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Abstract

Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools

for continuous real-time personal health monitoring. The ECG signal can be contaminated

by various types of noise and artifacts (e.g., powerline interference, baseline wandering)

that must be removed or suppressed for accurate ECG signal processing. Limited device

size, power consumption and cost are critical issues that need to be carefully considered

when designing any portable health monitoring device, including a battery-powered ECG

device. This work presents a novel low-complexity noise suppression reconfigurable finite

impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The

design relies on a recently introduced optimally-factored FIR filter method. The new filter

structure and several of its useful features are presented in detail. We also studied the hard-

ware complexity of the proposed structure and compared it with the state-of-the-art. The

results showed that the new ECG filter has a lower hardware complexity relative to the

state-of-the-art ECG filters.

Introduction

Cardiovascular disease is the leading cause of death worldwide, accounting for 30% of global

mortalities [1]. In 2010, the estimated total cost of cardiovascular disease in the United States

alone was $444 billion [2]. With the demographic shift toward an older population, these costs

are expected to increase substantially over the next decade [3]. Continuous monitoring of the

heart and its functionality enhances the early diagnosis, intervention, or prevention of cardio-

vascular diseases [4].

Recent advances in wireless communications and integrated circuits can considerably

improve the healthcare management and cost [5]. For example, utilizing smart wearable elec-

trocardiogram (ECG) devices can significantly enhance healthcare of the patients with cardio-

vascular diseases. Although much effort has been put into the development of such devices

over the past few years, integration of these technologies into the clinical practice still remains

limited, mainly due to reliability and practicality issues [5].
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Several requirements (in terms of power consumption, physical size, and cost) must be

taken into consideration to design a reliable and practical wearable ECG device. For example,

a lower power consumption would guarantee a longer battery life. Hardware complexity of the

device would also affect the weight, size and cost of the device. As depicted in Fig 1, a wearable

ECG device consists of several components in addition to the ECG electrodes (e.g., Analog

interface and signal conditioning, A/D converter). The hardware complexity of each of these

building blocks would affect the power consumption, size and cost of the device. One of the

main components of a wearable ECG device is the filtering block. ECG signal is often contami-

nated by various types of noise and artifacts that need to be removed and/or suppressed by

employing hardware efficient filters [6].

In general, ECG signal contaminants can be classified into six categories [7–11]:

• Powerline interference is a narrow-band noise centered at 60 Hz or 50 Hz (depending on the

country of operation) and its harmonics, with a bandwidth of less than 1 Hz [8]. The analog

front-end processing circuitry consists of an instrumentation amplifier and a filter that can

reduce the powerline interference. Nonetheless, ECG recordings are often contaminated by

residual powerline interference due to differences in electrode impedances and also because

of stray currents through the patient and the cables [9].

• The electrode contact noise is due to electrode “popping” or a loose contact with the skin.

• Motion artifacts are generated by changes in the skin-electrode impedance because of a

patient’s movement during recording.

• Instrumentation noise is due to radio frequency interference from other equipment, e.g.,

implanted devices such as pacemakers.

• The baseline drifts are mainly caused by respiration and perspiration.

• Electromyographic (EMG) noise is induced by electrical activities of skeletal muscles during

periods of contraction.

The EMG noise tends to be non-stationary and has a frequency range that overlaps that of

the original ECG signal (spanning from slightly below 1 Hz up to 120 Hz). This type of noise

cannot easily be removed by hardware, and hence it is usually corrected in software. The

powerline noise suppression can be achieved by applying a notch filter with extremely sharp

transition bands around each notched frequency. Majority of other ECG noises (i.e., electrode

contact noise, motion artifacts and baseline drifts) have a frequency content below 0.5 Hz.

Therefore, a high-pass filter should be carefully designed to remove these noises without dis-

torting the important clinical information hidden in the low frequency content of ECG signal

(e.g., signal segment between S and T components of ECG).

Fig 1. A schematic presentation of a wearable ECG device where the captured signal is transmitted

(through a wireless channel) to a remote backend system for further processing.

https://doi.org/10.1371/journal.pone.0175139.g001
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Several approaches have been proposed for ECG noise suppression [11]. One approach

eliminates noise at the analog front-end [12]. It is well known that such analog filtering suffers

from nonlinear phase response and a difficulty in making very deep attenuations (notches) at

precise frequencies [13]. Furthermore, analog filters can have high sensitivity to component

aging and variations over time—both unavoidable issues in long-term heart-monitoring with

wearable ECG devices. Another approach is to eliminate ECG noise and contaminants (at the

software level) using complex ECG noise-cancellation algorithms [9]. However, these algo-

rithms usually have high computational burden, and therefore are not appropriate for hard-

ware implementation.

Given the limitations of these two methods, a practical alternative to eliminate noise and

artifacts in real-time is the use of a digital filter with the following specifications: deep notching

of the noise at direct current (DC), 50/60 Hz, and 100/120 Hz without adversely affecting the

ECG signal content by limiting the passband ripple to ±0.25 dB or ±0.5 dB (depending on the

application). Such deep notching requires at least 40-dB attenuation (and up to 60-dB in some

applications) at the aforementioned frequencies with extremely sharp transition bands that

must be within approximately ±0.5 Hz from each notched frequency [8–11]. Note that with

this approach, if needed, analog filtering can still be used for basic preliminary removal of

high-frequency noise prior to an analog-to-digital converter.

Over the last few decades, several research groups have employed different techniques to

design the above digital filter. William et al. used infinite impulse response filter to meet the

notch-filter specifications [14]. However, this approach suffers from nonlinear phase response

distortion.

On the other hand, the authors in [13,15] have employed recursive running sum finite

impulse response (FIR) digital filters [16,17] for the DC and 50-Hz notch filters with sampling

rates of 200 Hz, as shown in Fig 2(A) (Throughout the paper, we shall call this Scenario I). Fur-

thermore, the authors in [10] and [18] have employed the frequency response masking method

[19] to notch DC, 60 Hz, 120 Hz and above for a 300-Hz sampling rate scenario, as shown in

Fig 2(B) (We shall refer to this as Scenario II).

