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As we sit here locked down in our homes while COVID-19
threatens how we live our lives, one thinks about the old

life we led. We seldom worried about contact with other
people, or people walking past us in the street. When we
caught a viral infection, most of us thought of a cold or flu, and
expected aches, pains, and a stuffy head, but few of us feared
loss of life. And not many people were interested in topics such
as testing rates, testing methods, or testing speeds. But some
were. The papers in this virtual issue are by some of the
researchers that have been developing tests to detect viruses.
The type of research they were doing was no less important
then than it is now. Current events have just brought the
importance of their work into focus. HIV, SARS, MERS, bird
flu, and zika had demonstrated that the emergence of new
viruses can have an incredible effect on the world. Typically
only affected communities paid attention, but with COVID-19
that is all of us.
What we have learned from COVID-19 is that the regions of

the globe most successful in reducing the spread of the virus
think South Korea, Taiwan, and Australia to name a fewhad
a dual strategy of a rapid lockdown of the country, and
extensive testing, Many tests per thousand people, and a low
percentage of tests performed being positive, is a commonality.
Experience with a variety of other viral outbreaks certainly
meant much of South East Asia had well developed protocols
established, which centered around testing and isolation. So,
testing has been at the very front line of the fight against
COVID-19. The most effective testing strategies are stratified,
rather than being a one-size-fits-all approach. There are
important roles for very simple screening tool such as
temperature sensing, rapid molecular testsincluding the
lateral flow-based IgM and IgG antibody tests that indicate
exposure and response to the virus, and the quantitative PCR
tests that measure the viral genome directly. We need all these
types of tests, and we need improvements. It is clear that a
rapid, portable test that could detect the virus directly, with
high sensitivity and specificity, would be a brilliant advance. It
is also clear that improving the sensitivity of the serological
tests, so they could warn of infection earlier, would help reduce
community transmissions.
In this virtual issue we concentrate on the development of

molecular tests for viruses, a focus not surprising for two
chemistry journals dealing with analytical measurement. The
issue leads with a review on detection of biothreats (Mother
Nature is an accomplished bioterrorist!), and then covers a
range of innovative technologies1 that focus on assays for point
of care testing,2−4 faster diagnostic testing,5−8 more sensitive

diagnostic testing,9−17 characterizing the response to the
virus,18−21 and highly sensitive methods for biologically
tracking and characterizing the virus.22,23 The papers cover
technologies that detect genes specific to a virus, that detect
antibodies, and that even detect the virus particles themselves.
They cover viruses from the flu, to Ebola, MERS, zika, HIV,
and already, SARS-CoV-2. We already have other papers going
through our reviewing processes on SARS-CoV-2. We feel the
papers in this virtual issue serve as a benchmark of the types of
innovation the journals Analytical Chemistry and ACS Sensors
are looking for. The papers we selected are just a subset of the
many wonderful, innovative papers on infection detection we
have published, and they represent the incredible work being
done around the globe in detection science that will help keep
us safe. When we read the papers, they give us hope that we
will be far better equipped to deal with any future potential
pandemics. We thank these scientists for their research.
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