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Abstract
The Large Database of English Compounds (LADEC) consists of over 8,000 English words that can be parsed into two
constituents that are free morphemes, making it the largest existing database specifically for use in research on compound words.
Both monomorphemic (e.g., wheel) and multimorphemic (e.g., teacher) constituents were used. The items were selected from a
range of sources, including CELEX, the English Lexicon Project, the British Lexicon Project, the British National Corpus, and
Wordnet, and were hand-coded as compounds (e.g., snowball). Participants rated each compound in terms of how predictable its
meaning is from its parts, as well as the extent to which each constituent retains its meaning in the compound. In addition, we
obtained linguistic characteristics that might influence compound processing (e.g., frequency, family size, and bigram frequen-
cy). To show the usefulness of the database in investigating compound processing, we conducted a number of analyses that
showed that compound processing is consistently affected by semantic transparency, as well as by many of the other variables
included in LADEC. We also showed that the effects of the variables associated with the two constituents are not symmetric. In
short, LADEC provides the opportunity for researchers to investigate a number of questions about compounds that have not been
possible to investigate in the past, due to the lack of sufficiently large and robust datasets. In addition to directly allowing
researchers to test hypotheses using the information included in LADEC, the database will contribute to future compound
research by allowing better stimulus selection and matching.

Keywords Compoundwords . Semantic transparency . Psycholinguistics .Morphology .Bigram frequency . Sentiment . Family
size

Linguistic and psycholinguistic research has benefited greatly
from the use of large-scale databases from which researchers
can select stimuli for their work, as well as look up characteristics
of existing materials. For example, the CELEX database
(Baayen, Piepenbrock, & Gulikers, 1995), SUBLEX-US
(Brysbaert & New, 2009), and SUBLEX-UK (van Heuven,
Mandera, Keuleers, & Brysbaert, 2014) have been widely used
for determining word-frequency and the British Lexicon Project
(BLP: Keuleers, Lacey, Rastle, & Brysbaert, 2012) and the
English Lexicon Project (ELP: Balota et al., 2007) provide infor-
mation about behavioural performance measures (lexical deci-
sion latencies and naming times). In terms of other variables,

for example, Brysbaert, Warriner, and Kuperman (2014) provide
concreteness norms, whereas Warriner, Kuperman, and
Brysbaert (2013) provide valence ratings. These databases have
provided valuable insight into the processing of mono- and
multimorphemic words. However, they are not ideally suited
for research involving compound words. First, compound words
cannot be readily identified and extracted; these databases con-
tain multimorphemic words, but do not identify compounds sep-
arately. Thus, a search in the ELP for bimorphemic items returns
items such as bulls, delays, and vindicate in addition to com-
pounds. The BLP identifies complex words, but this category
includes words such as blazer and boorish in addition to com-
pounds. Second, the list of compounds is incomplete. The BLP
database, for example, includes onlymonosyllabic and bisyllabic
words, and consequently, multisyllabic compounds (e.g.,
thunderstorm, schoolteacher, and bumblebee) are excluded.
Third, the databases do not include measures, such as semantic
transparency, that are particularly relevant to compounds.

The aim of the present project was to provide a large-scale
database of English closed compounds (also called concatenat-
ed compounds) along with a range of their orthographic,
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morphological, and semantic properties that are relevant for
psycholinguistic, corpus, neurolinguistic and computational
linguistic research. These properties include various measures
of semantic transparency (based on human ratings and mea-
sures of association), family size, and bigram frequency at the
morpheme boundary. The database fills an important gap in the
field because it includes measures that are unique to compound
words but missing from existing datasets.

Two other databases, Juhasz, Lai, and Woodcock’s (2015)
and the recently published Kim, Yap, and Goh (2018), also
contain compounds and transparency ratings. However, our
database extends rather than duplicates these databases, and
thus provides a useful additional resource. For example, these
previous databases contain items from ELP, whereas for ours
we recruited compounds from ELP but also from additional
sources, which yielded a much larger pool of compounds.
Also, our items were hand-coded, and thus we were able to
capture items that had not previously been identified as com-
pounds. We also included a variety of other measures that are
useful for compound research, such as bigram frequency and
family size.

In terms of the ratings per se, the present set of ratings and
the existing ratings differ in terms of the nature of their
questions. First, in terms of types of ratings, Juhasz et al.
(2015) obtained one rating pertaining to the entire compound,
whereas Kim et al. (2018) obtained constituent-based ratings,
one per each constituent. In the present project, we collected
both a compound measure of semantic transparency (similar
to that in Juhasz et al., 2015) and constituent measures (similar
to those in Kim et al., 2018) from the same population.

Second, the type of information targeted by the questions
used to obtain the human ratings differed. Our ratings targeted
semantic transparency, by directly asking participants about
meaning retention (e.g., how much of the meaning of pillow
is retained in pillowcase) and meaning predictability (e.g.,
how predictable is the meaning of pillowcase from the mean-
ings of pillow and case). Juhasz et al. (2015) asked partici-
pants to indicate whether the two constituents were “transpar-
ently related to the meaning of the compound.” Kim et al.
(2018) asked participants to indicate how strongly related a
constituent and the compound were (e.g., snow–snowball).
Relatedness measures are useful but are not specific to seman-
tic transparency (e.g., dog and bone are related, as are cold and
hot). Therefore, the three databases differ in terms of the types
and natures of their ratings. It is useful to have sets of ratings
that target different aspects of the relationship between a com-
pound and its morphological constituents.

Another advantage of the new dataset is that it contains a
larger set of compounds than existing databases do. Having a
large set of compounds is useful for selecting materials for
experiments in that it allows greater flexibility in terms of
matching items on various characteristics. Also, having a larg-
er set of items yields more precise measure of statistics (e.g.,

mean, standard deviation, and range) associated with the dis-
tribution of relevant variables such as semantic transparency.
Furthermore, the larger set can yield a more representative
picture of how various variables are related to each other.
For example, it can be used to examine the association be-
tween response time and semantic transparency. Having a
large set of human ratings of semantic transparency can also
be useful for comparing and testing against computational-
based measures, because human measures and distributional-
semantics-based measures, for example, do not always cap-
ture the same information (Gagné, Spalding, & Nisbet, 2016).

In this article, we begin by providing a brief overview of
why research on morphologically complex words is useful.
Then we provide details about the database project, by first
explaining how the compounds were selected and then pro-
viding details about how we obtained various linguistic and
psycholinguistic variables pertaining to the compounds. In the
latter part of the article, we use the database to test several
theoretically based hypotheses, as a demonstration of the use-
fulness of the new database.

The importance of understanding
the processing of compound words

The intended meanings of words can often be inferred from a
word’s morphemic structure. In fact, approximately half of the
new words that students encounter in books have meanings
that can be derived via morphemic analysis; Nagy and
Anderson (1984) and Nagy, Anderson, Schommer, Scott,
and Stallman (1989) have reported that more than 60% of
the new words that readers encounter contain morphological
structures that allow the reader to make a reasonable guess
about the meaning of the whole word. Indeed, readers often
use word parts to determine word meaning (Graves, 2006),
and the awareness of morphemic structure has been linked
with enhanced vocabulary growth (Baumann et al., 2002;
Brusnighan & Folk, 2012; Levin, Carney, & Pressley, 1988)
and reading comprehension outcomes, in both developing
readers (McCutchen, Logan, & Biangardi-Orpe, 2009; Nagy,
Carlisle, & Goodwin, 2013) and university students (Kemp &
Bryant, 2003).

Precisely how the language system makes use of morpho-
logical structure is not yet fully understood, and a key empir-
ical and theoretical question has centered on the extent to
which representations of the constituents are accessed during
the processing of multimorphemic words. For example, what
role do sea and bird play in the representation and processing
of the compound word seabird? There is much debate among
linguists and psycholinguists about how morphological infor-
mation is represented in the mental lexicon: Are complex
words stored as full forms, such that morphological structure
plays no (or a minimal) role (Butterworth, 1983; Lukatela,
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Carello, & Turvey, 1987; Manelis & Tharp, 1977), or as com-
binations of their constituent morphemes (Chialant &
Caramazza, 1995; Dell, 1986; Frauenfelder & Schreuder,
1991; Laudanna & Burani, 1995; Schreuder & Baayen,
1995, 1997; Taft & Forster, 1975, 1976)? The latter theories
vary in terms of the point at which the constituents’ represen-
tations become available (see Kuperman, Bertram, & Baayen,
2010, for an overview). Many articles in the literature on
complex-word processing have been explicitly concerned
with establishing how the balance of lexical storage and mor-
phologically based computation affects lexical processing
(e.g., Bertram, Schreuder, & Baayen, 2000; Butterworth,
1983; Bybee, 1995; Kuperman, Bertram, & Baayen, 2010;
Libben, 2005).

Compound words (e.g., snowball, bluebird) offer an ideal
test case for addressing this ongoing debate because the con-
stituents of compounds are themselves words that have their
own lexical and semantic representations. Consequently,
“compound words present a much greater challenge to online
morphological parsing than do affixed words” (Libben, 2005,
p. 270). For example, because the constituents of compounds
are an open-class set, there is no reliable heuristic for parsing
compounds (as compared with words containing affixes such
as -ed, -s, and -ing, which are a closed-class set, so that the
words can be parsed by removing the affixes from the stem).
Recent psycholinguistic theories have claimed that the lan-
guage system activates as many representations as possible
during the comprehension of compounds, including the rep-
resentations of the compounds’ constituents, such as neck and
lace for necklace (Ji, Gagné, & Spalding, 2011; Libben, 2005,
2010), and that constituent integration involves actively con-
structing a meaning by integrating the semantic representa-
tions of the constituents (Fiorentino & Poeppel, 2007;
Gagné & Spalding, 2009; Gagné, Spalding, Figueredo, &
Mullaly, 2009; Ji et al., 2011).

Schmidtke and Kuperman (2019) recently showed that
many orthographic, morphological, and semantic sources of
information pertaining to compound words and their mor-
phemes become available concurrently and very quickly
(within a maximum time window of about 260 ms after read-
ing a compound word). Consistent with this notion, consider-
able evidence has shown that the lexical representations of
word constituents are activated during word processing
(Andrews, 1986; Juhasz, Starr, Inhoff, & Placke, 2003;
Libben, 1998; Pollatsek, Hyönä, & Bertram, 2000). There
has also been some indication of a morphological effect that
is distinct from effects such as the semantic effect and phono-
logical effect (e.g., Assink & Sandra, 2003; Bentin &
Feldman, 1990; Frost, Kugler, Deutsch, & Forster, 2005;
Gumnior, Bölte, & Zwitserlood, 2006). Clearly, research on
compound words plays a central role in investigating these
issues. Thus, a large database of compound words and their
associated information, such as LADEC, can have an

immediate and large impact on an important and central area
of psycholinguistic research. Theoretical issues about the na-
ture of complex-word processing and about the representation
of compound words can be aided by the availability of a larger
pool of compounds that represent the entire range of the dis-
tribution of the lexical variable under question.

Creation of a set of English compounds

Our goal was to obtain a set of two-constituent English com-
pounds using a clearly defined algorithm that would produce
as comprehensive a set as possible, given the existing input
materials. Our focus was on concatenated compounds (i.e.,
unspaced compounds), because this type of compound is par-
ticularly challenging to extract from existing databases and
text unless they have previously been coded as compounds.

For reasons noted above, a comprehensive list could not be
obtained via a direct search and aggregation of existing lin-
guistic databases. Thus, we developed a procedure in which
we first identified potential constituents, then created a set of
all possible combinations of those constituents, and finally
identified which of those combinations are existing English
words . Both monomorphemic (e .g . , wheel ) and
multimorphemic (e.g., teacher) constituents were used. In this
section, we discuss each of these steps.

