31].

Current treatment options for cognitive impairment are lim-
ited to targeting a range of lifestyle and other risk factors to
slow progression of cognitive decline [32, 33]. Therefore identi-
fication of at-risk individuals would be advantageous. However,
the relationship between the stage of CKD (based on eGFR)
and the severity of cognitive function is unclear. Serum creati-
nine (SCr) is the most commonly used metabolite for eGFR and
renal function estimates, but its utility is limited by the influen-
ces of sex, age, diet and muscle mass (recognized risk factors for
cognitive impairment) on Cr clearance by the kidney. As such,
other biomarkers not influenced by age, sex, muscle mass or di-
etary intake, such as cystatin C (cys-C), might better reflect the
early diminished GFR of renal impairment. The aim of this
study was to determine the value of serum cys-C and SCr as

KEY LEARNING POINTS

What is already known about this subject?

• Chronic kidney disease (CKD) is associated with an increased risk of cognitive impairment.
• Identification of those at greatest risk of cognitive impairment may facilitate earlier therapeutic intervention.
• Comparison of serum creatinine (SCr)- and/or cystatin C (cys-C)-based estimated glomerular filtration rate (eGFR)

with robust markers of cognitive function may identify improved sensitivity to differentiate those at increased risk.

What this study adds?

• Decreased eGFR calculated using serum cys-C (eGFRcys) is associated with a significantly increased risk of cognitive
impairment in our population-based cohort of older adults.

• There was no evidence of an association between cognitive impairment and the more commonly used eGFR calculated
using SCr (eGFRcr).

• eGFRcys may offer improved sensitivity over eGFRcr in the determination of renal risk associated with cognitive
impairment.

What impact this may have on practice or policy?

• Measurement of serum cys-C and use of the eGFRcys equation for CKD diagnosis may be more sensitive in character-
izing renal function in those groups at risk of cognitive impairment, such as the elderly.

Associations between renal and cognitive function 1493



estimates of renal function (eGFR) to quantify associations with
cognitive function in an older population using data collected
by the Northern Ireland Cohort for the Longitudinal Study of
Ageing (NICOLA).

M A T E R I A L S A N D M E T H O D S

NICOLA is a longitudinal cohort study of 8478 community-
dwelling men and women �50 years of age, resident in
Northern Ireland (individuals in care homes or other residential
institutions were excluded at baseline) [34]. The study was
established in 2013 with three main components: a computer-
aided personal interview (CAPI), a self-completion question-
naire and a health assessment. The CAPI was extensive in scope
and included assessment of demographic, social and health-re-
lated factors. Measures of cardiovascular, physical, cognitive
and visual function were determined during the health assess-
ment and biological samples were collected. Ethical approval
was obtained from the School of Medicine, Dentistry and
Biomedical Sciences Ethics Committee, Queen’s University
Belfast (SREC 12/23) and written informed consent was
obtained prior to participation in accordance with the Helsinki
Declaration.

Measurement of renal function and classification of
CKD

SCr (mg/dL) standardized to isotope dilution mass spec-
trometry–calibrated techniques and cys-C (mg/L) were assayed
on an ARCHITECT c8000 system (Abbott, Abbott PArk, IL,
USA) using kinetic alkaline picrate and turbidimetric/immuno-
turbidimetric methods, respectively. The coefficient of variation
for SCr and cys-C was <4.68 and <1.80%, respectively. eGFR
[eGFR calculated using SCr (eGFRcr) and eGFR calculated us-
ing serum cys-C (eGFRcys)] was based on a single serum sam-
ple using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation (2009 equation for Cr and
2012 equation for cys-C) [22]. CKD Stages 3–5 were defined as
eGFR<60 mL/min/1.73 m2 and CKD Stages 1–2 as
eGFR�60 mL/min/1.73 m2.

