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A B S T R A C T

Advanced controllers often offer an innovative solution to proper quality control in wastewater treatment pro-
cesses (WWTPs). However, nonlinearity and uncertain disturbances usually make the conventional control
strategies inadequate or impossible for the stable operations of WWTPs. To guarantee the stability of ammonia
nitrogen concentration (SNH) control in WWTPs, a direct adaptive neural networks-based sliding mode control
(ANNSMC) strategy has been proposed in this article. A sliding mode controller is designed and implemented
with the help of an adaptive Neural Network (ANN), named Radial Basis Function Neural Network (RBFNN),
which can approach the desired control law accurately. Also, the stability of a system installed with the ANNSMC
is analyzed by using the Lyapunov theorem, which ensures system robustness and adaptability. Additionally, to
deal with high energy consumption and low treatment efficiency problems in the wastewater denitrification
processes, this paper proposes a dual-loop denitrification control strategy and validates it in the Benchmark
Simulation Model No.2 (BSM2) platform. The strategy can strengthen the denitrification efficiency by collabo-
rating the SNH with nitrate nitrogen (SNO) concentration in the WWTPs properly. The experimental results
demonstrate that the proposed strategy can obtain remarkable stability and robustness, reducing energy con-
sumption effectively compared with other standard and advanced control strategies.

1. Introduction

With the ever-increasing requirements of more stringent regulations,
more energy saving, less greenhouse gas emissions and more stable and
efficient operations of WWTPs have become a hot research area Ching
et al. (2021); Li et al. (2024); Liu et al. (2023). In WWTPs, nitrogen
removals can have a serious negative impact on the environment, and
even result in the eutrophication problems in water bodies if not well
controlled. Therefore, efficient nitrogen removal in wastewater, espe-
cially ammonium, nitrate, nitrite and total nitrogen (TN), in the effluent,
is of great importance in WWTPs Zhang et al. (2023).

Activated sludge processes (ASPs) are widely recognized as the
predominant wastewater treatment methodologies in practice, which

adopt nitrification-denitrification reactions to remove nitrogen Baeten
et al. (2019); Liu et al. (2020). Proportional Integral Ierivative (PID)
controller is a simple but powerful way to control nitrogen removal by
manipulating the dissolved oxygen (DO) Iratni and Chang (2019);
Tzoneva (2007). In these control strategies, the P, I, D parameters are
optimized by trials and errors offline and are fixed for online usage,
However, dynamic behaviors and disturbances usually frustrate stan-
dard PID controllers with fixed parameters. With the wave of artificial
intelligence and digitalization, new PID control methods have been
proposed to ensure P, I, D can be manipulated adaptively Harja et al.
(2016); Vilanova et al. (2009); Wahab et al. (2007); Ye et al. (2013). In
these methods, Vilanova et al. developed a decentralized control strat-
egy as well as a PID adjusting method for multi-loop control for ASP
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Vilanova et al. (2009). Ye et al. employed fuzzy sets to find the optimal
PID parameters,then bettering DO control performance Ye et al. (2013).
However, most of these methods regard the biochemical reaction as a
linear process, in which the biological parameter values are assumed to
be known in advance, which is obviously inconsistent with the strong
nonlinear and strongly coupled characteristics of actual wastewater
treatment. With the wave of Industry 4.0 and artificial intelligence (AI),
researchers have proposed a large amount of intelligent control strate-
gies to deal with these problems. Piotrowski et al. developed a model
predictive control (MPC) algorithm and used it to control DO in
Sequencing Batch Reactor (SBR) Piotrowski et al. (2021). The algorithm
can determine the control law of the output by predicting the future
value of DO. The simulation results indicated that MPC can meet the
control requirements while reducing energy consumption. Monteiro
et al. designed an optimal control algorithm by trading off the re-
quirements of DO and effluent qualities Monteiro et al. (2022). In this
methodology, they turned the optimal problem into a nonlinear opti-
mization problem through discretization, thus simplifying the optimi-
zation and reducing energy consumption. In Han et al. (2020), a
synergistic fuzzy neural controller was designed, which was adapted to
the time-varying characteristics of wastewater treatment via coordi-
nating global parameters to optimize the output control law, and the
resulted findings suggested that the proposed method can achieve better
control performance with less computational consumption. Due to the
large computational burden of traditional networks, Cao et al. put for-
ward an adaptive control method with the help of an online sequential
extreme learning machine, which can take advantage of fast online
training. The proposed method showed good control characteristics in
simulation experiments Cao and Yang (2020). In addition to this, many
other methods have shown good control performance in the wastewater
treatment process Boruah and Roy (2019); Chen et al. (2021); Han et al.
(2021). However, these methods usually require complex and intensive
online optimization calculations, resulting in heavy controller structure
and unacceptable computational load. In addition, since WWTPs usually
exposed to uncertainties, such as unknown weather conditions, it is
difficult to guarantee robust operations with the conventional control
strategies Boiocchi et al. (2016); Du et al. (2022). To overcome these
constraints and to facilitate stable operations of wastewater treatment
systems, advanced control strategies have received more and more
attention Li et al. (2022).