Obtaining potential constituents

The potential constituents, referred to here as “bases,” were
obtained from four primary sources: the set of items contained
in Brysbaert et al. (2014), all nouns and adjectives in the
English Lexicon Project (Balota et al., 2007), Mathematica’s
Word Dictionary, and Mathematica’s WordData set.
Mathematica’s WordData includes materials from a range of
sources, including the British National Corpus and WordNet.
We opted to restrict the bases in terms of word length such that
they were 3–10 letters long, because this would produce com-
pounds that ranged from 6 to 20 letters long. These sources
yielded 76,424 bases. Some bases, such as hood, ship, ion,
and ness, also can function as suffixes, but they were main-
tained in the set for completeness because they have a noun
sense (e.g., ion is type of atom or molecule, and ness is a
headland) as well as noun classifications in Corpus of
Contemporary American English (COCA) and Wordnet.
That is, no bases were excluded. In the next step of the project
(see the following subsection: Creating Word–Word Items),
we identified items that were compounds (e.g., spaceship and
monkshood) and those that were not (e.g., friendship and
motherhood). Table 1 provides the frequency distributions of
the letter lengths for the bases. In terms of the number of
morphemes, 50,615 of the bases were in the ELP database.
Of these, 19% were classified as being monomorphemic.
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Creating word–word items The bases were combined
pairwise to produce a list of all possible word–word combina-
tions, which yielded over 5.8 billion unique items. We then
identified items on this list that were existing English words.
We did this by first creating a set of existing words by creating
a unique list of items from all nouns in WordNet, all items
(excluding proper names and abbreviations) in Mathematica’s
dictionary of English words, all items in the English Lexicon
Project (Balota et al., 2007), and all items in Brysbaert et al.
(2014). We extracted 28,360 word–word combinations that
appeared in this list of existing English words. Because our
aim was to obtain compounds that could be parsed into two
words, compounds that contained reductions (e.g., pastime or
chaffinch) were not obtained via our procedure.

We further restricted this list to items that appeared as
nouns in Wordnet, which resulted in a final set of 16,697
word–word items. The remaining 11,663 non-noun items
(e.g., seasick is an adjective) were excluded from further anal-
ysis. Our focus on nouns was intended to produce a homoge-
neous set of items overall and a manageable set of items for
the subsequent hand-coding stage and for rating experiments.

Identifying compounds The set of 16,697 word–word items
contained both compounds (e.g., necklace) as well as pseudo-
compounds (e.g., carpet contains the English morphemes car
and pet, but they do not function as morphemes in carpet).
Therefore, our next step was to identify the genuine com-
pound words. We began by comparing the list to a set of
known compounds. The set of known compounds was an
aggregated list based on items that were coded as either
adjective–noun or noun–noun in the Brown corpus, CELEX
corpus, or COCA, as well as the set of phrases in Costello,
Veale, and Dunne (2006). Searches in CELEX for NN and AN
items yielded both open (e.g., American football) and closed
(e.g., afterglow and backyard) compounds, as well as non-
compounds (e.g., Puritanism, Oxbridge, and tarmac). All
open or hyphenated compounds were converted to closed
compounds for the purpose of identifying known compounds
among our list. This initial step yielded 2,578 compounds
among our list of 16,697 word–word items. The remaining

14,351 items were manually coded (over a 3-year period) by
trained research assistants as to whether they were com-
pounds. Each item was coded by at least two people. The
Oxford English Dictionary was consulted for words that were
unfamiliar to the coders, or for items for which there was
uncertainty as to their etymologic history. Any disagreements
in coding were resolved via discussion.

In total, we obtained a final set of 8,956 items. This number
includes all instances of items with multiple parses; for exam-
ple, bluestone can be divided into blue + stone or blues + tone
or bluest + one, and thus it has three entries in the database,
one for each of these parses. The vast majority of compounds
(7,804) had only one unique parse, 564 had two parses, and
eight had three parses, for a total of 8,376 unique compounds.
We kept the incorrect parses in the database in accordance
with our aim of having an inclusive database. This feature is
novel, in that it is not part of other compound databases. It
provides a useful resource for researchers who want to select
stimuli that have only one word–word parse.

This set of compounds is, to our knowledge, the largest set
of identified English compounds in a psycholinguistic data-
base. For comparison, Kim, Yap, and Goh (2018) contains
2,861 compounds, Juhasz et al.’s (2015) list contains 629
compounds, and Libben (2005) notes that the English
CELEX database contains 1,437 noun–noun compounds.
Our set also is larger than those found in BLP and ELP.
Importantly, our algorithm and subsequent coding identified
4,605 compounds that were not present in either the ELP or
BLP corpora, and thus extends the number of compounds
available to researchers. Furthermore, our list of items indi-
cates that ELP and BLP contain largely nonoverlapping sets
of compounds. Only 1,587 items are found in both corpora;
1,365 are contained in ELP but not in BLP, and 824 are found
in BLP but not in ELP.

Obtaining psycholinguistic and linguistic
variables

Our goal for LADEC was to provide researchers with a large
set of compounds, along with associated information that will
be most useful in the psycholinguistic study of compound
word processing. Thus, after obtaining the set of compounds,
we obtained information about a variety of psycholinguistic
and linguistic characteristics for the compounds and constitu-
ents. In addition to various measures of semantic transparency,
which is our primary focus in this database, we included var-
iables that have been associated in previous research (de Jong,
Feldman, Schreuder, Pastizzo, & Baayen, 2002; de Jong,
Schreuder, & Baayen, 2000; Gagné & Spalding, 2009;
Kuperman et al., 2010; Leminen, Lehtonen, Bozic, &
Clahsen, 2016; Schmidtke & Kuperman, 2019) with process-
ing costs of compound words in language comprehension

Table 1 Frequency distribution of letter lengths for the bases

Length Frequency

3 795

4 3,000

5 6,077

6 10,049

7 13,963

8 15,618

9 14,734

10 12,180
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across a range of behavioral (primed and unprimed visual
lexical decision, eye tracking, visual-world paradigm) and
neurophysiological (electro-encephalography and magneto-
encephalography) studies, and also in experiments of lan-
guage production (typing, naming, free recall), as well as other
variables that would be useful for researchers using the data-
base to select materials.

Semantic transparency measures

Semantic transparency reflects the relationship between the
compound and its morphemic constituents. For example, the
constituents blue and berry both appear to play a role in the
meaning of blueberry whereas the constituents honey and
moon seem unrelated to the meaning of honeymoon. The no-
tion of semantic transparency has played a central role in
testing competing theories of linguistic representation as re-
searchers have sought to examine how semantic transparency
influences the segmentation of morphologically complex
words as well as how lexical representations of constituents
might be connected (or not) to the semantic representation of
the whole compound (Fiorentino & Fund-Reznicek, 2009;
Gagné & Spalding, 2009; Ji et al., 2011; Marelli & Luzzatti,
2012; Monsell, 1985; Sandra, 1990). Schmidtke, Van Dyke,
and Kuperman (2018) have reported main effects of left-
whole transparency (i.e., the transparency associated with
the first constituent and the whole compound) across a whole
swath of eye-movement measures during naturalistic reading,
and interactions between language experience and right-
whole transparency (i.e., the transparency associated with
the second constituent and the whole compound) in later word
reading measures (e.g., in total reading time).

Despite the prominence of semantic transparency in com-
pound research, there has not yet been common agreement
about how best to define and measure this construct.
Semantic transparency has been described in terms of the de-
gree to which the meaning of the constituent is retained in the
meaning of the whole compound, and also in terms of the
degree to which the meaning of the compound is predictable
from themeaning of the constituents. In sum, the construct has
been discussed both in the context of the whole compound as
well as in the context of the individual constituents. These
approaches to defining semantic transparency reflect different
facets of this construct. For example, measures of meaning
retention appear to reflect the semantic similarity between a
compound’s meaning and the constituent meaning, whereas
measures of predictability might indicate the degree of seman-
tic compositionality of the compound’s concept (see Marelli
& Luzzatti, 2012). Another way that semantic transparency
has been defined is in terms of the relatedness/association
between the constituents and the compound (Kuperman,
2013; Wang, Hsu, Tien, & Pomplun, 2014). In addition to
differences in whether measures of transparency are

constituent-based or compound-based, semantic transparency
has been operationalized in various ways, ranging from di-
chotomous classification by the researcher to participant rat-
ings to measures derived via distributional semantics (e.g.,
Gunther & Marelli, 2018; Landauer, 2002; Mandera,
Keuleers, & Brysbaert, 2017). The various measures do not
necessarily reflect the same underlying aspects of semantic
transparency (Gagné et al., 2016).

For our project, we included several variables that reflect
semantic transparency, to give researchers a range of options.
Having transparency measures for a large set of compounds
will allow researchers to further test whether and how
semantic transparency is involved in the processing of
complex words. To date, the only existing sets of ratings
have been presented in Juhasz et al. (2015) for approximately
600 compounds, and more recently in Schmidtke, Van Dyke,
and Kuperman (2018) for 455 compounds, and Kim et al.
(2018) for 2,861 compounds. Having semantic transparency
information for over 8,000 compounds would greatly expand
the possibilities for further research. In addition, our database
contains a compound-based rating, as well as constituent-
based ratings.

Semantic transparency ratings

We used a rating task to gather meaning retention and mean-
ing predictability judgments for 8,515 items; 8,304 of these
were compounds in the database, and the remaining items
were pseudo-compounds (i.e., mushroom and booklet).
Some pseudo-compounds were included in the rating study
because they had been incorrectly tagged in other databases or
articles as being compounds and had been marked as “known
compounds” in our initial classification prior to our comple-
tion of hand-coding these items. The ratings were obtained in
a series of seven experiments, each involving a unique set of
participants. Within each experiment, we obtained three mea-
sures of semantic transparency: one for each constituent, and
one for the entire compound. The two ratings that specifically
targeted the transparency of the individual constituents (e.g.,
snow and ball in the context of the compound snowball)
allowed us to distinguish between the three types of opaque
compounds: fully opaque compounds (e.g., dumbbell and
honeymoon), compounds with opaque heads (e.g., flowerbed
and bookworm), and compounds with opaque modifiers (e.g.,
raspberry and chestnut). The compound-based rating pro-
vides an overall measure of how transparent the compound
is as a whole.

Materials and participants The compounds were randomly
divided into lists ranging from 118 to 150 items. In all,
1,772 native speakers of English from the University of
Alberta participated in the study and received partial course
credit for their participation. Each participant was tested
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individually in the laboratory and each received one list. The
order of presentation was uniquely randomized for each
participant.

Procedure In Part 1 of the experiment, participants viewed
each compound on a computer screen and rated how predict-
able its meaning is from its parts (e.g., “How predictable is the
meaning of flowerbed from the meaning of flower and bed?”).
To make their rating, participants used the mouse to position a
slider bar labeled with the endpoints “very predictable” and
“not very predictable” (the same labels as used in previous
work, including Libben, Gibson, Yoon, & Sandra, 2003). In
Part 2 of the experiment, participants rated the extent that each
constituent retains its meaning in the compound (e.g., “How
much does flower retain its meaning in flowerbed?” and “How
much does bed retain its meaning in flowerbed?”). The end-
points of the scale were labeled “retains none of its meaning”
and “retains all of its meaning.” The default start position for
the slider was 50%. The set of items included both correct
parses (e.g., grave + stone) and incorrect parses (e.g., graves
+ tone), but each participant saw only one version.

Results Prior to data analysis, we removed participants who
submitted 50% (the default position) as a response on more
than 100 items. The data from participants who did not finish
the task were also removed. The ratings were aggregated in
order to obtain the mean rating for each item. Each item was
rated by 21 to 44 people. For each experimental list, we con-
ducted split-half interrater reliability assessments for each
transparency measure. Split-half reliability was high across
all lists for each transparency measure, and ranged from .83
to .93: ratings for the first constituent (C1: List 1, r = .880; List
2, r = .874; List 3, r = .905; List 4, r = .881; List 5, r = .877;
List 6, r = .909; List 7, r = .934); ratings for the second
constituent (C2: List 1, r = .826; List 2, r = .843; List 3, r =
.874; List 4, r = .840; List 5, r = .842; List 6, r = .944; List 7, r
= .924), and ratings for the whole compound (List 1, r = .898;
List 2, r = .881; List 3, r = .896; List 4, r = .888; List 5, r =
.838; List 6, r = .907; List 7, r = .912). For comparison, the
reliability ratings for Kim et al. (2018) were .78 for the first-
constituent ratings and .77 for the second-constituent ratings.