In general, the use of linear phase FIR filters for wearable ECG devices have several advan-

tages including minimum signal distortion and low cost [10]. However, linear phase FIR filters

usually lack the desired hardware efficiency due to their high complexity.

In this paper, we propose a low-complexity linear phase FIR filter design for the ECG noise

suppression. Our method employs a newly-developed optimally factored filter technique [20–

22] combined with the optimally-stretched interpolated FIR method [23] to create a low

Fig 2. Illustration of target filter for two scenarios: (a) Scenarios I described in [13] with a sampling frequency

of 200 Hz, (b) Scenario II described in [10] with a sampling frequency of 300 Hz.

https://doi.org/10.1371/journal.pone.0175139.g002
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complexity cascaded filter structure. Two design scenarios of Fig 2 are discussed in details and

their hardware complexities are compared with the published state-of-the-art.

Methods

Studies have shown that the hardware complexity of linear phase FIR filters could be reduced

by realizing the filter using a cascade of a scaled sequence of stages, each representing a factor

of the FIR filter’s transfer function [20]. A method is recently developed to find the best FIR fil-

ter factors [21]. In addition, this method is able to carefully scale the factors and sequence

them, such that the resulted cascaded structure has the minimum hardware complexity [22].

Here we use the method to design a hardware efficient ECG filter. In the following subsections,

we describe our design in details for two different scenarios.

Proposed filter design for Scenario I

In Scenario I, as depicted in Fig 2(A), the target filter H(z) must satisfy the following require-

ments for the sampling rate of 200Hz:

• 60 dB notches at DC, 50 Hz (equivalent to 0.5π) and 100 Hz (equivalent to π).

• passband frequency ranges of (0.5 Hz- 49.5 Hz) and (50.5 Hz- 99.5 Hz).

• passband ripple (δp) of 0.5 dB peak-to-peak.

For the efficient design of H(z), we initially focus on realizing its “complement filter” U(z)

defined as

UðzÞ ¼ z� N=2 � HðzÞ; ð1Þ

where N is the order of the H(z) filter. Given the target magnitude response of H(z), the com-

plement filter U(z) has a magnitude response shown in Fig 3. Note that the filter U(z) enables

the use of interpolated FIR (IFIR) technique [19, 23] to reduce hardware complexity (as shall

be shown later).

The target passband ripple (δP) of 0.5 dB peak-to-peak for H(z) defines the value of the stop-

band attenuation for the complement filter U(z) as the following

Stopband of UðzÞ � 20log
10
ð10dP=20 � 1Þ )

dP¼0:5dB
Stopband attenuation � 30:7dB: ð2Þ

For simplicity, we now focus on the design of a portion of filter U(z) that only contains its

first passband at DC, and then later describe a technique to realize the complete U(z) filter. We

shall refer to this partial version as UPartial(z).

Fig 3. Magnitude response of the complement filter U(z) for Scenario I.

https://doi.org/10.1371/journal.pone.0175139.g003
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Note that UPartial(z) has a very sharp transition band. In general, IFIR filter techniques are

well-suited for the efficient implementation of filters with sharp transition band [19]. The IFIR

implementation reduces the filter’s hardware complexity in terms of number of multipliers

and structural adders by restructuring it as a cascade of two other filters, a model filter G(z)

and an interpolator (or masking) filter I(z), as depicted in Fig 4. The parameter L is the stretch

factor of the IFIR filter implementation which is usually chosen empirically.

An analytical approach is proposed in [23] to determine the optimum choice of the stretch

factor (L) to design a filter with minimum number of multipliers. Here, we employ this tech-

nique and obtain the optimum value of L for the IFIR implementation of UPartial(z) filter. A

hardware complexity study will be conducted later to show the superiority of our IFIR imple-

mentation to the conventional Parks-McClellan mini-max FIR realization [24,25] which is

based on the Remez exchange algorithm [26].

Following the designs of the model filter and interpolator filter for UPartial(z), we compare

their magnitude responses with that of the target filter U(z), and accordingly modify the inter-

polator filter I(z) into I2(z) to include the additional passbands at 50Hz and 100 Hz.

Finally, to achieve further reduction in hardware complexity, we use the factoring filter

design method of [20–22] to decompose the G(z) and I2(z) filters into an optimal sequence of

factors (stages) and create an optimally factored-cascade IFIR implementation of the target

filter.

To test the performance of the proposed filter design, a series of comprehensive tests are

conducted. First, several simulated input signals (e.g., a DC signal, sinusoidal signals at the

edge of the filter passband, at 50 Hz and at 100Hz) are fed into our designed filter and their

corresponding output signals are studied. We also evaluated the performance of the proposed

filter design when the input is field-collected ECG signals contaminated with high levels of DC

noise along with 50-Hz and/or 100-Hz powerline sinusoidal noises.

Note that although the proposed filter is designed to remove the narrowband noise at DC,

50 Hz and 100 Hz for the case of a 200-Hz sampling rate, the design can be equally used to

remove the noise at DC, 60 Hz and 120 Hz for an ECG signal with sampling rate of 240 Hz.

Proposed filter design for Scenario II

In Scenario II, as depicted in Fig 2(B), the target filter H(z) has the following specifications for

the sampling rate of 300Hz:

• 60 dB notches at DC, 60 Hz (equivalent to 0.4π) and 120 Hz (equivalent to 0.8π).

• passband frequency ranges of (0.5 Hz- 59.5 Hz) and (60.5 Hz- 119.5 Hz).

• passband ripple (δp) of 0.5 dB peak-to-peak.

• attenuation of 60 dB at 150 Hz (equivalent to π)

Fig 4. IFIR filter technique employs a cascade of two filters to reduce the number of multipliers and

structural adders.

https://doi.org/10.1371/journal.pone.0175139.g004
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The signal of interest is contained within the frequency range of 0.5 Hz to 119.5 Hz, while

excluding the (59.5 Hz to 60.5 Hz) interval. Given the specification of the target filter H(z),

depicted in Fig 2(B), we can realize it as a cascade of two sub-filters H1(z) and H2(z) with mag-

nitude responses shown in Fig 5.

