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Fibrosis is a process of dysfunctional wound repair, described by a failure of tissue

regeneration and excessive deposition of extracellular matrix, resulting in tissue scarring

and subsequent organ deterioration. There are a broad range of stimuli that may

trigger, and exacerbate the process of fibrosis, which can contribute to the growing

rates of morbidity and mortality. Whilst the process of fibrosis is widely described

and understood, there are no current standard treatments that can reduce or reverse

the process effectively, likely due to the continuing knowledge gaps surrounding the

cellular mechanisms involved. Several cellular targets have been implicated in the

regulation of the fibrotic process including membrane domains, ion channels and more

recently mechanosensors, specifically caveolae, particularly since these latter contain

various signaling components, such as members of the TGFβ and MAPK/ERK signaling

pathways, all of which are key players in the process of fibrosis. This review explores

the anti-fibrotic influences of the caveola, and in particular the key underpinning protein,

caveolin-1, and its potential as a novel therapeutic target.
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INTRODUCTION

Fibrosis, a process of wound reparation, is a cellular response to tissue damage or insult, preceded
by an inflammatory response. Various etiologies can act as triggers to induce inflammation and
subsequent tissue damage, including infection, autoimmunity and tumors (Wynn, 2007;Wick et al.,
2013). In physiological conditions, inflammation is followed by repair processes that eliminate
the initial insult, through the replacement and replenishment of injured cells. The repair process
progresses with the replacement of connective tissue or fibrous tissue-producing mesenchymal
cells such as fibroblasts, the primary cells involved in fibrosis. Of note, this resolution step initiates
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the recruitment of leukocytes and subsequently promotes the
process of apoptosis (Akbar and Salmon, 1997; Buckley et al.,
2001). When the resolution step becomes dysregulated, observed
by a transition from an acute to a chronic inflammatory process,
fibrosis occurs which manifests as scar tissue, further promoting
end-organ damage and ultimately death (Wynn, 2007;Wick et al.,
2013). Chronic inflammation is essential for the progression
of fibrosis as it promotes long-term tissue remodeling and
subsequent organ dysfunction (Wynn, 2007; Wick et al., 2013;
Zeisberg and Kalluri, 2013). The onset of fibrosis begins with
epithelial or endothelial activation, which results in the release
of inflammatory mediators, for both clot formation (hemostasis)
and inflammatory cell recruitment. Innate immune cells, such as
neutrophils, release pro-fibrotic factors or cytokines, including
matrix metalloproteinases (MMPs), elastases, and cathepsins,
to cleave connective tissue and in turn disrupt the basement
membrane, promoting cell migratory capacities (Wynn, 2007;
Wick et al., 2013). In addition, macrophages are vital for
fibroblast activation, through their release of tumor necrosis
factor-α (TNF-α) and interleukin 1 (IL-1). Further, macrophages
also release transforming growth factor β (TGF-β), which is
essential for the onset of processes involved in fibrosis including
epithelial-mesenchymal transformation (EMT) (Wick et al.,
2013). Morphologically, caveolae are described as flask-like or
� shaped membrane invaginations with a diameter of 50–
100 nm (Palade, 1953; Yamada, 1955). There are two main
protein components essential for the formation and function
of caveolae—caveolins and cavins (Drab et al., 2001; Galbiati
et al., 2001). The primary function of caveolae is yet to be
determined, although it has been shown to play a mediatory
role in cholesterol homeostasis (Frank et al., 2008; Zhang et al.,
2008), vascular reactivity (Drab et al., 2001; Razani et al., 2001a),
mechanotransduction (Park et al., 1998; Sinha et al., 2011;
Shihata et al., 2016), and cellular signaling (Yang and Rizzo,
2007). Importantly, caveolin-1 (Cav-1), originally called vesicular
integral membrane protein of 21 kD (VIP-21), is generally
accepted as the predominant protein involved in caveolae’s key
regulatory function in intracellular signaling pathways evident in
fibrotic processes observed in different organs including cardiac,
lung, and kidney fibrosis (Drab et al., 2001).