Descriptive statistics for the meaning predictability rating
and the two measures of meaning retention (one for each
constituent) are provided, for all items and separately for the
correctly parsed and incorrectly parsed items, in Table 2.
Histograms of each of the three ratings are provided in Fig. 1.

The items in the database represent a wide range of seman-
tic transparencies, and this aspect of the database will be use-
ful for selecting stimuli for experiments. Items at the higher
end of the meaning predictability ratings for correctly parsed
compounds include schoolyard, seashell, anklebone,
bookstore, and woodcarvings. Items at the lower end of the
meaning predictability ratings include butterfly, magpie,

dumbbell, tomboy, and hamstring. For the meaning retention
ratings for the first constituent, items with higher ratings in-
clude waterfall, toothache, and hilltop, and items with lower
ratings include witchgrass, turtleneck, and peacoat. For the
meaning retention ratings for the second constituent, items
with higher ratings include woodpile, windstorm, cellphone,
butterflyfish, and candlelight, and items with lower ratings
include stairwell, bookworm, brainstorm, copycat, and
hotdog.

In terms of the incorrectly parsed items, it might seem
surprising that some of these items had ratings at the upper
end of the scale. However, we inspected the cases in which the
ratings were greater than 80%, and in those cases, the incorrect
first constituent was still semantically related to the compound
(e.g., for the parse clams–hell, clamswas seen as being related
to clamshell), but as expected, the second, false constituent
(e.g., hell) received a low rating.

Measures of association (LSA and SNAUT)

Some researchers (e.g., Kuperman, 2013; Schmidtke,
Gagné, Kuperman, & Spalding, 2018; Wang, Hsu, Tien,
& Pomplun, 2014) have used measures of association as a
proxy for semantic transparency. We used existing data-
bases to retrieve measures of association for each constit-
uent and the compound (e.g., neck and necklace, lace and
necklace), as well as for the two constituents to each other
(e.g., neck and lace). Although newer measures are be-
coming available (see, e.g., Gunther & Marelli, 2018),
two of the most commonly used corpus-based measures
of association within the compound literature thus far
have been latent semantic analysis (LSA) and SNAUT,
and thus we obtained two sets of measures: one based

Table 2. Descriptive statistics for semantic transparency ratings for the
first constituent (ratingC1), second constituent (ratingC2), and full
compound (ratingcmp), reported separately for all items, for correctly
parsed items only, and for incorrectly parsed items only

N Mean SD Min Max

All Items

ratingC1 8,299 64.59 (19.68) 3.28 98.54

ratingC2 8,299 69.70 (18.55) 2.04 99.68

ratingcmp
8,299 61.00 (18.80) 8.14 96.96

Correctly Parsed Items

ratingC1 8,115 64.80 (19.59) 4.90 98.54

ratingC2 8,115 71.00 (16.46) 3.13 99.68

ratingcmp 8,115 61.90 (18.01) 14.37 96.96

Incorrectly Parsed Items

ratingC1 184 55.73 (21.92) 3.28 94.32

ratingC2 184 11.78 (11.64) 2.04 85.03

ratingcmp 184 21.84 (7.43) 8.14 61.90
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on LSA and one based on SNAUT. Both measures are
based on co-occurrences. LSA is a method that analyzes
large text corpora and derives the degree of association
and semantic similarity from the use of the words in con-
text (Landauer, 2002; Landauer & Dumais, 1997). LSA
measures were obtained by using the pairwise comparison
application on the LSA website (http://lsa.colorado.edu/)
with General_Reading_up_to_1st_year_college (300
factors) as the topic space. Higher values indicate a
higher degree of association. In addition, we used the
SNAUT database (Mandera et al., 2017) to obtain the
cosine distance as a measure of semantic association, via
http://meshugga.ugent.be/snaut/. The cosine distance
(which is 1 – cosine) is a measure of semantic dissimilar-
ity: cosine distance equals 0 when the vectors are identi-
cal, 1 when the vectors are orthogonal, and 2 when the
vectors are diametrically opposed. Thus, lower values in-
dicate a higher degree of association. The descriptive sta-
tistics for these two sets of measures are provided in
Table 3.

Sentiment and valence

A sentiment analysis for each constituent and compound was
conducted in Mathematica using the Classify function.
Sentiment measures were determined using a pretrained mod-
el that had been trained on social media text. The training set is
appropriate for our participant population (who likely have
daily exposure to such texts). The Classifier returns the

probability that an item is Positive, Negative, Neutral, or
Indeterminate, and uses these probabilities to place an item
into one of these four categories. For example, birthday, birth,
and day were all classified as Positive. Weekend and week
were both Positive, whereas endwas Negative. For each com-
pound and for each constituent we also obtained the probabil-
ity that the item is positive and the probability that the item is
negative. We also calculated the ratio of the positive to nega-
tive probabilities.We also added a variable to indicate whether
the compound and each constituent occurs in (Warriner et al.,
2013). Their dataset contains valence, arousal, and dominance
ratings for English words. The summary statistics for the va-
lence (Warriner et al., 2013) and concreteness (Brysbaert
et al., 2014) for the compound and each constituent are pro-
vided in Table 4.

Table 3 Descriptive statistics for SNAUT cosine distance and latent
semantic analysis (LSA) values

N Mean SD Min Max

c1c2_snautCos 6,089 0.78 0.11 0.21 1.13

c1stim_
snautCos

4,223 0.76 0.13 0.33 1.22

c2stim_
snautCos

4,223 0.76 0.13 0.24 1.16

LSAc1c2 8,618 0.16 0.14 –0.13 1.00

LSAc1stim 4,473 0.17 0.18 –0.15 0.95

LSAc2stim 4,442 0.15 0.16 –0.17 0.94

Fig. 1 Histograms of semantic transparency ratings for the first constituent (ratingC1, top left), second constituent (ratingC2, top right), and full
compound (ratingcmp, bottom)
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Letter length

Length (in number of letters) of each compound and constit-
uent is provided. The median lengths (with minimum and
maximum values) for the full compound, first constituent,
and second constituent of correctly parsed items are 9 (6–
17), 4 (3–10), and 5 (3–10), respectively.

Bigram frequency

Bigram frequency at the morpheme boundary has been
shown to affect the processing of compound words
(Gagne & Spalding, 2016). Therefore, we obtained two
measures of bigram frequency for the letters at the mor-
pheme boundary (e.g., the l and p in ballpark); one was
retrieved from the table reported in Jones and Mewhort
(2004), and the other was calculated on the basis of in-
formation provided in SUBTLEX-US. Bigram letter fre-
quencies based on the SUBTLEX-US corpus were calcu-
lated using Mathematica, such that the bigram frequencies
would accurately reflect exposure to the various letter
combinations. This was done by taking the set of 74,286
words from SUBTLEX-US along with their frequency.
An input set of words was created in which each word
was replicated according to its frequency of occurrence.
For example, the word abandon occurred 413 times in the

SUBTLEX-US corpus and thus was repeated 413 times in
the set. This set was used to determine all occurring letter
bigrams along with their frequency. There were 600
unique bigrams contained in the SUBTLEX-US corpus
with frequency counts ranging from 1 to 4,765,330. The
two measures of bigram frequency (after log transforming
the SUBTLEX-US measure) were highly correlated with
each other (r = .95, p < .0001).

Positional family size

Family size was defined as the number of compounds in
the database that have the constituent of interest (e.g., the
first constituent’s family size for ball includes ballpark,
ballgame, ballpen, and ballroom, whereas the second con-
stituent’s family size for ball includes paintball, pinball,
snowball, and hairball). Our calculation of family size in-
cludes only correct parses. For example, warpath (war +
path) is a family member of the first constituent war, but
wartweed (which can be parsed as war + tweed) is not. The
family sizes for the first constituent and second constituent
were calculated. The median family sizes for the first con-
stituent and second constituent were 8 (range 1–129) and 9
(range 1–228).

We also examined the relationship between positional fam-
ily size and constituent frequency (as indexed by SUBTLEX-
US’s logged frequency). As one would expect, positional fam-
ily size is associated with that constituent’s family size for
both the first and second constituents, in that higher frequen-
cies are associated with larger family sizes (r = .498, p =
.0025, and r = .487, p < .00001, respectively). Positional fam-
ily size was also, but more weakly, associated with the other
constituent’s frequency, in that larger family size was associ-
ated with lower frequency for the other constituent: r = – .065,
p < .00001, for the first constituent’s family size and second
constituent’s frequency, and r = – .168, p < .00001, for the
second constituent’s family size and first constituent’s
frequency.

Profanity

The Classify function in Mathematica was used to classify
each compound and each constituent in terms of whether it
is considered profane. This includes swear words as well as
words that are taboo or potentially offensive (e.g., faggot and
wetback). The numbers of items identified as being profane, in
terms of the compound, first constituent, and second constit-
uent, were, in order, 13, 62, and 65.

Plurality

The plurality of the compound was coded by the third author
by initially using the ELP morphological parser and

Table 4 Descriptive statistics for sentiment (probability of positive
sentiment, probability of negative sentiment, and ratio of positive to
negative), valence (Warriner et al., 2013), and concreteness (Brysbaert
et al., 2014)

N Mean SD Min Max

Compound

sentimentprobpos_stim 8,956 0.40 0.04 0.07 0.92

sentimentprobneg_stim 8,956 0.35 0.04 0.02 0.78

sentimentratioposneg_
stim

8,956 1.17 0.69 0.09 55.36

valence_stim 2,213 5.19 1.19 1.59 8.30

concreteness_stim 4,647 3.98 0.78 1.27 5.00

First Constituent

sentimentprobpos_c1 8,956 0.39 0.11 0.08 0.97

sentimentprobneg_c1 8,956 0.33 0.12 0.02 0.82

sentimentratioposneg_c1 8,956 1.43 0.90 0.22 49.06

valence_c1 7,952 5.58 1.15 1.43 8.37

concreteness_c1 8,383 4.17 0.82 1.43 5.00

Second Constituent

sentimentprobpos_c2 8,956 0.38 0.10 0.12 0.84

sentimentprobneg_c2 8,956 0.34 0.10 0.04 0.76

sentimentratioposneg_c2 8,956 1.31 0.55 0.13 12.03

valence_c2 7,798 5.56 0.97 1.53 8.26

concreteness_c2 6,480 4.23 0.81 1.22 5.00
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identifying strings in theMorphSp column endingwith “>s>.”
Any regular plural items that were missed by the ELP mor-
phological parser, and all irregular plurals, were checked and
coded manually.

Availability in other corpora

We included indicator variables to indicate whether the
items appear in other corpora, so that researchers can easily
identify items that have information available in other
sources. We included indicator variables to note whether
the compound occurs in ELP and BLP, and whether each
constituent occurs in ELP, Wordnet, and Mathematica’s
Dictionary. Researchers can easily use the indicator vari-
ables when selecting stimuli, if they want to use other var-
iables (such as frequency) available in these sources, by
searching for items for which the relevant indicator vari-
able (e.g., inELP or inBLP) is equal to 1. Information from
the other corpora can easily be incorporated within re-
searchers’ data management package of choice. For exam-
ple, within Stata, the merge is straightforward and can be
accomplished with a single command: merge 1:1 stim
using corpusname.dta.

Another relevant corpus is Juhasz et al.’s (2015) set of 629
compounds. We included an indicator variable to denote
which of our items appeared in their list. Of the 629 items in
their list, 457 are part of our list of compounds. Some of the
remaining items were compounds but were excluded due to
not being nouns (e.g., seasick and hitchhike). Others were
excluded because they were noncompounds and were formed
via derivation or conversion (e.g., censorship, fatherhood,
fellowship, outlet, awesome, eyeless, and kinship), were bor-
rowings (e.g., chamberlain, shamrock, and poppycock), or
were monomorphemic.

We also included items from Kim et al.’s (2018) set,
which includes items from Juhasz et al. (2015) and the
ELP (Balota et al., 2007). The knowledge targeted by
their ratings differs from either our or Juhasz et al.’s
(2015) focus, in that participants were not directly asked
about transparency or meaning retention. Instead, partici-
pants rated the relatedness of the meaning of the com-
pound to either the first or the second constituent (e.g.,
doorbell–door or doorbell–door) on a scale from 1 (not
related) to 7 (highly related). Each item was rated by 28–
32 participants. Of Kim et al.’s items, 699 were not in-
cluded in our original set of word–word items, due to not
being nouns (e.g., whoever, into, wouldbe) or due to being
proper names (e.g., Bluebeard, Mayflower). An additional
114 items did appear in our original set but were coded as
noncompounds (e.g., sainthood, priesthood, wardrobe,
sponsorship, lordship, shamrock, bumpkin).