Measurement of cognitive function

Cognitive function was evaluated in the participants who
attended a health assessment that included a Mini-Mental State
Examination (MMSE) and a Montreal Cognitive Assessment
(MoCA) of short-term memory recall tasks, visuospatial abili-
ties and executive function, phonemic fluency and two-item
verbal abstraction tasks. Attention, concentration, language ori-
entation to time and working memory were also assessed. An
extra point was added to the MoCA test score for participants
with <12 years of formal education. Cognitive impairment
thresholds included an MoCA score <26 or an MMSE score
�24.

Other variables

Measures of obesity included percentage body fat, waist cir-
cumference and body mass index (BMI). Systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) measurements
were the average of two independent readings. Diabetic status

was defined using a combination of participant percentage
haemoglobin A1c (>6.5%), diabetic medication use or
self-reported diabetes. Self-reported medication use was defined
according to the Anatomical Therapeutic Chemical
Classification System based on the active ingredients of drugs
according to the organ or system on which they act and their
therapeutic, pharmacological and chemical properties.
Educational attainment was classified as completing primary,
secondary or tertiary-level education. Smoking status was char-
acterized as current, past or non-smoker. Alcohol consumption
was categorized into three groups: non-drinker, drinker and ex-
drinker.

Statistical methods

Only cross-sectional baseline data from Wave 1 was avail-
able. Continuous variables were summarized using mean [stan-
dard deviation (SD)] and categorical variables by frequencies
and percentages. Between-group differences were assessed us-
ing t-tests and chi-squared tests. Multivariate linear regression
tested associations between eGFR and cognitive function, with
eGFR as the independent variable and MoCA and MMSE
scores as the dependent variables. The primary analyses used
multivariate linear regression to test associations between a sin-
gle-unit reduction in renal function (eGFR) and cognition
assessed by MoCA. Secondary analyses tested for associations
between eGFR and cognitive impairment by MMSE. Logistic
regression tested associations between CKD Stages 3–5
(eGFR<60 ml/min/1.73 m2) as the independent variable and
cognitive impairment (as the dependent variables).

Regression models were unadjusted or adjusted in a stepwise
manner for age, sex, waist circumference, BP, diabetes status,
high-density lipoprotein (HDL) and low-density lipoprotein
(LDL) cholesterol, education level, smoking, alcohol intake and
deprivation score (overall income domain score) and self-
reported use of lipid-modifying agents, antihypertensive drugs
and drugs used for the treatment of diabetes.

R E S U L T S

Baseline characteristics for the 3412 NICOLA participants who
attended for health assessment and for whom data were avail-
able are shown in Table 1. The mean age of the sample was
64 years (SD 9). Participants had a mean waist circumference of
96 cm (SD 14), indicating a high prevalence of unhealthy adi-
posity in the sample, and those characterized with impaired
cognition were more likely to have significantly higher mean
percentage body fat (45% versus 43%) and mean BMI (29.2ver-
sus 28.7 kg/m2). The mean SBP and DBP were 133 and
81 mmHg, respectively, with 2% of participants reporting the
use of antihypertensive medication. The mean LDL cholesterol
was 3.4 mmol/L (SD 1.11), indicating a high prevalence of
unhealthy LDL and the use of lipid-modifying agents was
reported by 33% of participants. The mean HDL cholesterol
was 1.61 mmol/L (SD 0.44).

The mean MoCA score was 25.4 (SD 3.3), a value below the
threshold for cognitive impairment of 26/30. In contrast, the
mean MMSE score was 28.5 (SD 1.8), exceeding the normal
cognition threshold of 24/30. The mean eGFRcr was 80.2 mL/
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Table 1. Population characteristics

Variable All participants
(N¼ 3412), mean (SD)

Cognitively normal (n¼ 1941),
mean (SD)

Impaired cognition (n¼ 1471),
mean (SD)