CARDIAC FIBROSIS

Cardiac fibrosis is the abnormal accumulation of extracellular
matrix (ECM) in the myocardial tissue. Key to the pathogenesis
of cardiac fibrosis is the limited regenerative ability of the
adult mammalian heart (Soonpaa and Field, 1998). This is
due to the transition phase during neonatal stages, where
there is a switch from hyperplastic to hypertrophic growth,
observed by an increase of myocardial mass, independent
of proliferation. In the event of cardiac damage or injury,
an inflammatory process is followed by the replacement of
cardiomyocytes with fibrotic tissue in place of a replenished
supply of cardiomyocytes (Soonpaa and Field, 1998). In the
cardiac setting, Cav are present as various subtypes, however
Cav-1 and Cav-3 are the predominant isoforms expressed by

endothelial cells and cardiomyocytes, respectively (Tang et al.,
1996).

The deletion of the gene encoding Cav-1 leads to adverse
cardiac remodeling following myocardial infarction (MI). It
has been demonstrated that this is due to Cav-1 knockout
(Cav1−/−) mice having an impaired inflammatory reaction,
where alternative or M2 macrophages, known for promoting
scar formation, accumulate more in Cav1−/− mice compared to
WT mice. Further adoptive transfer studies, where macrophages
from Cav1−/− mice were transferred into WT mice and vice
versa, showed an increase in the survival rate of Cav1−/−

mice that received macrophages from WT mice and decreased
survival rates for WT mice who received Cav1−/− macrophages
(Shivshankar et al., 2014). Similarly, a study evaluated the degree
of fibrosis in the heart of mice with overexpression of Cav-3
compared to WT mice. Following transverse aortic constriction
(TAC) procedures, mice that overexpressed Cav-3 displayed
lower levels of fibrosis, and improved natriuretic levels, relative
to the WT mice (Horikawa et al., 2011). Further, it has been
shown that reconstitution of endothelial Cav-1 into Cav-1−/−

knockout mice reduces gene expression of TGF-β1, collagen I
and III, ultimately decreasing fibrotic lesions in the heart and
improving cardiac function (Murata et al., 2007). Importantly,
several studies have highlighted the major contributory role of
TGF-β in the pathogenesis and regulation of cardiac fibrosis
and hypertrophy (Brooks and Conrad, 2000; Deten et al., 2001;
Dewald et al., 2004).

The main regulatory mechanism for TGF-β signal
transduction is endocytosis regulated by Cav-1-associated
lipid rafts and early endosomal antigen-1 (EEA-1) non-lipid
rafts. While EEA-1 increases TGF-β1 signaling, Cav-1-associated
internalization reduces, and in some cases even abolishes
TGF-β1 signaling (Di Guglielmo et al., 2003; Ito et al., 2004).
Without downregulation from Cav-1, ligand-receptor binding
of TGF-β1 initiates the assembly of a heteromeric receptor
complex by transphosphorylating the TGF-β type II receptor
(TβRII), which then activates TGF-β type I receptor (TβRI)
(Wrana et al., 1994). Further, TβRI induces Smad signaling by
phosphorylating Smads, receptor-regulated Smad (R-Smad)
2 and 3. Smad2 and Smad3 relay the signaling process from
the plasma membrane to the nucleus, via R-Smads and Smad4
that translocate to the nucleus where transcriptional changes
occur (Miyazono et al., 2000). Cav-1 negatively regulates
Smad signaling by binding the caveolin scaffolding domain
(CSD) component, the key functional component of Cav-1,
to TβRI, which in turn diminishes the downstream signaling
of Smads via the TGF-β receptors (Razani et al., 2001b). The
interaction between Cav-1 and TβRI impairs the phosphorylation
process, and in turn inhibits the heteromerization with Smad4,
which is essential for the initiation of transcriptional changes
(Razani et al., 2001b). In addition to Smad signaling pathways,
TGF-β also exerts its actions through non-canonical, non-
Smad pathways including Mitogen-activated protein kinase
(MAPK) pathways, Rho-like GTPase signaling pathways, and
phosphatidylinositol-3-kinase/Protein Kinase B (PI3K/AKT)
pathways. Cav-1 has also been demonstrated to negatively
regulate the activation state of p42/44 MAPK cascade in cardiac
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fibroblasts (Galbiati et al., 1998). This finding is also supported by
morphological evidence demonstrating ERK-1/2 co-localization
to caveolae in an in vivo model of cardiac fibrosis (Liu et al.,
1997).