Sliding mode control (SMC) is a commonly used nonlinear control
method, through the introduction of sliding surface and control law to
induce the system state to slide along the designated surface, in such a
way that the desired control objectives can be achieved. SMC has strong
robustness and can depress the system parameter changes, external
disturbances and modeling errors. Therefore, in recent years, SMC has
received extensive attention from academic and industrial communities.
MuȘoz et al. proposed a SMC to control the concentration of DO in the
denitrification process in SBR, and the experimental results showed that
satisfactory control performance of SMC can be achieved Munoz et al.
(2009). In Riaz et al. (2023), Riaz et al. proposed a SMC that can be
predefined in time and applied to address the position control challenges
in permanent magnet linear motors, and the simulation results demon-
strate the method’s ability to achieve convergence within the designated
timeframe. Fujio et al. defined a PID sliding mode surface by combining
SMC with PID and used it for the dynamic control of a soft robot, and the
results exhibit the potential to enhance the precision of the soft robot
and can reduce the amplitude well Fujio et al. (2016). However, all of
these sliding mode controllers require accurate system model, which
could be difficult or even impossible for complex systems. Moreover, the
design of SMC usually requires the selection of appropriate sliding mode
surfaces and SMC laws, which depends heavily on a certain amount of
experience and expertise. SinceWWTPs are a highly complex system and
is difficult to determine an accurate mechanistic model, the research
about applications of SMC to a WWTP system is still limited and falls in
the early stage.

Inspired by the above analysis, this paper proposes ANNSMC to
promote the nitrogen removal efficiency with less energy consumption
inWWTPs. Artificial neural networks can provide a powerful tool to deal
with nonlinear issues for WWTPs. By learning the relationship between
inputs and outputs, Adaptive neural networks (ANNs) are able to auto-
matically adjust their weights and parameters to map the inputs opti-
mally and output the corresponding prediction or decision results
correctly DeVore et al. (2021); Pozevalkin et al. (2019). In this light,
ANN can work together with SMC and a new controller is designed and a
new control structure can be formulated. The main contributions of this
study are outlined as follows:

(1) A new set of controllers, called ANNSMC, was designed and used
in a cascade control strategy to control ammonia concentration
by regulating the dissolved oxygen in the proper location of
WWTPs. This method employs an adaptive neural network to
approach the model nonlinearity and uncertainties, and effec-
tively bettering control performance.

(2) Considering the stability and fast convergence within the entire
control system, the adaptive rate of RBFNN is validated and has
been proven by Lyapunov method. The RBFNN can facilitate
weight optimization adaptively, thus achieving more accurate
control.

(3) To better treatment efficiency with lower energy consumption in
the denitrification process, a dual-loop denitrification control
system is proposed. This system can ensure better TN quality in
the effluent by considering both behaviors of nitrification and
denitrification.

The remaining sections of this paper are organized as follows. Sec-
tion II, simulation experiments on the BSM2 platform and discussion.
Section III, gives a conclusion. Section IV,provides a description of the
materials and methods, and gives a stability proof.

Notations: In the paper, ‖ ⋅ ‖ represents the Euclidean norm of vectors
and the induced norm of matrices.|⋅| represents the absolute value. V̂
and Ṽ represent the estimate of the corresponding parameter V and the
error in the estimate, respectively. [⋅]T denotes transpose.v̇ and v̈ repre-
sent first-order and second-order derivatives, respectively.

2. Results and discussion

2.1. Scenario definition

In this paper, the proposed control structure shown in Fig. 1 is
adopted. All experiments in this paper were conducted and validated
depending on the BSM2 platform in the MATLAB environment.

2.1.1. Experiment of ANNSMC performance
To demonstrate the comprehensiveness of the proposed controller,

experiments were carried out in this paper under different influent
conditions and setpoints, namely: Case 1: static influent conditions with
a constant setpoint (ref=1). Case 2: static influent conditions with
changing setpoints. Case 3: dynamic influent conditions with tracking of
a constant setpoint.