Then in order to use IFIR technique for the design of each sub-filter, we focus on realizing

their complements U1(z) and U2(z), where U1(z) has narrow passbands at DC, 60 Hz (equiva-

lent to 0.4π), and 120 Hz (equivalent to 0.8π), and U2(z) is a high-pass filter from 120 Hz (0.8π)

to 150 Hz (equivalent to π). Note that in this scenario, the target filter H(z) could be later

obtained as

HðzÞ ¼ H1ðzÞH2ðzÞ ¼ ðz
� N1=2 � U1ðzÞÞðz

� N2=2 � U2ðzÞÞ; ð3Þ

where N1 and N2 are the orders of the sub-filters H1(z) and H2(z), respectively.

Now to design U1(z), similar to Scenario I, we first focus on IFIR realization of UPartial(z)

only containing the first passband at DC, by obtaining its model filter G(z) and interpolator fil-

ter I(z). Then we modify the obtained interpolator filter I(z) into I3(z) to include the additional

passbands at 60Hz and 120 Hz.

To design the high-pass filter U2(z), we first obtain its low-pass version filter V(z) over the

frequency interval of 0 to 0.2π. Then we decompose this low-pass filter into its IFIR compo-

nents as V(z) = GV(z)IV(z). Note that the low-pass filter V(z) can be transformed back to the

high-pass U2(z) by negating its argument, i.e., U2(z) = V(-z).

Finally, the factoring filter design method of [20–22] is employed to further decompose

each component G(z), I3(z), GV(z), and IV(z) into an optimal sequence of their factors and cre-

ate an optimally factored-cascade IFIR implementation of the target filter H(z).

Note that the proposed filter designs can be equally used to remove the noise at DC, 50 Hz

and 100 Hz for an ECG signal with sampling rate of 250 Hz.

Results

Filter design for Scenario I

Our analysis revealed that the optimum value of the stretch factor L for the IFIR implementa-

tion of UPartial(z) is 20. As Fig 6 depicts, the choice of L = 20 minimizes the approximate total

number of multipliers to 31.

In fact, using the stretch factor value of 20, we were able to realize the model filter G(z) with

an order of 27 (14 multipliers, 27 structural adders), and the interpolator filter I(z) with an

Fig 5. Magnitude responses of the sub-filters for Scenario II-Scheme A: (a) sub-filter H1(z); (b) sub-filter

H2(z).

https://doi.org/10.1371/journal.pone.0175139.g005
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order of 30 (16 multipliers, 30 structural adders). Fig 7 shows the magnitude responses of the

corresponding optimally-stretched IFIR components, G(z20) and I(z).

Given the orders of the obtained filters G(z) and I(z), the effective total order of UPartial(z) =

G(z20) I(z) filter is 20×27+30 = 570. Hence, with our IFIR implementation using the optimal

stretch factor, the filter UPartial(z) has an order of 570 and consists of 30 multipliers and 57

structural adders.

Fig 8. depicts the magnitude response of the conventional FIR implementation of UPartial(z)

using Parks-McClellan method [24,25]. The obtained filter has an order of 547, and consists of

274 multipliers and 547 structural adders.

Hence, the IFIR design reduces the number of multipliers by a factor of nine (274 versus 30

multipliers) and the number of structural adders by a factor of ten (574 versus 57 structural

adders), in return for a slight (less than 5%) increase in the total number of delays (registers)—

from 547 to 570.

Fig 6. Optimum Stretch Factor for IFIR implementation of UPartial(z).

https://doi.org/10.1371/journal.pone.0175139.g006

Fig 7. Magnitude responses (dB) of IFIR components of UPartial(z): G(z20) and I(z).

https://doi.org/10.1371/journal.pone.0175139.g007
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Note that the interpolator filter I(z) removes all magnitude response peaks except for the first

passband at DC as illustrated in Fig 7. On the other hand, the magnitude response of G(z20) pro-

vides all the required components of the desired magnitude response of U(z) at DC, ±0.5π and

π. Hence, to convert UPartial(z) to U (z), we only need to change the interpolator filter I(z) to

avoid the removal of the desired peaks at ±0.5π and π. This desired masking is illustrated in Fig

9 in solid blue which shows the magnitude response of I2(z4), the stretched (by a factor of four)

version of the new interpolator filter I2(z). In fact, by employing this properly designed interpo-

lator filter, one can select the desired set of peaks from the magnitude response of model filter G
(z20). Thus, filter U(z) is realized using two stretched factors G(z20) and I2(z4). Our analysis

revealed that the interpolator filter I2(z) has an order of 7 (4 multipliers and 4 structural adders).

Hence, the effective total order of U(z) = G(z20) I2(z4) filter is 20×27+4×7 = 568. Therefore, our

double-stretch-factor IFIR implementation of U(z) resulted in a filter with an order of 568, con-

sisting of 18 multipliers and 34 structural adders.

Fig 10 illustrates the double-stretch-factor IFIR implementation of target filter H(z)

obtained from Eq (1), where N (the order of the filter) is equal to 568. Note that with our

design, the target filter H(z) has an order of 568 and consists of 18 multipliers and 35 structural

adders.

To further reduce the hardware complexity of the design (in terms of numbers of multipli-

ers and structural adders), we used the factoring filter design method of [20–22] to decompose

the G(z20) and I2(z4) filters into their optimal sequence of factors. Fig 11 shows the resulted

optimally factored-cascade IFIR implementation of U(z) = βG(z20) I2(z4), where β is the post-

filter-multiplier. Note that one of the main advantages of our optimally-factored cascade

Fig 8. Magnitude response (dB) of the conventional implementation of UPartial(z).

https://doi.org/10.1371/journal.pone.0175139.g008

Fig 9. Magnitude responses of IFIR components of U(z): G(z20) and I2(z4).

https://doi.org/10.1371/journal.pone.0175139.g009

Hardware-efficient digital filter design for wearable ECG sensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0175139 April 6, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0175139.g008
https://doi.org/10.1371/journal.pone.0175139.g009
https://doi.org/10.1371/journal.pone.0175139


structure is that each stage is followed by a post-stage power-of-two multiplier and a trunca-

tion operation to properly adjust the data path word length.