LUNG FIBROSIS

Lung fibrosis, such as idiopathic pulmonary fibrosis (IPF) and
nonspecific interstitial pneumonitis, is the excess accumulation
of ECM in lung tissue. IPF is defined as a chronic, progressive
lung fibrosis condition without a specific cause and a mild level
of inflammation, predominantly in older populations (Raghu
et al., 2011; Travis et al., 2013). The role of Cav-1 in lung
fibrosis was investigated by Kasper et al. where they induced
fibrosis by irradiating alveolar cell types I and II of rats and mini
pigs (Kasper et al., 1998). This study revealed downregulated
Cav-1 gene expression in epithelial cells following radiation,
resulting in fibrosis. Morphologically, the epithelial cells showed
reduced expression of caveolae, coupled with attenuated signal
transductory capacities (Kasper et al., 1998).Moreover, a five-fold
increase in collagen expression via Mitogen-activated protein
kinase kinase/extracellular signal-regulated kinase (MEK/ERK)
activation was observed in human lung fibroblasts when Cav-
1 gene expression was reduced by 70% (Tourkina et al., 2005).
Similarly, a study by Wang et al. observed a two-fold decrease in
Cav-1 gene expression in lung tissue from IPF patients compared
to control patients (Wang et al., 2006b). Furthermore, they
investigated the therapeutic effects of Cav-1 in rat lungs using
bleomycin, an antineoplastic antibiotic that causes pulmonary
fibrosis as a major side effect. In another injury model, mice
transfected with an adenovirus vector containing the Cav-1
gene, demonstrated resolved lung fibrosis, observed by reduced
fibrotic area in the lung relative to untreated mice (Wang et al.,
2006b). Like cardiac fibrosis, the formation of scar tissue in
lung fibrosis is also driven by TGF-β (Khalil et al., 1991, 1994,
1996; Verma and Slutsky, 2007; Del Galdo et al., 2008). In
vitro models of lung fibrosis have demonstrated that the anti-
fibrotic effects observed are regulated by TGF-β1 via ERK and
JNK activation, which are mediated by Cav-1. Indeed, TGF-β1
induces the gene expression of collagen type I via ERK1, while
it regulates the production of fibronectin via c-Jun N-terminal
kinase 1 (JNK1) (Wang et al., 2006b). Of note, TGF-β signaling
can also mediate Cav-1 expression via non-SMAD signaling
pathways. Indeed, downregulated Cav-1 has been observed in
TGF-β-treated human lung fibroblasts through the activation of
p38 MAPK (MEK/ERK signaling) (Sanders et al., 2015). The
anti-fibrotic therapeutic potential of Cav-1 has further been
highlighted in studies utilizing pharmacologically administration
of CSD peptide. Similar to knockout studies, collagen deposition
was reduced by more than 95% in less than 5 h in mice
treated with the CSD peptide relative to the untreated mice
(Tourkina et al., 2008). CSD peptide-dependent reductions in
fibrosis were accompanied by inhibitions in MEK, ERK, JNK,
and AKT activity as well as altering their cellular localization,
confirming the anti-fibrotic effects of Cav-1 (Tourkina et al.,
2008).

Like EMT, Endothelial-mesenchymal transition (EndoMT)
has emerged as a key source of fibroblasts and myofibroblasts
critical in the pathogenesis of fibrotic disease (Piera-Velazquez
et al., 2011; Lin et al., 2012). EndoMT has been shown to be
regulated via TGF-β (Li and Jimenez, 2011), with TGF-β being
a potent inducer of EndoMT in pulmonary endothelial cells via
the transcription factor, SNAIL1. In addition, the internalization
of TGF-β receptors expressed on the cell membrane have been
attributed to the cellular capabilities of Cav-1 (Razani et al.,
2001b). Interestingly, pulmonary endothelial cells isolated from
Cav-1−/− mice spontaneously underwent EndoMT. This cellular
transition was further increased with the administration of TGF-
β, highlighting the importance of both pathways (Li et al.,
2013). Although the exact mechanisms involved in EndoMT are
relatively unclear, SNAIL1 has been found to be a requirement
for the induction of this process (Kokudo et al., 2008). This
is supported by increased SNAIL1 gene expression observed
in Cav1−/− mouse endothelial cells, which is reversed by the
reconstitution of Cav-1, emphasizing the key mediatory role of
Cav-1 in EndoMT (Strippoli et al., 2015).