To facilitate the selection of items that are in common us-
age or contain constituents that are in common usage, we

included indicator variables denoting whether the compound
and first and second constituents appear on a list of 40,127
common English words. This list is part of Mathematica’s
built-in WordData package. Of the full set of 8,961 items
(including incorrectly parsed items), 3,664 appear in the list
of common words, 8,310 have first constituents appearing in
the list of common words, and 6,599 have second constituents
appearing in the list of common words. In terms of unique
items (i.e., counting each parse only once, rather than counting
all possible parses), 3,414 compounds appear on the list of
common words.

In addition, we provide variables to indicate whether
the frequency of a stimulus is available in the SUBTLEX-
US corpus (Brysbaert & New, 2009) and in the
Herdağdelen and Marelli (2017) social media frequency
norms. The SUBTLEX-US corpus is a 51-million-token
corpus based on subtitles from US film and media. The
frequency norms derived from social media were based on
the frequency per billion in the American corpus of 1.10
billion English posts on Facebook between November
2014 and January 2015. The Pearson correlation between
these two measures of frequency (log-transformed) was
.77 (p < .0001, N = 2,735). We also included as a variable
SUBTLEX Zipf, which is a standardized measure of word
frequency (van Heuven et al., 2014).

The summary statistics for log-transformed frequency from
SUBTLEX-US, SUBTLEX Zipf, and the social media fre-
quency norms, along with response times from the ELP and
BLP, are provided in Table 5.

Analyses

To show the versatility of the database and determine
whether the variables provide useful tools for under-
standing compound processing, we examined hypotheses
ranging from orthographic to semantic issues. In partic-
ular, we tested hypotheses about how well the semantic

Table 5 Descriptive statistics for log word frequency from SUBTLEX,
Zipf word frequency from SUBTLEX, log word frequency from
Facebook data, lexical decision times from the English Lexicon Project
(ELP) and British Lexicon Project (BLP), and naming times from ELP

N Mean SD Min Max

Facebook frequency 3,202 1.91 0.97 –0.05 5.88

SUBTLEX frequency 5,308 1.06 0.62 0.30 4.36

SUBTLEX Zipf 5,308 2.35 0.62 1.59 5.65

ELP RT 3,148 806 126 534 1,588

BLP RT 2,609 685 82 431 1,274

ELP naming 3,149 716 91 546 1,158
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transparency ratings correspond to existing ratings in the
literature and whether our semantic transparency ratings,
family size, morphemic boundary bigram frequency, and
the various sentiment measures predict lexical decision
and naming times.

How are the meaning predictability and meaning
retention ratings interrelated?

We had obtained three ratings per item. One, meaning
predictability, focused on the overall transparency of
the compound (e.g., the predictability of eggplant from
egg and plant), and the other two, meaning retention for
the first and second constituents (e.g., how much egg
retains its meaning in eggplant and how much plant re-
tains its meaning in eggplant), targeted the transparency
of the individual constituents.

Given that all measures reflect some aspect of semantic
transparency,it isuseful toexaminehowthesemeasuresrelate
toeachother.Inouranalysis,wefocusedonthe8,120itemsthat
hadcorrectparses(e.g.,eggs+hellwasexcluded,butegg+shell
wasretained).Theratingsof themeaningretentionfor thefirst
andsecondconstituentswerecorrelatedwitheachother,r=.31,
p < .0001. Both ratings were associated with the compound-
basedmeaningpredictabilitymeasure.Themeaningretention
ratingfor thefirstconstituentwascorrelatedwith themeaning
predictabilitymeasure, r= .80,p< .0001, aswas themeaning
retention rating for the second constituent, r = .65, p < .0001.
Steiger’s z test for correlations within a population (Steiger,
1980)indicatesthattheratingforthefirstconstituentwasmore
stronglycorrelatedwiththeratingfortheentirecompoundthan
wastheratingfor thesecondconstituent,z=27.71,p<.0001.

The finding that the overall semantic transparency rat-
ing is more strongly related for the first constituent than
the second constituent is particularly interesting given that
several theories of compounds emphasize the role of
headedness. In English, the head is typically (with rare
exceptions) the second constituent, and thus one might
have expected to find the reverse of what we ob-
served—namely, that the correlation between the second
constituent’s and the compound’s transparency ratings
would have been stronger than the correlation between
the first constituent’s and the compounds transparency
ratings. However, this finding fits well with previous re-
search that has shown that the modifier (the first constit-
uent in English) tends to play a larger role in the ease-of-
relation selection during the processing of compounds and
noun phrases (Gagné & Shoben, 1997; Spalding, Gagné,
Mullaly, & Ji, 2010). We will return to this theoretical
issue in the General Discussion.

How associated are the present ratings of semantic
transparency, Juhasz et al.’s (2015) ratings, Kim
et al.’s (2018) ratings, and the corpus-based measures
(SNAUT and LSA)?

Our next set of analyses examined the association between our
semantic transparency rating and the rating presented in
Juhasz et al. (2015), to better understand the relationship be-
tween the two sources of ratings, and also to examine whether
ratings of the entire compound also reflect the transparency of
the individual constituents. We also examined the semantic
association ratings collected by Kim et al. (2018), as well as
the corpus-based measures of association (i.e., LSA and
SNAUT).

The Juhasz et al. (2015) measure (2015_trans) pertained to
the entire compound: Participants were asked how transparent
the meaning of the compound was on a scale ranging from 1–
7 (with 7 being the highest level of transparency). The data
were collected both individually and in a group setting via
paper-and-pencil questionnaires. Each item was rated by be-
tween seven and 15 participants. In contrast, the items in pres-
ent dataset were rated by a larger set of participants and were
collected individually on a computer in a laboratory setting.
Thus, it is useful to see how well these ratings correspond to
each other. In addition to examining whether their rating cor-
responds to the rating of meaning predictability (e.g., how
much the meaning of blueberry can be predicted from blue
and berry), we can also examine how closely this compound-
based judgment corresponds to the constituent-specific trans-
parency judgments (e.g., how much blue or berry retains its
meaning in blueberry).

To examine this question, we focused on the 456 words
that were in both databases, and only on items that were clas-
sified as compounds in our database (e.g., items such as
friendship and outlet, from Juhasz et al., 2015, were
excluded). Information for all variables in this analysis was
available for 429 words. As is shown in Table 6, the various
judgments are significantly correlated with each other. The
two measures that reflect compound-based transparency
(i.e., the transparency rating from Juhasz et al., 2015, and
the meaning predictability measure) exhibit the highest corre-
lation. Both of these measures correlate with the constituent-
specific ratings. Thus, Juhsasz et al.’s (2015) transparency
measure and our compound-based measure reflect three
sources of transparency: the overall transparency of the com-
pound, as well as the transparency of the constituents.

Kim et al. (2018) did not specifically ask participants about
transparency for their ratings, but rather about the degree of
relatedness, which is a more general construct, in that it can
be applied to any pair of words (e.g., cat and milk), not just to
compounds and their constituents. Nonetheless, as can be seen
in Table 6, their measures (2018_ratingC1 and 2018_ratingC2)
do correlate with the other two sources of human ratings and, in
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particular, are most strongly correlated with the corresponding
measure (e.g., the first-constituent ratings in Kim et al.’s study
correlate more strongly with our first-constituent ratings than
with our second-constituent ratings). This indicates that seman-
tic relatedness is one aspect of semantic transparency.

In terms of the corpus-based measures, the LSA and
SNAUTmeasures were also correlatedwith the human ratings
to varying degrees. As one would expect, the correlation was
strongest for the respective human ratings; for example, the
measure of association between the first constituent and the
compound correlated more highly with the meaning retention
rating for the first constituent than with the meaning retention
rating for the second constituent, whereas the reverse was true
for the association between the second constituent and the
compound. This pattern held for both our meaning retention
measures and for Kim et al.’s (2018) ratings. Furthermore, the
LSA and SNAUT measures were more strongly correlated
with their respective ratings fromKim et al. thanwith the other
two sets of human ratings (i.e., ours and Juhasz et al., 2015),
which is to be expected, given that they specifically asked
people to rate relatedness, which is the same construct that
the LSA and SNAUT measures attempt to capture.

The Juhasz et al. (2015) semantic transparency rating
was a single rating for the entire compound, and this rating
was more strongly correlated with the association between
the first constituent and the compound (as reflected by both
the LSA and SNAUT measures) than with the association
between the second constituent and the compound. The
same pattern was observed for our meaning predictability

rating (i.e., the degree to which the meaning of the com-
pound is predictable from the first and second constitu-
ents). This might appear to be counterintuitive, but note
that the meaning of the modifier more strongly relates to
the difference between the meaning of the compound and
the meaning of the head. That is, it is the modifier that
changes the meaning of the compound away from the head
(e.g., it is snow in snowball that makes it different from
other balls). This is consistent with previous research
showing that the ease of processing compounds is more
strongly influenced by the modifier than by the head noun
(Gagné & Shoben, 1997; Gagné & Spalding, 2014).

Do human judgments of semantic transparency
and relatedness influence ease of processing?

In this section, we examine whether the semantic transparency
ratings are useful for predicting ease of processing. We will
examined this issue by predicting lexical decision response
times from the ELP (Balota et al., 2007), naming times from
the ELP, and lexical decision times from the BLP (Keuleers
et al., 2012). The response times in all models were log-trans-
formed. Only the data corresponding to the correct parse were
included (e.g., work + space, not works + pace).

Each of the three dependent variables was fit in separate
sets of analyses. In terms of the control variables, our aim was
to keep the models as simple as possible, to focus more direct-
ly on our variables of interest (i.e., the various semantic trans-
parency measures) and to avoid issues of multicollinearity

Table 6 Pearson correlations among Juhasz et al.’s (2015) semantic
transparency ratings (2015_trans); Kim et al.’s (2018) ratings for the first
and second constituents (2018_ratingC1 and 2018_rating_C2); semantic

transparency ratings for the first constituent (ratingC1), second constitu-
ent (ratingC2), and compound (ratingcmp); and SNAUT cosine distance
and latent semantic analysis (LSA) values

ratingcmp ratingC1 ratingC2 2015
Trans

2018
transC1

2018
transC2

c1c2
snautCos

c1stim
snautCos

c2stim
snautCos

LSAc1c2 LSAc1stim

ratingC1 .75*** 1.00

ratingC2 .66*** .26*** 1.00

2015_trans .86*** .73*** .68*** 1.00

2018_
ratingC1

.62*** .77*** .23*** .67*** 1.00

2018_
ratingC2

.47*** .17*** .72*** .53*** .26*** 1.00

c1c2_
snautCos

– .26*** – .17*** – .18*** – .23*** – .16*** – .23*** 1.00

c1stim_
snautCos

– .43*** – .51*** – .19*** – .49*** – .60*** – .21*** .24*** 1.00

c2stim_
snautCos

– .26*** – .07 – .43*** – .33*** – .09 – .55*** .30*** .31*** 1.00

LSAc1c2 .19*** .12* .10* .12* .04 .12* – .71*** – .12** – .18*** 1.00

LSAc1stim .36*** .38*** .20*** .38*** .47*** .20*** – .15** – .58*** – .21*** .11* 1.00

LSAc2stim .21*** .04 .34*** .23*** .04 .43*** – .20*** – .13** – .50*** .22*** .29***

N 429

* p < .05, ** p < .01, *** p < .001.