To better verify the performance of ANNSMC, PID and Active
Disturbance Rejection Controller (ADRC) are also introduced for com-
parison. We chose three performance metrics, namely, Integral Absolute
Error (IAE), Integrated Squared Error (ISE) and Integrated Time Abso-
lute Error (ITAE), to comprehensively evaluate the control system from
multiple perspectives. The formula is shown below:

IAE =

∫ ∞

0
|e(t)|dt (1)

ISE =

∫ ∞

0
e2(t)dt (2)

Y. Liu et al.
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ITAE =

∫ ∞

0
t|e(t)|dt (3)

From the formula, it can be seen that IAE can respond to the de-
viations properly in the control process; ISE can highlight how large
deviations affect the control performance; and ITAE can indicate the

error evolution over time variations in the control process.
To achieve better controller, this paper uses genetic algorithm (GA)

to optimize the parameters of the controller. By trading off the control
stability, accuracy and adaptability of the system, the fitness function of
the GA is chosen as follows:

Fig. 1. The proposed dual-loop denitrification control strategy

Fig. 2. Control tracking results of SNH in different cases

Y. Liu et al.
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F =

∫ ∞

0
δ1t|e(t)|dt + δ2Mp + δ3ts (4)

Where,Mp denotes the degree of overshooting, ts is the settling time,
δ1, δ2, δ3 represent the weights for different components.

After global optimization of the controller parameters by GA, the
main parameters of ANNSMC are designed as follows: the sliding mode
surface error weights parameter λ = 5.57; the RBFNN Gaussian basis
function neuron width b = 19.1501. The neuron center point c is:

c= 19.1501
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The other parameters are: σ = 0.005, k = 0.25, Γ =225 ∗

eye(13)(eye(⋅) denotes the unit matrix).

2.1.2. Experiment design of the dual-loop control strategy
By analysis, it is obvious that ammonia nitrogen is correlated with

nitrate nitrogen fairly. Ammonia nitrogen undergoes nitrification re-
actions and is converted into nitrate nitrogen in the nitrification process,
while nitrate nitrogen can be transformed into nitrogen gas through
denitrification process. Consequently, setting up a proper setpoint for
SNH has an influential impact on the SNO control in the reactors.
Therefore, we tested the tracking of nitrate nitrogen under different SNH
setting points by taking into account the influent conditions and pattern
analysis.

When designing the dual-loop control strategy, the first control loop
is controlled by ANNSMC. Due to the internal recycle flow rate of 61944
m3/d in BSM2, it is challenging to effectively manipulate the control law
of ANNSMC within such a significant delay and multivariable interplay.
To simplify the control challenge, the second control (inner) loop uses a
PID controller to maintain the nitrate nitrogen concentration at a pre-
determined level. The parameters of ANNSMC is set up as in Section
2.1.1. The parameters of the PID controller are set as follows after GA
rectification: the proportional coefficient Kp = 155, integral coefficient
Ki = 0.02, differential coefficient Kd = 1.2.

The main purpose of a WWTP to control the SNH, SNO, TN in the
effluent and aeration energy (AE) consumption overall. The AE con-
sumption of the system can be calculated from the following formula:

AE =
SsatO,15

tobs⋅1.8⋅1000

∫ tend

tstart

∑i=5

i=1
Vi⋅KLai,15(t)dt (5)

Where, tobs is the evaluation period (day), Vi represents the volume of
reaction unit i (m3). KLai,15 denotes the oxygen mass transfer coefficient
in unit i, and SsatO,15 represents the DO saturation concentration at (both of
them are at 15.

In this article, two additional control schemes are chosen for com-
parison, respectively: S1: BSM2 default control scheme; S2:the proposed
ANNSMC based cascade control in the single loop; S3: The proposed
dual-loop control scheme.

2.2. Performance comparisons

Fig. 2 gives the tracking curves of the controller for different set-
points as well as influent conditions. To provide more details about the
controller’s performance, the IAE, ISE and ITAE with respect to the
controllers under different conditions are tabulated in Table 1.

As can be seen in Fig. 2a, given a constant signal, all three controllers
can meet the control requirements, of which ADRC exhibits slight os-
cillations after reaching stability. However, when given signal changes
to the changing signal as shown in Fig. 2b, all three controllers show a
slower response speed at the first rising edge of the square wave signal,
but can achieve better performance for the falling side. Among them,
PID exhibits obvious overshooting behaviors, and ADRC also has more
obvious oscillations. The proposed ANNSMC, on the other hand, can
outperform the other two controllers in both the settling time and the
convergence speed. In terms of the performance metrics under static
influent conditions, it is clear that both IAE and ITAE of ANNSMC are
almost twice small than PID controller, and lower than ADRC signifi-
cantly. This demonstrates that, under the static influent case, ANNSMC
exhibits the best performance in terms of stability and robustness. That
is because the adaptive RBFNN can better approach the system dynamics
model by constantly updating the network weight and thus outputting a
proper control law, and the combination of adaptive capabilities allows
the controller to control the variables at a faster rate and with higher
accuracy, therefore resulting in better performance.