Fibroblast proliferation is normally regulated by polymerized
collagen via the inhibition of the PI3K-AKT-S6-kinase 1 (S6K1)
signal pathway, by high phosphatase and tensin homolog (PTEN)
(Xia et al., 2008, 2010). This negative feedback mechanism
limits the proliferation of fibrotic tissue following injury in
physiological conditions, however when the process is impaired,
fibrotic conditions such as IPF may occur (White et al., 2006).
Protein expression of both Cav-1 and PTEN was significantly
reduced in the cellular membrane of myofibroblasts within
fibroblast foci in lung cells of IPF patients’ relative to control
patients, compared to surrounding epithelial cells. In addition, a
correlation in Cav-1 and PTEN levels was observed, which could
be attributed to PTEN suppressing PI3K/AKT activation (Xia
et al., 2008, 2010). This occurs through the translocation from the
cytoplasm into the cellular membrane, where it is activated and
in turn inhibits the signaling process. Cav-1 as an integral protein
regulates PI3K/AKT transduction, where augmented expression
of Cav-1 subsequently results in reduced levels of PTEN in the
cellular membrane. This phenomenon is observed in Cav-1 null
mice which demonstrate low expression of PTEN in the cellular
membrane compared to wild type mice. Following reconstitution
of Cav-1 using an adenovirus vector in the Cav-1 null fibroblast
cells, a higher association of PTEN with cellular membrane and
lower PI3K/AKT signaling was observed. This association was
further supported by amino acid sequence analysis, showing a
specialized binding sequence domain for PTEN which directly
interacts with Cav-1 (Xia et al., 2008, 2010). Similarly in cardiac
fibrosis and IPF, a downregulation in both Cav-1 and PTEN
protein expression was observed in cardiac and pulmonary
fibroblasts, respectively, relative to controls (Gao et al., 2014).

Further, MAPK pathways have been reported to play
a mediatory role in TGF-β1 signaling, key for fibrotic
processes, and have also been shown to be regulated by
Cav-1 (Yue and Mulder, 2000; Fujita et al., 2004; Wang
et al., 2006a). It has been demonstrated that Cav-1 regulates
TGF-β1-induced ECM production via MAPK pathway in the
lung. Over-expression of Cav-1 via transfection of adenovirus

Frontiers in Pharmacology | www.frontiersin.org 3 August 2017 | Volume 8 | Article 567

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Shihata et al. Therapeutic Role of Caveolin-1 in Fibrosis

vector inhibited TGF-β1-induced ERK and JNK activation,
consequently resulting in decreased ECM production (Wang
et al., 2006b). Despite the above findings highlighting the anti-
fibrotic role of Cav-1, studies have also demonstrated contrasting
roles for Cav-1 in tissue fibrosis. Cav-1 deficiency has been
linked with significant inhibition of premature senescence of
fibroblasts (Volonte and Galbiati, 2009), whereas elsewhere it
has been shown that Cav-1 is needed to induce senescence in
fibroblasts (Dasari et al., 2006). Indeed, Cav-1−/− mice were
found to be protected against fibrosis induced by bleomycin
relative to WT mice (Shivshankar et al., 2012). When exposed
to bleomycin to induce fibrosis, WT mice displayed significant
collagen deposition, whereas Cav-1−/− mice who did not
present a significant increase (Shivshankar et al., 2012). This
blunted fibrotic response could be due to reduced epithelial
cell senescence and apoptosis in the Cav-1−/− mice. However,
in contrast to these findings, a study demonstrated increased
fibrosis, upregulated apoptosis and cellular senescence in
Cav-1−/− mice exposed to bleomycin (Linge et al., 2007). The
disparity in these findings could be due to the timing of fibrotic
measurements and the expression of Cav-1, where it is very
likely that in the early stages of exposure to bleomycin, Cav-
1 is expressed which is linked with upregulated apoptosis and
senescence in epithelial cells, whereas in the later stages, Cav-1
is decreased, which may be associated with the progression of
fibroblast-mediated fibrosis (Shivshankar et al., 2012).