P-value

Age (years) 64 (9) 62 (8) 67 (9) <0.001
Body fat (%) 44 (7) 43 (7) 45 (6) <0.001
Waist circumference (cm) 96 (14) 94 (14) 98 (14) <0.001
BMI (kg/m2) 28.9 (5.2) 28.7 (5.2) 29.2 (5.3) 0.003
<25 751 (22) 459 (24) 292 (20) 0.003
25–30 1445 (42) 833 (43) 612 (42) –
>30 1216 (36) 649 (33) 567 (38) –

SBP (mmHg) 133 (19) 132 (19) 134 (19) 0.001
DBP (mmHg) 81 (11) 82 (11) 81 (11) 0.003
Overall income domain score 0.23 (0.14) 0.19 (0.12) 0.22 (0.13) <0.001
LDL (mmol/L) 3.34 (1.11) 3.46 (1.07) 3.20 (1.13) <0.001
HDL (mmol/L) 1.61 (0.44) 1.66 (0.45) 1.56 (0.42) <0.001
MMSE score 28.5 (1.8) 29.2 (1.0) 27.7 (2.0) <0.001
MoCA score 25.4 (3.3) 27.7 (1.3) 22.5 (2.6) <0.001
eGFRcr (mL/min/1.73 m2) 80.2 (16.0) 81.9 (14.8) 78.4 (16.7) <0.001
CKD stages (Cr) <0.001

CKD Stages 1–2 2627 (90) 1550 (92) 1077 (87) –
CKD Stage 3 214 (7) 109 (6) 105 (9) –
CKD Stages 4–5 84 (3) 32 (2) 52 (4) –

eGFRcys (mL/min/1.73 m2) 67.2 (18.3) 70.7 (17.5) 63.5 (18.1) <0.001
CKD stages cys-C <0.001

CKD Stages 1–2 1952 (67) 1236 (75) 716 (58) –
CKD Stage 3 637 (22) 305 (18) 332 (27) –
CKD Stages 4 and 5 291 (11) 115 (7) 176 (15) –

Male, n (%) 1604 (47) 838 (43) 766 (52) <0.001
DM, n (%) 307 (9) 134 (7) 173 (12) <0.001
Using lipid-modifying agents, n (%) 1132 (33) 541 (28) 591 (40) <0.001
Using antihypertensive drugs, n (%) 79 (2) 34 (2) 45 (3) <0.001
Using drugs for diabetes, n (%) 212 (6) 93 (5) 119 (8) <0.001
Education level, n (%) <0.001

Primary or less 479 (14) 113 (6) 366 (25) –
Secondary 1509 (44) 789 (41) 720 (49) –
Tertiary 1483 (44) 1038 (54) 383 (26) –

Smoking status, n (%) 0.05
Never 1779 (52) 1043 (54) 741 (50) –
Ex 1272 (37) 689 (36) 582 (40) –
Current 353 (11) 207 (11) 146 (10) –

Alcohol consumption, n (%) <0.001
Current 2362 (69) 1440 (74) 922 (63) –
Ex 495 (15) 239 (12) 256 (17) –
Never 553 (16) 261 (14) 292 (20) –

Medication use was defined according to the Anatomical Therapeutic Chemical Classification System that classifies the active ingredients of drugs according to the organ or system on
which they act and their therapeutic, pharmacological and chemical properties. Secondary education includes the following categories: GCSE, A level: advanced level. Tertiary educa-
tion includes the following categories: diploma/certificate, primary degree, post-graduate degree. Ex-smoker includes the following categories: stopped >10 years ago, between 10 years
and 12 months ago and within the last 12 months. P-values show the significance for the comparison between those who are cognitively normal versus those with impaired cognition,
based on MoCA scores >26 and <26.