For the dynamic influent condition, it can be seen from Fig. 2c that,
although all three controllers have a specified degree of overshoot and
undershoot, ANNSMC and ADRC demonstrate better control perfor-
mance compared to the PID. It is also obvious from the performance
indicators in Table 1 that the ANNSMC and ADRC have similar values,
both of which are significantly lower than those of the PID controller.
This indicates that ANNSMC and ADRC have stronger disturbance
rejection capabilities compared to the PID. Additionally, as can seen in
Fig. 2c there is an obvious oscillation phenomenon when ADRC con-
verges, while ANNSMC is smoother and has no obvious oscillations. That
is because the control rate of ANNSMC is derived from the Lyapunov
function, which ensures the semi-global boundedness of the controlled
system, thus improving system robustness and making it better resistant
to disturbances.

In summary, the ANNSMC designed in this paper has good tracking
performance and exhibits acceptable stability and robustness.

Fig. 3 shows the control performance of nitrate nitrogen under
different setpoints of ammonia nitrogen concentration.

As can be seen from the curve profiles in Fig. 3, when the SNH is set to
0.1 mg/L, a good tracking performance can be achieved for SNO.
Therefore, this paper selects 0.1 mg/L as the SNH setting value by cross
validations, then to construct the dual-loop nitrogen removal control
system. Table 2 shows the average value of nitrogen-related variables in
the effluent of biochemical reactor, along with the energy consumption
for each scheme.

As shown in the Table 2, it is evident that, compared to the default
control scheme, the proposed dual-loop denitrification control structure
in this paper achieved a reduction in SNO by 15.5%. Although the
ammonia nitrogen content showed a slight increase, TN in the effluent
decreased by 8.2%. Additionally, the average AE consumption has also
been reduced. However, simply controlling DO not only fails to reduce
the effluent TN content but also increases energy consumption. This is

Table 1
Comprehensive performance index of the controller for different input cases

Controller Case1 Case2 Case3

IAE ISE ITAE IAE ISE ITAE IAE ISE ITAE

PID 0.0213 0.003 0.0285 0.1462 0.0229 0.4064 1.1949 0.3917 3.4402
ADRC 0.1088 0.0102 0.3088 0.1278 0.0133 0.3229 0.7972 0.3313 2.2925
ANNSMC 0.0113 0.003 0.0115 0.0824 0.0216 0.2106 0.8881 0.3567 2.5364

Y. Liu et al.
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because the aeration process requires energy input to generate oxygen
and deliver it to the biological treatment unit. Consequently, when only
controlling the DO level, an increase in aeration rate is necessary to meet
the requirements, resulting in an escalation of energy consumption. The
dual-loop structure designed in this paper can accurately control the SNH
and SNO in the effluent and avoid the ammonia nitrogen or nitrate ni-
trogen out of the required range. When SNH is controlled and maintained
at a desired level, the oxygen demand for nitrification reaction can be
reduced accordingly, thereby reducing unnecessary aeration and
lowering the corresponding energy consumption. Besides, via control-
ling the internal recycle flow rate during denitrification, the denitrifi-
cation efficiency can be optimized, thereby making aeration energy
consumption even lower. Therefore, the dual-loop control strategy
proposed in this article can achieve better denitrification effects with
lower AE consumption.

3. Conclusion

In this study, a novel adaptive controller, ANNSMC, was designed
and successfully applied to the precise control of the SNH in WWTPs. To
ensure lower TN in the effluent with lower AE consumption, a dual-loop
denitrification control structure is also proposed. The experimental re-
sults show that the ANNSMC has better control performance than the
traditional PID control, with better stability and faster convergence
speed Furthermore, the experiment results demonstrate that the dual-
loop denitrification control strategy can achieve excellent performance
in controlling TN in the effluent with less energy consumption.
Compared with the scenario without a controller, the TN in the effluent
is reduced by 8.2%, and the average AE consumption is reduced by
43.86kWh/d. The current work only discusses nitrogen removal in
WWTPs. This paper not only proposes a novel adaptive control method,
but also shows better control performance and more energy-saving ef-
fects in practical application, providing a new solution for the intelligent
operation of wastewater treatment plants. Future work will further focus
on the simultaneous removal of total phosphorus (TP) together with TN
and consider the control of more quality indexes in the effluent, to
realize the optimization of wastewater treatment globally.

4. Materials and methods

4.1. Wastewater treatment system for validation

To better compare different control strategies, BSM2 was first pro-
posed and supported by the European Union Organization for Scientific
and Technological Cooperation (COST) 624 Program project meeting
Jeppsson et al. (2007). As shown in Fig. 4, this is a schematic plant
model of WWTP, including a primary sedimentation tank, activated
sludge reactor, secondary sedimentation tank, anaerobic digester,
thickener and dewatering unit. This platform can represent most general
WWTP with the biological activated sludge method used for nitrogen
removal. The activated sludge reactors consist of two anoxic units, two
anaerobic units, and three aerobic units. In WWTPs, organic matter was
reduced into ammonia nitrogen by ammonification in the anoxic envi-
ronment. Subsequently, nitrification reactions occur under aerobic
conditions to convert the ammonia nitrogen into nitrate and nitrite.
Then the nitrate nitrogen has been reintroduced to the anoxic units for
denitrification through the internal recycle flow, resulting in the con-
version of nitrate nitrogen into nitrogen gas and its subsequent release.