The binary and Signed Powers of Two (SPT) representations of the coefficients for both the

factored model filter G(z20) and the factored interpolator filter I2(z4) are listed in Table 1,

showing that the proposed design primarily contains near-trivial coefficients. From the

Table 1, we also observe that optimally-factored cascade structure has resulted in a lower hard-

ware complexity: While the cascaded model filter G(z20) with order 27 only consists of 10

shift-adds and 26 structural adders, the cascaded interpolator filter I2(z4) with order 7 consists

of 1 shift-adds and 5 structural adders. Therefore, our optimally-factored cascade structure of

U(z) resulted in a filter with an order of 568, consisting of 13 shift-adds (or 16, if including the

additional three shift-adds needed for the post-filter multiplier β) and 30 structural adders.

This shows that the optimally-factored cascade structure of Fig 11 has indeed a lower hardware

complexity than that of the double-stretch-factor IFIR implementation of U(z) from Fig 10.

In addition to lower hardware complexity, the designed optimally-factored cascade structure

has the capability to adjust the stopband attenuation and passband ripple of U(z) through ad-

justment of the post-filter-multiplier value β. This valuable feature of the design is highlighted

in Fig 12 which shows the magnitude responses of H(z) for β values of (1.010100111)2 and

(1.0)2.

The Fig 13 H(z) implementation with the parameter Delay, is the extended version of Fig 10

where the ideal delay of 284 (half the effective order of the total filter) was considered. If the

digital section of the ECG device includes a memory unit to record raw digital samples at the

output of the analog-to-digital converter, located just before entering the digital filter, then the

Fig 10. Double-stretch- factor IFIR implementation of H(z).

https://doi.org/10.1371/journal.pone.0175139.g010

Fig 11. The optimally factored-cascade IFIR implementation of U(z) = βG(z20) I2(z4).

https://doi.org/10.1371/journal.pone.0175139.g011
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Delay parameter can be set equal to its ideal 284 value without needing any extra registers

other than those used in U(z) (reusing the existing memory). Basically, the 285th data sample

in memory is read, and fed to the positive input of the final adder shown in Fig 13.

Notice that, even in the absence of such a memory unit, the proposed optimally factored-cas-

cade IFIR structure in Fig 11 accommodates a practical choice for the Delay parameter, without

requiring any extra register. This is illustrated in Fig 14 where the choice of Delay = 160 is com-

pared with the ideal Delay = 284. Clearly, this Delay choice provides reasonable trade-offs while

supporting the same level of attenuation at the stopband center frequencies (DC, 50 Hz, 100

Hz) as for the ideal scenario of Delay = 284. The importance of this extra choice is that the pro-

posed cascade structures in Fig 11 inherently (at no extra cost) provides 160 registers inside its

first stage. That can be used to realize the needed delay line in Fig 14. Thus, the proposed opti-

mally-factored cascade structure of H(z) can be implemented by using 568 registers, 16 shift-

adds and 31 structural adders.

Table 1. Quantized stages, Binary and SPT representations for the optimally factored-cascade implementation of model filter and interpolator fil-

ter of Scenario I.

Filter Stage# Quantized Stages Binary Representation of

Coefficients

SPT representation of

coefficients

Model Filter G(z20) 1 (1+z-160) -0.125 (z-20+z-140)-0.1015625(z-60+z-100)

+1.8125 z-80
[-0.001, -0.0001101, 1.1101] [–2−3, –2−4–2−5–2−7 21–2−3,

2–4]

2 1+ 0.875 z-20+z-40 0.111 20−2−3

3 1+ 0.375 z-20+z-40 0.011 2−2–2−3

4 1+ 1.9375 z-20+z-40 1.1111 21−2−4

5 1–0.9375 z-20+z-40 -0.1111 -20+2−4

6 (1+z-80) -0.9375 (z-20+z-60) -1.390625 z-40 [-0.00011, -1.011001] [–2−4–2−5,– 20–2−2–2−3–2−6]

7 1–0.5 z-20+ z-40 -0.1 -2−1

8 1–0.0625 z-20+ z-40 -0.0001 -2−4

9 1+z-20 None None

10 1–1.78125 z-20+ z-40 -1.11001 -21+2−2–2−5

Inter-polator Filter

I2(z4)

11 1+2 z-4+ z-8 10.0 2

12 1+1.75 z-8+ z-16 1.11 2-2-2

13 1+ z-4 None None

https://doi.org/10.1371/journal.pone.0175139.t001

Fig 12. Magnitude responses of the optimally factored-cascade IFIR implementation of H(z) for two different

values of post-filter-multiplier: a) β = (1.010100111)2; b) β = (1.0)2.

https://doi.org/10.1371/journal.pone.0175139.g012
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Finally, using the optimal data path word length analysis [20], we found that a cascade data

path of 13 bits (including the sign bit) reduces the overall stage truncation noise to a practically

negligible level to meet the target filter specification.

Fig 15, Fig 16 and Fig 17 illustrate the results of the tests that we conducted to further evalu-

ate the performance of the designed filter. Several simulated inputs (i.e., a DC signal, a sinusoidal

at the edge of the passband, a sinusoidal at the middle of the passband, and a sinusoidal at the

center of the stopband) were given as the input to our filter. As Fig 15(A) shows, the designed fil-

ter successfully attenuates DC down to the desired level at the output. We also observe (Fig 15B

and 15C) that the sinusoids at the edge of the passband (0.5Hz) and at the middle of passband

(25 Hz) are safely passed to the outputs with no attenuation.