Table 2. Linear regression models for associations between eGFR and cognitive function scores

Outcome Model 1 Model 2
b (95% CI), P-value b (95% CI), P-value

MoCA (mL/min/1.73 m2)
eGFRcr �0.03 (�0.02 to �0.04), <0.001 0.002 (0.01 to �0.01), 0.53
eGFRcys �0.05 (�0.04 to �0.05), <0.001 �0.01 (�0.002 to �0.02), 0.02

MMSE (mL/min/1.73 m2)
eGFRcr �0.02 (�0.01 to �0.02), <0.001 �0.002 (0.002 to �0.01), 0.24
eGFRcys �0.02 (�0.02 to �0.03), <0.001 �0.01 (�0.001 to �0.01), 0.01

Model 1: unadjusted model. Model 2: adjusted model including age, sex, waist circumference, SBP, diabetes status, LDL and HDL cholesterol, education level, smoking, drinking and
deprivation score and self-reported use of lipid-modifying agents, antihypertensive drugs and drugs used for the treatment of diabetes.
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min/1.73 m2 (SD 16.0) and the mean eGFRcys was 67.2 mL/
min/1.73 m2 (SD 18.3); 47% of participants were male, 9% had
diabetes, 6% reported using diabetes medication, 86% were edu-
cated to the General Certificate of Secondary Education (GCSE)
level or higher, 48% had previously or were current smokers
and 69% were classified as current alcohol drinkers.

In an unadjusted regression to test associations between
eGFR and MoCA (Table 2), a single-unit decrease in eGFR was
associated with lower cognitive function feGFRcr: b ¼ �0.03
[95% confidence interval (CI) �0.02 to �0.04], P< 0.001;
eGFRcys: b ¼ �0.05 [95% CI �0.04 to �0.05], P< 0.001g.
Following adjustment for confounders, only eGFRcys remained
significantly associated with lower cognitive function [b ¼
�0.01 (95% CI:�0.002 to�0.02), P¼ 0.02].

In a secondary analysis where cognitive impairment was
characterized by MMSE�24, a single-unit decrease in eGFR
was significantly associated with a lower MMSE score [eGFRcr:
b ¼ �0.02 (95% CI �0.01 to �0.02), P< 0.001; eGFRcys:
b ¼ �0.02 (95% CI�0.02 to�0.03), P< 0.001]. Following ad-
justment for confounders, only eGFRcys remained significant
[b¼�0.01 (95% CI�0.001 to�0.01), P¼ 0.01].

Using a MoCA score <26 to characterize cognitive impair-
ment, CKD Stages 3–5 (eGFR<60 mL/min/1.73 m2) were asso-
ciated with a moderate increase in the odds of cognitive
impairment in unadjusted analyses [eGFRcr: odds ratio
(OR) 1.61 (95% CI 1.28–2.03), P< 0.001; eGFRcys: OR 1.97
(95% CI 1.69–2.30), P< 0.001], although neither remained sig-
nificant following adjustment for confounding variables (Table
3).

CKD Stages 3–5 were also associated with a moderate
increase in the odds of cognitive impairment in unadjusted
analyses [eGFRcr: OR 3.31 (95% CI 1.89–5.81), P< 0.001;
eGFRcys: OR 4.90 (95% CI 2.82–8.53), P< 0.001]. Following
adjustment for potential confounders, only eGFRcys remained
significant [OR 2.73 (95% CI 1.38–5.42), P¼ 0.004].

D I S C U S S I O N

In this population-based cohort of older adults, lower eGFRcys
was independently associated with cognitive impairment fol-
lowing adjustment for potential confounding variables.
Similarly, CKD Stages 3–5, characterized by eGFRcys <60 mL/
min/1.73 m2, were associated with increased odds of MMSE
�24 (OR 2.73). However, there was no evidence of an associa-
tion between renal function characterized by eGFRcr and cog-
nitive function, independent of potential confounders.