(2019) 51:2152–2179Behav Res2162



among the control variables. We began by fitting a baseline
model that included the word length (i.e., number of letters) of
the compound and the log word frequency of the compound in
SUBTLEX-US as covariates. Then we fit a series of models in
which we added in various rating measures to determine
whether they successfully predicted response time. Model 2
included the control variables plus the Juhasz et al. (2015)
transparency rating. Model 3 included the control variables
plus Kim et al.’s (2018) relatedness ratings. Model 4 included
the control variables plus the compound-based transparency
rating (i.e., meaning predictability). Model 5 included all of
the variables in Model 4 plus the two constituent-specific rat-
ing models. All four models were based only on the com-
pounds that were in both Juhasz et al. (2015) and the present
dataset. To determine whether the results using our three mea-
sures of transparency ratings generalized to a larger set of
items, we fit two additional models for each dependent vari-
able (i.e., ELP lexical decision, ELP naming time, and BLP
lexical decision).Model 6 used the same variables asModel 4,
but with all items in our database that had response times
available from these three sources. Model 7 included the base
model plus the constituent-based transparency measures.

In addition, we conducted a similar set of analyses, but also
included length and frequency information about the constit-
uents. In this second set of analyses, the length of the com-
pound was not included, because the information provided by

this variable is redundant with the length of the two
constituents.

Results and discussion The standardized coefficients, fit sta-
tistics, and sample sizes for predicting the ELP lexical deci-
sion times, BLP lexical decision times, and ELP naming times
are shown in Tables 7, 8, and 9, respectively, for the models
with the compound-based control variables, and in Tables 10,
11, and 12, for the models that also included constituent-based
control variables. For the BLP data, frequency was represent-
ed either by SUBTLEX-US, to be consistent with the measure
used in the analyses for the ELP data (top part of Tables 8 and
11), or by the BNC frequency (bottom part of Tables 8 and
11), to be consistent with the measure of frequency used in the
original BLP article (Keuleers et al., 2012).

The transparency ratings from Juhasz et al. (2015) did
not successfully predict ELP lexical decision times
(Model 2, Table 7) but did predict BLP lexical decision
times (Model 2, Table 8). The Kim et al. (2018) rating for
the second constituent was a successful predictor of both
ELP (Model 3, Table 7) and BLP (Model 3, Table 8)
lexical decision times, but the rating for the first constit-
uent was not predictive. The meaning predictability rating
and the meaning retention rating for the first constituent
from the present study successfully predicted responses in
all models (i.e., for ELP and BLP times, and for the

Table 7 Standardized regression coefficients with standard errors (in parentheses) from models using the semantic transparency measures and
compound-based covariates to predict English Lexicon Project lexical decision times

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

SUBTLEX frequency – 0.53*** – 0.52*** – 0.51*** – 0.51*** – 0.49*** – 0.45*** – 0.49***

(0.00381) (0.00382) (0.00381) (0.00380) (0.00383) (0.00161) (0.00158)

stimlen 0.15*** 0.15*** 0.15*** 0.15*** 0.15*** 0.23*** 0.22***

(0.00179) (0.00179) (0.00178) (0.00177) (0.00176) (0.000654) (0.000666)

2015_trans – 0.03

(0.00190)

2018_ratingC1 – 0.04

(0.00275)

2018_ratingC2 – 0.08*

(0.00272)

ratingcmp – 0.12** – 0.37*** – 0.38***

(0.000135) (0.000305) (0.000132)

ratingC1 0.22** 0.16*** – 0.08***

(0.000192) (0.0000879) (0.0000511)

ratingC2 0.12* 0.15*** – 0.04*

(0.000189) (0.0000837) (0.0000571)

N 456 456 456 456 456 2513 2513

adj. R-sq 0.308 0.308 0.316 0.322 0.334 0.349 0.324

AIC – 1,494.9 – 1,493.6 – 1,498.0 – 1,503.0 – 1,509.4 – 8,065.1 – 7,969.7

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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reduced and full set of compounds; Models 4–7), and the
meaning retention rating for the second constituent was
also a successful predictor in all models except Model 5
(Table 8) for the BLP lexical decision times.

Neither the Juhasz et al. (2015) ratings (Model 2, Table 9)
nor the Kim et al. (2018) ratings (Model 3, Table 9) predicted
naming times. In contrast, meaning predictability and mean-
ing retention for the first constituent were successful

Table 8 Standardized regression coefficients with standard errors (in parentheses) from models using the semantic transparency measures and
compound-based covariates to predict British Lexicon Project lexical decision times

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Analyses using SUBTLEX to estimate frequency

SUBTLEX frequency – 0.52*** – 0.52*** – 0.51*** – 0.50*** – 0.50*** – 0.43*** – 0.47***

(0.00375) (0.00370) (0.00369) (0.00367) (0.00371) (0.00146) (0.00144)

stimlen – 0.06 – 0.06 – 0.05 – 0.05 – 0.06 0.02 – 0.00

(0.00220) (0.00217) (0.00216) (0.00215) (0.00214) (0.000766) (0.000775)

2015_trans – 0.14**

(0.00184)

2018_ratingC1 – 0.09

(0.00266)

2018_ratingC2 – 0.14**

(0.00265)

ratingcmp – 0.19*** – 0.33** – 0.40***

(0.000131) (0.000310) (0.000122)

ratingC1 0.17* 0.19*** – 0.06**

(0.000196) (0.0000812) (0.0000477)

ratingC2 0.01 0.14*** – 0.06**

(0.000189) (0.0000789) (0.0000538)

N 319 319 319 319 319 1999 1999

adj. R-sq 0.262 0.281 0.291 0.298 0.305 0.262 0.233

AIC – 1,161.7 – 1,168.9 – 1,172.4 – 1,176.4 – 1,177.8 – 7,163.9 – 7,089.9

Analyses using SUBTLEX to estimate frequency

BNC frequency – 0.56*** – 0.57*** – 0.56*** – 0.56*** – 0.56*** – 0.44*** – 0.47***

(0.00307) (0.00300) (0.00300) (0.00295) (0.00295) (0.00127) (0.00128)

stimlen – 0.01 – 0.01 – 0.00 – 0.01 – 0.02 0.07*** 0.05**

(0.00213) (0.00207) (0.00208) (0.00204) (0.00203) (0.000726) (0.000744)

2015_trans – 0.19***

(0.00177)

2018_transC1 – 0.09

(0.00255)

2018_transC2 – 0.16**

(0.00256)

ratingcmp – 0.24*** – 0.42*** – 0.46***

(0.000125) (0.000291) (0.000115)

ratingC1 0.21* 0.23*** – 0.05**

(0.000185) (0.0000785) (0.0000476)

ratingC2 0.04 0.14*** – 0.08***

(0.000178) (0.0000769) (0.0000535)

N 319 319 319 319 319 2392 2392

adj. R-sq 0.307 0.342 0.343 0.362 0.374 0.285 0.247

AIC – 1,181.7 – 1,197.1 – 1,196.9 – 1,207.1 – 1,210.9 – 8,366.6 – 8,245.4

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001
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predictors in all models. Meaning retention for the second
constituent was a successful predictor only for the full item
set whenmeaning predictability was also included in the mod-
el (Model 6, Table 9).

The models that included the frequency and letter length of
the constituents show patterns identical to those of the models
reported in the previous paragraphs, except that the meaning
retention ratings for the second constituent for the model
predicting BLP lexical decision for the reduced set of items
(Model 5, Table 11) were not predictive, nor were the meaning
retention ratings for the second constituent successful in
predicting ELP lexical decision times for the reduced set of
items (Model 5, Table 10). Another difference to note was that
the meaning retention of C1 emerged as a valid predictor of
the reduced set of compounds when compound frequency was
estimated using BNC (Model 5, Table 11). Kim et al.’s (2018)
rating for the second constituent emerged as a valid predictor
of naming times when covariates for the constituents were
included (Model 3, Table 11).

In sum, these analyses indicate that the present set of se-
mantic transparency ratings more consistently predicted ease
of processing than did the Juhasz et al. (2015) rating, which
was a successful predictor of one (BLP lexical decision time)
out of the three processing measures. Also, the present set of
ratings detected the influence of the first constituent, whereas
the relatedness ratings in Kim et al. (2018) only showed the
influence of the second constituent. Recall that our measure

asked participants how much of the meaning of a constituent
was retained, whereas Kim et al. asked people to rate how
related the constituent and compound were. The present anal-
yses suggest that response times are affected by how much of
the meaning of foot is retained in football, but not by how
much foot and football are related.

Overall, our models indicate that semantic transparency
does influence ease of processing and that the nature of this
influence depends on whether the transparency is based on
the overall compound or the constituents, and on whether
both constituent-based and compound-based measures are
included in the model. Compounds with meanings that are
more highly predictable from their constituents are proc-
essed more quickly than compounds that are less predict-
able from their constituent. That is, semantic transparency
is beneficial. However, in terms of the constituent-specific
measures, the coefficient was positive, indicating that in-
creased ratings of retention were associated with slower
times when the rating for the entire compound was includ-
ed in the model (Models 5 and 6). However, when
ratingcmp (the rating for the entire compound) was exclud-
ed (Model 7), higher ratings for the constituents were as-
sociated with faster response times. Thus, when both
constituent-based and compound-based measures of trans-
parency are included in the model, the constituent-based
coefficients indicate slower responses when the ratings are
higher. This pattern (i.e., the flip in direction of the

Table 9 Standardized regression coefficients with standard errors (in parentheses) from models using the semantic transparency measures and
compound-based covariates to predict English Lexicon Project naming times

Model 1 Model 2 Model 3 Model4 Model 5 Model 6 Model 7

SUBTLEX frequency – 0.47*** – 0.47*** – 0.47*** – 0.46*** – 0.44*** – 0.38*** – 0.42***

(0.00325) (0.00326) (0.00326) (0.00324) (0.00327) (0.00135) (0.00131)

stimlen 0.25*** 0.25*** 0.25*** 0.26*** 0.25*** 0.29*** 0.28***

(0.00152) (0.00153) (0.00152) (0.00151) (0.00150) (0.000548) (0.000554)

2015_trans – 0.02

(0.00162)

2018_ratingC1 – 0.00

(0.00236)

2018_ratingC2 – 0.08

(0.00232)

ratingcmp – 0.12** – 0.34*** – 0.33***

(0.000115) (0.000261) (0.000111)

ratingC1 0.20** 0.11*** – 0.10***

(0.000164) (0.0000737) (0.0000425)

ratingC2 0.11 0.14*** – 0.02

(0.000162) (0.0000701) (0.0000476)

N 456 456 456 456 456 2514 2514

adj. R-sq 0.305 0.303 0.307 0.317 0.327 0.304 0.286

AIC – 1,640.6 – 1,638.8 – 1,640.5 – 1,648.0 – 1,652.4 – 8,957.4 – 8,893.1

Standardized beta coefficients; Standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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coefficients for the constituents when the compound-based
measure was removed from the analysis) held for both the
ELP and BLP lexical decision times, as well as for the ELP
naming times. As is indicated in Table 6, the meaning
predictability rating is highly correlated with the meaning
retention ratings for the first and second constituents (rs =
.75 and .66), and thus they compete with each other as
predictors. In the present models, meaning predictability
(which takes into account the contribution of both constit-
uents) represents the expected reciprocal relationship (in
that higher ratings are associated with faster response
times), with the other two ratings reflecting adjustments
that are uniquely based on the constituents and not shared
with meaning predictability.

Do corpus-based measures of association
influence ease of processing?

We evaluated whether the two types of corpus-based associa-
tions measures (LSA and SNAUT) predicted lexical decision

(ELP and BLP) and naming (ELP) times using items for
which both measures were available. As in the models with
the human ratings, constituent- and compound-based control
variables were also included. The output of these models is
provided in Table 13. For the BLP data, frequency was repre-
sented by SUBTLEX-US and, in a separate model, by BNC
frequency.

The LSA measures were successful at predicting lexical
decision times, with the association between the first constit-
uent and compound being a successful predictor of both the
ELP and BLP lexical decision times, and the association be-
tween the second constituent and the compound being a suc-
cessful predictor of ELP lexical decision times. In terms of the
SNAUT measures, the association for the second constituent
predicted ELP lexical decision times, but not BLP lexical
decision times. None of the LSA or SNAUT measures were
valid predictors of naming. In sum, the LSA measures were
more consistent predictors across the three dependent vari-
ables than were the SNAUT measures.