PERITONEAL AND KIDNEY FIBROSIS

Patients with terminal stage of kidney failure require either
hemodialysis or peritoneal dialysis (PD). The common adverse
effects following frequent long term PD is acute inflammation,
which leads to chronic inflammation and eventually fibrosis
(Grassmann et al., 2005; Strippoli et al., 2015). The predominant
cause of acute inflammation is the continuous exposure of
the peritoneal membrane of the kidney to hyperosmotic,
hyperglycaemic, and acidic dialysis solutions. This leads to
a specific EMT process of the mesothelial cells, known
as mesothelial-to-mesenchymal transition (MMT). Like EMT,
MMT is characterized by features such as loss of E-cadherin and
cytokeratin, and upregulated α-smooth muscle actin (α-SMA)
and fibroblast specific protein-1 (FSP-1) expression (Yanez-Mo
et al., 2003; Strippoli et al., 2015). Of note, TGF-β is one of
the early pro-fibrotic factors detected during PD treatment in
human patients relative to control patients (Yanez-Mo et al.,
2003). Further, p38 is also implicated as a key regulator of MMT,
slowing down the transition process by promoting E-cadherin
gene expression. E-cadherin is important for cell-to-cell adhesion
and it is preserved by p38 via its inhibition of TGF-β via TGF-
β-activated kinase 1-nuclear factor kappa-light-chain-enhancer
of activated B cells (TAK1-NF-κB) signaling (Strippoli et al.,
2010). The main suppressor of E-cadherin is the transcription
factor SNAIL1, which modulates its effects via ERK or NF-κB.
SNAIL1 is known as one of the major inducers of EMT and
is also implicated in the downregulation of cytokeratin gene
expression (Strippoli et al., 2008). Studies using Cav-1 gene

silencing in human primary mesothelial cells (HPMCs) as well
as mesothelial cells from Cav-1−/− mice have shown a loss
of the typical cell structure and the acquisition of a spindle-
like shape, characteristic of fibroblasts. This morphological
change is also accompanied by suppression of E-cadherin
gene expression. In addition, Cav-1−/− mice presented with
increased α-SMA and collagen type I gene expression coupled
with hyper-activation of ERK1 and ERK2, even in the basal
state, relative to the WT mice (Strippoli et al., 2015). This was
attributed to the inhibitory nature of Cav-1 on the ERK1/2
pathway. Moreover, HPMCs deficient of Cav-1 presented with
enhanced ERK1/2 activity when stimulated by TGF-β. The
hyper-activation of ERK1/2 leads to a stronger repression
of E-cadherin gene expression via SNAIL1, accelerating the
progression of MMT to fibrosis. Lentiviral overexpression of
Cav-1 in HPMCs restored and reduced E-cadherin and α-
SMA gene expression, respectively (Strippoli et al., 2015). The
role of Cav-1 in MMT could be ascribed to the activation of
ERK1/2, which directly upregulates SNAIL1 and suppresses E-
cadherin and or to the diminished Smad2/3 signaling through
the inhibitory effects of Cav-1 on TGF-β receptors (Xu Y. et al.,
2008).

However, similar to fibrotic conditions in the lung, the
role of Cav-1 is not definitive in kidney fibrosis, with several
studies suggesting that Cav-1 plays a critical role in maintaining
the fibrotic condition. A study conducted by Chen et al.
(2012) demonstrated increased epidermal growth factor receptor
(EGFR) association with phosphorylated Cav-1 in renal proximal
tubular epithelial cells exposed to angiotensin II (AngII).
An increase in reactive oxygen species (ROS) production
was observed following angiotensin type 1 receptor (AT1R)
activation, promoting Src kinase activation, Cav-1 and EGFR
phosphorylation and consequently resulting in prolonged EGFR-
ERK signaling which induces prolonged EMT (Chen et al., 2012).
Further, this study also observed that silencing Cav-1 gene via
small interfering RNA (siRNA) or via knockdown model leads
to inhibited AngII activation, suggesting that EGFR association
with Cav-1 leads to prolonged activation (Chen et al., 2012).
These findings are in contrast to studies which have concluded
that EGFR interactions with Cav-1 in caveolae or lipid rafts
result in the inactivation of the EGFR (Orth and McNiven,
2006). Moreover, Chen & colleague’s findings contradict a study
conducted by Forrester et al. (2017) which found worsened
perivascular fibrosis and hypertrophy in kidney tissue of Cav-
1+/+ compared to Cav-1−/− mice when administered with
AngII, coupled with attenuated VCAM-1 expression in the
endothelium and adventitia layer of Cav-1−/− mice relative to
Cav-1+/+ mice (Forrester et al., 2017).