As Fig 15(D) shows, the 50-Hz sinusoidal input at the center of the stopband is attenuated

at the output. Calculation of the average powers of the input and output signals revealed that

the root mean square (RMS) of the signal has an attenuation level of 57.3 dB. This level of

attenuation is achieved by using a 13-bit word length. In fact, the attenuation level for the

50-Hz sinusoidal input increases to 63.2 dB, if one uses a 14-bit word length.

To test the performance of the proposed design under extreme conditions, a real ECG sig-

nal from the publicly available MIT-BIH database [27] is resampled at 200 Hz and then con-

taminated with 50-Hz powerline interference and its 100-Hz harmonic. Then the proposed

filter is applied to the data to suppress the noise. Fig 16(A) shows the case when the total noise

power is at the same level as the incoming ECG signal power. The calculation of the output

and input signals power reveals that the RMS of the output signal is approximately 3 dB lower

than that of the input, as expected. This is because the designed filter H(z) removes mains-

power interference associated with half the total signal power. Fig 16(B) represent a more chal-

lenging scenario, where the total power of the 50-Hz and 100-Hz noise is 100 times higher

than the desired ECG signal power. We observe that, as expected, the output RMS becomes 20

dB lower than the input RMS level. These results confirm the efficacy of the proposed filter

design for the noise suppression.

Fig 13. Delay parameter in the optimally factored-cascade IFIR implementation of H(z).

https://doi.org/10.1371/journal.pone.0175139.g013

Fig 14. Choice of Delay parameter in the optimally factored-cascade IFIR implementation of H(z).

https://doi.org/10.1371/journal.pone.0175139.g014
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To complete the evaluation of the performance of the proposed design, we used the publicly

available MHealth dataset [28,29]. This dataset includes more than 6 hours of body motion and

vital signs recordings that were collected using wearable sensors from ten volunteers performing

several physical activities (e.g. standing, sitting, climbing the stairs, cycling, jumping, jogging,

running). We used 5-min ECG data segments (total of 75 segments) of this dataset for the

empirical evaluation of the proposed filter. For this purpose, each data segment was resampled

at 200Hz and contaminated with DC and 50 Hz noise. The power of the noise was selected as

(NS)2 times more than the power of the ECG signal, whereNS was the “noise scale” changing in

the range of 1 to 10. For each noise scale, the contaminated ECG data segment was fed to the

proposed filter. Then the attenuation level of the noise at the output of the filter was measured

in dB. Fig 17 shows the boxplots of these achieved noise attenuation levels for different input

noise scales. As one expects, the filter resulted in a higher level of noise attenuation when the

noise scale (the power of the contaminating noise) was larger. A t-test revealed that the achieved

attenuation at each scale is significantly lower than the expected -60 dB (e.g., p-values for noise

scales 1 and 2 were 10−26 and 10−36, respectively). These results confirm the effectiveness of the

proposed filter design in ECG noise cancellation.

Filter design for Scenario II

Like in Scenario I, the target passband ripple (δp) of Scenario II is 0.5 dB. Hence, the filter UPar-

tial(z) in this scenario (a version of sub-filter U1(z) that only contains its first passband at DC)

has the same IFIR components as that of the previous scenario—G(z20) and I(z) as shown in

Fig 15. Illustration of the performance of the optimally factored-cascade IFIR implementation of H(z) for

different inputs: (a) input is a DC signal; (b) input is a sinusoid at the edge of the passband; (c) input is a

sinusoid in the middle of the passband; (d) input is a sinusoid at the center of the stopband.

https://doi.org/10.1371/journal.pone.0175139.g015

Fig 16. Illustration of the performance of the of the optimally factored-cascade IFIR implementation of H(z),

when the input (in blue) is an ECG signal contaminated with different levels of noise: (a) The power of the

noise is the same as the power of the signal; (b) The power of the noise is 100 times more than the power of

the signal.

https://doi.org/10.1371/journal.pone.0175139.g016
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Fig 7. Since the magnitude response of G(z20) provides some of the required components of

the desired magnitude response of U1(z) at DC, ±0.4π and 0.8π, we change the interpolator fil-

ter I(z) to get the desired masking illustrated in Fig 18 in solid magenta which shows the mag-

nitude response of I3(z5), the stretched (by a factor of five) version of the new interpolator

filter I3(z). Our analysis revealed that the interpolator filter I3(z) has an order of 6 (4 multipliers

and 6 structural adders). Given the order of the model filter G(z) obtained in scenario I, the

effective total order of U1(z) filter is (20×27) + (6×5) = 570, consisting of 18 multipliers and 33

structural adders.

Fig 19 shows the resulted optimally factored-cascade IFIR implementation of the filter

U1(z) = βG(z20) I3(z5).

The binary and SPT representations of the coefficients for both the factored model filter G
(z20) and the factored interpolator filter I3(z5) are listed in Table 2. The optimally-factored cas-

cade structure has resulted in a lower hardware complexity: While the cascaded model filter G
(z20) with order 540 only consists of 10 shift-adds and 26 structural adders, the cascaded inter-

polator filter I3(z5) with order 30 consists of 0 shift-adds and 6 structural adders. Therefore,

our optimally-factored cascade structure of U1(z) has an order of 540, and consists of 10 shift-

adds (or 14, if including the additional four shift-adds needed for the post-filter multiplier β)

and 32 structural adders.

The optimum stretch factor for the IFIR implementation of the low-pass filter V(z) was

obtained as three. Using this stretch factor, we were able to realize the model filter GV(z) and

Fig 17. Illustration of the performance of the of the proposed filter when the input ECG data (collected

with wearable sensors) is contaminated with various levels of DC and 50 Hz noise.

https://doi.org/10.1371/journal.pone.0175139.g017

Fig 18. Magnitude responses of IFIR components of sub-filter U1(z): G(z20) and I3(z5).

https://doi.org/10.1371/journal.pone.0175139.g018
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interpolator filter IV(z), both with an order of 11 (each consisting of 6 multipliers and 11 struc-

tural adders). Therefore, the effective total order of filter V(z) = GV(z3) IV(z) is 3×11+11 = 44,

and it consists of 12 multipliers and 22 structural adders.