From the above analysis, it can be seen that there is a complex
interconversion relationship between ammonia nitrogen and nitrate
nitrogen, and it is difficult for a single control loop to maintain the
balance between them. Moreover, the internal and external cycles of
wastewater make wastewater treatment characterized by nonlinearity
and multivariate nexus. Therefore, this paper presents a dual-loop
control system in Fig. 4 to control the effluent quality properly with
less energy consumption. The proposed structure can independently
regulate ammonia nitrogen and nitrate nitrogen to a desired level, which
can optimize overall performance efficiently. In the reaction tank, the
concentrations of DO, SNH and SNO interact with each other. If there is
too much DO, SNH decreases and SNO increases, and conversely, too little
DO increases SNH and decreases SNO. Therefore, it is important to
reasonably set the setting value of DO concentration. The first control
loop in this paper uses the ammonia in the aerobic zone to determine the
optimum DO set point. The second control loop regulates the SNO by
controlling the internal return flow.

Typical patterns can be observed in simulated wastewater treatment
plants within a year as the true WWTP, such as dry weather, rainy days,
stormy days, etc., which fully takes into account seasonal variations,
diurnal variations, holiday variations, and potential factors.

4.2. Problem formulation

To maintain the concentration of a variable at a given value, it is
necessary to design a suitable controller that can meet the control re-
quirements. However, due to the underlying complexity of WWTPs, it is
difficult to understand the nonlinear, multivariate and uncertain char-
acteristics of WWTPs, thus this adds more difficulties in designing a
proper control law Cheng et al. (2021); Han et al. (2018). In addition,
time delay happens around the entire WWTP because of mixing sub-
strate, mass transfer and biological reactions. Therefore, we considered
the use of a second-order nonlinear system as a kinetic model for the
activated sludge reactors. Without loss of generality, in this paper, the
equivalent model of the biological activated sludge component is
defined as the following nonlinear dynamic system:
⎧
⎨

⎩

ẋ1 = x2
ẋ2 = f(x) + g(x)u+ d(t)

y = x1
(6)

Where, x = [x1, x2]T ∈ R2 represents the state variable of the system.
u represents the control input, and y represents the system output. f(x)
and g(x) denote unknown nonlinear function affecting the controlled
and control quantities. d(t) is a bounded external disturbance signal. 0 <

d and |d(t)|⩽d.
In practical WWTPs, owing to the f(x) and g(x) cannot be specifically

Fig. 3. Tracking results under dynamic influent conditions

Table 2
Average total nitrogen and energy consumption in Bioreactor Effluent

Control method SNO(mg/L)l SNH(mg/L) TN(mg/L) AE(kWh/d)

S1 8.0885 1.3448 11.9746 6630.75
S2 13.2426 3.0087 18.8102 6730.9
This paper 6.8337 1.6156 10.9948 6586.89

Y. Liu et al.
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given, as well as the presence of numerous frequent disturbances in
WWTP, such as influent fluctuations, weather changes, etc., the control
law cannot be given or calculated directly. Therefore, due to the above
reasons, we give the following control strategy based on RBFNN.

4.3. Adaptive neural network based sliding mode control (ANNSMC)

In the proposed scheme, the ANNSMC is employed to regulate the
SNH as well as the DO concentration, in such a way that the setting point
can be tracked quickly and stationarily. Fig. 5 shows the designed con-
trol structure of ANNSMC, where the RBF model is used to approach the
nonlinear relationship, which would approximate the control law and
improve the controllers adaptability in WWTPs. More details about the
RBF model can be seen in the Supplementary Information.

4.3.1. Desired SMC law design
In order to better satisfy the required robustness and stability of the

control, we first design an ideal control law based on system
characteristics

For the system shown in Eq. 6, the vectors Xd, E and the sliding mode
surface s are defined as follows:

⎧
⎨

⎩

Xd = [ yd ẏd ]
T

E = x − Xd = [ e ė ]T

s = [ λ 1 ]E = λe+ ė

(7)

Where, λ⩾1, Xd is the desired trajectory vector, which is known and
characterized by continuous values, yd is the desired tracking signal, and
e = y − yd = x1 − yd is the error, thus:

ṡ = λė+ ë = λė+ ẍ1 − ÿd
= λė+ f(x) + g(x)u − ÿd + d(t)
= f(x) + g(x)u+ v+ d(t)