Several studies have previously reported associations be-
tween CKD and cognitive function [35, 36]. AD and VaD pos-
sess similar aetiological origins, despite variable pathologies,
and share several important risk factors. The risk of onset of
AD is increased by diabetes mellitus (DM), hypertension and
obesity (particularly in midlife), physical inactivity, smoking,
lower educational attainment and depression [37], risk factors
commonly shared with VaD [38–44]. Likewise, CKD also
shares several of these risk factors (obesity, diabetes, hyperten-
sion, smoking, education and physical activity) [45, 46] and
may influence cognitive decline as a result of effects associated
with vascular remodelling and Ab clearance. Similarly, individ-
uals with end-stage renal disease (ESRD) are more susceptible
to atherosclerotic changes [47] and ischaemic and haemor-
rhagic stroke, which may be as much as 4–10 times more
common [48]. The systemic vascular effects of CKD begin early
in the disease process, long before symptoms of ESRD are
observed [13, 16]. Impaired clearance of uraemic metabolites
has also been suggested as a contributory factor to cognitive
decline in patients with CKD as an explanation for the limited
efficacy of treatments targeting traditional cardiovascular risk
factors to ameliorate cognitive impairment in CKD patients
[49, 50]. In a meta-analysis, individuals with CKD tended to
have poorer memory, executive function, language, concept for-
mation, attention orientation, reasoning domains and global
cognition [51]. In addition, cognitive function improved follow-
ing renal transplant in those with ESRD [52].

This study provides evidence that characterization of CKD
using cys-C-based estimates was associated with a moderately
greater risk of cognitive impairment. Given that cognitive im-
pairment is commonly underdetected and associated with poor
adherence to treatment [53], cognitive assessment in CKD pop-
ulations may be of value. Indeed, recent findings suggest that
those with CKD Stages 4 and 5 and cognitive impairment have
a far greater mortality rate than those with either condition
alone [49]. Renal function estimates using the more common
eGFRcr biomarker were less sensitive, suggesting eGFRcys may
offer improved sensitivity and characterization of renal function
for the detection of subtle associations between eGFR and cog-
nitive outcomes, especially in those with reduced cognitive
function. These findings support similar previously reported
associations between eGFRcys independent of confounding
factors in older individuals, particularly in populations with
more comorbid conditions [54].

This study had several strengths. The present analyses made
use of a large, population-based cohort that allowed for a

Table 3. Binary logistic regression models for associations between estimated CKD Stages 3–5 (eGFR<60 mL/min/1/73 m2) and cognitive impairment

Outcome Model 1 Model 2
OR (95% CI), P-value OR (95% CI), P-value

MoCA<26
CKD Stages 3–5 cr 1.61 (1.28–2.03), <0.001 0.78 (0.59–1.03), 0.08
CKD Stages 3–5 cys 1.97 (1.69–2.30), <0.001 0.98 (0.80–1.19), 0.83

MMSE�24
CKD Stages 3–5 cr 3.31 (1.89–5.81), <0.001 1.75 (0.90–3.38), 0.10
CKD Stages 3–5 cys 4.90 (2.82–8.53), <0.001 2.70 (1.37–5.33), 0.004

Model 1: unadjusted model. Model 2: adjusted model including age, sex, waist circumference, SBP, diabetes status, LDL and HDL cholesterol, education level, smoking, drinking and
deprivation score and self-reported use of lipid-modifying agents, antihypertensive drugs and drugs used for the treatment of diabetes.
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well-powered, analysis generalizable to the wider population of
older adults. The NICOLA dataset included measures on a wide
variety of lifestyle and health outcomes, which allowed for
adjustment of important potential confounding factors.
Prevalence of CKD and cognitive risk factors vary widely by
geographic region [55, 56], and this study provided those rela-
tive to the Northern Irish population. The primary predictor
and outcome variables were quantified using clinically relevant
measures (MoCA and MMSE for cognitive function and eGFR
using CKD-EPI equations for two independent biomarkers of
renal function), thus providing clinical relevance to the analy-
ses. Associations between renal function and cognitive impair-
ment were evaluated using commonly used instruments such as
MMSE and the more sensitive MoCA, with the latter proving
sufficiently informative alone for associations with eGFRcys
[57]. Furthermore, eGFRcys has been reported to be less
affected by variations in muscle mass and diet and a better pre-
dictor of CKD-associated mortality and morbidity compared
with eGFRcr [58–60]. In general, eGFRcys was lower than
eGFRcr in the NICOLA study participants. Nevertheless, the
use of both Cr and cys-C in eGFR equations in people with un-
usual muscle mass or high levels of obesity is complex and has
been reported to be less accurate [61, 62]. The mean difference
between eGFRcr and eGFRcys for NICOLA study participants
was lowest in those with a BMI<25 kg/m2 (9.7 mL/min/
1.73 m2; SD 13.0) in contrast to those who were most obese
with a BMI>30 kg/m2 [16.5 mL/min/1.73 m2 (SD 13.2)].