It is worth noting that these corpus-based measures do not
take into account the semantics of open compounds. Open

Table 10 Standardized regression coefficients with standard errors (in parentheses) from models using the semantic transparency measures,
compound-based covariates, and constituent-based covariates to predict English Lexicon Project lexical decision times

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Frequency – 0.48*** – 0.48*** – 0.46*** – 0.47*** – 0.45*** – 0.42*** – 0.46***

(0.00393) (0.00394) (0.00394) (0.00392) (0.00393) (0.00163) (0.00160)

c1_SLlg10wf – 0.06 – 0.06 – 0.07 – 0.05 – 0.06 – 0.11*** – 0.11***

(0.00274) (0.00275) (0.00273) (0.00274) (0.00272) (0.00128) (0.00130)

c2_SLlg10wf – 0.15*** – 0.15*** – 0.17*** – 0.15*** – 0.14*** – 0.09*** – 0.09***

(0.00285) (0.00285) (0.00287) (0.00283) (0.00281) (0.00114) (0.00116)

c1len 0.16*** 0.16*** 0.15*** 0.16*** 0.16*** 0.20*** 0.20***

(0.00221) (0.00221) (0.00219) (0.00219) (0.00218) (0.000928) (0.000943)

c2len 0.00 0.00 0.00 0.01 0.01 0.09*** 0.07***

(0.00280) (0.00280) (0.00278) (0.00279) (0.00276) (0.000992) (0.00100)

2015_trans – 0.03

(0.00187)

2018_ratingC1 – 0.04

(0.00270)

2018_ratingC2 – 0.11**

(0.00271)

ratingcmp – 0.11** – 0.33*** – 0.35***

(0.000134) (0.000302) (0.000131)

ratingC1 0.21** 0.16*** – 0.06***

(0.000189) (0.0000875) (0.0000512)

ratingC2 0.10 0.14*** – 0.03

(0.000187) (0.0000831) (0.0000568)

N 456 456 456 456 456 2501 2501

adj. R-sq 0.335 0.334 0.347 0.345 0.356 0.369 0.348

AIC – 1,509.7 – 1,508.5 – 1,516.4 – 1,515.7 – 1,521.3 – 8,107.1 – 8,024.5

Standardized beta coefficients; Standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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Table 11 Standardized regression coefficients with standard errors (in parentheses) from models using the semantic transparency measures,
compound-based covariates, and constituent-based covariates to predict British Lexicon Project lexical decision times

Model 1 Model 2 Model 3 Model4 Model 5 Model 6 Model 7

Analyses using SUBTLEX to estimate frequency

SUBTLEX frequency – 0.48*** – 0.48*** – 0.46*** – 0.47*** – 0.47*** – 0.42*** – 0.46***

(0.00393) (0.00388) (0.00385) (0.00384) (0.00387) (0.00150) (0.00149)

c1_SLlg10wf – 0.02 – 0.02 – 0.04 – 0.00 – 0.01 – 0.02 – 0.03

(0.00268) (0.00265) (0.00263) (0.00263) (0.00262) (0.00118) (0.00121)

c2_SLlg10wf – 0.12* – 0.13* – 0.16** – 0.13* – 0.12* – 0.06** – 0.05*

(0.00299) (0.00295) (0.00298) (0.00292) (0.00292) (0.00114) (0.00116)

c1len – 0.01 – 0.01 0.00 – 0.01 – 0.01 0.02 0.01

(0.00306) (0.00302) (0.00298) (0.00299) (0.00299) (0.00113) (0.00115)

c2len – 0.10* – 0.10* – 0.10* – 0.09 – 0.10 – 0.02 – 0.04

(0.00312) (0.00308) (0.00304) (0.00305) (0.00304) (0.00113) (0.00114)

2015_trans – 0.15**

(0.00183)

2018_ratingC1 – 0.09

(0.00264)

2018_ratingC2 – 0.17***

(0.00268)

ratingcmp – 0.19*** – 0.30** – 0.42***

(0.000131) (0.000311) (0.000122)

ratingC1 0.15 0.21*** – 0.05*

(0.000196) (0.0000810) (0.0000480)

ratingC2 – 0.00 0.15*** – 0.06**

(0.000189) (0.0000790) (0.0000540)

N 319 319 319 319 319 1994 1994

adj. R-sq 0.271 0.292 0.310 0.306 0.312 0.270 0.240

AIC – 1,162.7 – 1,170.8 – 1,178.1 – 1,177.2 – 1,177.9 – 7,181.4 – 7,102.1

Analyses using SUBTLEX to estimate frequency

BNC frequency – 0.51*** – 0.53*** – 0.50*** – 0.53*** – 0.53*** – 0.43*** – 0.46***

(0.00329) (0.00322) (0.00319) (0.00317) (0.00317) (0.00134) (0.00136)

c1_BNC frequency – 0.06 – 0.04 – 0.06 – 0.03 – 0.03 – 0.04 – 0.04*

(0.00285) (0.00279) (0.00277) (0.00277) (0.00275) (0.00127) (0.00130)

c2_BNC frequency – 0.10* – 0.10* – 0.13** – 0.09 – 0.08 – 0.04* – 0.03

(0.00314) (0.00307) (0.00310) (0.00303) (0.00303) (0.00124) (0.00127)

c1len 0.02 0.02 0.03 0.02 0.01 0.05* 0.05**

(0.00298) (0.00291) (0.00289) (0.00287) (0.00286) (0.00109) (0.00111)

c2len – 0.06 – 0.05 – 0.05 – 0.04 – 0.05 0.04* 0.02

(0.00295) (0.00288) (0.00286) (0.00285) (0.00283) (0.00102) (0.00105)

2015_trans – 0.19***

(0.00177)

2018_ratingC1 – 0.09

(0.00254)

2018_ratingC2 – 0.18***

(0.00258)

ratingcmp – 0.23*** – 0.39*** – 0.46***

(0.000126) (0.000293) (0.000117)

ratingC1 0.20* 0.24*** – 0.04*

(0.000186) (0.0000800) (0.0000488)

ratingC2 0.03 0.14*** – 0.08***

(0.000178) (0.0000789) (0.0000549)

N 319 319 319 319 319 2360 2360

adj. R-sq 0.316 0.348 0.358 0.365 0.375 0.286 0.249

AIC – 1,182.9 – 1,197.4 – 1,201.4 – 1,205.4 – 1,208.6 – 8,241.8 – 8,122.9

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001
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compounds reflect the potentiality of the constituents’ ability
to combine with other constituents during conceptual combi-
nation (see Gagné & Shoben, 1997, for a discussion of how
people appear to have knowledge of how concepts are used to
modify and be combined with other concepts). Indeed,
Marelli, Dinu, Zamparelli, and Baroni (2015) found that
distribution-based semantic transparency variables are more
predictive of response times when derived from open-form
compounds than when derived from closed-form compounds,
which suggests that compound processing is compositional.
Thus, their findings, as well as the present finding that LSA
and SNAUT had limited predictive power, is consistent with
previous evidence for the role of composition in compound
processing (see Gagné & Spalding, 2014, for an overview).

Does morpheme bigram frequency influence ease
of processing?

To test whether ease of parsing influences ease of processing,
we evaluated whether bigram frequency predicted lexical de-
cision (ELP and BLP) and naming (ELP) times. We used both

types of dependent variables to determine whether lexical de-
cision is more likely to be influenced by bigram frequency
than is naming. Naming is more remote from letter identifica-
tion, and perhaps less susceptible to the orthographic proper-
ties of a word. In general, one would expect higher-frequency
letter combinations to aid the identification and processing of
words. However, if compound processing involves parsing,
then words with higher bigram frequencies at the morpheme
boundary (e.g., th in anthill) should be more difficult to pro-
cess than words with lower bigram frequencies (e.g., xg in
foxglove). In short, low bigram frequency could be an indica-
tor of a likely parse.

For these analyses, we focused only the correctly parsed
compounds. Word frequency and word length were entered as
control variables. One set of models used bigram frequency
measures obtained from Jones andMewhort (2004). A second
set of models used the bigram frequency calculated from
SUBTLEX-US. We predicted the two lexical decision mea-
sures (ELP and BLP) and the ELP naming times in separate
models. The standardized coefficients and model fits for these
models are shown in Table 14. For the BLP data, frequency is

Table 12 Standardized regression coefficients with standard errors (in parentheses) from models using semantic transparency measures compound-
based covariates and constituent-based covariates to predict English Lexicon Project naming times

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

SUBTLEX frequency – 0.40*** – 0.40*** – 0.38*** – 0.39*** – 0.38*** – 0.33*** – 0.36***

(0.00326) (0.00327) (0.00328) (0.00325) (0.00327) (0.00132) (0.00129)

c1_SLlg10wf – 0.19*** – 0.19*** – 0.19*** – 0.18*** – 0.18*** – 0.22*** – 0.22***

(0.00228) (0.00228) (0.00227) (0.00227) (0.00226) (0.00104) (0.00105)

c2_SLlg10wf – 0.14*** – 0.14*** – 0.16*** – 0.14*** – 0.13*** – 0.11*** – 0.12***

(0.00236) (0.00236) (0.00239) (0.00235) (0.00234) (0.000924) (0.000933)

c1len 0.24*** 0.24*** 0.23*** 0.24*** 0.23*** 0.23*** 0.23***

(0.00183) (0.00183) (0.00182) (0.00182) (0.00181) (0.000753) (0.000761)

c2len 0.05 0.05 0.05 0.06 0.06 0.12*** 0.11***

(0.00232) (0.00233) (0.00231) (0.00231) (0.00230) (0.000805) (0.000810)

2015_trans – 0.02

(0.00155)

2018_ratingC1 – 0.00

(0.00225)

2018_ratingC2 – 0.10**

(0.00225)

ratingcmp – 0.09* – 0.29*** – 0.28***

(0.000111) (0.000251) (0.000107)

ratingC1 0.19** 0.12*** – 0.06***

(0.000158) (0.0000710) (0.0000413)

ratingC2 0.09 0.12*** – 0.02

(0.000156) (0.0000675) (0.0000459)

N 456 456 456 456 456 2502 2502

adj. R-sq 0.367 0.366 0.375 0.374 0.383 0.364 0.351

AIC – 1,680.8 – 1,678.9 – 1,684.5 – 1,684.7 – 1,689.1 – 9,153.2 – 9,103.1

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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represented by SUBTLEX-US and, in a separate model, by
BNC frequency.

The pattern of results is consistent across both
methods of obtaining bigram frequency. Both measures
were valid predictors of ELP lexical decision and naming
times, but not of BLP lexical decision times when com-
pound frequency was estimated by SUBTLEX-US (the
same measure used to estimate the ELP data), but the
ratings were valid predictors of BLP lexical decision time
when word frequency was estimated using BNC
frequency.

To examine whether the impact of bigram frequency is influ-
enced by whether the recovered morphemes are productive (i.e.,
whether or not they function as morphemes in the word), we refit
the models but allowed bigram frequency to interact with a

variable indicating whether the item was correctly parsed (e.g.,
wartweed –> wart–weed, where the bigram of interest is tw) or
not (e.g., war–tweed, where the bigram of interest is rt). We
present only the bigram measure based on SUBTLEX-US in
Table 15 because both measures of bigram frequencies showed
consistent patterns. As can be seen there, bigram fre-
quency at the boundary interacted with whether the item
was correctly parsed for the two measures of lexical
decision, but not for the naming latencies, which sug-
gests that naming is less sensitive than lexical decision
to the orthographic characteristics of the stimulus.