(8)

v = − ÿd + λė (9)

For the dynamic system shown in Eq. 6, formulate the desired SMC
row u∗:

u∗ = −
1

g(x)
(f(x)+ v) −

(
1

kg(x)
+

1
kg2(x)

−
ġ(x)
2g2(x)

)

s (10)

Where, k is the design parameter and k > 0, k would affect the
convergence speed. lim

t→∞
‖ e(t) ‖ = 0 is established. The proof is given

below:
Replace u = u∗ in Eq. 8, then:

Fig. 4. Wastewater Optimization Scheme Structure

Fig. 5. ANNSMC Structure

Y. Liu et al.
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sṡ = s
[

−

(
1
k
+

1
kg(x)

−
ġ(x)
2g(x)

)

s
]

(12)

Choose the Lyapunov function as V = 1
2g(x)s

2, such that:

V̇ =
1

g(x)
sṡ −

ġ(x)
2g2(x)

s2

=
1

g(x)
s
[

−

(
1
k
+

1
kg(x)

−
ġ(x)
2g(x)

)

s
]

−
ġ(x)
2g2(x)

s2

= −

(
1

kg(x)
+

1
kg2(x)

)

s2⩽0

(13)

Eq. 13 indicates that the smaller the k value, the more negative the V̇
value, From Lyapunov stability theory, we can know that lim

t→∞
‖ s ‖ = 0

and lim
t→∞

‖ e(t) ‖ = 0 is established, and the speed of convergence can be

accelerated by choosing the appropriate parameter k.

4.3.2. ANNSMC design
In Section 4.3.1 we obtained the ideal control law for the system and

proved its stability. However since the f(x) and g(x) are unknown, the
existence of the control control law u∗ in Eq. 10 is unattainable. Hence,
RBFNN is used to approach the control law u∗, which compensates for
the uncertainty of the system. From Eq. 10, u∗ is the continuous function
about x, s, k, v, so the input z of the neural network can be defined as
follow:

z =
[
xT , s,

s
k
, v
]T

∈ Ωz⊂R5 (14)

Ωz =

{(
xT , s,

s
k
, v
)
|x ∈ Ωx;|s = [λ,1]E; |v = − ÿd + λė

}

(15)

When the system state variables trajectories can be maintained
within a bounded compact set Ωz, define an ideal network weight W∗,
such that the neural network output could approximate the control law
u∗. Then the neural network output is:

u∗(z) = W∗TH(z) + ε(z), ∀z ∈ Ωz (16)

Where, H(z) denotes the Gaussian basis function, ε(z) denotes the
network estimation error, ε denotes the upper limit of the approximation
error, |ε|⩽|ε|.

However, since the network weight W∗ is unknown, the actual
output of the controller is:

u = Ŵ
T
H(z) (17)

Where, Ŵ is the estimated network weight of the ideal weight W∗.
The adaptive law can be designed as:

˙̂W = − Γ(H(z)s+ σŴ) (18)

Where, Γ = ΓT > 0 represents the adaptive gain matrix. σ is the
correction parameter, σ > 0.

Substituting Eq. 17 into Eq. 8 :

ṡ = f(x) + v+ g(x)Ŵ
T
H(z) + d(t) (19)

Further substitute Eq. 16 into Eq. 19 to get:

ṡ = f(x) + v+ g(x)Ŵ
T
H(z) − g(x)

[
W∗TH(z) + ε(z)

]
+ g(x)u∗(z) + d(t)

= f(x) + v+ g(x)
[
W̃

T
H(z) − ε(z) + u∗(z)

]
+ d(t)

(20)

Substituting u∗e in Eq. 10 into Eq. 20 we get:

ṡ = g(x)
[
W̃

T
H(z) − ε(z)

]
− s
[
1
k
+

1
kg(x)

−
ġ(x)
2g(x)

]

+ d(t)

W̃ = Ŵ − W∗

(21)

4.4. Stability analysis

In this section, the stability of the controlled system will be analyzed
using the Lyapunov stability theory.

To prevent g(x) from being included in the adaptive law ˙̂W, we
choose the Lyapunov function as:

V =
1
2

(
s2

g(x)
+ W̃

T
Γ− 1W̃

)

(22)

Combining Eq. 18 and Eq. 21, we differentiate on time t to derive:

V̇ =
sṡ
g(x)

−
ġ(x)s2

2g2(x)
+ W̃

T
Γ− 1 ˙̃W =

sṡ
g(x)

−
ġ(x)s2

2g2(x)
+ W̃

T
Γ− 1 ˙̂W

=
s

g(x)

{

g(x)
[
W̃

T
H(z) − ε(z)

]
− s
[
1
k
+

1
kg(x)

−
ġ(x)
2g(x)

]