Fig 20 shows the resulted optimally factored-cascade IFIR implementation of the filter

U2(z) = βVGV(z3) IV(z).

Table 3 lists the binary and SPT representations of the coefficients for the optimally fac-

tored-cascades filters GV(z3) and IV(z). As the table shows the model filter GV(z3) with order 33

consists of 3 shift-adds and 9 structural adders, while the interpolator filter IV(z) with order 11

consists of 3 shift-adds and 11 structural adders. Therefore, our optimally-factored cascade

structure of U2(z) resulted in a filter with an order of 44, consisting of 6 shift-adds (or 10, if

including the additional three shift-adds needed for the post-filter multiplier βV) and 20 struc-

tural adders.

Fig 19. The optimally factored-cascade IFIR implementation of sub-filter U1(z) = βG(z20) I2(z4).

https://doi.org/10.1371/journal.pone.0175139.g019

Table 2. Quantized stages, Binary and SPT representations for the optimally factored-cascade implementation of model filter G(z20) and interpola-

tor filter I3(z5), for sub-filter U1(z) of Scenario II.

Filter Stage # Quantized Stages Binary Representation of

Coefficients

SPT representation of

coefficients

Model Filter G(z20) 1 (1+z-160) -0.125 (z-20+z-140)-0.1015625(z-60+z-100)

+1.8125 z-80
[-0.001, -0.0001101,1.1101] [–2–3, –2–4–2–5–2–7, 21–2–3–

2–4]

2 1+ 0.875 z-20+z-40 0.111 20−2−3

3 1+ 0.375 z-20+z-40 0.011 2−2–2−3

4 1+ 1.9375 z-20+z-40 1.1111 21−2−4

5 1–0.9375 z-20+z-40 -0.1111 -20+2−4

6 (1+z-80) -0.9375 (z-20+z-60) -1.390625 z-40 [-0.00011,-1.011001] [–2–4–2–5, – 20–2–2–2–3–2–6]

7 1–0.5 z-20+ z-40 -0.1 -2−1

8 1–0.0625 z-20+ z-40 -0.0001 -2−4

9 1+z-20 None None

10 1–1.78125 z-20+ z-40 -1.11001 -21+2−2–2−5

Inter-polator Filter

I3(z5)

11 1+2 z-5+ z-10 10.0 2

12 1+z-5+ z-10 None None

13 1+0.25 z-5+ z-10 0.01 2−2

https://doi.org/10.1371/journal.pone.0175139.t002
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Using the obtained optimally factored-cascade IFIR implementations of the sub-filters

U1(z) and U2(z), the target filter H(z) was realized using Eq (3) as

HðzÞ ¼ ½z� 285 � U1ðzÞ�½z
� 22 � Vð� zÞ� ¼ ½z� 285 � bGðz20ÞI3ðz

5Þ�½z� 22 � bV GVð� zÞIVð� zÞ� ð4Þ

Base on this realization, the filter H(z) has an effective order of 614, consisting of 24 shift-

adds and 54 structural adders. Notice that the first stage of V(z) in Fig 20 has an order of 21,

and hence can provide us with 21 of the total 22 registers that we need to realize the z–22 delay

line in Eq (4), as shown in Fig 21. The first stage of G(z20) in Fig 19 has an order of 160, and

hence can also provide us with 160 of the total 285 registers that we need to realize the z–285

delay line.

Similar to our proposed filter design for scenario I, here we employed the parameter Delay
to enhance the robustness of the filter in terms of its total numbers of registers. Although the

ideal value of the parameter Delay is 285 (half the effective order of sub-filter U1(z)), as our

analysis from Fig 14 revealed, a Delay value choice of 160 provides reasonable trade-offs while

supporting the same level of attenuation at the stopband center frequencies (DC, 60 Hz, 120

Hz) as for the ideal value of Delay. Using Delay = 160, we don’t need any more extra registers

to realize the target filter. Thus, the proposed optimally-factored cascade structure of H(z) can

be implemented by using 615 registers, 24 shift-adds and 54 structural adders.

Discussion and conclusions

In this work, we employed a newly-developed optimally factored filter technique [20–22] com-

bined with the optimally-stretched interpolated FIR method [23] to create a hardware-efficient

Fig 20. The optimally factored-cascade IFIR implementation of sub-filter U2(z) = βVGV(z3) IV(z).

https://doi.org/10.1371/journal.pone.0175139.g020

Table 3. Quantized stages, Binary and SPT representations for the optimally factored-cascade implementation of model filter GV(z3) and interpo-

lator filter IV(z) for sub-filter U2(z) of Scenario II.

Filter Stage # Quantized Stages Binary Representation of Coefficients SPT representation of coefficients

GV(z3) 1 (1+z-21) -3 (z-3+z-18) +6 (z-9+z-12) [–11, 0, 110] [21+20, 22+21]

2 (1+z-12) +2.5 (z-3+z-9) +3.25 z-6 [10.10, 11.01] [21+2−1, 21+20+2−2]

IV(z) 3 1+z-1 None None

4 (1+z-4) -1.4375 (z-1+z-3) -z-2 [-1.0111, -1] [-20−2−1+2−4, -20]

5 1–0.125 z-1+ z-2 -0.001 -2−3

6 (1+z-4) +2 (z-1+z-3) +3z-2 [10, 11] [21, 21+20]

https://doi.org/10.1371/journal.pone.0175139.t003
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ECG filter structure for two different scenarios. Our proposed designs have several beneficial

features. For example, the proposed filter structures only include few shift-adds and structural

adders due to the optimal factorization of the IFIR filter components. Furthermore, the proposed

structures allow for the adjustment of the stopband attenuation and passband ripple of the filter,

as needed, through adjustment of the value of the post-filter-multiplier β. Leveraging the order

of the first factor (stage) filter (in the optimally factored-cascaded structure), and the parameter

Delay, we were able to reduce the numbers of registers. The choice of Delay = 160 (as proposed

in our design) is a reasonable choice, because both the 50 Hz and 60 Hz powerline frequencies

are closely controlled by the grid. The real-time frequency of the national grid system in U.K. is

available in [30], and the results of an analysis of 60 Hz main frequency accuracy are presented

in [31]. Both powerline frequencies have narrow power spectral densities within ±0.2 Hz around

the center frequency. Given this level of stability, the choice of Delay = 160 (as depicted in Fig

14) is justified as depicted in Fig 14. Furthermore, the proposed filter structures have the flexibil-

ity to easily support pipelining by inserting registers between stages [20].