Due to the interaction in the two models predicting lexical
decision, we examined the influence of bigram frequency sep-
arately for the correctly and incorrectly parsed compounds
using a simple-effects analysis. In the model predicting ELP

Table 13 Standardized regression coefficients with standard errors (in parentheses) frommodels using vector-basedmeasures of semantic transparency
to predict English Lexicon Project (ELP) lexical decision (LD) times, British Lexicon Project (BLP) lexical decision times, and ELP naming times

ELP LD ELP LD BLP LD BLP LD BLP LD BLP LD ELP Naming ELP Naming

SUBTLEX
frequency

– 0.423***

(0.00190)
– 0.451***

(0.00191)
– 0.484***

(0.00197)
– 0.506***

(0.00197)
– 0.349***

(0.00154)
– 0.373***

(0.00153)

c1_SLlg10wf – 0.143***

(0.00151)
– 0.138***

(0.00155)
– 0.034

(0.00164)
– 0.032

(0.00167)
– 0.248***

(0.00122)
– 0.244***

(0.00124)

c2_SLlg10wf – 0.115***

(0.00138)
– 0.101***

(0.00141)
– 0.122***

(0.00154)
– 0.107***

(0.00160)
– 0.147***

(0.00111)
– 0.142***

(0.00113)

BNC_frequency – 0.482***

(0.00186)
– 0.492***

(0.00180)
c1_BNC

frequency
– 0.028

(0.00178)
– 0.036

(0.00179)
c2_BNC

frequency
– 0.069**

(0.00170)
– 0.065*

(0.00173)
c1len 0.180***

(0.00112)
0.179***

(0.00113)
0.026

(0.00152)
0.024(0.00152) 0.057*

(0.00153)
0.059*

(0.00152)
0.194***

(0.000904)
0.193***

(0.000903)

c2len 0.095***

(0.00116)
0.092***

(0.00116)
– 0.028

(0.00163)
– 0.029

(0.00163)
0.047 (0.00160) 0.045

(0.00159)
0.104***

(0.000932)
0.105***

(0.000931)

LSAc1c2 0.022
(0.00791)

0.005
(0.00866)

– 0.030
(0.00860)

0.033
(0.00638)

LSAc1stim – 0.072***

(0.00631)
– 0.064*

(0.00673)
–

0.055*(0.00-
679)

– 0.031
(0.00509)

LSAc2stim – 0.047*

(0.00729)
– 0.031

(0.00751)
– 0.043

(0.00749)
– 0.018

(0.00588)
c1c2_snautCos 0.002 (0.0107) 0.014 (0.0119) 0.061* (0.0113) – 0.043

(0.00860)

c1stim_
snautCos

0.025
(0.00956)

0.036 (0.0100) 0.091***

(0.00992)
– 0.007

(0.00765)

c2stim_
snautCos

– 0.042*

(0.00915)
– 0.049

(0.00979)
0.024

(0.00969)
– 0.039

(0.00733)

N 1,767 1,767 1,121 1,121 1,191 1,191 1,768 1,768

R-sq 0.350 0.344 0.304 0.301 0.293 0.304 0.344 0.346

adj. R-sq 0.347 0.341 0.299 0.296 0.288 0.299 0.341 0.343

AIC – 5,774.3 – 5,757.3 – 4,037.6 – 4,033.1 – 4,203.5 – 4,221.1 – 6,536.8 – 6,543.4

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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lexical decision times, high bigram frequency was associated
with longer response times for the correctly parsed items, b =
0.00465, se = .001, t = 4.77, p < .0001. In contrast, for incor-
rectly parsed items, high bigram frequency was associated
with faster responses times, b = – 0.0198, se = .008, t = –
2.46, p = .014. The model predicting BLP lexical decision
times also revealed that higher bigram frequencies were asso-
ciated with slower response times for correctly parsed

compounds, b = .0017, se = .0009, t = 1.89, p = .06, but were
associated with faster response times for incorrectly parsed
compounds, b = – .021, se = .007, t = – 3.05, p = .002.

In sum, these analyses reveal that lexical decision is sensi-
tive to the frequency of bigrams at the edges of embedded
words (e.g., the frequency of the ks in work-space and sp in
works-pace), but the nature of this influence depends on
whether the embedded words are morphemic constituents of

Table 15 Standardized regression coefficients with standard errors (in
parentheses) from models using frequency, stimulus length (in letters),
log bigram frequency calculated from SUBTLEX, and whether the item

was correctly parsed or not to predict English Lexicon Project (ELP)
lexical decision (LD) times, British Lexicon Project (BLP) lexical deci-
sion times, and ELP naming times

ELP LD BLP LD BLP LD ELP Naming

SUBTLEX frequency – 0.487*** – 0.472*** – 0.409***

(0.00152) (0.00140) (0.00128)

BNC frequency – 0.482***

(0.00125)

stimlen 0.217*** – 0.010 0.048** 0.264***

(0.000627) (0.000753) (0.000723) (0.000527)

log_bgSUBTLEX – 0.335* – 0.476** – 0.409** – 0.085

(0.00801) (0.00693) (0.00660) (0.00673)

Correct parse – 0.561** – 0.788*** – 0.652** – 0.208

(0.0459) (0.0401) (0.0380) (0.0386)

Bigram frequency x Correct parse 0.244** .023** 0.021 0.008

(0.00807) (0.00698) (0.00665) (0.00678)

N 2,773 2,183 2,604 2,774

adj. R-sq 0.318 0.226 0.240 0.270

AIC – 8,762.3 – 7,704.8 – 8,929.3 – 9,730.1

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.

Table 14 Standardized regression coefficients with standard errors (in
parentheses) from models using frequency, stimulus length (in letters),
log bigram frequency (based either on SUBTLEX or from Jones &

Mewhort, 2004), to predict English Lexicon Project (ELP) lexical deci-
sion (LD) times, British Lexicon Project (BLP) lexical decision times,
and ELP naming times

ELP LD ELP LD BLP LD BLP LD BLP LD BLP LD ELP Naming ELP Naming

SUBTLEX frequency – 0.491*** – 0.491*** – 0.479*** – 0.478*** – 0.415*** – 0.414***

(0.00156) (0.00156) (0.00144) (0.00144) (0.00131) (0.00131)

BNC frequency – 0.486*** – 0.486***

(0.00129) (0.00129)

stimlen 0.220*** 0.217*** – 0.015 – 0.015 0.042* 0.042* 0.258*** 0.256***

(0.000645) (0.000646) (0.000774) (0.000774) (0.000743) (0.000743) (0.000542) (0.000543)

bgSUBTLEX 0.078*** 0.038 0.041* 0.087***

(0.000975) (0.000902) (0.000852) (0.000819)

bgJonesMewhort 0.088*** 0.035 0.041* 0.087***

(0.000460) (0.000422) (0.000399) (0.000387)

N 2,593 2,593 2,002 2,002 2,396 2,396 2,594 2,594

R-sq 0.322 0.324 0.226 0.226 0.239 0.239 0.273 0.273

adj. R-sq 0.321 0.323 0.225 0.225 0.238 0.238 0.272 0.272

AIC – 8,199.6 – 8,205.8 – 7,079.1 – 7,078.6 – 8,231.6 – 8,231.4 – 9,106.2 – 9,106.3

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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the compound (e.g., boot-hose; cow-slip) or not (e.g., boo-
those; cows-lip). When the bigram is at a true morpheme
boundary, higher frequencies make it more difficult to parse
and identify the two constituents, which increases processing
time. However, when the bigram is not at a morpheme bound-
ary, high frequencies aid in letter identification, which aids
access to the compound.

Does family size influence ease of processing?

We evaluated whether our family size measures predicted
lexical decision (ELP and BLP) and naming times (ELP).
As in the previous section, word frequency and word
length were entered as control variables. Only items with
the correct parse and with at least one family member
were included in the analysis. A summary of the models
is shown in Table 16. The number of compounds using
the same first constituent successfully predicts ELP and
BLP lexical decision times as well as naming times. The
greater the number of family members with the same first
constituent, the easier it was to process the compound. In
contrast, the number of compounds using the same second
constituent was not a successful predictor of naming or of
lexical decision times. This pattern is similar to that from
our analysis of the correlation between the constituent and
whole-word transparency measures, in which the first
constituent transparency rating was more highly correlat-
ed with the whole-word transparency measure than was
the second constituent transparency measure. Taken to-
gether, these analyses suggest a special role for the first
constituent in compound-word processing. We return to
this issue in the General Discussion.

Are lexical decision and naming sensitive
to the sentiment and valence of the compound and its
constituents?

We examined whether the sentiment of the compound and
its constituents influences ease of processing, as indexed
by lexical decision times in the ELP (Balota et al., 2007)
and BLP (Keuleers et al., 2012) and by naming latencies in
the ELP. We fit one model for each of these three depen-
dent variables. In all models, word length (i.e., number of
letters) and log word frequency in SUBTLEX-US were
entered as control variables. As predictor variables, we
entered the probability that the compound or constituent
was positive as well as the probability that the compound
or constituent was negative.

Table 17 provides a summary of the three models. The
sentiment value for the compound is a successful predic-
tor of lexical decision as well as of naming. However, the
sentiment values for the individual constituents did not
predict response times in either task, even when the

sentiment values for the entire compound were not en-
tered into the model. Both the probability of being nega-
tive and the probability of being positive have positive
coefficients (i.e., lower value are associated with longer
times). This outcome suggests that the higher the proba-
bility of compound to be either positive or negative aids
processing. This could be an arousal effect (i.e., the more
arousing the word is, the faster participants respond). The
idea is that emotional content, whether positive or nega-
tive, tends to be arousing, as compared to completely
neutral stimuli. These results suggest that the sentiment
classification may be a useful measure in psycholinguistic
research. Furthermore, it appears that knowledge about
sentiment plays a role only at the whole-word level, or
that the sentiments associated with the constituents are
quickly suppressed during processing.

We conducted a similar set of analyses, using Warriner
et al.’s (2013) valence ratings, which range from 1 (neg-
ative/unhappy) to 9 (positive/happy). Table 18 provides a
summary of the three models. As with the analyses using
sentiment, the valence of the compound was a successful
predictor of both BLP and ELP lexical decision times.
Compounds with negative valences (i.e., lower ratings)
were associated with slower lexical decision times. This
finding is consistent with Kuperman et al. (2014), who
also found that negative words (e.g., coffin) take longer
to process than neutral (e.g., cotton) and positive (e.g.,
kitten) words. However, unlike in the sentiment analysis,
valence was not a successful predictor of naming laten-
cies. In terms of the valence of the constituents, valence
was not predictive except for the valence of the second
constituent for the BLP lexical decisions times when com-
pound frequency was estimated by SUBTLEX-US. The
valence of the second constituent was not predictive when
the compound frequency was estimated by BNC frequen-
cy. The null effects of the constituent valences differ from
the results of Kuperman (2013), who found that the va-
lence of constituents affected ELP lexical decision times.
A detailed investigation of this difference is beyond the
scope of this article, but two potential explanations are
that the item sets differ (Kuperman, 2013, used 557
items), and also that Kuperman used residualization to
remove collinearity between the valences of the two con-
stituents and the compound (see Wurm & Fisicaro, 2014,
for a discussion of why residualization might not be
optimal).

General discussion

LADEC fills an important gap in the field, due to its size and
inclusion of measures that are unique to compound words.
The database contains over 8,000 compounds along with
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information covering a range of levels, from orthographic to
morphological to semantic. In addition, the database includes
semantic transparency ratings (collected in a lab setting) from

a total of almost 1,800 participants. These semantic transpar-
ency ratings assess transparency from both compound-based
and constituent-based perspectives. By collecting ratings that

Table 16 Standardized regression coefficients with standard errors (in
parentheses) from models using frequency, stimulus length (in letters),
log bigram frequency, family size of the first constituent, and family size

of the second constituent to predict English Lexicon Project (ELP) lexical
decision (LD) times, British Lexicon Project (BLP) lexical decision
times, and ELP naming times

ELP LD BLP LD BLP LD ELP Naming

SUBTLEX frequency – 0.481*** – 0.469*** – 0.397***

(0.00155) (0.00143) (0.00127)

BNC frequency – 0.472***

(0.00129)

stimlen 0.227*** – 0.031 0.034 0.263***

(0.000645) (0.000787) (0.000758) (0.000525)

nc1_cmp – 0.117*** – 0.122*** – 0.098*** – 0.242***

(0.0000394) (0.0000506) (0.0000490) (0.0000321)

nc2_cmp 0.005 – 0.038 – 0.008 – 0.024

(0.0000206) (0.0000198) (0.0000191) (0.0000168)

N 2,593 2,002 2,396 2,594

adj. R-sq 0.329 0.238 0.246 0.322

AIC – 8,227.7 – 7,112.9 – 8,253.5 – 9,288.9

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.