+ d(t)
}

−
ġ(x)s2

2g2(x)

+ W̃
T
Γ− 1[ − Γ(H(z)s+ σŴ)]

= −

(
1

kg(x)
+

1
kg2(x)

)

s2 +
sd(t)
g(x)

− ε(z)s − σW̃
T
Ŵ

(23)

According to the fundamental inequality theorem (2ab⩽a2 + b2), the
following inequality can be obtained as follows:

− σW̃
T
Ŵ = −

σ
2
[
W̃

T
(W̃ +W∗) + (Ŵ − W∗)

T Ŵ
]

= −
σ
2
[
W̃

T
W̃ + (Ŵ − W∗)

TW∗ + Ŵ
T
Ŵ − W∗T Ŵ

]

= −
σ
2
(
‖ W̃ ‖2 + ‖ Ŵ ‖2 − ‖ W∗ ‖2

)

⩽ −
σ
2
(
‖ W̃ ‖2 − ‖ W∗ ‖2

)

(24)

sd(t)
g(x)

⩽
s2

kg2(x)
+
kd2(t)
4

(25)

− ε(z)s⩽ s2

2kg(x)
+
kg(x)
2

ε2(z) (26)

Where, |ε(z)|⩽ε∗; |d(t)|⩽d0; g(x)⩽g. Combining Eq. 23 further we can
get:

ṡ = f(x) + v+ g(x)
(

−
1

g(x)
(f(x) + v) −

(
1

kg(x)
+

1
kg2(x)

−
ġ(x)
2g2(x)

)

s
)

= −

(
1
k
+

1
kg(x)

−
ġ(x)
2g(x)

)

s (11)
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Where:

α0 = max
{

k,
λmax(Γ− 1)

σ

}

σ0 =
kd02

4
+
kg
2

ε∗2(z) + σ
2
‖ W∗ ‖2

(28)

In the formula, λmax(⋅) denotes the matrix maximum eigenvalue. It
can be seen that when k and σ are sufficiently small, σ0 can be arbitrarily

small. Multiplying both sides of Eq. 27 by e
1

α0
t , there have:

d
dt

⎛

⎜
⎝Ve

1
α0
t

⎞

⎟
⎠⩽σ0e

1
α0
t (29)

Integrating Eq. 29 at time t yields:

0⩽V(t)⩽[V(0) − σ0α0]σ0e
−
1

α0
t
+ σ0α0 (30)

Where, V(0) = 1
2

(
s2(0)
g(0) + W̃

T
(0)Γ− 1W̃(0)

)

. According to uniform

boundedness, combined with Lemma 1.1 from the literature Ge and
Wang (2004), Eq. 30 can be written as:

0⩽V(t)⩽[V(0) − σ0α0]σ0e
−
1

α0
t
+ σ0α0⩽V(0) + σ0α0 (31)

Derived by Eq. 22:

‖ s(t) ‖2

2g
⩽
s2(t)
2g(x)

⩽V(t)

1
2

λmin
(
Γ− 1)‖ W̃(t) ‖2⩽

1
2
W̃

T
Γ− 1W̃⩽V(t)

(32)

Where, λmin(⋅) represents the matrix minimum eigenvalue.
Combining Eq. 31 and Eq. 32:

‖ s(t) ‖ ⩽
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0) + σ0α0)

√

‖ W̃(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2V(0) + 2σ0α0

λmin(Γ− 1)

√
(33)

Then the upper bounds of x and Ŵ can be set as:

‖ x1(t) ‖⩽
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0)+σ0α0)

√
+‖ yd(t) ‖⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0)+σ0α0)

√
+max

τ∈[0,t]
{yd(τ)}

‖ x2(t) ‖⩽
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0)+σ0α0)

√
+‖ ẏd(t) ‖⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0)+σ0α0)

√
+max

τ∈[0,t]
{ẏd(τ)}

‖ Ŵ(t) ‖⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2V(0)+2σ0α0

λmin(Γ− 1)

√

+‖W∗ ‖

(34)

From Eq. 30 and Eq. 32:

‖ s(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2g

⎧
⎪⎨

⎪⎩
[V(0) − σ0α0]σ0e

−
1

α0
t
+ σ0α0

⎫
⎪⎬

⎪⎭

√
√
√
√
√
√

‖ W̃(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2[V(0) − σ0α0]σ0e
−
1

α0
t
+ 2σ0α0

λmin(Γ− 1)

√
√
√
√

(35)

When time t approaches infinity:

lim
t→∞

‖ s(t) ‖⩽
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2gσ0α0

√

lim
t→∞

‖ W̃(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2σ0α0

λmin(Γ− 1)

√ (36)

Therefore, for the system shown in Eq. 6, using the control rate of Eq.
17 and the weight update rate of Eq. 18, we can derive:

For any given initial compact set Ω0:

Ω0 =
{
x(0),Xd(0), Ŵ(0)|x(0) ∈ Ωx, Ŵ(0) ∈ ΩŴ,Xd(0) ∈ ΩXd

}
(37)

There have:

(1) The neural network weight estimate Ŵ(t) and the system state
variable x(t) remain in the compact set Ω1,

Ω1 = {x(t), Ŵ(t)
⃒
⃒
⃒ ‖ x1(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0) + σ0α0)

√
+maxτ∈[0,t]{yd(τ)},

⃒
⃒
⃒ ‖ x2(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(V(0) + σ0α0)

√
+maxτ∈[0,t]{ẏd(τ)},

‖ Ŵ(t) ‖ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2V(0) + 2σ0α0

λmin(Γ− 1)

√

+ ‖ W∗ ‖,Xd(t) ∈ ΩXd}

(38)

(2) As time t approaches infinity, the sliding mode function and the
neural network weight deviation values converge to the tight set
Ωn:

Ωn =

{

s(t),W̃(t)

⃒
⃒
⃒
⃒
⃒
lim
t→∞

‖ s(t) ‖⩽
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2gσ0α0

√
, lim
t→∞

‖ W̃(t) ‖⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2σ0α0

λmin(Γ− 1)

√ }

(39)

Ω0, Ω1, Ωn represent the initial condition compact set, response
process compact set and steady state compact set, respectively. The
greater the initial state deviation e(0) and the neural network weight
deviation W̃(0), the greater the bounds of the transient response process
of the system, and Ω0 will affect the convergence boundaries of the state
and weight of Ω1. The range of Ωn depends on the design parameters σ0,
Γ and k, the weight deviations of the network, and the external pertur-

V̇ ⩽ −

(
1

kg(x)
+

1
kg2(x)

)

s2 +
s2

kg2(x)
+
kd2(t)
4

+
s2

2kg(x)
+
kg(x)
2

ε2(z) − σ
2
(
‖ W̃ ‖2 − ‖ W∗ ‖2

)

= −
s2

2kg(x)
−

σ
2
‖ W̃ ‖2 +

(
kd2(t)
4

+
kg(x)
2

ε2(z) + σ
2
‖ W∗ ‖2

)

⩽ −
s2

2kg(x)
−

σ
2
‖ W̃ ‖2 +

(
kd02

4
+
kg
2

ε∗2(z) + σ
2
‖ W∗ ‖2

)

⩽ −
1
α0
V + σ0

(27)
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bations. Therefore, by choosing appropriate design parameters, the
controller can have better tracking performance.

From Eq. 31, for any initial value corresponding to the tight set Ω0,
the state variables x(t) as well as the estimates of network weights Ŵ(t)
remain in the compact set Ω1. Therefore, as long as the NN is large
enough to cover the compact set Ω1, ANNSMC can be ensured to be
stable. The boundedness of the initial conditions ensures that the closed-
loop signal remains bounded during the response process.

CRediT authorship contribution statement

Yiqi Liu: Conceptualization, Data curation, Formal analysis, Fund-
ing acquisition, Writing – original draft. Jing Zhang: Conceptualization,
Data curation, Formal analysis, Writing – review & editing. Zhuyi Qiu:
Conceptualization, Data curation, Visualization, Writing – review &
editing. Yigang Zhang: Conceptualization, Data curation, Formal
analysis. Guangping Yu: Conceptualization, Data curation, Formal
analysis. Hongtao Ye: Supervision, Data curation, Resources. Zefan
Cai: Project administration, Writing – review & editing.

Declaration of competing interest

All authors disclosed no relevant relationships.

Data availability

Data will be made available on request

Acknowledgements

This work was supported by the National Natural Science Foundation
of China (Grant No.: 62273151, 62073145), the Guangdong Basic and
Applied Basic Research Foundation (Grant No.: 2021B1515420003), the
Guangdong Generic Institution Innovation Team Research Foundation
(Grant No.: 2023KCXTDO72).

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.wroa.2024.100245

References

Baeten, J.E., Batstone, D.J., Schraa, O.J., van Loosdrecht, M.C., Volcke, E.I., 2019.
Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge
reactors-a review. Water Res. 149, 322–341.

Boiocchi, R., Gernaey, K.V., Sin, G., 2016. Systematic design of membership functions for
fuzzy-logic control: a case study on one-stage partial nitritation/anammox treatment
systems. Water Res. 102, 346–361.

Boruah, N., Roy, B., 2019. Event triggered nonlinear model predictive control for a
wastewater treatment plant. J. Water Process Eng. 32, 100887.

Cao, W., Yang, Q., 2020. Online sequential extreme learning machine based adaptive
control for wastewater treatment plant. Neurocomputing 408, 169–175.
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