Our proposed optimally-factored IFIR implementation of the ECG filter of scenario I (sam-

pling frequency of 200 Hz, notches at DC, 50 Hz and 100 Hz) resulted in a filter with order of

568, requiring 568 registers, 16 shift-adds, and 31 structural adders. Our ECG filter design of

scenario II (sampling frequency of 300 Hz, notches at DC, 60 Hz and 120 Hz) resulted in a filter

with order of 614, requiring 615 registers, 24 shift-adds, and 54 structural adders. As Fig 21

shows, interestingly, our proposed design for Scenario II has the flexibility to realize the filter of

Scenario I, as well. This can be achieved by simply removing the sub-filter U2(z) and replacing

the low-order filter I3(z5) inside the first sub-filter U1(z) with the filter I2(z4) from Fig 10. This

allows for a reconfigurable (programmable) realization of the two scenarios using one design.

To complete our study, we compared the complexity of our proposed designs to the state-

of-the-art in terms of total number of full adders and flip-flops, as depicted in Table 4. Note

that the authors in [10] have not provided some of the details of the FRM method including

the passband ripple value, coefficients of the filter, number of full adders, and number of flip-

flops. Thus, we used a conservative estimate of these values for the table. As the table shows

our filter design has a superior hardware efficiency to the state-of-the-art. In fact, comparing

to the published filter structures, the proposed designs decrease the complexity by at least 18%

in Scenario I and by at least 10% in Scenario II.

Fig 21. The optimally factored-cascade IFIR implementation of H(z).

https://doi.org/10.1371/journal.pone.0175139.g021
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In conclusion, we presented a novel low-complexity ECG noise-suppression reconfigurable

FIR filter structure using the recently-introduced optimally factored FIR filter method. Com-

paring to the conventional filter designs, the proposed design reduces the hardware complexity

by an average of 42% (36% complexity reduction in Scenario I, and 46% complexity reduction

in Scenario II). We conclude that the reduced hardware complexity of the proposed filter

structure makes it a robust design for the implementation in wearable ECG and heart monitor-

ing devices.

Author Contributions

Conceptualization: SA AM.

Formal analysis: SA AM.

Investigation: AM.

Methodology: AM.

Project administration: SA AM.

Software: SA AM.

Validation: SA.

Writing – original draft: SA AM.

Writing – review & editing: SA.

References
1. Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global

methodologies of mortality measurement. Circulation 127: 749–756. https://doi.org/10.1161/

CIRCULATIONAHA.112.128413 PMID: 23401116

Table 4. Hardware complexity comparison for the ECG noise suppression filter.

Description Method Notch

level (dB)

Register # Data word

length (bits)

Shift-

add #

Structural

adder #

Full

adders

D flip-

Flops

Total

Complexity

State of the Art

Scenario I

Conventional parks-

McClellan-Remez [24–

26]

-60 � 560 12 � 140* 140 � 5000* � 6720 � 11720

RRS method [13] -60 �320 12-bit

and 320 18-bit

12 � 2 7 �150* �9600 �9750

Proposed Filter

Design Scenario I

Fig 10 -40 568 11 16 31 517 6248 6765

Fig 10 -57.2 568 13 16 31 611 7384 7995

Fig 10 -63.2 568 14 16 31 658 7952 8610

State of the Art

Scenario II

Conventional parks-

McClellan-Remez [24–

26]

-60 � 594 12 � 180* �174* � 6000* � 7128 � 13128

FRM Method [10] -60 548 NA �

24**
74 �

1300**
�7800* � 9100

Proposed Filter

Design Scenario II

Fig 20 -60 615 12 24 54 936 7380 8196

* Our estimates based on the conventional design.

** Our estimates for FRM method.

https://doi.org/10.1371/journal.pone.0175139.t004

Hardware-efficient digital filter design for wearable ECG sensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0175139 April 6, 2017 17 / 19

https://doi.org/10.1161/CIRCULATIONAHA.112.128413
https://doi.org/10.1161/CIRCULATIONAHA.112.128413
http://www.ncbi.nlm.nih.gov/pubmed/23401116
https://doi.org/10.1371/journal.pone.0175139.t004
https://doi.org/10.1371/journal.pone.0175139


2. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, et al. (2011) Forecasting the future of

cardiovascular disease in the United States a policy statement from the American heart association. Cir-

culation 123: 933–944. https://doi.org/10.1161/CIR.0b013e31820a55f5 PMID: 21262990

3. Odden MC, Coxson PG, Moran A, Lightwood JM, Goldman L, et al. (2011) The impact of the aging pop-

ulation on coronary heart disease in the United States. The American journal of medicine 124: 827–

833. e825. https://doi.org/10.1016/j.amjmed.2011.04.010 PMID: 21722862

4. Asgari S, Mehrnia A, Moussavi M (2015) Automatic detection of atrial fibrillation using stationary wave-

let transform and support vector machine. Computers in biology and medicine 60: 132–142. https://doi.

org/10.1016/j.compbiomed.2015.03.005 PMID: 25817534

5. Appelboom G, Camacho E, Abraham ME, Bruce SS, Dumont EL, et al. (2014) Smart wearable body

sensors for patient self-assessment and monitoring. Archives of Public Health 72: 1.