There were several limitations to the design of our study.
NICOLA included adults >50 years of age and excluded indi-
viduals with dementia and institutionalized adults. Therefore,
by design, and as a result of selection bias, the findings likely re-
flect associations with cognitive impairment in older adults and
not clinical dementia. Moreover, the study sample was biased
towards healthy individuals who may represent the ‘worried
well’. As a result, individuals with renal dysfunction and cogni-
tive impairment are likely to be underrepresented compared
with the population at large.

Although NICOLA is a longitudinal cohort study, at the
time of analysis only cross-sectional data were available. This
precluded examination of cause-and-effect relationships in the
dataset and increased the likelihood of survival bias. Renal func-
tion was assessed using a clinically relevant estimation of GFR;
however, direct measurement of GFR would have provided an
assessment of renal function with smaller inherent error [63].
Moreover, to account for diurnal and acute variations in renal
function, kidney disease is clinically assessed using two meas-
ures of serum cr and cys-C taken at least 3 months apart [22].
The use of a single measure in this study to estimate renal func-
tion is likely to increase the variability of the data and increase
the probability of false null findings, although this was reduced
in part by the large number of participants. Albuminuria is an
early marker of endothelial damage within the renal glomeruli
and another important measure of renal health used in the diag-
nosis and management of CKD that identifies a disease popula-
tion with only partial overlap to those identified using eGFR
alone [64]. Generalized endothelial dysfunction has been hy-
pothesized to lead to neuronal damage and neurotoxin

accumulation that may reflect the disease processes of cognitive
decline and explain previous associations between albuminuria
and reduced cognitive performance [23–25]. In common with
many population-based studies, measures of albuminuria were
not available for NICOLA study participants. In addition, po-
tential explanatory covariates, such as anaemia, depression,
poor sleep quality and polypharmacy, have been linked to
CKD-related cognitive dysfunction [65] and were not consid-
ered in the present analyses. Furthermore, some of the varia-
bles included self-reported data, such as medication use,
which may be prone to recall bias. Finally, although we ad-
justed for major potential confounders, the possibility of resid-
ual confounding by variables that were not included in the
analyses remains.

To conclude, eGFR and CKD Stages 3–5 were associated
with cognitive impairment in a Northern Irish population-
based cohort, indicating that patients with reduced eGFR or
CKD Stages 3–5 are at increased risk of cognitive impairment.
However, associations between cognition and the more com-
monly used but less sensitive eGFRcr-based measures of renal
function could largely be explained by known covariates such
as age, diabetes and hypertension. In contrast, renal function
based on the more sensitive, but less commonly used, eGFRcys
identified associations with cognitive impairment with moder-
ately increased odds (2.73-fold). The sensitivity to evaluate
eGFR as a risk factor for cognitive impairment may be limited
when using the more traditional renal function biomarker of
SCr due to the confounding effects of other factors.
Nevertheless, associations of increased risk are explained using
the more sensitive cys-C estimate of renal function, which is
less susceptible to potential confounding factors.
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