LIVER FIBROSIS

Liver cirrhosis, the end-stage of various liver disease, is
characterized by the replacement of normal physiologic
hepatocyte cells with fibrotic tissue and ultimately organ failure
(Elsharkawy et al., 2005; Asrani et al., 2013). Liver injury
commonly results from “sinusoidal” portal hypertension,
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FIGURE 1 | The role of Caveolin-1 in cellular signaling mechanisms involved in fibrosis. Caveolin-1 (Cav-1) directly and indirectly regulates fibrotic processes in various

tissues. In cardiac and lung fibrosis, Cav-1 prevents collagen deposition, fibroblast proliferation and TGFβ signaling through its negative regulation of Smad and

non-Smad signaling pathways such as Rho-like GTPase, PI3K/AKT, MAPK (MEK/ERK), and JNK signaling pathways. Similarly, in kidney fibrosis, Cav-1 modulates

fibrotic processes via the aforementioned pathways as well as NF-κB signaling. Of note, TGFβ signaling can also mediate Cav-1 expression via the activation of

non-SMAD signaling pathways. Conversely, Cav-1 has been shown to promote kidney fibrosis by prolonging EGFR-ERK signaling. Moreover, in liver fibrosis, Cav-1

promotes liver cirrhosis through its negative regulation of eNOS ( , activation; , inhibition).

primarily caused by intrahepatic shunts and hepatocyte swelling
(Sherman et al., 1990; Yokomori et al., 2002). A key factor
involved in liver cirrhosis is endothelial nitric oxide synthase
(eNOS), which regulates the blood flow, a central parameter
in portal hypertension, through its production of the potent
vasodilator, nitric oxide (NO). Indeed, with reduced activity
of eNOS, the liver is more susceptible to portal hypertension,
leading to fibrosis and eventually cirrhosis (Matei et al., 2006).
Cav-1 is a major negative regulator of eNOS, which impacts the
enzyme through direct interaction of both C- and N- terminals
of Cav with oxygenase domain of eNOS (Ju et al., 1997).
Unlike in most organs discussed, Cav-1 is suggested to play a
pro-fibrotic role in the liver. In fact, Cav-1 protein levels are
increased in experimental liver disease as well as a murine model
of Niemann-Pick disease type C (NPC), a disease characterized
by impaired cholesterol homeostasis (Garver et al., 1997; Shah
et al., 1999). Moreover, rats treated with dimethylnitrosamine
(DMN) to induce liver cirrhosis demonstrate enhanced Cav-
1-eNOS binding paired, with a positive correlation between
Cav-1 protein expression and the degree of liver fibrosis (Xu B.
et al., 2008). Similarly, Cav-1 was localized in liver sinusoidal
endothelial cells (LSECs) of cirrhotic liver human samples, with
an overexpression of Cav-1 in late-stage cirrhosis (Yamazaki
et al., 2013). The role reversal of Cav-1 in liver fibrosis could be
due to the fact that the cirrhotic liver contains higher levels of
cholesterol, and Cav-1 is a major cholesterol binding protein,
thus Cav-1 expression may be stimulated in chirrotic liver (Bist
et al., 1997).

CONCLUSION

The pathophysiology of organ fibrosis has been studied
extensively, and the anti-fibrotic role of caveolae and caveolins
has been explored. Indeed, novel studies using both animal and
pharmacological models have identified Cav-1 as a potential
anti-fibrotic target in a number of fibrotic settings including
cardiac, lung, and kidney fibrosis. Although the relationship
between Cav-1 and key regulatory molecules involved in fibrotic
processes such as TGF-β, ERK1/2, and Smad is understood
extensively, it is still relatively unclear how they interact at the
intracellular level and whether these Cav-1-associated signaling
pathways can be targeted as potential therapies in fibrosis.
Moreover, the tissue-specific effects of Cav-1 highlights the gap
in knowledge regarding its role in fibrotic conditions. Indeed,
contrasting studies highlight the dynamic role of Cav-1 in organ
fibrosis, specifically in the kidney and lungs (Figure 1). Thus,
further studies are essential to completely understand possible
therapeutic effects of caveolae/caveolin-1 in fibrosis and whether
its therapeutic potential is limited between varying human
fibrotic conditions.
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