Table 17 Standardized regression coefficients with standard errors (in
parentheses) from models using frequency, stimulus length (in letters),
and sentiment to predict English Lexicon Project (ELP) lexical decision

(LD) times, British Lexicon Project (BLP) lexical decision times, and
ELP naming times

ELP LD BLP LD BLP LD ELP Naming

SUBTLEX frequency – 0.473*** – 0.455*** – 0.401***

(0.00162) (0.00149) (0.00136)

BNC frequency – 0.464***

(0.00132)

stimlen 0.226*** – 0.012 0.042* 0.264***

(0.000647) (0.000773) (0.000743) (0.000544)

sentimentprobneg_stim 0.090*** 0.126*** 0.115*** 0.065**

(0.0219) (0.0212) (0.0221) (0.0184)

sentimentprobneg_c1 – 0.010 – 0.010 0.004 – 0.041

(0.0112) (0.0107) (0.0104) (0.00942)

sentimentprobneg_c2 0.016 0.012 – 0.003 0.008

(0.0125) (0.0120) (0.0114) (0.0105)

sentimentprobpos_stim 0.073*** 0.083** 0.052* 0.050*

(0.0215) (0.0213) (0.0225) (0.0181)

sentimentprobpos_c1 – 0.025 – 0.002 – 0.017 – 0.015

(0.0114) (0.0107) (0.0104) (0.00961)

sentimentprobpos_c2 0.025 0.019 0.012 0.023

(0.0131) (0.0124) (0.0118) (0.0110)

N 2,593 2,002 2,396 2,594

adj. R-sq 0.320 0.231 0.244 0.267

AIC – 8,187.5 – 7,089.5 – 8,242.7 – 9,082.9

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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target both of the individual constituents’ transparency as well
as the compound-based transparency, we were able to get a
more fine-grained glimpse into how the various aspects of
semantic transparency are interrelated, as well as into how
they work together to influence compound processing. The
complete list of variables included in the database can be
found in the Appendix.

To examine the viability of some of the variables and
provide examples of some of the types of questions that
can be addressed using LADEC, we conducted several sets
of analyses focusing on different aspects of the information
contained in the database. The analyses concerning seman-
tic transparency established that our ratings of semantic
transparency correlate with previous measures reported in
the literature (Juhasz et al., 2015; Kim et al., 2018), but
also are more consistent predictors across three sets of re-
sponse time data (ELP naming, ELP lexical decision, and
BLP lexical decision) than the previous measures. For ex-
ample, whereas the semantic transparency ratings in Juhasz
et al. (2015) predicted only BLP lexical decision times, our
meaning predictability and meaning retention ratings of the
first constituent predicted all three types of response times,
and meaning retention ratings of the second constituent
predicted both types of lexical decision times for the full
set, and ELP lexical decision times for the reduced set. The
influence of the meaning retention ratings of the second
constituent on naming emerged only when the com-
pound-based, meaning predictability rating was included
in the model, and only for the full set of items.

We also found evidence that processing is sensitive to
other sources of influence, such as orthographic and

emotional information. The analyses using bigram fre-
quency indicated that compound processing is sensitive
to this orthographic information and that high-frequency
bigrams at the morpheme boundary slow processing. This
slowdown is consistent with claims that bigram frequency
provides a cue for morphemic parsing (Seidenberg, 1987),
in that higher frequency makes it more difficult to identify
the boundaries of the constituents (or, alternatively, that
low-frequency bigrams are taken as evidence of a bound-
ary, and hence encourage parsing at that point).

The analyses with sentiment indicate that this measure,
which was generated via an autoclassifier, might be a
useful measure for further research examining the impact
of emotion on lexical processing. Indeed, as was demon-
strated by Kuperman (2013), measures such as valence
appear to impact even the early stages of complex-word
processing. Having sentiment values available for a large
set of items (as in LADEC) can aid in the further explo-
ration of this issue.

Another useful aspect of our results is that they indi-
cate that it is useful for researchers to separately consider
the contribution of each constituent, because their contri-
butions may not be symmetric. For example, we found
that although the meaning retention ratings for both con-
stituents were associated with the compound-based mean-
ing predictability measure (e.g., how predictable
schoolteacher is from school and teacher), the meaning
retention ratings for the first constituent were more
strongly associated with the compound-based measure
than were the meaning retention ratings for the second
constituent. It is possible that this occurs because the

Table 18 Standardized regression coefficients with standard errors (in
parentheses) from models using frequency, stimulus length (in letters),
and valence to predict English Lexicon Project (ELP) lexical decision

(LD) times, British Lexicon Project (BLP) lexical decision times, and
ELP naming times

ELP LD BLP LD BLP LD ELP Naming

SUBTLEX frequency – 0.302***

(0.00277)
– 0.417***

(0.00205)
– 0.290***

(0.00215)

BNC frequency – 0.534***

(0.00159)
stimlen 0.199***

(0.000965)
– 0.032

(0.00105)
0.009

(0.000945)
0.248***

(0.000750)

valence_stim – 0.165***

(0.00144)
– 0.218***

(0.00126)
– 0.151***

(0.00117)
– 0.049

(0.00112)

valence_c1 – 0.054
(0.00136)

– 0.022
(0.00116)

– 0.015
(0.00108)

– 0.055
(0.00106)

valence_c2 – 0.003
(0.00151)

0.087**

(0.00137)
0.046

(0.00127)
– 0.004

(0.00117)

N 1,076 950 950 1,076

adj. R-sq 0.187 0.223 0.334 0.168

AIC – 3,605.7 – 3,567.7 – 3,716.5 – 4,148.0

Standardized beta coefficients; standard errors are in parentheses. * p < .05, ** p < .01, *** p < .001.
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modifier (the first constituent in English compounds) has
a larger impact on specifying the way in which the cate-
gory denoted by the compound differs from the head cat-
egory, particularly for relatively transparent compounds.
For example, the first constituent creates the variation
between bluebird, seabird, and hummingbird. In addition,
as is shown in Fig. 1, the distribution of transparencies for
the second constituent is much more peaked (and higher)
than the distribution for the first constituent, indicating a
somewhat stronger bias toward transparency in the second
constituent overall, and far more so than for the com-
pound as a whole. Thus, there seems to be a bias toward
the second constituent’s transparency, such that the trans-
parency of the whole compound then depends more on
the transparency of the first constituent.

Similarly, the analyses with family size indicate that
the influences of first- and second-constituent family size
are not symmetric. The family size of the first constituent,
but not of the second, plays a role in predicting lexical
decision latencies. At first glance, this finding might seem
counterintuitive, because most theories of complex-word
processing posit that the head constituent plays a more
important role in the representation of the compound
(Libben et al., 2003). However, past research has also
indicated that, in terms of processing, the first constituent
in English (i.e., the modifier concept) tends to play a more
influential role (Gagné, 2002; Gagné & Spalding, 2009).
Thus, our present finding concerning the impact of con-
stituent family size fits well with the latter research—
namely, it suggests that the more information participants
have about how a modifier concept tends to be used, the
more readily they can process the compound. This ease
could arise because the constituent is more easily accessed
and assigned its role in the morphological structure.
Indeed, Gagné et al. (2009) reported that participants took
less time to process a noun phrase when the previous trial
had used a constituent in the same position (i.e., when
both used the same word as the first constituent) than
when the previous trial had used the constituent in a dif-
ferent position (i.e., when the constituent was used as the
second constituent in the previous trial but as the first
constituent in the current trial). Alternatively, the ease of
processing due to a larger first-constituent family could be
due to that family facilitating the ease of selecting a se-
mantic relation that links the two constituents within the
conceptual representation that corresponds to the lexical
representation. Ease of selecting a semantic relation has
also been shown to influence the ease of processing for
both novel and familiar (lexicalized) compounds (for an
overview, see Gagné & Spalding, 2014).

Overall, the various sets of analyses in this article sup-
port the idea that compound processing is multifaceted
and draws on information ranging from orthographic

information (e.g., bigram frequency), to morphological
information (e.g., family size), to semantic/conceptual in-
formation (e.g., semantic transparency and sentiment)
about the compound and its constituents. In addition,
these analyses show some of the important asymmetries
between the effects of the individual constituents in com-
pound processing.

In conclusion, LADEC can be used in a variety of
ways. As we have shown above, it will allow researchers
to run virtual experiments on a dataset to check new hy-
potheses, or to confirm the generalizability of existing
findings. It can also be used to select materials for future
experiments and will allow researchers to search for items
with particular behavioral or stimulus characteristics (e.g.,
compounds with transparency ratings within a certain
range). The size of the database provides greater options
for matching and selecting items on a broader range of
criteria. In addition, the database is useful for finding
control stimuli when investigating both monomorphemic
words and derived words. Importantly, the database can
also be a useful test set for examining the accuracy of
autoclassification and morphological-parsing systems.
For example, Tucker et al. (2019) noted that the 1,200
noun–noun compounds incorporated in the Englex
English morpheme sets (Antworth, 1994) were mostly an-
alyzed as single morphemes by the PC-Kimmo two-level
morphological parser. Items from LADEC could be used
as input to evaluate the accuracy of such parsers.
Similarly, the rating data were collected in a lab setting,
and thus could also serve as a useful tool for researchers
wishing to evaluate differences (if any) between crowd-
sourced data collection (from, e.g., mTurk) and data col-
lected in a one-on-one setting. Thus, we believe that
LADEC will, in many respects, facilitate research on the
processing of compound words, in particular, and of mor-
phologically complex words, in general.
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Appendix

Table 19. List of variables in LADEC

Variable Name Variable Description

id_master id

c1 first constituent

c2 second constituent

stim compound

obs observation number by compound

obsc1 observation number by first constituent

obsc2 observation number by second constituent

stimlen length of compound

c1len length of first constituent

c2len length of second constituent

nparses number of parses per compound

correctParse correct parse? (1 = yes, 0 = no)

ratingcmp Predictability rating

ratingC1 Meaning retention rating for first constituent

ratingC2 Meaning retention rating for second constituent

isPlural is plural? (1 = yes, 0 = no)

nc1_cmp first constituent, family size based on correctly parsed compounds

nc2_cmp second constituent, family size based on correctly parsed compounds

nc1_cmpnoplural first constituent, family size based on correctly parsed compounds, no plurals

nc2_cmpnoplural second constituent, family size based on correctly parsed compounds, no plurals

sentiment_stim sentiment stim (Mathematica classifier)

sentiment_c1 sentiment first constituent (Mathematica classifier)

sentiment_c2 sentiment second constituent (Mathematica classifier)

sentimentprobpos_stim probability of positive sentiment, stimulus (Mathematica classifier)

sentimentprobpos_c1 probability of positive sentiment, first constituent (Mathematica classifier)

sentimentprobpos_c2 probability of positive sentiment, second constituent (Mathematica classifier)

sentimentprobneg_stim probability of negative sentiment, stimulus (Mathematica classifier)

sentimentprobneg_c1 probability of negative sentiment, first constituent (Mathematica classifier)

sentimentprobneg_c2 probability of negative sentiment, second constituent (Mathematica classifier)

sentimentratioposneg_stim ratio of probPos/probNeg, stimulus (Mathematica sentiment classifier)

sentimentratioposneg_c1 ratio of probPos/probNeg, first constituent (Mathematica sentiment classifier)

sentimentratioposneg_c2 ratio of probPos/probNeg, second constituent (Mathematica sentiment classifier)

profanity_stim is stimulus profane? (Mathematica classifier)

profanity_c1 is first constituent profane? (Mathematica classifier)

profanity_c2 is second constituent profane? (Mathematica classifier)

isCommonstim is stimulus in Mathematica_CommonList?

isCommonC1 Is first constituent in Mathematica's list of common words? (1 = yes, 0 = no)

isCommonC2 Is second constituent in Mathematica's list of common words? (1 = yes, 0 = no)

bg_boundary bigram at c1c2 boundary

bgJonesMewhort bigram frequency from Jones & Mewhort (2004)

bgSUBTLEX bigram frequency from SUBTLEX-US

bgFacebook bigram frequency from Facebook

inSUBTLEX compound in SUBTLEX-US? (1 = yes, 0 = no)

inBLP compound in BLP? (1 = yes, 0 = no)

inELP compound in ELP? (1 = yes, 0 = no)

inJuhaszLaiWoodcock compound in Juhasz, Lai, & Woodcock (2015)? (1 = yes, 0 = no)
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