6. Nemati E, Deen MJ, Mondal T (2012) A wireless wearable ECG sensor for long-term applications. Com-

munications Magazine, IEEE 50: 36–43.

7. Huhta JC, Webster JG (1973) 60-HZ interference in electrocardiography. IEEE Trans Biomed Eng 20:

91–101. https://doi.org/10.1109/TBME.1973.324169 PMID: 4688314

8. Castillo E, Morales DP, Garcı́a A, Martı́nez-Martı́ F, Parrilla L, et al. (2013) Noise suppression in ECG

signals through efficient one-step wavelet processing techniques. Journal of Applied Mathematics

2013.

9. Levkov C, Mihov G, Ivanov R, Daskalov I, Christov I, et al. (2005) Removal of power-line interference

from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine 4: 50. https://doi.

org/10.1186/1475-925X-4-50 PMID: 16117827

10. Lian Y, Yu J (2005) A Low Power Linear Phase Digital FIR Filter for Wearable ECG Devices. Conf Proc

IEEE Eng Med Biol Soc 7: 7357–7360. https://doi.org/10.1109/IEMBS.2005.1616211 PMID: 17281980

11. Joshi SL, Vatti RA, Tornekar RV. A Survey on ECG Signal Denoising Techniques; 2013. IEEE. pp. 60–

64.

12. Lee S-Y, Cheng C-J (2009) Systematic design and modeling of a OTA-C filter for portable ECG detec-

tion. Biomedical Circuits and Systems, IEEE Transactions on 3: 53–64.

13. Raita-aho T, Saramaki T, Vainio O (1994) A digital filter chip for ECG signal processing. Instrumentation

and Measurement, IEEE Transactions on 43: 644–649.

14. Williams M, Nurmi J, Tenhunen H. ASIC design of digital ECG filter; 1989. IEEE. pp. P7-3/1-4.

15. Estola K, Saramaki T. High performance FIR filters without multipliers for ECG signal processing;

1984. pp. 1462–1465.

16. Saramaki T, Neuvo T, Mitra SK (1988) Design of computationally efficient interpolated FIR filters. Cir-

cuits and Systems, IEEE Transactions on 35: 70–88.

17. Adams JW, Willson AN Jr (1983) A new approach to FIR digital filters with fewer multipliers and reduced

sensitivity. IEEE Transactions on Circuits Systems 30: 277–283.

18. Lian Y, Yu JH. The reduction of noises in ECG signal using a frequency response masking based FIR fil-

ter; 2004. IEEE. pp. S2/4-17-20.

19. Lim YC (1986) Frequency-response masking approach for the synthesis of sharp linear phase digital fil-

ters. Circuits and Systems, IEEE Transactions on 33: 357–364.

20. Mehrnia A, Willson AN (2015) Optimal factoring of FIR filters. IEEE Transactions on Signal Processing

63: 647–661.

21. Mehrnia A, Willson AN (2015) Further Desensitized FIR halfband filters. IEEE Transactions on Circuits

and Systems I: Regular Papers 62: 1815–1824.

22. Mehrnia A, Willson AN (2016) FIR Filter Design via Extended Optimal Factoring. IEEE Transactions on

Signal Processing 64: 1061–1075.

23. Mehrnia A, Willson Jr AN. On optimal IFIR filter design; 2004. IEEE. pp. III-133-136 Vol. 133.

24. Parks T, McClellan J (1972) Chebyshev Approximation for Nonrecursive Digital Filters with Linear

Phase. IEEE Transactions on Circuit Theory 19: 189–194.

25. McClellan J, Parks T, Rabiner L (1973) A computer program for designing optimum FIR linear phase

digital filters. IEEE Transactions on Audio and Electroacoustics 21: 506–526.

26. Remez EIA (1962) General computational methods of Chebyshev approximation: The problems with

linear real parameters: US Atomic Energy Commission, Division of Technical Information.

27. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, et al. (2000) PhysioBank, PhysioToolkit,

and PhysioNet: components of a new research resource for complex physiologic signals. Circulation

101: E215–220. PMID: 10851218

Hardware-efficient digital filter design for wearable ECG sensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0175139 April 6, 2017 18 / 19

https://doi.org/10.1161/CIR.0b013e31820a55f5
http://www.ncbi.nlm.nih.gov/pubmed/21262990
https://doi.org/10.1016/j.amjmed.2011.04.010
http://www.ncbi.nlm.nih.gov/pubmed/21722862
https://doi.org/10.1016/j.compbiomed.2015.03.005
https://doi.org/10.1016/j.compbiomed.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25817534
https://doi.org/10.1109/TBME.1973.324169
http://www.ncbi.nlm.nih.gov/pubmed/4688314
https://doi.org/10.1186/1475-925X-4-50
https://doi.org/10.1186/1475-925X-4-50
http://www.ncbi.nlm.nih.gov/pubmed/16117827
https://doi.org/10.1109/IEMBS.2005.1616211
http://www.ncbi.nlm.nih.gov/pubmed/17281980
http://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.1371/journal.pone.0175139


28. Banos O, Moral-Munoz JA, Diaz-Reyes I, Arroyo-Morales M, Damas M, et al. (2015) mDurance: A

Novel Mobile Health System to Support Trunk Endurance Assessment. Sensors 15: 13159–13183.

https://doi.org/10.3390/s150613159 PMID: 26057034

29. Banos O, Villalonga C, Garcia R, Saez A, Damas M, et al. (2015) Design, implementation and validation

of a novel open framework for agile development of mobile health applications. Biomedical engineering

online 14: S6.

30. Electricity NG UK Electricity Transmission Operational Data

31. Van Baak T (2004) 60 Hz AC Mains Frequency Accuracy Measurement.

Hardware-efficient digital filter design for wearable ECG sensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0175139 April 6, 2017 19 / 19

https://doi.org/10.3390/s150613159
http://www.ncbi.nlm.nih.gov/pubmed/26057034
https://doi.org/10.1371/journal.pone.0175139

